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1. Introduction. Incomplete LU (ILU) matrix decompositions are
used both as preconditioned to conjugate gradient (CG) methods, as well
as smoothers in multigrid methods (Raw 1994, Stevenson 1994), in solving
the linear systems that arise during the numerical solution of PDEs. A
number of studies have examined the effect of matrix elimination order on
the quality of ILU preconditioned (D'Azevedo, Forsyth and Tang 1992a,
D'Azevedo, Forsyth and Tang 1992b, D'Azevedo, Forsyth and Tang 1992c,
Duff and Meurant 1989, Dutto 1992, Notay 1993, Doi 1991). In (Duff and
Meurant 1989, D'Azevedo et al. 1992a, D'Azevedo et al. 1992b, D'Azevedo
et al. 1992c) evidence was presented to demonstrate how matrix ordering
can have a profound effect on that quality when solving anisotropic PDEs
with preconditioned CG (PCG) methods.

This paper investigates an expression of the matrix ordering heuris-
tic described in (D'Azevedo et al. 1992b, Margenov and Vassilevski 1994)
which draws information from the PDE from which the linear system arises,
and the grid over which it is discretized. If the factorization is

A = LU + E

where L and U are the lower and upper factors retained, and E the factors
discarded, then we want to minimize some measure of E (such as the matrix
norm). The heuristic is, in short, that the matrix rows should be ordered
to follow anisotropy in the grid in the direction of weak connections (or
close grid spacing), which, in a fundamental case, will be shown to produce
low magnitude entries in the discarded fill. An explicit implementation
of this heuristic using combinatorial algorithms was investigated in (Clift
and Tang 1995). Reducing the bandwidth of the matrix is also known to
improve the quality of an ILU factorization (Duff and Meurant 1989, Dutto
1992). Increased fill overlap in the narrow bandwidth means the fraction
of the retained fill is higher relative to the complete factorization with such
orderings.

One expression of these heuristics can be found in the two-sum of a
matrix, which is minimized to find an ordering. Let matrix A be of size
n x n, with components Ojj. We define the p-sum (or p-discrepancy), ffp(A)
as

(1.1)

where and i/> :V —* {I... \V\} is an ordering, or mapping of the n vertices
V of the associated graph (or the rows of the matrix).

If an ordering follows the strongly connected nodes, and reduces the
bandwidth, <rp(A) should be low, or minimized. The strong weights will
then tend to be near the diagonal of the matrix in the mapping and have a
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correspondingly small \^(i) — i>(j)\ value, and the small weights will offset
the larger distances from the diagonal. Thus we need to compute the
problem for some matrix B that that corresponds to A but with inverted
weights.

The two-sum, ffi(B}, will be used as a measure of the weighted band-
width of the matrix. We will be concerned with a minimum 2-sum problem
associated with matrix 5. We wish to find an ordering, a mapping ty, such
that

The fundamental technique we employ to minimize <TI is that of (Hall
1970), which involves computing the smallest eigenvector of that associated
matrix. The existence of this spectral method dictates the choice of p = 2.

The goal of this study was to evaluate the applicability of the basic
ordering heuristics to various cases using a more mathematically sound ba-
sis than had been previously attempted. The ordering methods presented
here are computationally expensive, and thus not particularly practical
for day-to-day use. They do, however, indicate where less expensive ex-
pressions of the heuristics (such as those described in (Pothen, Simon and
Wang 1992, Clift and Tang 1995)) can expect success, and point the way
to their sound and appropriate application.

In the sections immediately following we outline a number of the basic
concepts used in our research. However, the reader may wish to review
(Wallis 1983, Langtangen 1989, D'Azevedo et al. 1992b) for an outline of
level based, incomplete, factorization (denoted ILU(/), where / is the level
of fill retained in the preconditioner). We will be referring to matrices as
weighted graphs, where the matrix rows represent vertices, and the graph
edges are encoded in the off-diagonals, the magnitude of the off-diagonal
coefficients providing the "strength" of the connections. The reader may
wish to review (Parter 1961, Rose 1972, George and Liu 1981, D'Azevedo
et al. 1992a) for relevant information on this view of matrices. The concepts
connecting <72, and the eigenvalues of an associated matrix are to be found
in (Hall 1970, Fiedler 1975, Juvan and Mohar 1992, Juvan and Mohar 1993,
Mohar and Poljak 1994), the latter being a particularly good survey paper
on eigenvalues in combinatorics. These concepts have recently been used
in graph decomposition (Pothen et al. 1992, Peyton, Pothen and Yuan
1992, Hendrickson and Leland 1993, Chan, Schlag and Zien 1994), and
matrix band-width reduction (Barnard, Pothen and Simon 1993, George
and Pothen 1994).

