
(NIP5-95-OS492) "EXPLORING THE USE N96-13076
OF I/O NODES FOR COMPUTATION IN A
MIMD MULTIPROCESSOR (Dartmouth
Coll.) 12 p Unclas

G3/62 0072783



NASA-CR-199625 -*? 3

Exploring the use of I/O Nodes for Computation
in a MIMD Multiprocessor

David Kotz and Ting Cai

Department of Computer Science
Dartmouth College
Hanover, NH 03755

{dik,tcai}Qcs.dartmouth.edu

J)
'

Abstract

As parallel systems move into the production
scientific-computing world, the emphasis will
be on cost-effective solutions that provide high
throughput for a mix of applications. Cost-
effective solutions demand that a system make
effective use of all of its resources. Many MIMD
multiprocessors today, however, distinguish be-
tween "compute" and "I/O" nodes, the latter
having attached disks and being dedicated to
running the file-system server. This static di-
vision of responsibilities simplifies system man-
agement but does not necessarily lead to the best
performance in workloads that need a different
balance of computation and I/O.

Of course, computational processes sharing a
node with a file-system service may receive less
CPU time, network bandwidth, and memory
bandwidth than they would on a computation-
only node. In this paper we begin to examine
this issue experimentally. We found that high-
performance I/O does not necessarily require
substantial CPU time, leaving plenty of time for
application computation. There were some com-
plex file-system requests, however, which left lit-
tle CPU time available to the application. (The
impact on network and memory bandwidth still
needs to be determined.) For applications (or
users) that cannot tolerate an occasional inter-
ruption, we recommend that they continue to use
only compute nodes. For tolerant applications
needing more cycles than those provided by the

compute nodes, we recommend that they take
full advantage of both compute and I/O nodes for
computation, and that operating systems should
make this possible.

1 Introduction

Programmers of scientific computer applications
are increasingly turning to parallel systems for
their production computing. In today's climate
of tightening budgets, however, their managers
demand cost-effective solutions that provide high
throughput for a mix of applications. Several
applications, each with different computational
and I/O needs, are simultaneously active within
a single multiprocessor. Cost-effective solutions
demand that a system make effective use of all
of its resources.

Many MIMD multiprocessors today are config-
ured with two distinct types of processor nodes:
those that have disks attached, which are ded-
icated to file I/O, and those that do not have
disks attached, which are used for running ap-
plications. This static division of responsibilities
simplifies system management but does not nec-
essarily lead to the best performance in work-
loads that need a different balance of compu-
tation and I/O. For example, a system which
makes all nodes available to computational appli-

This research was funded by NSF under grant number
CCR-9404919, by NASA Ames under agreements num-
bered NCC 2-849 and NAG 2-936, and by IBM and Dart-
mouth College through a matching-grants program.

Appeared at the Workshop for I/O in Parallel and Distributed Systems at IPPS '95, pp. 78-89.
Available at URL ftp://ftp.cs.dartmouth.edU/pub/CS-techreports/TR95-253.ps.Z.



cations increases its overall computational power
and may therefore be more cost effective.

Computational processes running on nodes
that also serve part of the file system, however,
may receive less CPU time, network bandwidth,
and memory bandwidth than they would on a
computation-only node. The conventional wis-
dom is that the CPU overhead of the file-system
code running on I/O nodes, coupled with the
unpredictable and erratic nature of I/O activ-
ity, would substantially disrupt the performance
of computational applications. In this paper we
examine this issue experimentally, focusing on
the impact of a file-system server on the CPU
time available to local computational processes.
We found that high-performance I/O does not
necessarily require substantial CPU time, leav-
ing plenty of time for application computation.
There were some complex file-system requests,
however, which left little CPU time available
to the application. (The impact on network
and memory bandwidth still needs to be deter-
mined.) For applications (or users) which can-
not tolerate an occasional interruption, we rec-
ommend that they continue to use only compute
nodes. For other applications, particularly those
that can adapt to changing load, we recommend
that they consider taking full advantage of both
compute and I/O nodes for computation. After
all, our results show that the I/O nodes usually
had cycles to spare.

We begin in the next section with background
information about multiprocessor file systems.
Section 3 describes some simulations and their
results and Section 4 describes some measure-
ments on a real system. We summarize our con-
clusions in Section 5.

