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Abstract

A new method for computing the effect that small changes in the airfoil shape and
cascade geometry have on the aeroacoustic and aeroelastic behavior of turbomachin-
ery cascades is presented. The nonlinear unsteady flow is assumed to be composed of
a nonlinear steady flow plus a small perturbation unsteady flow that is harmonic in
time. First, the full potential equation is used to describe the behavior of the non-
linear mean (steady) flow through a two-dimensional cascade. The small disturbance
unsteady flow through the cascade is described by the linearized Euler equations. Us-
ing rapid distortion theory, the unsteady velocity is split into a rotational part that
contains the vorticity and an irrotational part described by a scalar potential. The
unsteady vorticity transport is described analytically in terms of the drift and stream
functions computed from the steady flow. Hence, the solution of the linearized Euler
equations may be reduced to a single inhomogeneous equation for the unsteady poten-
tial. The steady flow and small disturbance unsteady flow equations are discretized
using bilinear quadrilateral isoparametric finite elements. The nonlinear mean flow
solution and streamline computational grid are computed simultaneously using New-
ton iteration. At each step of the Newton iteration, LU decomposition is used to solve
the resulting set of linear equations. The unsteady flow problem is linear, and is also
solved using LU decomposition. Next, a sensitivity analysis is performed to deter-
mine the effect small changes in cascade and airfoil geometry have on the mean and
unsteady flow fields. The sensitivity analysis makes use of the nominal steady and
unsteady flow LU decompositions so that no additional matrices need to be factored.
Hence, the present method is computationally very efficient. To demonstrate how the
sensitivity analysis may be used to redesign cascades, a compressor is redesigned for
improved aeroelastic stability and two different fan exit guide vanes are redesigned
for reduced downstream radiated noise. In addition, a framework detailing how the
two-dimensional version of the method may be used to redesign three-dimensional
geometries is presented.
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Chapter 1

Introduction

1.1 Statement of the Problem

As the efficiency of modern aircraft engines continues to increase, aeroacoustic and
aeroelastic considerations will play an increasingly important role in the design of
turbomachinery blading. Government regulations and community standards demand
reduced levels of noise from aircraft, while competitive pressures require increased
efficiency and reliability from modern designs. Unfortunately, aeroacoustic and aeroe-
lastic performance can be very difficult to predict, due primarily to the complexity
of the unsteady aerodynamic flowfield. In recent years, however, the computational
modeling of these unsteady flows has substantially improved.

Although current unsteady aerodynamic computational methods may improve the
prediction of aeroelastic phenomena, they provide very little insight to the designer
as to how to improve the aeroelastic behavior. As a result, the steady aerodynamic
design and aeroelastic design phases during the development of fan, compressor, and
turbine blading remain largely decoupled. After the airfoil shapes have been designed
to satisfy their steady aerodynamic requirements, detailed aeroelastic studies are per-
formed to determine whether the blades will meet design standards for flutter stability
and fatigue. These studies can be very computationally expensive, particularly be-
cause of the expense of determining the unsteady aerodynamic flowfield. If the blade
fails to meet these requirements, the blade is redesigned, and the process is repeated.
This redesign process increases the time and expense necessary to design a blade and
misses an opportunity to design for steady and unsteady aerodynamic performance
simultaneously.

In current aeroacoustic analyses, the primary emphasis has been on the choice of
the number of blades and vanes so that the so-called lower order modes do not prop-
agate [1]. Furthermore, steady blade loading, thickness, and camber effects are only
approximated, if they are considered at all [2]. Hence, improved steady and unsteady
aerodynamic modeling, particularly through the use of computational fluid dynamic
(CFD) techniques, will lead to more accurate predictions of blade row response to
incoming gusts, and help to illustrate the relationship between the blade shape and
the radiated noise.



1.1. STATEMENT OF THE PROBLEM 9

The goal of this research is to provide a framework for development and a real-
istic implementation of useful design tools (as opposed to analysis tools) for design-
ing turbomachinery blading for improved aeroacoustic and aeroelastic performance.
These tools should be very computationally efficient, yet still model the dominant
flow physics. In addition, these tools should provide physical insight that will lead to
guidelines for future blade designs.

1.1.1 Aeroelastic Problems in Turbomachines

Aeroelastic phenomena arise from the interaction between inertial, elastic, and aero-
dynamic forces [3]. For turbomachinery applications, this interaction may be illus-
trated by examining a simplified version of the equation of motion for an airfoil

mx + ex + kx = Fmotion(x, z, x) + FgU8t(i) (1.1)

On the left-hand side of Eq. (1.1), x is the displacement, the dots represent time
derivatives, m is the mass of the blade, c represents the structural damping, and k is
the blade stiffness.

The right-hand side consists of two forces. The first force is due to self-induced
oscillations and is a function of the displacement, velocity, and acceleration of the
blade. If this force increases the energy of the vibration, the amplitude of the vibra-
tion increases, and blade failure may occur. Such an unstable self-induced vibration
is referred to as flutter. The second force on the right-hand side is due to an exter-
nally excited oscillating motion (gust) where the force is independent of the blade
displacement. The external forcing induces a response which in some cases may lead
to high cycle fatigue failure of the blade, and is referred to as forced response [4].

These two aeroelastic phenomena, flutter and forced response, are two major
types of aeroelastic problems encountered in modern aircraft engines. Both of these
phenomena can lead to fatigue failure of one or more of the blades, and therefore are
of great interest to aircraft engine designers.

Flutter

Self-excited blade vibrations that are sustained by the unsteady aerodynamic
forces are of great concern to engine designers. If the aerodynamic forces produced
by the blade vibration add energy to the blade motion, the vibration will grow expo-
nentially until a limit cycle is reached or the blade fails. This aeroelastic phenomena
is known as flutter. Flutter tends to occur near one of the lower natural frequencies
of the blades. In modern engines, flutter may be encountered in a wide range of op-
erating conditions. As a result, there are significant constraints on the design of fan,
compressor, and turbine blading. Figure 1.1 shows the operating map for a typical fan
or compressor, showing the boundaries for the most common types of flutter [3]. This
figure illustrates the complexity of the design problem for a compressor. Deviations
from the operating line can easily lead to one of the indicated types of flutter. Because
the structural damping of the blades is usually small, the aerodynamic damping is of
primary interest. The unsteady aerodynamics problem is to determine whether the
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I Subsonic / Transonic Stall Flutter
la System Mode Instability
II Choke Flutter
III Low Incidence Supersonic Flutter
IV High Incidence Supersonic Flutter
V Supersonic Bending Stall Flutter

Corrected Massflow

Figure 1.1: Axial compressor or fan characteristic map showing principal types of
flutter and regions of occurrence (adapted from [3]).

aerodynamic damping is positive (stabilizing) or negative (destabilizing) for a given
blade motion and flow condition. If the system is unstable, then the blades must be
redesigned.

Forced Response

Forced vibration is also a significant problem in the design of turbomachines.
Forced vibrations may occur in fan, compressor, and turbine blades when a periodic
aerodynamic forcing function acts on the blades in a given row. These forced vibra-
tions may be destructive if the frequency of the forcing is near a resonant frequency of
the blade. The forcing functions are generated at integer multiples of the engine rota-
tional frequency and may arise from a number of different sources, the most common
being aerodynamic interaction between adjacent blade rows. Specifically, unsteady
aerodynamic forces often arise from the wakes of upstream blade rows impinging on
the blade surface. Unlike the flutter problem, the aerodynamic forcing is independent
of the blade motion, as indicated in Eq. (1.1).

The frequencies at which these vibrations may occur can be predicted using a
Campbell diagram [5]. Figure 1.2 shows a typical Campbell diagram for an axial-flow
compressor, which displays the natural frequency of each blade vibration mode and
the possible forcing function frequencies as functions of rotor speed. In this figure,
the dashed lines indicate the natural frequencies of the first two bending and torsion
vibratory modes of the rotor blades. Note that these curves increase somewhat with
rotor speed due to centrifugal stiffening of the rotor. The solid lines are simply
multiples of the rotor speed (so-called engine orders). It is at the crossing of these
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Figure 1.2: Typical compressor resonance (or Campbell) diagram (adapted from [5]).

two types of curves in the operating region that the possibility of destructive forced
vibrations exists, because the forcing frequency corresponds to the resonant frequency
of the blade. Hence, due to the small structural damping, large amplitude vibrations
may be induced.

Clearly, it is not possible to eliminate all sources of forced vibration from the
operating range of a turbomachine, but designers need to either avoid these points
or ensure that their effect is minimal. For the forced response problem, an unsteady
aerodynamic analysis is performed to determine the unsteady forces on the blades
due to an incoming gust from the upstream blade row at the points where the curves
cross on the Campbell diagram. If the unsteady aerodynamic forces induce large
amplitude vibration at one or more of these points, the blade must be redesigned.