After justifying the heuristic for ordering two dimensional linear diffu-
sion problems, we will link it with the mintr^ problem. This paper presents
experimental results and analysis for a set of test cases solved with a PCG
method using an ILU preconditioner constructed with the resulting order-
ing. The exposition will be repeated for three dimensional linear diffusion
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problems, with important differences noted. In conclusion we will summa-
rize guidelines about the validity and applicability of the heuristics.

2. Lower bound of fill entries in decomposition. The theoretical
justification for the heuristic, noted in the introduction, of following weak
connections in the graph requires exploring the connection between the
fill in an LU decomposition and the weighted graph representation of the
matrix. The following provides an estimate of the lower bound of the fill
which supports our heuristic.

Let GA — (OA,£A) be the digraph represented by matrix A

OA = {01,. . . ,on], £A = {(oi,0j) | a0i(oj) = a,-,- ^ 0}

Denote S be a subset of O and node u <£ S. Node u is said to be reachable
from a node v through S if there exists a path (v, ot , o2, . . . , o*, u) in graph
GA, such that each o, e S, 1 < i < k (George and Liu 1981). Similarly,
node u is said to be contributive to a node v through 5 if there exists a path
(u, GI, o2, . . . , Ok, v) in graph GA, such that each o,- e 5, 1 < i < k. If A is
self-adjoint, then the statement of "u is reachable from v" is equivalent to
"u is contributive to v" .

The reachable set and contributive set of node o,- through S is denoted
by

71 = Reach(oi ,S) = {u \ u is reachable from o, through 5}

C = Contributive(oi,S) = {u \ u is contributive to o,- through 5}

For a self-adjoint matrix, 71 = C. If 5 = {GI, • • • , o,_i} is the set of all
nodes which are eliminated before o, , then 71 is the set of nodes Oj for
which Uij ̂  0 and C is that of Iji ^ 0. Notice j > i. Let J = S U o,- and
J = S U Oj. Let A[X,J] be the submatrix extracted from the rows in J
and columns in J, and A(I) = A[I,I] is the principal submatrix of A in
the rows and columns defined by X. It is well known that lij and u,-,- can
be expressed in terms of determinants:

_ detA[I,J] _ detA[J,X]
°' detA[I,I] ; U i j~ detA[I,X\

Denote Ap(v — »• u) to be the product of elements on the path p from v
to u, namely,

Ap(v 0|tiU.

Denote V(p, S) to be the subset of the nodes of S not belonging to path p
and A(V(p, S)) be the principal submatrix of A in the rows and columns
defined by V(p, S), i.e., the nodes not on the path p. We restate a result
from (Maybee, Olesky, van den Driessche and Wiener 1989) (Corollary 8.2)
here:



SPECTRAL ORDERING METHODS FOR ILU PRECONDITIONERS 5

LEMMA 2.1.

m

(2.1) detA(I,J] =

(2.2) detA[J,I] =

where the sum is over all distinct paths from o,- to Oj in J U Oj; Ik is the
length of path pk from o,- to Oj.

We can have the following result directly from this lemma:
LEMMA 2.2. Let S be the subset of all nodes which are eliminated

before node o,- in the LU decomposition process and A = LU be the LU
decomposition of A. Then

Uij ^ 0 only if Oj is reachable through S from o;,

Iji ^ 0 only if o,- is contributive to Oj through S .