2 Background

There are many different parallel file systems
[Kri94, Pie89, FPD93, Roy93, LIN+93, DdR92,
CF94, Dib90, DSE88, MS94, HdC95, HER+95].
Most, though not all, are designed for ma-
chines that have dedicated I/O nodes. Most
are based on a fairly traditional Unix-like inter-
face, in which individual processes make a re-

quest to the file system for each piece of the file
they read or write. Increasingly common, how-
ever, are specialized interfaces to support mul-
tidimensional matrices [CFPB93, SW94, GL91,
GGL93, BdC93, BBS+94, Mas92, SCJ+95], and
interfaces that support collective I/O [GGL93,
BdC93, BBS+94, Mas92]. With a collective-I/0
interface, all processes make a single joint re-
quest to the file system, rather than numerous
independent requests.

Disk-directed I/O is a promising new tech-
nique that takes advantage of a collective-I/0
interface, and leads to much better performance
than file systems based on traditional caching
strategies [Kot94]. With disk-directed I/O, com-
pute nodes make a collective request to the file
system, which forwards the request to all I/O
nodes. Each I/O node examines the request to
determine which file blocks are on its disks, sorts
the file blocks by physical location to produce
an efficient schedule, and then begins a series of
transfers according to the schedule. In effect,
the I/O nodes are in charge of the data transfer,
which is organized to best suit the disks' per-
formance characteristics. Each I/O node uses
two buffers to overlap disk transfer and network
transfer. For example, when reading, one buffer
is filled by reading a block from disk while an-
other buffer is emptied by scattering its contents
among the compute-node memories according to
the requested distribution. Data transfers be-
tween compute nodes and I/O nodes use low-
overhead "Memput" and "Memget" messages
that move data directly to and from the appli-
cation buffer. The experiments in [Kot94] show
that disk-directed I/O obtains nearly the peak
disk bandwidth across many data distributions
and system configurations.

There have been no previous studies of
CPU activity on the I/O nodes of multiproces-
sors. A ten-year old study of diskless work-
stations [LZCZ86] found that file-server CPU
load can be extremely high. To be able to pro-
vide high performance during periods of intense
I/O activity, however, a balanced multiprocessor
spreads its disks across many I/O nodes so that
the I/0-node CPUs will not be a performance
bottleneck. This configuration leaves open the



possibility that the I/O nodes will be underuti-
lized during other periods.

3 Simulation Experiments

We wanted to measure the worst-case impact of
unpredictable I/O interruptions on a computa-
tional application, so we devised an experiment
involving two 16-processor applications on a 32-
node multiprocessor, in which one application
did nothing but I/O, and the other did noth-
ing but computation. The I/O application ei-
ther read or wrote a file that was striped across
disks attached to the computational application's
processors. Thus, the computational application
was occasionally interrupted so that the file sys-
tem could service I/O requests for the other ap-
plication. These interruptions slowed the com-
putational application in two ways. First, ev-
ery cycle spent servicing the I/O request was
another cycle delay for the interrupted applica-
tion. Second, delaying one process in the com-
putational application indirectly delayed other
processes that waited for the process at a future
synchronization point [MCD+91].

In our experiments we used two different kinds
of computational applications, 36 different kinds
of I/O applications, and two different kinds of file
systems, all on a parallel file-system simulator.

3.1 Computational applications

Our two computational applications did noth-
ing but computation. The first application, de-
signed to measure the effect of interruptions on
raw computational performance, had no syn-
chronization or other communication between
processes. The second application was designed
to measure the effect of load imbalance caused
by I/O-related interruptions, by having all pro-
cesses meet at a barrier every 1 msec of virtual
time. With no interruptions, all processes would
meet at every barrier at precisely the same phys-
ical times, and thus would never wait. An in-
terruption of the computation on one processor,
however, delayed both that process and all other
processes that had to wait for it at the next bar-
rier. Thus, a small perturbation of the execution

time of one process could have a ripple effect that
was much larger than the original.

We chose to use barriers because they have the
most drastic effects on performance if the pro-
cessors become unbalanced: all processes must
wait for the slowest process. Similarly we chose
a tight 1 msec interval to represent a challeng-
ing case (several NASA benchmarks on the Intel
Paragon and an SGI cluster were measured with
inter-barrier times of 6, 17, or 64 msec [Nit94]).