1.1.2 Aeroacoustic Problems in Turbo machines

Noise radiation continues to be an obstacle to the design and development of modern
aircraft engines. Engine noise can be classified as either broadband noise (occurring
over a continuous range of frequencies) or tonal noise (occurring at discrete frequen-
cies). The relative magnitude of these two types of noise is primarily determined by
the bypass ratio of the engine, i.e., the ratio of the amount of air flowing through
the fan outside of the engine core to the amount of air flowing through the fan into
the core. To increase the propulsive efficiency of engines, higher bypass ratios are
desirable. As the bypass ratio of the engine increases, tonal noise becomes the more
important contributor to the total engine noise signature [2]. Furthermore, broad-
band noise is a very complicated problem since it is usually caused by the interaction
of random disturbances with blade surfaces and jet exhaust mixing. Because tonal
noise is the larger contributor to the engine noise signature, broadband noise will not
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be considered in this report.
The source of tonal noise is nonuniformities in the flowfield such as inlet dis-

tortion, inlet angle of attack, or convected wakes from upstream blade rows. The
noise is produced by an interaction between the flow nonuniformity (or "gust"), the
blade row, and the duct surrounding the blade row coupling to produce propagating
acoustic modes. Currently, most tonal noise reduction methods are aimed at either
reducing the strength of the gust by increasing the distance between blade rows, or
by modifying the duct through the use of casing treatment. In addition, blade counts
are carefully chosen. Pressure waves that decay as they propagate are referred to
as "cut-off." Propagating pressure waves are referred to as "cut-on," and it is these
waves which result in audible noise. Acousticians use analytical models of the duct to
choose blade and vane counts to prevent lower order pressure modes from propagat-
ing [1]. All three of these noise reduction techniques, increasing blade row spacing,
casing treatment, and modifying blade/vane counts are not desirable because these
methods add weight and expense to the finished engine.

The unsteady aerodynamics problem is to determine the response of a blade row
to an incoming gust, determine the.pressure field generated by the wake-blade in-
teraction and determine whether these pressure waves will propagate outside of the
engine. Most unsteady aerodynamic methods, however, are best viewed as analysis
tools rather than design tools. They are capable of solving the direct problem where
the shape of the airfoil as well as the flow conditions are specified. Unfortunately,
except through trial and error or extensive parametric studies, these analyses do not
provide physical insight into how, for example, to design blade shapes to reduce their
acoustic response without compromising their aerodynamic efficiency. An additional
complication is that the frequencies associated with aeroacoustic analysis are ap-
proximately an order of magnitude higher than those found in aeroelastic problems,
requiring finer discretization of the governing equations of the unsteady flowfield and
increased computational expense.

1.2 Previous Work

1.2.1 Unsteady Aerodynamic Models

The first unsteady aerodynamic analyses were semi-analytical methods that were
designed to determine the unsteady surface pressure on a cascade of two-dimensional
flat plates due to bending or torsional vibration. In the semi-analytical approach,
a number of point singularities are placed on the blade surface, and an appropriate
kernel function is used to calculate the unsteady flowfield. One of the first such
analyses was performed by Whitehead [6], who considered uniform, incompressible,
undeflected flow over the plates. Because the flow is not deflected, however, there is no
steady loading on the blade, and the model failed to predict experimentally observed
bending flutter. To include the effect of steady loading, Whitehead later allowed the
blades to deflect the mean flow, resulting in steady loading on the blades [7], and
bending flutter was predicted. This provided numerical evidence that steady blade
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loading (and therefore the blade shape design) had an important effect on flutter
in aircraft engines. Later, Atassi and Akai [8] distributed point singularities along
the surface of an airfoil with finite camber and thickness. This model allowed them
to analyze incompressible flows through more realistic cascades, also showing the
importance of steady loading and blade shape on flutter.

Both Whitehead [9] and Smith [10] investigated subsonic compressible flows over
flat plate airfoils. Smith's approach was developed primarily for noise analysis in an
attempt to determine the propagation characteristics of acoustic modes generated by
a cascade of airfoils. Smith also measured the acoustic waves experimentally, and
found that the theory and experiment agreed well for the unloaded blade case, but
the theory was inadequate to deal with the extra sound sources introduced by steady
blade loading, and underestimated the generated wave amplitude in this case. Both
Whitehead and Smith found that steady loading is extremely important to predict
correctly the amplitudes of the outgoing pressure waves.

Advanced designs required researchers to analyze transonic and supersonic flows.
Adamczyk and Goldstein [11] and others [12, 13, 14] investigated vibrating flat plates
in supersonic flow which is axially subsonic. Unfortunately, these models did not
predict flutter at the experimentally observed frequencies and Mach numbers. More
sophisticated models, such as the in-passage shock model developed by Goldstein,
Braun, and Adamczyk [15], analyzed supersonic cascades with finite strength shocks.
The in-passage shock model predicted experimentally observed supersonic bending
flutter, at least for low reduced frequencies. The design problem was also beginning
to be considered. Bendiksen [16] used a perturbation analysis to include effects due
to steady loading, thickness, camber, angle of attack, and shock motion, showing that
these effects are important in flutter prediction.

Finally, some three-dimensional problems have been considered using a semi-
analytical approach. Namba [17] has developed a lifting surface analysis to determine
the unsteady flow over vibrating three-dimensional flat plate cascades in the sub-
sonic, transonic, and supersonic regimes. Although his approach demonstrates the
importance of three-dimensional effects, its application is primarily limited to lightly
loaded fan blades.

Although these semi-analytical methods have developed greatly over the years,
they are insufficient to analyze most unsteady aerodynamic problems in modern en-
gines, especially at off-design conditions. The blades in modern designs are heavily
loaded, and violate a number of the assumptions used in the semi-analytical approach.

As computers became more powerful, so-called field methods became an impor-
tant research area. Using this approach, a set of governing equations (i.e., potential,
Euler, or Navier-Stokes) is solved using computational fluid dynamics techniques.
This approach has the advantage that many of the effects not included in the analyt-
ical models may be easily incorporated, e.g., arbitrary blade geometries, complicated
shock structures, and various flow models.

In the area of field methods, two main approaches have emerged. These are re-
ferred to as time-marching and time-linearized methods. Using the time-marching
approach, the unsteady governing equations of the fluid motion are time-accurately
marched subject to some appropriate set of unsteady boundary conditions. For ex-



14 CHAPTER 1. INTRODUCTION

ample, to analyze a flutter problem, the airfoils are prescribed to vibrate at some
fixed frequency and interblade phase angle. Once the initial transients have decayed,
the unsteady flowfield is found to be periodic in time. The advantage to this ap-
proach is that nonlinear flow effects are incorporated, and finite blade motions may
be considered.

Two-dimensional, time-accurate Euler solution methods have been developed by
Giles [18] and others. Three-dimensional unsteady flow problems have been in-
vestigated by Ni and Sharma [19] using a time-accurate Euler method, but their
results require several hours of supercomputer time to obtain a solution. Other
three-dimensional methods have been developed to investigate rotor-stator interac-
tion. Saxer and Giles [20] used an Euler method and Rai [21] used a Navier-Stokes
analysis. Although these methods model many of the important physical mechanisms
of the unsteady flow problem, the massive amount of time required to march these
equations time-accurately will prevent this type of analysis from being used for design
purposes for many years to come, especially for three-dimensional problems.

The second approach in field methods is the use of linearized analyses to investigate
small perturbation unsteady flows. Using this approach, the flow is assumed to be
composed of a nonlinear mean or steady flow plus a small unsteady perturbation flow.
The linearized equations which describe the unsteady perturbation are linear variable
coefficient equations in the unknown complex amplitude of the harmonic motion of
the flow.

Verdon and Caspar [22] determined the mean flow through a subsonic cascade
using a steady full potential method. They then linearized the potential equation
about the mean flow to solve for the small disturbance unsteady flow. Whitehead
and Grant [23] and Hall [24] used a similar approach but used finite elements instead
of finite differences to discretize the linearized equations. Verdon and Caspar later
extended their model to transonic flows using shock fitting to model the shock mo-
tion [25]. Although these potential methods work well for subsonic flutter problems,
their use for forced response and aeroacoustic applications has been limited because
the model does not in general include unsteady vorticity, as would have to be included
to determine the response of a blade row to an incoming vortical gust.

Within a linearized potential framework, Goldstein [26] developed a velocity split-
ting technique that includes unsteady vorticity and entropy. Goldstein assumed an
isentropic and irrotational mean flow, and split the unsteady velocity into rotational
and irrotational parts. The rotational unsteady velocity, which contains the unsteady
vorticity, is expressed analytically using the drift and stream functions from the steady
flow solution. The rotational velocity appears in an inhomogeneous source term in
the linearized potential equation. Hence, unsteady flows with vorticity could be an-
alyzed without having to numerically solve the Euler equations. Unfortunately, this
analysis could only be applied to flat plate airfoils. Atassi and Grzedzinski [27] de-
veloped a modification to this method that allowed real airfoils to be analyzed. Hall
and Verdon [28] implemented this technique and showed that vortical gust effects
could be modeled accurately without the computational expense of solving the Euler
equations.

Even with vortical gust extensions, the linearized potential formulation has its
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limits. For transonic flows with strong shocks, the Euler equations must be solved.
Also, the potential formulation does not translate well to three-dimensional applica-
tions due to the assumption of irrotational steady flow. For these and other reasons,
linearized methods continue to advance.

Hall and Crawley [29] originally solved the linearized Euler equations using a
Newton iteration technique to solve the nonlinear steady Euler equations and a direct
method to solve the unsteady linearized Euler equations. This approach also used
shock fitting to model the shock motion. There were some problems with this method,
however. For example, the direct solution method prevented fine computational grids
from being used on typical workstation computers, particularly if the analysis were
to be extended to three dimensions. To circumvent this and other problems, Hall
and Clark [30] and Holmes and Chuang [31] implemented linearized Euler methods
using an iterative solution method rather than a direct solution. In addition, Hall,
Clark, and Lorence [32] and Lindquist and Giles [33] showed that transonic aeroelastic
problems can be modeled appropriately within a linearized framework using shock
capturing. Using a similar technique, Clark and Hall [34] have implemented a method
for solving the linearized Navier-Stokes equations so that stall flutter problems may
be analyzed. Finally, Hall and Lorence [35] extended the linearized Euler analysis to
three dimensions and showed the importance of three-dimensionality on the unsteady
flow in fans.