If A is an M-matrix, each term in the summations of (2.1) and (2.2)
is positive. We then have the following lower bound:

THEOREM 2.1. Let matrix A be an M-matrix, A = LU and S =
(01,02, • • -,o,-_i). If Oj is reachable from Oi through S, then

(2-3) |u,.| k pk

where pk — (o,-, o/ j , o/2, . . . , oj f c , QJ), o^ <E S is a path from node o,- to Oj and
APk(^} - a«,«a'i,'i • • • a i k , t k -

If Of is contributive to Oj through S, then

(2-4) M

where pk = (oj , o/j , o/2 , . . . , ojk , o<), o^ £ S is a path from node Oj to o,- and
Apk(J) = ajtja,li,1 • • • a , k t , k .

Proof. The proofs of (2.3) and (2.4 ) are similar, only (2.3) is shown.
Let K, be the complementary set of V(pt, <S) in set S U o,-. It was shown in
(Engel and Schneider 1977) that if A is a non-singular M-matrix, then

(2.5) 0 < detA(I) < detA(V(pk,S))detA(IC).

Notice, all principal minors of an M-matrix are also M-matrices. From
(2.5), a direct generalization can be obtained:

(2.6) detA(Z) = detA[I,X] <
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Since each term in (2.1) is positive, we have

_ detA(I,J]
'"' ~ detA(J)

det^(J)

detA[V(pk,S)]detA(IC)

where pk is any path from o, to QJ . D
If a particular ordering would allow a path on which large elements

(weights) are located, large magnitude fill elements will result. This sup-
ports our heuristics and our observations in testing.

3. Two dimensional grid ordering heuristic. Consider the linear
diffusion problem

(3.1) V- (KVV) = -q

in two dimensions over a square region 0 < x, y < 1 where K = K(x, y) is
a position dependant coefficient vector, and q is the source term. We used
the usual five-point finite difference discretization of this equation over a
uniform, Cartesian grid, (a harmonic average is used to deal with the cases
where K is discontinuous). This produces a symmetric n x n linear system

Ax = b

with between three and five entries per matrix row, and the source terms
expressed in the right hand side. The linear system will have positive off-
diagonals that correspond to the local values of K, which can be considered
the connection strengths between nodes of the problem. Sources q(x, y) are
represented by multiplying the diagonal, and source strength in the right
hand side of the linear system, by a sufficiently large value, thus retaining
matrix symmetry.

Our prototypical anisotropic problem is the case where Kx = 1000 and
Ky = 1. The matrix which results is a symmetric M-matrix. If we scale the
matrix so that the diagonal entries are unity, all the edges aligned along
the z-axis will have a connection strength of O(KX/KX + 1) and the edges
aligned with the y-axis will have a connection strength of O(l/Kx). If the
natural x — y ordering is used, then all new fill entries will be oriented more
in the z-direction (see figure 9.1), and by the lower bound given in theorem
2.1, the fill entries will have a slow decay rate. If natural y — x ordering is
used, the fill entries will have a more rapid decay rate. Thus, the value of
the fill using the y — x ordering will have less of a bearing on the quality
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of the preconditioner as the level of fill increases than the fill using x — y
ordering. Natural y — x ordering was shown to produce a profoundly more
effective preconditioner for the CG method in (D'Azevedo et al. 1992b).

As we noted in the introduction, the quantity we minimize to imple-
ment this heuristic is not the two-sum of A, but rather of a related matrix
B. We shall use B, with elements b,j such that

(3.2) ft,,- = { ^7 Where *" * ° .
[ 0 where a,-j = 0

Our case of constant K coefficients over the entire region permits us to
demonstrate the following.

LEMMA 3.1. The two-sum of B under natural ordering is a local min-
imum with respect to any single permutation of the matrix labelling.

Proof. The proof is trivial.
If we consider cases where Nx « Ny then if Kx > Ky, and hence

\/Kx < 1/Ky then

(T2(B, x-y ordering) = -=-(Nx- 1) Ny +
t\.X

<T2(B,y-x ordering) = -- (Ny - 1) Nx + -- N,
y r

and we see that of the two local minima associated with natural orderings,
the one dictated by the above heuristic, the y — x ordering, corresponds
to that with the lowest <72. However, if Nx >• Ny then a natural ordering
that reduces bandwidth can be expected to produce the lowest two-sum
because NxNy <C NyN%. This will be seen in the experimental results
over a long thin problem, even with Kx = lOOOA",, (see the LONGTHIN
problem below).