Note that our barrier experiment also repre-
sents a computational application that is run-
ning on many processors, only some of which are
involved in serving I/O, while others are left to
run at full speed. All other things being equal,
those without I/O interruptions will always have
to wait for those with I/O interruptions. If those
slow processors run at 95% of full speed, then
the whole application runs at 95% of full speed,
regardless of the number of uninterrupted pro-
cessors.

3.2 I/O applications

Our I/O applications did nothing but I/O. They
each transferred a one- or two-dimensional ar-
ray of records, but in either case the file size was
10 MB (1280 8-KB blocks). While 10 MB is not a
large file, preliminary tests showed qualitatively
similar results with 100 and 1000 MB files. Thus,
10 MB was a compromise to save simulation
time. The file was striped, block by block, across
the 16 disks attached to the computational appli-
cation's processors. The matrix was distributed
across the 16 memories of the I/O application ac-
cording to one of the HPF distributions [HPF93],
as shown in Figure 1. Each matrix element was
either 8 bytes or 8 Kbytes, Clearly, patterns that
use 8-byte elements and a column-cyclic distri-
bution lead to a fine-grained data distribution,
and typically to more I/O overhead.

3.3 File-system implementations

The file accessed by the I/O applications was
striped across all 16 disks. Within each disk the
blocks of the file were laid out contiguously, that
is, the logical blocks of the file were laid out in



HPF array-distribution patterns

NONE
NONE

(rnn)
cs = 64

BLOCK
NONE

(rbn)
cs=16

CYCLIC
NONE

(rcn)

s - 3?,

0

NONE (rn)
cs = 8

0

0 1 2 3 0 1 2 3 0 1 2 2

BLOCK (rb) CYCLIC (re)
cs = 2 c s = l , s = 4

NONE
BLOCK

(nib)
cs = 2
s = 8

0

0

1

2

3

0
1

2
3

0
1

2
3

BLOCK
BLOCK

(rbb)
cs — 4
s = 8

CYCLIC
BLOCK

(rcb)
cs = 4
s = 16

1
2

0

2

3

NONE
CYCLIC

(me) °
cs=l
s = 4

1
2

3

0
1

2
5

1

3

(
BLOCK

CYCLIC
(rbc) :

cs=l
s = 2

)
1

3

0

2

1

3

0

2

0
1

2
3 3

0
2

0
2

0
2

0
2

1
3

1
3

1
3

1
3

CYCLIC
fVfT If"1

(rcc)
cs- 1

s-2, 10

"> 1
? 3
T 1
? 3
•)
? 3
1 1
I 3

0
2
0
I
0
I
0
2

1
3
1
3
l
3
l
3

0
2
0
2.
0
2
0
2

1 0
3 ?,
1 0
3 2
1 0
3?,
1 0
3 2

1
2.
1
2.
1
2.
l
3

Figure 1: Examples of matrix distributions, which we used as file-access patterns in our experi-
ments. These examples represent common ways to distribute a 1x8 vector or an 8x8 matrix over
four processors. Patterns are named by the distribution method (NONE, BLOCK, or CYCLIC)
in each dimension (rows first, in the case of matrices). Each region of the matrix is labeled with
the number of the compute node responsible for that region. The matrix is stored in row-major
order, both in the file and in memory. The chunk size (cs) is the size of the largest contiguous
chunk of the file that is sent to a single compute node (in units of array elements), and the stride
(s) is the file distance between the beginning of one chunk and the next chunk destined for the
same compute node, where relevant.



consecutive physical blocks on disk. We chose
this layout because it provides the highest I/O
throughput, thus keeping the file-system code
the most busy. Any other layout would trans-
fer data more slowly, requiring interruptions less
often.