Linearized methods require significantly less computational time than their time-
marching counterparts. For most unsteady aerodynamic flows of interest, the lin-
earized approach requires one to two orders of magnitude less computational time
than an equivalent time-marching calculation. Although for some complex appli-
cations, time-accurate time-marching methods may be employed, in most cases, a
linearized analysis is sufficient to model the unsteady flowfield.

1.2.2 Design Methods and Optimization

A substantial body of work exists on the inverse design and optimal design of airfoils.
Most of this work, however, is directed at achieving desirable steady flow properties.
In an inverse method, a pressure distribution is specified and the analysis produces
an airfoil shape (if possible) that will produce the desired distribution. For exam-
ple, Lighthill [36] developed an inverse design method based on conformal mapping
techniques. More recently, a number of investigators have proposed inverse design
techniques based on modern computational fluid dynamic algorithms (e.g., [37]).

More popular are optimal design techniques, where an initial airfoil shape is spec-
ified, and the analysis attempts to minimize some quantity (e.g., steady aerodynamic
losses) while satisfying some appropriate constraints (e.g., the blade maintains the
correct turning). A number of investigators have used nonlinear programming tech-
niques to solve this problem (e.g., [38]), and Jameson has suggested that this problem
may be viewed as an optimal control problem [39].

Researchers have also developed some optimization techniques for aeroelastic
problems in turbomachinery. For example, Crawley and Hall [40] developed a method
to calculate an optimal distribution of "mistuning" for a blade row. These techniques,
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however, have focused on structural optimization rather than optimization of the un-
steady aerodynamic behavior.

One of the key ingredients in optimization algorithms is the evaluation of the
sensitivity of the quantity to be optimized (for example, the flutter stability or ef-
ficiency of a cascade) to a small change in a physical parameter (such as the airfoil
shape). Sensitivity analysis of structures has been an active area of research for the
past decade [41, 42]. Recently, researchers have begun to develop similar sensitivity
analysis techniques for steady aerodynamic problems. For example, Taylor et al [43]
and Baysal and Eleshaky [44] have computed the effect of modifying the shape of a
nozzle on the flow in the nozzle. Their work was based on a sensitivity analysis of
the discretized Euler equations. Most recently, such techniques have been applied to
airfoil design [45]. Despite these advances, only a few unsteady sensitivity analyses
have been reported, for example the semi-analytical panel method of Murthy and
Kaza [46]. Other unsteady sensitivity analyses have been computed by differencing
two slightly different nominal unsteady solutions. The use of these types of finite
differences, as opposed to analytical perturbations, are not as desirable because of
their increased computational expense and susceptibility to truncation error.

1.3 Present Method

In this report, strategies for efficient aeroacoustic and aeroelastic design of turboma-
chinery blades will be examined. An essential part of these strategies is a new method
for computing the sensitivity of unsteady flows in cascades due to small changes in
blade geometry. The approach is general in nature and may be applied to different
governing equations and numerical schemes. Consequently, an appropriate equation
set must be chosen. For many aeroacoustic and aeroelastic problems in turbomachin-
ery, an inviscid flow analysis is sufficient to model the dominant physical mechanisms
of the unsteady flowfield. Hence, a linearized potential or linearized Euler framework
would be applicable. Since vortical gusts must be analyzed, however, the traditional
linearized potential method is not appropriate. The linearized Euler approach, while
incorporating complete inviscid physics, is still computationally expensive to solve
directly, as the present method requires. Therefore, a linearized potential model with
vortical gust extensions is the logical choice. This is the method that will be used in
this report to demonstrate the sensitivity analysis procedure.

Specifically, the nominal analysis used here is a linearized harmonic unsteady po-
tential method based on a deforming grid variational principle and finite element
method by Hall [24] extended using rapid distortion theory to include the effect of
incident vortical gusts due to wake interaction. The sensitivity analysis procedure is
as follows. First, the nominal flow equations are discretized and solved using a finite
element procedure. Next, a perturbation analysis is performed on the discretized
equations from the nominal finite element analysis. This leads to a set of linear equa-
tions for the sensitivity of the unsteady potential due to small changes in the airfoil
shape. If the nominal unsteady analysis is computed with LU decomposition, the sen-
sitivities may then be computed by back-substitution. Consequently, the sensitivity
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of the unsteady potential may be computed very efficiently.
Once the sensitivities have been calculated, a range of approaches exist for improv-

ing the aeroacoustic and aeroelastic performance of the cascade. For example, the
calculated sensitivities may be used by themselves as a guide to redesign the airfoil.
A more thorough approach would be to perform an optimization on the aeroacous-
tic or aeroelastic behavior of the cascade, subject to appropriate constraints. The
radiated noise, for example, could be minimized subject to the constraint that the
desired steady flow turning is achieved. The results shown in this report will essen-
tially be a compromise between these two methods, where the calculated sensitivities
are post-processed such that design changes satisfy steady aerodynamic constraints.
The framework for the use of this technique in more complicated design situations
will also be discussed.

1.4 Outline of Report

In Chapter 2, the governing equations and basic theory of the nominal flow analysis
will be presented. This includes both the steady flow potential equation and the
linearized potential equation and the vortical gust extension. Use of a deforming
computational grid will be discussed, as will the theoretical description of the steady
and unsteady boundary conditions.

Chapter 3 contains a discussion of the basic numerical discretization scheme, based
on Hall's finite element method. The grid generation procedure will be discussed, as
will the implementation of the boundary conditions, with particular emphasis on the
nonreflecting far-field boundary conditions. Finally, the matrix assembly and solution
will be described.

In Chapter 4, the sensitivity analysis procedure will be examined in detail for both
the steady and unsteady flow equations. Although the procedure will be applied to
the present potential method, this chapter should clarify how the sensitivity analysis
would be performed on other governing equations and discretization schemes.

In Chapter 5, results of the sensitivity analysis will be presented, demonstrating
how the analysis may be used to redesign blade rows for improved aeroelastic and
aeroacoustic performance. Also, the computational efficiency of the method will be
discussed, as will its range of effectiveness.

In Chapter 6, three-dimensional flow considerations will be examined. Specifical-
ly, application of the analysis in an actual design environment will be discussed , with
particular emphasis on how three-dimensional problems could be analyzed using the
present method.

Finally, in Chapter 7, some conclusions from the present analysis will be presented
as well as some recommendations for future work in this area.



Chapter 2

Nominal Flow Field Description

In this chapter, the equations and boundary conditions governing the steady and
small disturbance unsteady flow through a two-dimensional cascade of airfoils are
introduced. Section 2.1 contains a description of the rapid distortion theory used
so that unsteady vortical flows may be modeled within a potential flow framework.
This theory results in a set of sequentially coupled partial differential equations that
must be solved numerically to obtain the unsteady flow. In Section 2.2, an extension
of a variational principle originally developed by Bateman [47] is described. This
variational principle has as its Euler-Lagrange equation the potential flow equation
developed in Section 2.1. This variational principle will be used in Chapter 3 to
construct a finite element description of the steady and unsteady flow. Finally, in
Sections 2.3 and 2.4, the steady flow and small disturbance unsteady flow boundary
conditions will be discussed, including the far-field nonreflecting boundary conditions.

2.1 Euler Equations

The equations governing the fluid motion through a cascade of airfoils may be derived
from the integral conservation laws of mass, momentum, and energy, along with the
equation of state for an ideal gas. For this analysis, the flow is assumed to be inviscid
and compressible, and the fluid is assumed to be a perfect gas with specific heat ratio
7 = CP/CU (a complete list of symbols used in this report is given in Appendix A).
Consequently, the governing equations of the fluid are the Euler equations, which in
conservation form are

^ + V - ( A * ) = 0 (2.1)

^ + V-/5vv + Vp = 0 (2.2)

d
01 \ 1 ' nr I • \ .. i J • o' / * \^ - t )/
Ot \7 —

where p is the density, v is the velocity, and p is the pressure. These quantities are
related by the state equation for a perfect gas

p = pRuTf (2.4)

18
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where RU is the universal gas constant and T/ is the temperature. The superscript "'"
indicates that the quantity is unsteady. For this discussion, it is useful to define the
entropy of the fluid, Sf. This is most easily accomplished using the thermodynamic
relation defined by Gibbs,

ff ds} ̂ C p d f j - ^ d p (2.5)

The temperature dependence may be removed through the use of the state equation,
Eq. (2.4), resulting in

dp dp
dsf = ̂  - cp-t (2.6)

P P
Equation (2.6) may then be integrated to obtain the entropy change between two
fluid states.

It is further assumed that the nonlinear time-varying flow may be split into two
parts: a nonlinear mean or steady flow and a small unsteady perturbation flow that
is harmonic in time. In other words, each of the variables in the above equations may
be expanded in a perturbation series. Furthermore, it is assumed that the steady flow
is irrotational and homentropic, so that the steady velocity may be written as the
gradient of a scalar velocity potential, $. Under these assumptions, the perturbation
series for the flow variables may be written as

p(x,y, t ) = R(x,y) + p(x,y}e^

v(x,y, i) = V$(x,y) + v(x,y)e*-"

p(x,y , t ) = P(x,y) + p(x,y)e*-"

s f (x ,y , t ) =

total flow nonlinear small harmonic
mean disturbance

To obtain the steady and unsteady flow equations, these expansions are substi-
tuted into the governing equations, Eqs. (2.1)-(2.6), collecting terms of equal order.
The zeroth-order terms result in the steady flow equations, while the first-order terms
describe the unsteady flow. The zeroth-order continuity equation is

V • (.RV$) = 0 (2.8)

The zeroth-order momentum equation and equation of state may be integrated
and combined to obtain the steady form of Bernoulli's Equation, i.e.,

= PT

or ^
" Tf-l

1 - (V*)2 (2-9)

(2.10)
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where px and PT are the total pressure and density, respectively, and CT is the total
speed of sound. Substituting Eq. (2.9) into Eq. (2.8) results in an equation for the
mean flow that is only a function of the potential and the steady speed of sound,

V2$ = v* • V(V<D)2 (2.11)

where
C2 = C$ - 1^- ( V$)2 (2.12)

Note that the steady flow is completely described by a single equation for the scalar
potential $. It is indeed nonlinear, as was noted earlier.