4. Spectral Ordering Algorithm. We now present the spectral or-
dering algorithm, which will be justified in the next section. Given matrix
A we define symmetric matrix C with entries 1

0 i =

and diagonal matrix D with entries

1 Another definition for C proposed during our research was to set C(j —
l/exp(|a;j|) V mj ^ 0. This, however, produced matrix entries that varied by too
many orders of magnitude, making eigenvalues impossible to compute for many test
cases, and producing no favourable effects in general.
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We can define the weighted pseudo-laplacian of B as

(4.1) B , = C - D

which is a symmetric, positive semi-definite matrix of rank (n — 1) (Hall
1970). Using £j as the matrix related to A, with connection strengths
inverted, the spectral ordering algorithm proceeds as in figure 9.2.

5. Minimizing <r2- The spectral ordering algorithm is justified by the
proof originally presented by (Hall 1970), and presented in the unweighted
context by (Barnard et al. 1993). Detailed analysis of this sort of algorithm
is presented in (George and Pothen 1994). The following demonstrates
that computing the second weighted pseudo-Laplacian eigenvector solves a
continuous relaxation of the discrete problem of minimizing the two-sum
of a matrix.

For odd (even) n, let $ denote the set of orderings il> as defined in
Equation 1.1. We shall evaluate the mapped row positions i/i(i) as integers
such that 1 < tl>(i) < n. Thus

mmt/,6*<72(S/)= -
Cij*0

Consider a continuous vector x G 3J" with elements x,-. We can define a
permutation V'x € ^ induced by x by the rule that p,- < pj if and only if
X{ < Xj . This ordering is unique except where two or more components of
x are equal.

We now minimize the two-sum over the class of unit n- vectors x G X
satisfying x ^ 0, xtx = 1, xiu = 0 where u* = (1, 1, . . . , 1). This relaxes the
condition that the reordering vector must belong to a set of permutation
vectors, leaving the continuous optimization problem: "

1-

(5.1) =
(5.2)

Noting that the first eigenvalue of B is zero, and its corresponding
eigenvector trivial, the second weighted pseudo-Laplacian eigenvector £2
solves the continuous approximation to the two-sum problem. The proof
that the resulting permutation r/ix induced by £2 is the discrete vector that
is closest to minimizing &2 is to be found in the papers cited above.

As a demonstration we compute the second smallest eigenvector of
the discretized 2D anisotropic problem defined by equation 3.1. With the
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coefficients Kx = 1000, and Ky = 1 the eigenvector for the problem over a
3x3 grid is

(5.3) E2 = {1,1,1,0,0,0, -1,-!,-!}

and we see that the natural ordering is permitted under the procedure for
inducing the ordering ip. For the problem over a 30 x 30 grid the eigenvalue
is plotted as a surface in figure 9.3. Again, natural ordering is, modulo the
tie-breaking within rows, the result. The eigenvector exhibits the same
anisotropy as the matrix. We observe this in other problems as well, such
as the ANISO problem below.

At this point we assert, admittedly on less than rigorous grounds, that
the spectral ordering algorithm is a reasonable embodyment of the ordering
heuristics, and that these heuristics are a reasonable approach to ordering
two-dimensional problems for ILU factorization.

6. Experimental results for 2D problems. For comparison to the
spectrally based orderings, we will also compute the Reverse Cuthill-McKee
(RCM) (George and Liu 1981), Minimum Update Matrix (MUM), and Min-
imum Discarded Fill (MDF) orderings (D'Azevedo et al. 1992a, D'Azevedo
et al. 1992b, D'Azevedo et al. 1992c). RCM has been shown to be a good
bandwidth reducing ordering (Duff and Meurant 1989, Dutto 1992), and
works only on the sparsity pattern of the matrix. MUM and MDF are sensi-
tive to the matrix coefficients, and have been shown to produce highly effec-
tive orderings in a number of situations (although MUM is better for prob-
lems with larger computational molecules) (Clift and Forsyth 1994, Chin,
D'Azevedo, Forsyth and Tang 1992, D'Azevedo et al. 1992b, Notay 1993).
The MUM and MDF orderings are, relative to RCM, quite expensive to
compute.