We modeled two different file systems: tradi-
tional caching and disk-directed I/O. Traditional
caching was meant to simulate a typical paral-
lel file system where compute nodes, on behalf
of application processes, made independent re-
quests to the appropriate I/O nodes. Each ap-
plication request to a compute node was for some
contiguous range of bytes in the file, but because
the file was striped by blocks, each compute-node
request to an I/O node could be for at most
one block. The I/O nodes each maintained a
block cache, with LRU replacement and support
for prefetching and write-behind. The I/O node
was multithreaded, with a new thread created for
each incoming request. Threads shared a data
structure describing the LRU buffer list, block-
ing when waiting for a buffer to be flushed for
re-use, or for a buffer to be filled with new data
from disk. This choice led to a clean design with
plenty of concurrency, at the cost of some thread-
switching overhead. More importantly, the dis-
tribution of I/0-request service times was highly
variable, depending on whether it was a cache hit
or miss, could easily locate a free buffer, and so
forth.

Disk-directed I/O is a new technique that
takes advantage of a collective-I/0 interface, and
leads to much better performance than tradi-
tional caching [Kot94]. As described above, it
works by giving control over the order and pace
of data transfer to the I/O nodes, who optimize
the transfer for maximum disk performance. Af-
ter an initial burst of CPU activity to deter-
mine the disk schedules, the only ongoing CPU
overhead is to compute the distribution of each
block's data among the compute-node memories.
When reading, for example, some blocks com-
ing off of disk must be split into several smaller
pieces, which are sent to the remote compute-
node memories. Some distributions involve sub-
stantial computations to determine the ultimate
location of each element.

3.4 Measurement methodology

Rather than actually running a computational
application, we measured the fraction of CPU
time available for running a computational ap-
plication on one set of processors, during the
period the I/O application was running on the
other set of processors. Before and after the I/O
application ran, of course, there were no inter-
ruptions and so the computational application
received 100% of the CPU's time; since we were
interested in the effect of the I/O requests, we
only measured the period when the I/O appli-
cation was running. Note that this methodol-
ogy means that the I/O interruptions had prior-
ity over the computation; again, this experiment
was designed to expose the worst-case effects on
the computational application.

To make this measurement, we collected traces
of the CPU activity on the I/O nodes of our two
file systems, under load from one of the I/O ap-
plications. We processed the traces to count idle
cycles as a proportion of total cycles (i.e., the
inverse of the CPU utilization). However, not
all idle cycles would be available to a real com-
putation, due to the overhead for switching con-
text between the application and the file system.
For each interruption, therefore, we deducted
50 fisec.1 Idle intervals shorter than 50 ̂ sec were
therefore useless to the computation, and so were
not counted.

3.5 Simulator

Our traces were coUected from the STARFISH
parallel file-system simulator [Kot94], which
ran on top of the Proteus parallel-architecture
simulator [BDCW91], which in turn ran on
a DEC-5000 workstation. Proteus itself has
been validated against real message-passing ma-
chines [BDCW91]. We configured Proteus using
the parameters listed in Table 1. These parame-
ters are not meant to reflect any particular ma-
chine, but a generic machine of current technol-
ogy-

1This is a moderate context-switch time [ALBL91],
even when cache effects are considered. In any case, pre-
liminary experiments showed that our results were not
sensitive to this parameter.



Table 1: Parameters for simulator.

Distributed- memory
MIMD
Compute processors
I/O processors
CPU speed, type
Disks
Disk type
Disk capacity
Disk peak transfer rate
File-system block size
I/O buses (one per IOP)
I/O bus type
I/O bus peak bandwidth
Interconnect topology
Interconnect bandwidth

Interconnect latency
Routing

32 processors
16
16
50 MHz, RISC
16
HP 97560
1.3GB
2.34 Mbytes/s
8KB
16
SCSI
10 Mbytes/s
6x6 torus
200 x 106 bytes/s
bidirectional
20 ns per router
wormhole

We added a disk model, a reimplementation of
Ruemmler and Wilkes' HP 97560 model [RW94,
KTR94]. We validated our model against disk
traces provided by HP, using the same technique
and measure as Ruemmler and Wilkes. Our im-
plementation had a demerit percentage of 3.9%,
which indicates that it modeled the 97560 accu-
rately.

3.6 Results

Figure 2 compares the impact of all 36 I/O ap-
plications on our first computational application,
as well as showing the I/O bandwidth achieved
by the I/O application. Ideally, all points
would be in the upper-right corner, indicating
high I/O throughput and computational perfor-
mance. Most of the disk-directed-I/0 points
are there, except for six "hard" patterns on the
left. Traditional caching had much poorer I/O
performance, and its CPU needs were slightly
smaller (to some extent the CPU needs appear
smaller because the CPU impact was spread over
a longer physical time, due to the poor I/O per-
formance).