Having described the equation governing the steady flow, we now consider the
unsteady small disturbance equations. Collection of the first-order terms results in the
following set of equations describing the behavior of the small disturbance unsteady
flow

~ (v - s/V$/2) + [(v - s/V*/2) - V] V$ + V = 0 (2.14)

where D/Dt = d/dt + V$ • V is the convective derivative. Note that while the steady
flow may be described using a single equation, the unsteady flow is governed by a
system of four simultaneously coupled equations. Computationally, this description
of the unsteady flow would result in a very large system of equations to solve. Hence,
a more compact description of the unsteady flow is desired.

2.1.1 Goldstein Decomposition

Equations (2.14) and (2.15) may be simplified further using the Goldstein velocity
decomposition [26]. The unsteady velocity, v, is split into a rotational part, VH, and
an irrotational part that is written as the gradient of a scalar velocity potential, ^,
so that

v = V<£ + v* (2.16)

It should be noted that there is no unique choice for v^ and <j>, since it is the combi-
nation of the two that results in the actual unsteady flow velocity. However, if VR is
chosen such that

=0 (2.17)
Dt L J \RJ

then the unsteady pressure is only a function of the unsteady potential, so that
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Substituting Eqs. (2.16) and (2.18) into the linearized momentum and continuity
equations [Eqs. (2.14) and (2.15)] results in a system of equations for the unsteady
entropy, rotational velocity, and velocity potential, i.e.,

= 0 (2.19)
Dt

Dt
1

+ [(vfi r- 5/V$/2) • V] V$ = 0 (2.20)

Note that the equations for entropy, rotational velocity, and velocity potential are now
only sequentially coupled. Although four equations still must be solved, they need
not be solved simultaneously. As a result, a numerical solution to these equations
may be obtained for considerably less computational cost than the earlier set of
simultaneously coupled equations. Furthermore, in this report, the effect of unsteady
entropy will not be investigated, so it is assumed that s/ = 0. Consequently, only
Eqs. (2.20) and (2.21) must be solved.

Goldstein [26] showed that Eq. (2.20) may be solved analytically for certain cases
in terms of two functions. One is the well-known stream function, ^f(x, y}. The other
is the drift function, A(x,j /) , which is denned as the time it takes a mean flow fluid
particle to move between two points on a streamline, i.e.,

A(z, y) = A(x0, y0) + 77^ (2.22)

where the location (XQ, j/o) is a point upstream of (x, y) on the same steady streamline,
|V$| is the magnitude of the steady flow velocity, and the differential distance dil> is
measured along the streamline. The drift and stream functions are often referred to
as the Lagrangian coordinates of the fluid.

Figure 2.1 shows contours of the drift and stream functions for a typical fan
exit guide vane. Note that upstream of the cascade, the drift function contours are
aligned between the blade passages, while downstream of the airfoils the contours are
no longer aligned. This indicates that there is circulation around the airfoil, i.e., the
steady velocities are different on the two sides of the airfoil surface. Furthermore,
note that the drift contours are well-behaved in the interior of the blade passages,
but change rapidly near the blade and wake surfaces. This is due to the presence of a
stagnation point at the leading edge of the airfoil. Examining Eq. (2.22) shows that if
the steady velocity is zero at some point (i.e., a stagnation point), the drift function
becomes infinite. This property of the drift function is problematic in the derivation
of a general expression for the rotational velocity over airfoils, so a detailed analysis
of the drift function behavior near a stagnation point is warranted.

Consider the steady flow field near a stagnation point. Sufficiently close to a solid
boundary, the boundary appears to be a plane surface (unless the boundary happens
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Figure 2.1: Contours of drift function, A(x,
typical fan exit guide vane.

), and stream function, fy(z,y}, for a

to have a discontinuity of slope there) [48]. If the flow is incompressible, the governing
equation for the steady potential is Laplace's equation, i.e.,

The solution that satisfies the boundary conditions is

$ = -

(2.23)

(2.24)

where A is some constant. Alternatively, the flow may be described in terms of the
stream function by

tf = Axy (2.25)

Figure 2.2 shows contours of the drift and stream functions near a stagnation point.
The stream function is shown near a plane boundary [i.e., a flow described by Eq. (2.25)],
while the drift function is shown near the stagnation point of an actual airfoil.



2.1. EULER EQUATIONS 23

Figure 2.2: Left, contours of the stream function, \&, near a solid plane boundary.
Right, contours of the drift function, A, near an airfoil stagnation point.

Returning to the flow near a plane boundary, it is clear from Eq. (2.24) that the
velocity in the direction normal to the surface (the x-direction) is

(2.26)— = Ax
on

So the velocity is proportional to the distance from the boundary. Hence, using the
definition of the drift function [Eq. (2.22)], near the surface

A = — In x
A

(2.27)

So there is a logarithmic singularity in the drift function near the stagnation point.
In general, then, we may define a constant a0 such that

, v i

/5|V$|\
GO = — I —o— 1 (2.28)

V dn JSP

where |V$| is the magnitude of the steady velocity, n is measured normal to the
airfoil surface, and the derivative is evaluated at the stagnation point. Using this
definition, from Eq. (2.27) it is apparent that to leading order

(2.29)
_ a0

dn n

Furthermore, using Eq. (2.25), Eq. (2.29) may be rewritten in terms of the stream
function, so that
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where \I/0 is the value of the stream function on the stagnation streamline. This result
will prove to be useful shortly when a general expression for VR will be derived. First,
however, we will return to Goldstein's description of the rotational velocity.

Goldstein's paper did not explicitly address the singular nature of the drift func-
tion, so we will put this property aside for the moment. In general, the Goldstein
rotational velocity, VG, may be written in terms of the drift and stream functions as

v° = (d VA + c2 W) exp[j(K, A + K^)] (2.31)

Here K\ and KI are essentially wave numbers along drift and stream contours, and
GI and c2 are constants. Goldstein chose c\ and c2 so that the rotational velocity in
the upstream far field is divergence-free, i.e.,

V • VG = 0 (2.32)

or
did + c?K2 = 0 (2.33)

The constants c\ and c2 may then be uniquely determined by specifying the magnitude
and phase of the vorticity of the incoming gust.

With VG defined, in principle all that remains is to solve Eq. (2.21) for the unsteady
potential, <f>. However, for flows over bodies that contain a stagnation point, this
formulation leads to a singular rotational velocity on the blade and wake surfaces due
to the logarithmic singularity in the drift function at the stagnation point described
earlier. To avoid this singularity, one possible approach would be to set GI to zero in
Eq. (2.31) to remove the terms that depend on the gradient of the drift function, and
choose c2 to match the specified vorticity. Unfortunately, although this modification
produces a bounded rotational velocity, the rotational velocity has indeterminate
phase along the blade and wake surfaces. As a result, the divergence of the rotational
velocity still has a strong singularity at the airfoil and wake surfaces. Since the
source term in Eq. (2.21) is dependent on the divergence of the rotational velocity, a
modification to the description of the rotational velocity is necessary.

2.1.2 Atassi Decomposition

Atassi and Grzedzinski [27] developed a modified velocity splitting that is uniformly
valid for flows around bodies. Shortly thereafter, Hall and Verdon [28] used this
technique to study unsteady flows in cascades.

Atassi and Grzedzinski suggested adding the gradient of a convected, and therefore
pressureless, scalar potential, </>, to Goldstein's rotational velocity, so.that

V
H = VG + V^ (2.34)

Since the curl of the gradient of a scalar is zero, this additional term does not change
the unsteady vorticity in the flow.
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This potential may not be simply chosen arbitrarily. First of all, this new form of
VH must satisfy Eq. (2.20). This is true if

= 0 (2.35)
JLS lj

which implies that it has no pressure associated with it [see Eq. (2.18)]. Since it is
convected, the potential propagates the same way as the Goldstein rotational velocity,
i-e-,

where $ is an as yet undetermined function. Using the form of <fr given in Eq. (2.36),
the rotational velocity may be written as

(2.37)

We wish to determine the potential ^ such that VR is zero on the blade and
wake surfaces, which will produce the desired result that the normal and tangential
components of the rotational velocity field are regular along the blade and wake
surfaces. In terms of the unit surface tangent, s, and the unit surface normal, n, we
want

V
R . s = (VG + V<^) • s = 0 (2.38)

and
VH • n = (VG + V^) • n = 0 (2.39)

The first condition, Eq. (2.38), is satisfied if $ is a constant. To illustrate this,
consider the tangential component of VR. Using Eq. (2.37), if <l is constant, then

(d + JK&) + (c2 + JK^) ^- = 0 (2.40)

Since the airfoil surface and wake is a stagnation streamline, d^/ds is zero. Hence,
if $ is chosen such that

* = 7T (2-41)
-ftl

then Eq. (2.40) [and therefore Eq. (2.38)] is satisfied. This choice of $ removes the
dominant singularity in vc which is on the order of VA. In fact, this is equivalent
to setting GI to zero in Eq. (2.31) and choosing c^ to match the specified vorticity, as
suggested earlier.