Table 9.1 shows the effect of the various orderings on a set of 2D prob-
lems over a regular grid. Appendix A gives the details of how each problem
is specified. Each problem has a different layout, or degree of anisotropy.
The problems were solved using the conjugate gradient method, with a
level 1 ILU preconditioner (denoted ILU(l) ), i.e. the first level of fill was
kept. ILU(O) was found to be relatively insensitive to ordering, and since
the heuristic only really addresses the first level of fill, higher levels would
be expected, and were found, to benefit less from this ordering strategy. (In
addition, higher levels of fill are not practical for many real applications).
The solutions were converged to a residual of 10~12 relative to the residual
of the initial zero vector guess.

The work required is measured as the number of iterations required
during the solution phase, multiplied by the total number of non-zero en-
tries in the matrix and the preconditioner. We justify this work measure-
ment by the fact that the matrix-vector multiply and preconditioner-vector
solve are the two variable components in the cost of the PCG algorithm,
and the most expensive operations. The computation of the preconditioner
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is generally a small cost relative the solution iteration. The first column
(RCM ordering) of Table 9.1 shows the absolute measure of work, and the
remaining columns are shown as fractions of the work required to solve the
problem relative to RCM ordering.

6.1. Spectral ordering. Spectral ordering performed generally as
expected. For the isotropic problem, LAPD5, bandwidth reduction is
the only heuristic applicable. The BIG1DIR problem, with its uniform
anisotropy, was ordered quite well. The ANISO problem, with abutting
anisotropic regions of differing directions, was also ordered properly. With
one exception, the spectral ordering algorithm performed well whenever
the MDF algorithm did well.

The STONE and STONEROT90 problems have exactly the same lay-
out, except for a rotation of 90 degrees. Figures 9.4 and 9.5 show the eigen-
vectors of the two problems. Note that in both, the region of Kx = Ky = 0
appears as a flat spot on the surface plot. The STONEROT90 case eigen-
vector is such that this appears where it will be ordered roughly between
the nodes surrounding it, whereas in STONE the region will not be ordered
so as to keep it with its neighboring nodes. This shows a weakness of the
spectral ordering algorithm in dealing with such blocks.

The LONGTHIN problem has a direction of anisotropy that would
cause the weak-direction following heuristic to order in the direction that
maximizes the bandwidth. Figure 9.6 shows the sparsity pattern for spec-
tral ordering, indicating that the bandwidth reduction tendencies of the
ordering dominate the other heuristic.

7. Three dimensional grid ordering heuristic. In three dimen-
sions the ordering heuristics becomes less clear cut. As with many other
topics related to topology (such as triangulations, hierarchichal bases, etc.),
the weak connection heuristic for the plane graph can not be generalized
to the three-dimensional grid. The bandwidth reduction hypothesis still
holds, but following the weak connections in the graph can fail to improve
the ILU factorization.

Consider the incomplete factorization process for equation 3.1 in three
dimensions, discretized over a square grid with constant coefficients kx, ky

and k2. During the elimination process, we will follow the x direction first,
then the y direction. Figure 9.7 shows this schematically, with the shaded
nodes being eliminated in the order shown by the arrow. By theorem 2.1
the magnitude of the three first level fill elements created when node 1 is
eliminated (shown in dashed lines) will be

( kzkx

Level 1 Fill I kzky .
{ kykx

The second level of fill generated when node 2, and, later, the first node
in the y direction, node 4, are eliminated will have four elements with
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magnitudes of order

kz KX KX

Level 2 Fill ( k»ktk*
C* n* A*

For an ILU(l) factorization, these second level fill elements are dis-
carded. Figure 9.2 shows the magnitude of the sum of the fill discarded
given different combinations of weighting coefficients. Note that when there
are two weak, and one strong direction, there is an ordering that discards
substantially less fill (« 103 versus a 106 in magnitude). If there are two
strong directions, then there is no ordering that discards substantially less
fill than the others.