To get a better understanding of Figure 2,
we selected two representative patterns for more
detailed presentation: one that was extremely
easy and fast in both file systems, and another
that was extremely complex and slow in both
file systems. The easy pattern (representing
points in the upper right) distributed a one-
dimensional matrix of 8-KB records cyclically
among the memories (recall that 8 KB was the
file-system block size). The hard pattern (rep-
resenting points in the lower left) distributed a
two-dimensional matrix of 8-byte records among
the memories in a BLOCK-CYCLIC layout, to
use HPF terminology. We look at both the read
and write versions of these two patterns, for a
total of four cases.2

Table 2 shows the results in detail for each
of these four access patterns and each file sys-
tem. The "easy" access patterns took little CPU
time, leaving 90-95% of the CPU for the com-
putational application. Nonetheless, they sus-
tained 32-33 MB/s, which is 86-89% of the disks'
peak bandwidth. Of the two file systems, disk-
directed I/O had higher I/O throughput and less
CPU demand.

For the "hard" access patterns, however, the
situation was quite different. I/O performance
suffered, in traditional caching because it man-
aged the disks and cache poorly, and in disk-
directed I/O because of the amount of CPU over-
head in handling thousands of 8-byte messages.3

Nonetheless, this example points out a situation
where the I/O benefits of disk-directed I/O were
enormous. It came at a cost, however, in terms
of the amount of CPU overhead required, which
in the worst case left only 3.4% of the CPU cy-
cles available for the computational application.
The CPU overhead of traditional caching does
not seem to be so bad, but this was again par-
tially due to the poor I/O performance spreading
out the overhead over many cycles.

When we added barrier synchronizations to
the computational application, the I/O activity

2 In [Kot94], the easy patterns are called re and we
with 8-KB records, and the hard patterns are called rbc
and wbc with 8-byte records.

3We suspect the latter may be improved with a
gather/scatter message-passing mechanism.



Table 2: Percent of CPU time available to the computational application (100% is ideal), and the
amount of data throughput achieved by the I/O application.

easy read
easy write
hard read
hard write

Tradition

CPU available
(percent)

95.
90.
60.
87.

al Caching

I/O throughput
(MBytes/s)

32.2
32.4
2.2
0.7

Disk-dir

CPU available
(percent)

95.
95.
3.4
5.1

ected I/O

I/O throughput
(MBytes/s)

33.5
32.2
16.2
14.2

Table 3: A comparison of the amount of CPU time usable by the computation, with and without
barrier synchronization. In the presence of load imbalance caused by I/O interruptions, barriers
cause some processors to idle, reducing the percentage of CPU that was "usable."

easy read
easy write
hard read
hard write

Traditional
CPU availa

no barriers
95.
90.
60.
87.

Caching
He (%)

barriers
92.
85.
3.2
1.6

Disk-direc
CPU availa

no barriers
95.
95.
3.4
5.1

,ed I/O
Lble (%)

barriers
93.
92.
2.0
2.3

of course had a bigger effect. Figure 3 plots the
effect of all 36 access patterns on this synchro-
nizing application. Table 3 focuses on the same
representative cases as before. First, note that
there was only minimal effect on the easy ac-
cess patterns. The interruptions were short and
rare, leading to little disturbance. On the "hard"
patterns in the traditional-caching file system,
however, there was a dramatic effect due to the
highly variable amount of computation needed
for cache-management operations (for example,
a cache miss took much more computation than
a cache hit), leading to load imbalance within
the computational application.



35

30

25

I/O 2°
Mbytes/s

15

10

5

0
(

i i i i i i i i i
ODO

Disk-directed I/O o + + + «*>
- Traditional caching +

-

o
o

0 0
0 0

"hard" patterns -prT

i i i i i i i i + i

) 10 20 30 40 50 60 70 80 90 100
Percent of CPU available to computational application

Figure 2: I/O throughput vs. computational performance for all 36 different access patterns, and
both file-system implementations. The upper-right corner represents the best cases; there are
actually 41 points above 30 MB/s, many of which overlap in this picture.