Unfortunately, VR may still have indeterminate phase. The singular behavior of
the normal component of VR is only completely eliminated when ^ satisfies Eq. (2.39).
To eliminate this singular behavior, we will proceed by splitting <^> into two parts, so
that

^ = ^1 + ^2 (2.42)

where, ^ is the potential associated with the constant $ given in Eq. (2.41), and <^>2

is still to be determined. So as not to violate Eq. (2.38), ^2 will be chosen so that its
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value will be zero on the blade and wake surfaces, while allowing $2 to be dependent
on the stream function, \I/.

Considering both parts of ^, the normal component of VR may be written as

° 2.43)
^ '

In light of the choice of <^i , this reduces to

CIK,
c2 -- — + -^r- — = 0 (2.44)

dn ^ '

or

Next, we wish to determine the behavior of the first term in Eq. (2.45) near the
surface of the airfoil. Performing a Taylor expansion of c^/dA about the stagnation
point gives

This equation, combined with the expression for <9A/<9\P obtained in the earlier dis-
cussion of the behavior of the drift function near a stagnation point [Eq. (2.30)], leads

0 (2'47)

As was shown earlier, <^>2 has the form

Substituting this expression into Eq. (2.47) gives

" ] d~ = 0 (2.48)

Also, because the cascade is periodic, a similar boundary condition must be applied
on the next adjacent blade surface. Hence, the value of the stream function at this
surface is required. The stream function may be computed by integrating the mass
flux over the blade-to-blade gap

Qdy (2.49)
o

where G is the blade-to-blade gap measured in the y-direction, and Q is the mass
flux. Typically, the upstream steady density, R-oo, the upstream free stream velocity,
V-oo, and the upstream flow angle, fi_oo, are specified. Using these values, the stream
function may be written as

tf (z, y + G) = #0 + #-oo V-ooG cos fi.oo (2.50)
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Consequently, since the potential should vanish at the blade and wake surfaces, we
let $2 take the form

(2.51)

where B is a constant independent of
boundary condition [Eq. (2.48)] gives

R V G ros Hi v—QO r —OO *—' ^v/O u U — QQ

'. Substituting this functional form into the

cos

+ jK2B sin = 0

solving for B gives

„ _

(2.52)

(2.53)

After performing some algebra, the final expression for </> is obtained, i.e.,

27T(1+ 7
sm

R-oa V-oo G COS fi_r

x exp[;(/^i A + K^)] (2.54)

This expression for <^ results in a rotational velocity that is regular along the blade
and wake surfaces, so that the divergence of the rotational velocity may be calculated
despite the presence of a stagnation point. Note that the complete expression for VR

is relatively simple, and may be calculated once the steady flow has been computed
and the desired magnitude and phase of the unsteady vorticity has been chosen. Now
that a uniformly valid expression for VR has been written, then, the next task is to
calculate the unsteady velocity potential, <f>, using Eq. (2.21).

2.2 Extension of Bateman's Variational Principle

Now that the governing equations have been developed, it is useful to consider how
these equations will be solved numerically. Essentially there are two choices: finite
differences and finite elements. Both of these methods have been used to solve the
linearized potential equation for blade motion and pressure gust analyses [22, 23].
In addition, Hall and Verdon used finite differences to solve the linearized potential
equation with rapid distortion theory to analyze vortical gusts [28]. For this report,
a finite element discretization of the field equations is used. There are three main
reasons for this approach. First, finite element techniques are versatile, elegant, and
relatively easy to implement. Second, it is believed that a finite element approach will
reduce the overall truncation error because the governing equation is solved in the
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integral sense instead of the differential sense. Truncation errors tend to be higher
in derivative evaluation than integral evaluation. Finally, a potential method for
blade motion analyses developed by Hall [24] was readily available. The details of
the finite element procedure will be given in Chapter 3. This section will describe the
variational principle on which the finite element method is based and its application
to the current work, including the effect of unsteady vorticity.

2.2.1 Nonlinear Full Variational Principle

First, consider irrotational and homentropic flow. Bateman [47] developed a varia-
tional principle that states that for a steady flow, the volume integral of the pressure
must have an extreme value, and the associated Euler-Lagrange equation is the steady
conservation of mass. Hall [24] later extended this principle for application to cas-
cades by considering temporally periodic flow. In this case, the pressure integrated
over a domain S and over a period A is extremized. In functional form,

H = - / // p dx dy dt + - I I Qj)ds dt (2.55)
A JA J Jz A JA Jr

where Q is the prescribed mass flux on the boundary and s is the distance along the
boundary F. Taking the first variation of H and setting to zero gives

<m = - / H Sp dx dy dt + i / { Q 8$ ds dt = 0 (2.56)
A JA J JT, A JA. Jr

Bernoulli's Equation says that

H (*)'+§ =c (2-57)

where C is a constant. Since we have assumed that the flow is homentropic, the
variation of the pressure may be written as

Sp = -p V « ^ - V ^ + — 5(t>\ (2.58)

Substituting this expression into the equation for 511, using the divergence theorem
and integration by parts gives

/ / ^ ' (fflr) ~t~ !T~ ^ dx dy dt

1 / • / • / . d<j>\ -
H / <P [Q — P-^~ 06 ds dt = 0 (2.59)

A A / r V Pdn) v V '

To extremize H, 5H must be zero for all permissible variations in ^. Therefore,
Eq. (2.59) says that the conservation of mass must be satisfied in the domain E. On
the boundary F, Dirichlet boundary conditions may be imposed, since then S<f> will be
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zero, or the Neumann boundary condition may be used, so that pd^/dn = Q. This
is the so-called natural boundary condition.

Since the steady and unsteady flow is governed by the conservation of mass, this
variational principle is the appropriate choice to be discretized and solved. For this
principle to be used, however, the temporal integration must be removed. This may
be accomplished through the use of the earlier assumption that the unsteady flow is
harmonically varying with frequency u. With the temporal behavior of the potential
represented by assumed mode shapes, the resulting steady and unsteady variational
principles for the spatial behavior of the flow may then be discretized and solved
using traditional finite element techniques.

2.2.2 Steady Flow Variational Principle

For steady flows, the variational principle is quite simple. Since the pressure, P,
the potential, $, and the density, R, are all independent of time, the functional II
becomes

Hsteady = // P dx dy + j> Q$ ds (2.60)

To extremize this equation, the first variation is set to zero, resulting in

Using the divergence theorem, this becomes

<5nsteady = If 6P dx dy + j> Q 8$ ds

8$ds = Q (2.61)

= // [V - (#V$)] <5$ dx dy + I Q - R^-\ £$ ds (2.62)
j t/s «r v (/it/ /

<msteady

The Euler-Lagrange equation of this variational principle is the steady conserva-
tion of mass, Eq. (2.8). The natural boundary condition is the Neumann condition
Rd$/dn = Q. Finally, it should be noted that the steady conservation of mass is
nonlinear in the steady potential, $ due to the dependence of R on $. Consequently,
nonlinear finite element techniques will be required.

2.2.3 Unsteady Flow Variational Principle With Deforming
Grid and Vorticity

The variational principle for the unsteady flow is considerably more complicated than
its steady flow counterpart. Part of this complexity is due to the fact that the lin-
earized potential equation is more complicated than the steady flow potential equa-
tion, as was shown earlier. In addition, we will see that an extension to the variational
principle is useful for the analysis of blade motion problems.

Up to this point, the theoretical development in this chapter has been mainly
concerned with the forced response (or gust) problem, i.e., how to include the effect
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of unsteady vorticity within a linearized potential framework. There is an additional
complication inherent in the flutter (blade vibration) problem, however. Previous
methods for solving the potential equation have used grids that are fixed in space.
While this is numerically convenient, the airfoil boundary conditions must be applied
at the mean airfoil location instead of the instantaneous location. As a result, extrap-
olation terms must be added to the unsteady airfoil boundary conditions to transfer
the boundary conditions from the instantaneous location of the airfoil to its mean
position. These terms contain steady velocity gradients that are difficult to evaluate
numerically. Consequently, the accuracy of numerical calculations using fixed grids
is limited.

One way to eliminate these extrapolation terms is to use a computational grid
that continuously deforms with the airfoil motion. This procedure has been shown to
be an effective technique for improving the accuracy of linearized analyses [30, 31, 35].

In this report, it is assumed that the grid motion is a small harmonic perturbation
about the mean grid location. We introduce computational coordinates (£,77,1") so
that the grid deforms in the physical coordinate system (x,2/ , t ) , but appears station-
ary in the computational coordinate system. Said another way, the computational
coordinates are "attached" to the deforming grid. To illustrate, Figure 2.3 shows
contours of the computational coordinate system for deformed and undeformed grids
for a cascade of airfoils pitching about their midchords. Note that the computational
coordinates do indeed "deform" with the blade motion. Mathematically, the two
coordinate systems are related by the perturbation series

7)6*"- (2.63)

})^ (2.64)

t(£,T1,T) = T (2.65)

Note that to zeroth order, the physical and computational coordinates are the same.
The terms / and g are first-order perturbations that map the computational coordi-
nate system to the moving physical system. The flow decomposition described earlier
may be expressed in a similar fashion, i.e.,

p(x,y , t ) =

v(x,y, t ) =

p(x ,y , t ) = P(t,r,)
(Z.vb)

total flow nonlinear small harmonic
mean disturbance

To first order, the gradient operator, V, and time derivative operator, d/dt, op-
erators may be expressed in terms of the computational coordinate operators V and
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Figure 2.3: Contours of computational coordinates (£,77) for undeformed (top) and
deformed (bottom) grids for a cascade of airfoils. Airfoils are pitching about their
midchords with an interblade phase angle, a, of 180°.
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dj dr as follows:

-fr, - 9n -
and

d_ _ d_ _ df_ ,
dt dr dr

(2.67)

(2.68)

where f is the vector of grid motion perturbation functions, (/, g}T.
Now that the coordinate systems have been described, the unsteady variational

principle may be expressed in the computational coordinate system. By assuming
a harmonic time dependence, the temporal integration in the functional II may be
carried out. In the computational coordinate system, the unsteady functional is