This is borne out experimentally. Table 9.3 shows the number of PCG
iterations required to solve three problems with homogeneous anisotropy
tested over the six natural orderings (the fill patterns were identical, hence
measuring using solver work as defined in section 6 was not required). The
problem with one strong, and two weak connections shows that an order-
ing with the two weak connections first produces a good preconditioner,
and thus fewer iterations were required to get a solution. The problem
with two strong weights had no good ordering at all. The problem with a
weak, medium, and strong and weight showed that although ordering the
directions from those of weakest to strongest connections produced a good
ordering.

Also of note is the measure of the two-sum of the inverse-weighted
Laplacian, shown in table 9.4 in entries corresponding to table 9.3. A
low two-sum was consistently associated with a good ordering, when one
existed. Good orderings did not necessarily have a low two-sum.

8. Experimental results for 3D problems. As in section 6, Table
9.5 shows the effect of the various orderings on a set of 3D problems over
a regular grid. These problems were solved using the same method and
tolerances as the 2D problems. The table is also displayed in terms of
solver work, with RCM given as an absolute value and other orderings
shown as fractions of that work.

Spectral ordering did not perform as well as hoped. The BIG1DIR3F
case looks good because the RCM algorithm accidentally created a very
poor ordering (RCM is coefficient insensitive). Only in the weak, weak,
strong case (BIG1DIR3G) were the uniform anisotropy cases effectively
ordered. All other results were poor, indicating that the heuristic embodied
in spectral ordering has a limited application.

An interesting case in point is the ANISO3D problem. Figure 9.8
visualizes three planes through the eigenvector values field. Smaller icons
represent lower values. Note that the division between the eight quadrants
of the problem, particularly between the front and back (as shown) are
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quite visibly expressed in the eigenvector. However, Figure 9.9 shows that
the sharp distinctions are lost in the ordering, (as visualized by the same
technique). We note that opposite corners on the back plane would be
ordered together, which runs counter to the heuristics. This failure to
capture distinct regions suggests why the spectral ordering technique fared
poorly, even though the anisotropic blocks have one strong, and two weak
coefficient directions.

It is interesting to note that MDF, which uses the more aggressive
heuristic of evaluating discarded fill directly to determine successive nodes
in an ordering, was able to produce more consistent results. The BIG1DIR3H
problem, which has two strong and one weak direction was slightly im-
proved over RCM ordering.

9. Conclusions. In this work a more rigorous basis for matrix or-
dering heuristics was set in the context of two-dimensional, anisotropic
diffusion problems discretized over a regular grid. The minimization of the
two-sum of the weighted pseudo-Laplacian of the matrix has been shown
to be a good expression of the weak connection following heuristic, and the
bandwidth reduction heuristic. Using a well-known spectral algorithm to
minimize this two-sum, the resulting orderings have been experimentally
tested for their effectiveness for both two and three dimensional problems.

This study shows that the weak connection following heuristic is most
effective over the problems from which it was derived: two dimensional,
regular grid problems with fairly simple patterns of anisotropy. We have
demonstrated that there are three dimensional cases where following the
weak connections in the grid must fail to improve the ILU factorization.
These cases, where more than one of the grid directions has strong connec-
tivity, appear to be reasonably ordering insensitive. Two dimensional prob-
lems, with minimal connectivity (i.e. the 5 point finite difference stencil)
seem to be the most sensitive to the ordering used for ILU factorizations.
MDF ordering produced improvements in cases demonstrated to be insen-
sitive to the direction heuristic, indicating that more aggressive ordering
techniques can still produce savings.

In (Clift and Tang 1995) an inexpensive approximation to the weak
connection following ordering heuristic was developed and tested. However,
that study did not reveal or predict the reasons why the methods succeeded
or failed. Rapid methods for ILU ordering still remain to be developed
for anisotropic convection-diffusion problems where convection dominates.
This is the object of a current research project.

Acknowledgements. The authors would like to thank Dr. Alex
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A. Problem Definitions. Tables A.I and A.2 define the problems
used in this work by listing the grid size, block sizes and associated coef-
ficient values, and the "background" coefficient values that cover the rest
of the field. Source terms not given since these do not substantially affect
the ordering processes used in this work.
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FlG. 9.1. The fill resulting from elimination with natural x — y and y — x ordering.