I/O
Mbytes/s

35

30

25

20

15

10

5

0
C

' ' dot,
Disk-directed I/O o + + -rf aQfr-

- Traditional caching +

-

o
0

0 0
0 0

"hard" patterns ~fj. >

f_

+ i i i i i i i i i

) 10 20 30 40 50 60 70 80 90 100
Percent of CPU available to computational application

Figure 3: Similar to Figure 2, but with a computational application that includes a barrier
synchronization every 1 msec of virtual time. Again, many of the points in the upper right
overlap.



4 Measurement Experiments

The simulations in the previous section allowed
us to examine the effects of a variety of work-
loads on two very different file systems in a con-
trolled setting. To support these results, we have
also measured the effects of a real file system
on a real computation, using a cluster of eight
IBM RS/6000-250 workstations in Dartmouth's
FLEET lab.4 We used a LINPACK benchmark
program as a computational application. We ran
several copies of this program in parallel, one on
each of six workstations. Each process ran 10
iterations of the LINPACK computation, stop-
ping for a barrier at 16 points within each it-
eration (on average, after every half second of
computation).5 Needless to say, this synthetic
parallel application is perfectly load balanced.
Then, we had one of the other two workstations
run a simple program that either read or wrote
a 400 MB file with 1 KB requests, sequentially
or randomly, where the file was served through
NFS from one of the hosts running the LIN-
PACK program. Due to the periodic barriers,
any slowdown experienced by that node caused
the entire application to slow down. (As a con-
trol, we ran a similar test with six workstations
running the LINPACK program while the other
two did I/O, one as client and one as server; de-
spite the network traffic, the I/O had no effect on
the LINPACK program's barriers.) While this
experiment does not directly correspond to any
of the patterns used in Section 3, it is slightly
harder than the "easy" pattern examined there.

Table 4 presents the results. Although we can-
not fully explain the differences in the effects of
the I/O access patterns, it is clear that the ap-
plication was able to run at 50-85% efficiency
despite the CPU impact of the I/O. Faster pro-
cessors, which would be found in any substantial
parallel machine, should experience even less im-
pact. Given the heavyweight nature of this op-
erating system and the NFS file system, these
results corroborate those in the previous section.

Table 4: Execution time of a synthetic parallel
computation, in seconds. In the "No I/O" case,
this application runs alone, and represents the
ideal execution time for this application. In the
other cases one of the nodes is burdened with
heavy NFS traffic. "Efficiency" represents the
performance relative to the ideal execution time.

No I/O
Sequential read
Random read
Sequential write
Random write

Time (sec)
89.2

177.4
113.9
105.0
146.2

Efficiency

50.3%
78.3%
85.0%
61.0%

4 For more information see
http://BWW.cs.dartmouth.edu/research/fleet/.

5We used MPI [Wal94] for the communication support.

5 Discussion and conclusions

Large multiprocessors with many processors and
disks have great potential for fast computations
and high I/O throughput. Due to their cost,
however, it is important to use their resources
efficiently. To provide the high-performance I/O
needed by some applications, many multiproces-
sors today dedicate a subset of their nodes to
I/O. Our results show that for some complex
file-request patterns, these dedicated nodes were
saturated. For many simpler patterns, however,
the I/0-node CPUs were largely idle, that is,
with 80-99% available that could be used for
running applications. Furthermore, even appli-
cations that synchronized at a barrier every mil-
lisecond could profitably obtain about 80-97%
of the I/O node's CPU time for computation.
Disk-directed I/O usually needed less CPU time
than a traditional caching file system. Measure-
ment results from a real file system on a cluster
of workstations corroborated these results.

Please note that our specific experimental re-
sults are dependent on the simulated and real ar-
chitectures and workloads that we used. Indeed,
real multiprocessor configurations will have a
different balance between CPU speed and disk
speed, a different mix of "easy" and "hard" work-
loads, and different ratios of compute nodes, I/O
nodes, and disks. Given a similar workload, sys-
tems with fewer I/O nodes or slower I/0-node



References

[BBH95]

CPUs will of course appear to have busier CPUs.
No matter what configuration, however, we ex-
pect that the fundamental conclusion remains: [ALBL91]
for any fixed configuration there will likely be
periods when the I/0-node CPUs are underuti-
lized while some applications are CPU-bound,
and periods when the I/0-node CPUs are fully
utilized. The system should thus be configured
with sufficient I/O nodes to sustain the heaviest
I/O load, but the operating and run-time sys-
tems should be flexible enough to allow tolerant
applications to use I/0-node CPUs when avail-
able.