= A L JL * L 1 ds dr (2.69)

The expression for p in the computational coordinate system may be derived by
substituting the coordinate transformation operators from Eqs. (2.67) and (2.68) into
the unsteady nonlinear Bernoulli Equation, i.e.,

P = + (2.70)

Also, to first order, the inverse of the transformation matrix [J] may be written as

i-i _[! + /* (2.71)

To obtain an expression for the small disturbance unsteady flow, the functional in
Eq. (2.69) is expanded in powers of </>, /, and g retaining up to quadratic terms.
The first-order terms in the functional will result in the steady flow Euler-Lagrange
equation. Because the steady flow Euler-Lagrange equation is satisfied by the mean
flow potential $, these terms will not contribute to the unsteady flow functional.
Therefore, only the second-order terms will contribute. Hence, the functional may be
written as

= \ I If \R [-
A JA J Js 2 L

-T1\

L>

V/ '

- fT (2.72)

Note that the surface integral terms have been omitted for the time being. Next, the
time integral needs to be evaluated. As was stated earlier, it is assumed that the
unsteady flow variables (and the blade motion, if any) vary harmonically. Hence, the
unsteady flow may be represented as a Fourier series in time. These Fourier modes
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may be analyzed individually and summed, since the governing equation is linear.
Therefore, it may be assumed that, for example,

fl£ 77, r) -> Re [flf, fie*"] = \ [tffc r))e^ + +(£, ,7)^] (2.73)

where ^(£,77) is now the complex amplitude of the unsteady potential, and ^(£,77)
is its complex conjugate. The other unsteady variables are represented in a similar
fashion. Substitution of this assumption into the unsteady flow functional, Eq. (2.72),
results in

linear = \ jj^ R {-V'/V> + ~ [V/ V'<& V'$TV>

£ drj

V • f

+ complex conjugate terms (2-74)

where [J] = [J]T[J] — [Ij. Note that none of the boundary conditions have been
discussed as yet. Additional terms will be added to the variational principle in the
next section to specify the boundary conditions.

At this point, it should be noted that no vorticity has been included in the un-
steady functional. Although the grid motion and unsteady vorticity problems are
usually analyzed separately in practice, the vortical terms will be added here for
completeness.

The divergence theorem says that for any vector V,

f f - n d s = 0 (2.75)

Consider the case where V = <j)RvR. The divergence theorem may be written as

(I V • RvR~$ d£ drj - I RvR •n^ds = Q (2.76)

Note that because the rotational velocity and grid motion terms in the functional are
both second order, there is no coupling between the two, i.e., there will be no terms
in the functional that depend on both the rotational velocity and the grid motion.
Consequently, Eq. (2.76) may be written in the computational coordinate system.

We wish to add terms to the unsteady functional II so that the Euler-Lagrange
equation will contain the appropriate rotational velocity terms appearing in Eq. (2.21).
Because the terms in Eq. (2.76) sum to zero, Eq. (2.76) and its associated complex
conjugate expression may be added to the functional given in Eq. (2.74). Leaving
aside the boundary terms for the moment, taking the variation of Eq. (2.74) includ-
ing the rotational velocity terms and applying the divergence theorem results in the
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Euler-Lagrange equation for the unsteady flow. This linearized potential equation
may be written as

V - RV't - V •

= -V • ^ [J]V'$ + V

+V • i

+ V'$[J] V'$ + u2f • V'$ - V • tfv* (2.77)
O I Z J

Note that if there is no grid motion, Eq. (2.77) may be rearranged into the form of
Eq. (2.21), the original equation to be solved.

In summary, then, Bateman's variational principle may be extended to include
both the flutter and forced response problems typically encountered in turbomachin-
ery. The next two sections will describe the boundary conditions required for cascades,
and Chapter 3 will discuss how Eq. (2.77) and the boundary conditions are discretized
and solved numerically.

2.3 Near-Field Boundary Conditions

Now that the governing equations have been developed, appropriate boundary condi-
tions need to be imposed. Figure 2.4 shows the locations of the four types of boundary
conditions for cascades. In this report, the periodic, airfoil surface, and wake con-
ditions will be referred to as "near-field" boundary conditions and will be discussed
in this section. The remaining "far-field" boundary conditions are somewhat more
complicated and will be discussed in the next section.

2.3.1 Periodic Boundary Condition

Steady Flow

In this analysis, all of the airfoils in a given blade row are assumed to be identical.
Hence, the steady flow over each blade is the same. The periodic boundary condition
is that the difference in the steady potential between two adjacent periodic boundaries
is a constant, i.e.,

$(£, T, + KG) = $(£, 77) + KGV-n (2.78)

where G is the blade-to-blade gap, V_oo is the specified upstream velocity in the y-
direction, and K is the blade number, where the reference blade number is zero. This
boundary condition is applied on the periodic surfaces shown in Fig. 2.4.
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Figure 2.4: Locations of boundaries for a typical cascade.
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Unsteady Flow

Clearly, computing the unsteady flow around every airfoil in a blade row would be a
formidable computational task. Hence, we wish to reduce the size of the numerical
calculation. Lane [49] showed that any vibration of the blades of a cascade may
be decomposed into a sum of traveling waves with a fixed interblade phase angle.
Accordingly, in this analysis, it is assumed that any incoming disturbance or blade
motion may be decomposed into a sum of Fourier modes, i.e., the unsteady flow
is periodic in the circumferential direction. Since the governing equation is linear,
the flow solutions for each of the individual modes may be superposed to form the
complete flow solution.

Hence, the flow around any blade may be computed by simply using the interblade
phase angle (or circumferential wave number) to account for the distance between the
blade to be analyzed and a reference blade. The periodic boundary condition may
then be expressed as

t(t,ri + KG) = <l>(t,ri)e>'« (2.79)

where a is the interblade phase angle.
The periodic boundary condition is not included explicitly in the variational prin-

ciple. Its application will be discussed in Chapter 3.

2.3.2 Airfoil Surface Boundary Condition

Steady Flow

On the surface of the blade, no flow must pass through the blade. For the steady
flow analysis, there is no blade motion or incoming disturbance, so this condition is
simply

d$
°— = 0 (2.80)
on

where n is measured normal to the airfoil surface. Note that this condition is the
natural boundary condition from the steady flow variational principle [Eq. (2.62)].
Since it is a natural boundary condition, no boundary condition need actually be
imposed here to obtain the correct solution.

Unsteady Flow

For unsteady flows, the airfoil surface boundary condition is also the natural boundary
condition of the variational principle. The motion of the blades induces an upwash
on the airfoil surface (which is the source of the unsteadiness for flutter problems).
If VR is nonzero on the blade surface (such as in the case of the original Goldstein
formulation) then the upwash due to the rotational velocity must also be accounted
for. The natural boundary condition from the variational principle is obtained from
the first variation of the functional II that includes the rotational velocity terms, i.e.,
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+ <f R( ju f • n - [ J ] V $ - n " + v H . n - ^ ] 8$ ds = 0 (2.81)
j r \ c//t j

So the boundary condition is
a j

^ = jwf • n - [J] V$ • n + VH • n (2.82)

The first term on the right hand side of Eq. (2.82) is the upwash due to the translation
of the airfoil. The second term is an additional upwash required to counter a down-
wash produced by shearing motion of the grid and resulting shearing of the steady
potential field in the vicinity of the airfoil surface. Note that there is no upwash due
to local rotation of the airfoil, nor are there extrapolation terms due to the difference
between the mean and instantaneous position of the blade surface. These are not
required because the mean potential field moves with the grid due to the grid motion
assumption imposed earlier. The last term on the right hand side of Eq. (2.82) is the
upwash associated with a nonzero rotational velocity on the blade surface.

2.3.3 Wake Boundary Condition

Steady Flow

The wake boundary conditions have characteristics of both the periodic and airfoil
surface boundary conditions described earlier. The first boundary condition is that
the wake is considered to be an impermeable surface, so the steady no throughflow
condition applies, Eq. (2.80). Second, there is a jump in potential at the trailing edge
which is equal to the circulation around the blade. If the jump in potential across
the wake is equal to the jump in potential at the trailing edge, the Kutta condition
is automatically satisfied. The boundary condition is then

Wake = (2.83)

where |$] is the jump in the steady potential. An equivalent boundary condition is
that the pressure is continuous across the wake. Hence, the steady pressure continuity
condition is

[PJ = 0 (2.84)

where \P\ is the steady pressure jump across the wake. For the wake to coincide with
the grid boundary, an additional equation will be required to enforce the pressure
continuity condition.

Unsteady Flow

For unsteady flows, the wake oscillates harmonically about its mean position with an
unknown displacement, r. Thus, as in the steady case, there is an auxiliary equation
to enforce the unsteady pressure continuity. In one dimension, the unsteady pressure
is linearly related to the unsteady potential, i.e.,

< (2-85)
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The pressure continuity equation may then be written as

(2.86)

where [...] represents the jump across the wake. Specifically, the jump in potential
is

|0] = (f>ue~jcr - tf (2.87)

where <f)u is the potential on the upper wake surface of the computational domain (see
Fig. 2.4), and <f>f is the potential on the lower wake surface.