1. COMPUTE B\.
2. COMPUTE THE SECOND LOWEST EIGENVALUE A2 OF B\ AND THE

ASSOCIATED EIGENVECTOR E2.
3. CONSTRUCT POINTER ARRAY order SUCH THAT order(i) = i

FOR ALL i — 1 . . .n.
4. SORT THE order ARRAY SUCH THAT {^(orde^i)) | t = 1 . . .n} is

IN ASCENDING ORDER.

FlG. 9.2. Spectral ordering algorithm.

30

FlG. 9.3. Second weighted pseudo-Laplacian eigenvector for a simple anisotropic prob-
lem.
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30

FlG. 9.4. Second weighted pseudo-Laplacian eigenvector JOT the STONE problem.

0.05

-0.05 •

FlG. 9.5. Second weighted pseudo-Laplacian eigenvector for the STONEROT90 prob-
lem.
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FIG. 9.6. Sparsity pattern for the LONGTHIN with spectral ordering

FlG. 9.7. Elimination of a 3D grid in the x direction first. Dashed lines indicate the
first level of fill generated by the elimination of the node 1.
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FlG. 9,8. Eigenvalue field JOT ANISOSD. Smaller icons denote smaller values for the
eigenvector at that point.
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FlG. 9.9. Ordering vector for ANISOSD. Smaller icons denote earlier elements in the
ordering.
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Problem
ANISO
BIG1DIR
ANISOCENT
EXTREMEANI
LAPD5
LONGTHIN
STONE
STONEROT90
VDVORST

Ordering Method

ROM
3.97e+05
3.86e+05
9.36e+05
9.74e+05
3.76e+05
2.27e+04
4.24e+05
4.24e+05
4.13e+05

MDF MUM
0.70 1.26
0.41 0.95
0.95 1.06
0.69 1.19
0.93 1.00
1.12 1.00
0.85 1.14
0.85 1.16
0.33 1.00

Spectral
0.63
0.47
1.00
0.81
1.03
1.03
1.33
0.90
0.53

TABLE 9.1
Work required to perform SD regular grid problem iteration at ILU(l). The RCM
column shows actual work required. The other columns show work as a fraction relative
to the RCM column.

Element Weights in Each
Ordering Direction

First Second Third £X discarded fill elements)

1
1

1000
1

1000
1000

1
1000
1

1000
1

1000

1000
1
1

1000
1000
1

« 4 x 103

« 1 x 106

« 2 x 106

ss 2 x 10b

« 3 x 106

«4x 106

TABLE 9.2
Sum of the magnitude of fill discarded in an ILU(l) factorization of a set of regular
grid problems with the given weights in each ordering direction. Grid size 30 X 30 X 30

Kx,Ky, K2

Weights

(1,100,1000)

(1000,1,1)
(1000,1000,1)

Ordering directions (first, second, third)
x ,y ,z x ,z ,y y,x,z y ,z ,x z , x , y z,y,x

145 260 145 146 260 260
139 139 120 60 121 60
301 302 298 299 302 299

TABLE 9.3
Solver iterations required when natural orderings are applied to uniformly anisotropic
3D problems. Grid size 30 X 30 X 30, solved with ILU(l) preconditioner.
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KI , Ky , KZ

Weights
(1,100,1000)
(1000,1,1)

(1000,1000,1)

Ordering directions (first, second, third)
x,y,z x,z,y y,x,z y,z,x z,x,y z,y,x
6542 20565 9448 205626 21675 205627

205740 205740 205626 9451 205626 9451
205626 9448 205626 9448 6510 6510

TABLE 9.4
Inverse-weight Laplacian two-sum for natural ordering* applied to uniformly anisotropic
3D problems. Grid size 30 X 30 X 30.