This paper should only be considered a start-
ing point, as we have only considered the im-
pact of I/O service on the CPU utilization of
an I/O node. File-I/0 traffic may also substan-
tially impact the communication performance of
a computation-only application [BBH95]. File-
system activity will also compete with a com-
putation for memory bandwidth and cache
space. Finally, efficient system software would
be needed to provide the flexibility that we pro-
pose. Nonetheless, we feel that the issue is worth
further exploration. An implementation, and ex-
perimentation with a real workload, are neces-
sary.

[BBS+94]

Acknowledgements

Thanks to Eric Brewer and Chrysanthos Del-
larocas for Proteus, and to Nils Nieuwejaar, Bill
Nitzberg, Mike Harry, and the anonymous re-
viewers for feedback on drafts of this paper.

Availability

The STARFISH simulator can be found at

Thomas E. Anderson, Henry M.
Levy, Brian N. Bershad, and Ed-
ward D. Lazowska. The interaction
of architecture and operating system
design. In Fourth International Con-
ference on Architectural Support for
Programming Languages and Oper-
ating Systems, pages 108-120, 1991.

Sandra Johnson Baylor, Caroline B.
Benveniste, and Yarson Hsu. Perfor-
mance evaluation of a parallel I/O
architecture. In Proceedings of the
9th ACM International Conference
on Supercomputing, July 1995. To
appear.

Robert Bennett, Kelvin Bryant,
Alan Sussman, Raja Das, and Joel
Saltz. Jovian: A framework for op-
timizing parallel I/O. In Proceed-
ings of the 1994 Scalable Parallel
Libraries Conference, pages 10-20.
IEEE Computer Society Press, Oc-
tober 1994.

Rajesh Bordawekar, Juan Miguel del
Rosario, and Alok Choudhary. De-
sign and evaluation of primitives
for parallel I/O. In Proceedings of
Supercomputing '93, pages 452-461,
1993.

[BDCW91] Eric A. Brewer, Chrysanthos N. Del-
larocas, Adrian Col-
brook, and William E. Weihl. Pro-
teus: A high-performance parallel-
architecture simulator. Technical
Report MIT/LCS/TR-516, MIT,

[BdC93]

http://www.cs.dartmouth.edu/"dfk/STARFISH/

Information about Dartmouth's FLEET lab [CF94]
can be found at
http: //www.cs.dartmouth.edu/research/fleet/

Many of the papers below can be found at
http: //www. cs . dartmouth. edu/pario.html

September 1991.

Peter F. Corbett and Dror G. Fei-
telson. Design and implementa-
tion of the Vesta parallel file sys-
tem. In Proceedings of the Scalable
High-Performance Computing Con-
ference, pages 63-70, 1994.

10



[CFPB93] Peter F. Corbett, Dror G. Feitelson,
Jean-Pierre Prost, and Sandra John-
son Baylor. Parallel access to files in
the Vesta file system. In Proceedings
of Supercomputing '93, pages 472-
481, 1993.

[DdR92]

[Dib90]

[DSE88]

[FPD93]

[GGL93]

[GL91]

[HdC95]

Erik DeBenedictis and Juan Miguel
del Rosario. nCUBE paraUel I/O
software. In Eleventh Annual IEEE
International Phoenix Conference
on Computers and Communications
(IPCCC), pages 0117-0124, April
1992.

high performance parallel and dis-
tributed computing. In Proceedings
of the Ninth International Parallel
Processing Symposium, April 1995.
To appear.

[HER+95] Jay Huber, Christopher L. Elford,
Daniel A. Reed, Andrew A. Chien,
and David S. Blumenthal. PPFS:
A high performance portable par-
allel file system. Technical Report
UIUCDCS-R-95-1903, University of
Illinois at Urbana Champaign, Jan-
uary 1995.

Peter C. Dibble. A Parallel Inter- [HPF93]
leaved File System. PhD thesis, Uni-
versity of Rochester, March 1990.

[Kot94]

[Kri94]

[KTR94]

Peter Dibble, Michael Scott, and
Carla Ellis. Bridge: A high-
performance file system for paral-
lel processors. In Proceedings of
the Eighth International Conference
on Distributed Computer Systems,
pages 154-161, June 1988.