The other boundary condition applied on the wake is that conservation of mass
must be satisfied. In particular, the upwash due to the wake displacement must be
accounted for. This additional upwash may be written as

d<f> . ,
^ = -fl-fl-+Jwr (2-88
an os os v '

where dQjds is the mean flow tangential velocity along the wake. The first term is
a "ramp" effect due to a change in wake displacement along the wake. The second
term is the upwash due to the translation of the wake. However, these effects are in
addition to the grid deformation effects given by Eq. (2.82). Therefore, the complete
upwash on the wake surface is

^ = juf • n - [J] V$ • n + VR • n + |^ + ju>r (2.89)
dn ds ds ^ '

Consequently, a term must be added to the variational principle to account for this
additional upwash due to the motion of the wake. Taking the first variation of the
modified variational principle and setting to zero gives

= [Eq. (2.81)1 + / -R [ -^-TT + J'wr ) (S^e'ff - Sj*) ds = 0 (2.90)1 v ' /r _ \ fix fix I V / v '

2.4 Far-Field Boundary Conditions

The boundary conditions at the far field are of a different nature than the near-
field conditions, particularly for unsteady flows. Specifically, the far-field boundary
conditions isolate the computational domain from influences outside the blade row
being examined. Unsteady waves from the airfoil must pass out of the computational
domain unreflected, so that the reflection of these waves does not corrupt the unsteady
solution. For this reason, it is crucial to apply highly nonreflective far-field boundary
conditions.

2.4.1 Steady Flow

First, the steady flow boundary conditions must be enforced at the far field of the
computational domain, as shown in Fig. 2.4. The steady far-field boundary conditions
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are specified using four parameters: the total pressure, pr, the total density, /?x,
the inflow circumferential velocity, V_oo, and the mass flux through the cascade,
Qoo = RooU<x>. For a fluid with ratio of specific heats 7, these four quantities may be
determined once the inflow Mach number and flow angle are known.

Upstream, the inflow circumferential velocity is used to specify the steady poten-
tial, $, at the far field, i.e.,

$(T/) = V-^y (2.91)

Note that since this is a Dirichlet boundary condition, the variation of the steady
potential, 6$, is zero. Hence, the boundary integral in the first variation of the
steady variational principle, Eq. (2.62), is zero.

Downstream, the steady mass flux is is specified, i.e.,

<9$
R-fa = Qoo (2.92)

In this case, a Neumann boundary condition is applied, which is the natural bound-
ary condition of the steady variational principle. Note that because the governing
equation is the steady conservation of mass, specifying the mass flux at the exit of
the domain also fixes the mass flow at the cascade inlet.

2.4.2 Unsteady Flow

There are two main approaches for imposing nonreflecting boundary conditions at
the far field. The first approach, developed by Verdon et al [50], matched an an-
alytical description of the far-field behavior to the numerically calculated near-field
solution. This approach was also applied to the linearized Euler equations by Hall
and Crawley [29]. The advantage of this method is that the far-field solutions may
be obtained with very little computational expense, since the far-field behavior may
be described analytically. There are two main disadvantages to this approach, how-
ever. First, it does not lend itself well to three-dimensional problems. The annular
geometry makes analytical solutions extremely difficult to obtain, except for special
cases. Second, the assumption that the circumferential eigenmodes of the solution
are Fourier modes is only exact if the computational grid is uniformly spaced in the
circumferential direction in the far field. In addition, the method does not account
for the truncation error associated with the field discretization scheme.

To alleviate these and other problems, Hall [24] and Hall, Lorence, and Clark [51]
developed a numerically exact method for constructing nonreflecting far-field bound-
ary conditions. In this approach, the eigenmodes of the unsteady fluid motion in the
far field are obtained using the discretized governing equations. These eigenmodes
are then used to construct nonreflecting boundary conditions. Although the numeri-
cally exact behavior is obtained using this method, it is much more computationally
expensive than the analytical approach.

Initially, the numerically exact method was implemented in the present method.
Unfortunately, the sensitivity analysis (to be described in Chapter 4) of this method
becomes extremely computationally expensive due to the need to compute the sen-
sitivities of the eigenvectors. To reduce the computational expense of the present
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method, the analytical approach was chosen to demonstrate the present method. For
the cases to be considered here, the error associated with this approach is actually
quite small. In the future, particularly for three-dimensional applications, it would be
useful to find a computationally efficient procedure to perform the sensitivity analysis
on the exact approach.

In this section, the method for computing the analytical description of the un-
steady potential in the far field is described. Only the homogeneous (i.e., the right-
hand side of Eq. (2.77) is zero) problem will be described here. It should be noted
that there is never any grid motion in the far field. If there is an incoming acoustic or
vortical gust, the problem is inhomogeneous, and the particular solution is computed
numerically. The computation of the particular solution will be described in Chapter
3.

Continuous Far-Field Potential

In the upstream far field, the unsteady potential is continuous in the circumferential
direction. Downstream, the jump in potential associated with the wake requires an
additional discontinuous part of the unsteady potential. The continuous part of the
potential is derived in the same fashion upstream and downstream, and is described
here.

In the far field, it is assumed that the steady flow is uniform and the unsteady
flow is a small harmonic perturbation about the steady flow. Under these conditions,
the unsteady flow is governed by the convective wave equation, i.e.,

- CVc = 0 (2.93)

where the total derivative is

:& - ! + I/A + VAn ,— <-,, T I/ « -f- K _
Dt dt dx dy

Here <j>c is the continuous unsteady potential, U and V are the steady flow velocities in
the x- and y-directions, and C is the steady flow speed of sound. Next, it is assumed
that the unsteady potential in the far field may be decomposed into a sum of Fourier
modes, so that

00

<t> c (x ,y , t )= ^ dm exp [jut + jamx + j/3my] (2.94)
m=— oo

where dm are the Fourier coefficients, am are the as yet undetermined axial wave
numbers, and f3m — (a + 27rm)/C? are the specified circumferential wave numbers.
The axial wave numbers may be obtained by substituting Eq. (2.94) into Eq. (2.93),
which gives

^ '
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These wavenumbers correspond to upstream going and downstream going pressure
waves. The direction of propagation may be determined as follows. If the am pair
are complex, the direction may be determined on physical grounds by the direction of
exponential decay. For example, at the upstream far field, the wave that decays in the
positive x-direction must be a downstream going mode, since if it were an upstream
going mode, that would imply that the wave generated in the computational domain
would eventually have infinite amplitude, which is not physically possible. Waves
that decay exponentially are referred to as "subresonant".

If the am pair are purely real, the waves propagate unattenuated. These are
referred to as "superresonant" modes. Their direction of propagation may be deter-
mined by examining the group velocity [51], which is defined as

(2.96)

The group velocity is the speed at which a packet of waves of a given wave number
moves. If the group velocity is positive, there is a net flux of energy in the positive
x-direction. Hence, the wave propagates in the positive x-direction.

Finally, the coefficients dm may be determined from a Fourier transform of the
unsteady potential in the far field, i.e.,

1 rG

dm = -= \ &(zff,y)exp(-jj0my) dy (2.97)
(-7 JO

where Xs is the x-coordinate at the far-field boundary being examined. Once all
of the Fourier coefficients and wave numbers have been obtained, only the outgoing
pressure waves are retained. All incoming modes are set to zero, since they come
from outside of the computational domain. The outgoing modes are then summed
using Eq. (2.94) to determine the new continuous unsteady potential, </>c.

Discontinuous Far-Field Potential

Next, an expression for the discontinuous part of the downstream far-field potential
due to the wake is required. The wake is modeled here as a vorticity wave that
convects with the free stream. The geometry for this analysis is shown in Fig. 2.5.
Here the x- and y-axes form the usual coordinate system, shifted so that the origin
is at the downstream far-field boundary. The XT- and j/r-axes are rotated through
the angle 6 to align with the wake boundary. The wake boundary is aligned with the
steady free stream velocity, Vr. The conversion between the two coordinate systems
is given by

xr — x cos 9 + y sin 9

yr = —x sin 9 + y cos 0

and
x = XT cos 0 — yr sin 6

y = XT sin & + yr cos 6
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Figure 2.5: Coordinate systems for downstream far-field analysis.

Because there is no pressure associated with the wake vorticity, the discontinuous
part of the potential satisfies Laplace's equation, i.e.,

= 0 (2.98)

where <^ is the discontinuous part of the unsteady potential.
It will be clearer to derive (f>d in the coordinate system aligned with the flow. The

vorticity convects with the free stream, so the potential may be assumed to be of the
form

(/>d(xr, 2/r) = (t>r,d(yr) exp(;arzr) (2.99)

where ar = —u/VT. Substituting this expression into Laplace's equation gives

gM-aXiforHO
dy.

The solution to this ordinary differential equation has the form

<t>r,d(yr) = 2?exp(ov3/r) + £exp(—a ry r)

(2.100)

(2.101)

There are two boundary conditions required to obtain the coefficients T> and £. The
first is that there is a jump in potential across the wake, f^rj, which is defined as

M = <f>r,d(GT)eXp(-jP rG r) ~ (2.102)
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where j3r may be determined from the interblade phase angle, <j, and the coordinate
transformation

_ <T—u sin L (2.103)
Gcos 0 v '

The second boundary condition is that the wake motion is periodic

?r) (2.104)

After using these two boundary conditions, some algebra results in the expression for
<t>T,d

(2.105)
rGT ~ jPrGT} I - eXp(~arGr - j j3TGT)

The next task is to determine |̂ r|. Using the notation of Figure 2.5, it is clear that

[^r] = <^Jf exp(—j 0rGT) — <f>f (2.106)

Since the behavior of <j>d is known in the xr direction,

<^f = (f>u exp(jarGsm 0) (2.107)

Substituting this expression into Eq. (2.106) and simplifying results in

|̂ r] = <^"exp(— j&] — <j>1 (2.108)

So the complete expression for the discontinuous unsteady potential is

x
exp(aryr) exp(-aryr)

1 - exp(arGT - j/3TGr) 1 - exp(-aTGT - jj3TGT}_

Finally, for this expression to be used in the present method, it must be converted to
the original coordinate system, so that

x, y] = —-[^rf exp[jaT(x cos 0 -f- y sin 0)]

x
exp[o;r(—x sin ^ + y cos 0)] exp[—a r(—x sin 0 + y cos

+
-exp(-arGr-jprGT) \ (2'UO)

This expression is added to the continuous downstream unsteady potential to deter-
mine the complete solution at the downstream far field.