Ordering Method

Problem
ANISO3D
ANISO3E
ANISO3F
BIG1DIR3D
BIG1DIR3E
BIG1DIR3F
BIG1DIR3G
BIG1DIR3H
LAP7D
STONE3D
STONE3E
STONE3F

RCM
4.82e+07
5.19e+07
5.70e+07
7.52e+07
7.52e+07
1.35e+08
7.21e+07
1.56e+08
3.53e+07
6.42e+07
6.70e+07
4.58e+07

MDF
0.82
0.89
0.87
0.97
0.97
0.55
0.53
0.88
1.01
0.85
0.87
0.90

MUM
1.26
0.98
1.48
1.73
1.73
0.96
0.98
0.98
0.99
0.94
0.98
1.20

Spectral
1.54
1.02
1.59
1.02
1.42
0.57
0.44
1.00
1.00
0.91
1.02
1.05

TABLE 9.5
Work required to perform the solution iteration on 3D regular grid problems at ILU(l).
The RCM column shows actual work required. The other columns show work as a
fraction relative to the RCM column.
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Problem Grid | Block Range | Kx Ky

ANISO

BIG1DIR
ANISOCENT

EXTREMEANI

LAPD5
LONGTHIN
STONE

STONEROT90

VDVORST

30x30

30 x 30
4 0 x 4 0

4 0 x 4 0

30x30
200 x 10
31 x 31

31 x 31

41x41

(1, 1)->(15,15)
(16,16)—(30,30)

Background
Everywhere

(11,11H(20,20)
(11,21)^(21,30)

Background
(10,31)^(40,40)
(10.11M40.30)

Background
Everywhere
Everywhere

(15, 1)-»(31,17)
(6, 6)->(13,13)

(13,22)-»(20,29)
Background
(1.15M17.31)
(6, 6M13.13)

(22,13)^(29,20)
Background

(11,30)->(11,30)
Background

100
100

1
1000

1
100

1
1

1000
2
1

1000
1

100
0
1
1

100
0
1

100
1

1
1

100
1

100
1
1

1000
1
1
1
1

100
1
0
1

100
1
0
1

0.1
0.0001

TABLE A.I
Definitions for 2D regular grid problems used in this work
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Problem Grid Block Range
ANISO3D

ANIS03E

ANISO3F

BIG1DIR3D
BIG1DIR3E
BIG1DIR3F
BIG1DIR3G
BIG1DIR3H
LAP7D
STONE3D

STONE3E

STONE3E

30 x 30 x 30

30 x 30 x 30

30 x 30 x 30

30 x 30 x 30
30 x 30 x 30
30 x 30 x 30
30 x 30 x 30
30 x 30 x 30
30 x 30 x 30
31 x 31 x 31

31 x 31 x 31

31 x 31 x 31

( 1, 1, 1)^(15,15,15)
(16,16, 1M30,30,16)
(16, 1,16)^(30,15,30)
( 1,16,16)-K15,30,30)

Background
( 0, 0, 0)->(15,15,15)
(16,16, 0)-^(30,30,16)
(16, 1,16)->(30,15,30)
( 1,16,16)^(15,30,30)

Background
( 0, 0, 0)^(15,15,15)
(16,16, 0)-+(30,30,16)
(16, 1,16)-K30,15,30)
( 1,16,16)-+(15,30,30)

Background
Everywhere
Everywhere
Everywhere
Everywhere
Everywhere
Everywhere

(15, 1, 1)^(31,17,17)
( 6, 6, 6)-*(13,13,13)
(13,22,22)^(20,29,29)

Background
(15, 1, 1)^(31,17,17)
( 6, 6, 6)^(13,13,13)
(13,22,22)-»-(20,29,29)

Background
(15, 1, 1)^(31,17,17)
( 6, 6, 6)^(13,13,13)
(13,22,22)->(20,29,29)

Background

100
100

1
1
1
1
1

100
100
100

1
1

1000
1000

100
1

100
1000
1000
1000

1
1

100
0
1
1

100
0
1
1

100
0
1

1 1
1 1

100 1
100 1

1 100
100 100
100 100

1 100
1 100

100 1
100 1000
100 1000
100 1
100 1

1000 1
100 1000

1 1000
100 1

1 1
1000 1

1 1
100 100

1 1
0 0
1 1

100 100
100 1

0 0
1 1
1 100
1 1
0 0
1 1

TABLE A.2
Definitions JOT 3D regular grid problems used in this work



RIACS
MailStopT041-5

NASA Ames Research Center
Moffett Field, CA 94035