James C. French, Terrence W.
Pratt, and Mriganka Das. Perfor-
mance measurement of the Concur-
rent File System of the Intel iPSC/2
hypercube. Journal of Parallel
and Distributed Computing, 17(1-
2):115-121, January and February
1993.

N. Galbreath, W. Gropp, and
D. Levine. Applications-driven par-
allel I/O. In Proceedings of Super-
computing '93, pages 462-471, 1993.

Andrew S. Grimshaw and Ed- [LIN+93]
mond C. Loyot, Jr. ELFS: object-
oriented extensible file systems.
Technical Report TR-91-14, Univ. of
Virginia Computer Science Depart-
ment, July 1991.

Michael Harry, Juan Miguel del
Rosario, and Alok Choudhary. VIP- [LZCZ86]
FS: A virtual, parallel file system for

High Performance Fortran Forum.
High Performance Fortran Language
Specification, 1.0 edition, May 3
1993.

David Kotz. Disk-directed I/O for
MIMD multiprocessors. In Pro-
ceedings of the 1994 Symposium on
Operating Systems Design and Im-
plementation, pages 61-74, Novem-
ber 1994. Updated as Dartmouth
TR PCS-TR94-226 on November 8,
1994.

Orran Krieger. HFS: A flexible file
system for shared-memory multipro-
cessors. PhD thesis, University of
Toronto, October 1994.

David Kotz, Song Bac Toh, and
Sriram Radhakrishnan. A detailed
simulation model of the HP 97560
disk drive. Technical Report PCS-
TR94-220, Dept. of Computer Sci-
ence, Dartmouth College, July 1994.

Susan J. LoVerso, Marshall Is-
man, Andy Nanopoulos, William
Nesheim, Ewan D. Milne, and
Richard Wheeler, sfs: A parallel file
system for the CM-5. In Proceedings
of the 1993 Summer USENIX Con-
ference, pages 291-305, 1993.

Edward D. Lazowska, John Za-
horjan, David R. Cheriton, and

11



Willy Zwaenepoel. File access
performance of diskless worksta-
tions. ACM Transactions on Com-
puter Systems, 4(3):238-268, An- [SW94J
gust 1986.

[Mas92] Parallel file I/O routines. MasPar
Computer Corporation, 1992.

[MCD+91] Evangelos Markatos, Mark CroveUa, [Wal94]
Prakash Das, Cezary Dubnicki, and
Tom LeBlanc. The effects of mul-
tiprogramming on barrier synchro-
nization. In Proceedings of the 1991
IEEE Symposium on Parallel and
Distributed Processing, pages 662-
669, 1991.

[MS94] Steven A. Moyer and V. S. Sun-
deram. PIOUS: a scalable paral-
lel I/O system for distributed com-
puting environments. In Proceedings
of the Scalable High-Performance
Computing Conference, pages 71-
78, 1994.

[Nit94] Bill Nitzberg. Time between barri-
ers. Personal communication, 1994.

[Pie89] Paul Pierce. A concurrent file sys-
tem for a highly parallel mass stor-
age system. In Fourth Conference
on Hypercube Concurrent Comput-
ers and Applications, pages 155-160.
Golden Gate Enterprises, Los Altos,
CA, March 1989.

[Roy93] Paul J. Roy. Unix file access and
caching in a multicomputer environ-
ment. In Proceedings of the Usenix
Mach III Symposium, pages 21-37,
1993.

[RW94] Chris Ruemmler and John Wilkes.
An introduction to disk drive mod-
eling. IEEE Computer, 27(3):17-28,
March 1994.

[SCJ+95] K. E. Seamons, Y. Chen, P. Jones,
J. Jozwiak, and M. Winslett. Server-
directed collective I/O in Panda.

Submitted to Supercomputing '95,
March 1995.

K. E. Seamons and M. Winslett. An
efficient abstract interface for multi-
dimensional array I/O. In Proceed-
ings of Supercomputing '94, pages
650-659, November 1994.

D. W. Walker. The design of
a standard message passing inter-
face for distributed memory concur-
rent computers. Parallel Computing,
20(4):657-673, April 1994.

12