Chapter 3

Numerical Solution Method

In this chapter, the methods for numerical solution of the governing equations and
boundary conditions described in Chapter 2 for the steady and small disturbance un-
steady flow through a two-dimensional cascade of airfoils are presented. Section 3.1
contains a description of the steady solution procedure. The first step in the steady
solution process is the choice of a computational grid upon which to discretize the
governing equations and boundary conditions. After the equations governing the gen-
eration of the computational grid have been discussed, the finite element discretization
of the steady flow variational principle and the associated boundary conditions will
be presented. To complete the steady flow analysis, the matrix assembly and solution
of the discretized equations and boundary conditions will be described. In Section
3.2, the unsteady solution procedure will be developed, beginning with the numerical
calculation of the drift function and rotational velocity, as well as the generation of
the grid deformation. Next, the unsteady finite element discretization of the field
equations and boundary conditions is presented, with particular emphasis on the nu-
merical discretization of the far-field boundary conditions. Finally, the assembly and
solution procedure for the discretized unsteady flow equations is described.

3.1 Steady Flow Solution Procedure

3.1.1 Grid Generation
In any computational fluid dynamic analysis, the choice of a computational grid
upon which to discretize the governing equations is crucial. Poor computational
grids may reduce the accuracy of the discretization scheme or, in some cases, reduce
the stability of the solution procedure. For cascade flows, the computational grids
typically used are referred to as C, O, and H grids (or some combination thereof).
The grid topology for each of these grids looks much like the letter used to identify
them. In this investigation, H grids will be used. H grids, unlike their C and
O counterparts, provide good resolution throughout the computational domain, not
just near the airfoil. This is important because the accurate resolution of acoustic
and vortical waves is critical to evaluating the aeroacoustic performance of a blade
row. Another important reason for using an H grid is that the matrix containing

44
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-> x

Figure 3.1: Typical computational grid for a fan exit guide vane.

the discretized flow equations will be block-tridiagonal. In addition to reducing the
memory requirements for the method, block-tridiagonal matrix solvers are, in general,
considerably faster than a general (i.e., fully populated) matrix solution. A typical
H grid is shown in Figure 3.1.

There is an additional requirement of the computational grid. Recall from Chapter
2 that for aeroacoustic calculations, knowledge of the drift and stream functions is re-
quired. To facilitate the computation of these functions, one possible approach would
be to solve for the steady flow on some initial computational grid, and afterwards cal-
culate the streamlines based on the computed steady flow. Hall and Verdon [28] used
this approach, finding the stagnation point and then calculating the stream function
using a Runge-Kutta algorithm. Unfortunately, this procedure increases the overall
truncation error of the solution procedure and does not lend itself well to a sensitivity
analysis. A method that is better suited to a sensitivity analysis is to compute the
grid nodes as part of the steady solution procedure. The final steady solution will
then be on a computational grid that follows the streamlines. The latter procedure
will be implemented here.

Thompson [52] has developed an elliptic grid generation technique that is well-
suited for cascades. The (x,y) position of the grid nodes are denned by the partial
differential equations

V2E = P (3.1)
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V2# = Q (3.2)

where P and Q are functions which are used to control the grid spacing. Lines of
constant H and H define the grid lines.

Equations (3.1) and (3.2) may be inverted to obtain partial differential equations
for the unknown grid node locations in terms of the known computational coordinates
E and H, i.e.,

and
2 - 2 2 -

(3.4)
. ^ '

where

-=7

The next task is to choose the grid spacing functions P and Q so that the grid
follows the flow streamlines. These functions may be obtained through the fluid dy-
namic definitions of the velocity potential and stream function. Consider an inviscid,
irrotational, compressible flow. In terms of the stream function, ^, and the density,
R, the steady conservation of mass may be written as

. - _
~ d x \ R d x ) ~ d y \ R 9 y ) (3-5)

which, after rearranging, may be written in the form

vM> = !2™? + !2^ (36)
R dx dx R dy dy ^ '

Finally, writing the right hand side of Eq. (3.6) in terms of the steady velocity po-
tential, $, gives

V2* = |V$ x V.R| (3.7)

Note the similarity between Eq. (3.7) and Eq. (3.2). If we choose V = 0 and
Q = |V$ x V.R|, then lines of constant H will correspond to streamlines, provided
the boundary conditions around the computational domain are consistent with the
definition of the stream function. Furthermore, note that if the flow is incompressible,
|V$ x VR\ = 0, and no grid spacing functions are necessary in the grid generation
equations (i.e., P = Q = 0). Regardless of the compressibility of the flow, it should
be noted that lines of constant E do not correspond to contours of the drift function,
A, nor is this a requirement of the computational grid. The drift function may be
calculated after the steady flow solution has been obtained.

Figure 3.2 shows a typical computational grid in the (E, $) coordinate system.
If the grid generation equations, Eqs. (3.3)-(3.4), were solved without the influence



3.1. STEADY FLOW SOL UTION PROCED URE 47

f

i=123 i=ILE i=ITE i=

Figure 3.2: Typical computational grid in (H,\I>) coordinates. The computational
node numbering convention is also illustrated.

of the grid spacing functions (i.e., P = Q = 0), an example of the resulting compu-
tational mesh is shown in Figure 3.1. Note that the area of the computational cells
shown in Fig. 3.1 varies smoothly throughout the computational domain. The lack
of large area changes from cell to cell is characteristic of elliptic grid generation al-
gorithms, and is desirable because smoothly varying grids do not increase the overall
truncation error of the numerical solution procedure.

The overall computational grid has / nodes in the axial direction and J nodes
in the circumferential direction. The node numbering convention is illustrated in
Figure 3.2. Any node on the computational grid may be referred to by its node
number (i,j). The upstream far-field boundary is the first axial grid line, so i = 1 on
this boundary. Similarly, i = I on the downstream far-field boundary. The j-nodes
are numbered from the lower boundary of the computational domain (j = 1) to the
upper boundary of the domain (j = J).

In addition to the grid generation equations described above, boundary conditions
must be imposed around the blade passage. Specifically, the distribution of grid nodes
along the boundaries are specified. These locations are specified as a fraction of arc
length on each boundary. There is no restriction on the grid distribution, although to
minimize truncation error, it is best to increase the grid resolution near large steady
flow gradients. A typical boundary distribution is shown in Figure 3.3. The arc
length fraction for each boundary node i along the periodic, airfoil surface, and wake
boundaries is denoted by F±. The value is the same for both the upper and lower
surfaces. The arc length fraction for each node j along the far-field boundaries is
denoted by Fj. The values of Fi and Fj at the endpoints of each boundary type are
also shown in Figure 3.3. The values of Fi and Fj at the intermediate nodes represents
the fraction of the arc length between the endpoints at which the node is located.

The grid generation equations and associated boundary conditions are discretized
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Fj =

Fj = 0

Fi = 0

Figure 3.3: Typical distribution of boundary grid points.

using centered finite difference operators for nonuniform spacing in £ and \P. The
resulting set of nonlinear equations is of the form

M($,x;Z) = 0 (3.8)

where M is a vector of nonlinear functions, 3> is the vector containing the discrete
approximation of the nominal steady potential $ at all the computational nodes, x is
the vector of the location of the computational nodes, and Z is a vector containing a
set of parameters that define the airfoil shape and cascade geometry. The semicolon
indicates that $ and x are the dependent variables to be computed during the solution
procedure. The parameters contained in the Z vector are independent variables during
the solution procedure, although they may change in the overall design process. The
details of the parameters in the Z vector will be discussed in the next section.

3.1.2 Airfoil Definition and Spline Notation

Now that we have defined the computational grid, we consider how to represent the
airfoil shape and cascade geometry using the vector Z. Generally, airfoil shapes are
defined using two distinct approaches. One approach is to define the airfoil analyti-
cally using some set of design variables such as thickness and camber. In this case,
the vector Z may be considered to contain the magnitudes of each of these defining
variables, in addition to the cascade parameters. A second, more general approach is
to define the airfoil shape using a set of points on the airfoil surface. In this case, the
vector Z will contain the x- and ^-coordinates of the defining points as well as the
cascade parameters. It should be noted that this second approach is more general
because any analytical airfoil definition may be discretized to obtain a set of defining
points. Furthermore, it may be argued that each defining point is actually a design
variable of the airfoil shape. Hence, for the most part, the discussion of the airfoil
shape in this report will assume that the blade has been defined by a set of points on
the surface.
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Figure 3.4: Detail of airfoil spline definition. Arrows indicate direction of airfoil
spline.

The cascade parameters are design variables that are independent of the airfoil
shape. For example, the blade-to-blade gap, G, and the stagger angle, 0, are both
parameters that would be included in the vector Z. In general, any parameter that
defines the cascade and is considered to be a design variable (i.e., the parameter
is allowed to change during the design process) is included in Z. This may include
parameters that define the computational grid, such as the fractional arc length arrays
Fi and Fj defined in the previous section, and parameters that define the steady flow
conditions, such as the inflow Mach number.

At this point, it is useful to explain the relationship between the vector containing
the airfoil shape and cascade parameters, Z, and the vector containing the nodes of
the computational grid, x. Consider a blade definition consisting of a number of
defining points as shown in Figure 3.4. Each point defining the shape of the blade
has a coordinate that will be denoted (X,Y). In the present analysis, it is assumed
that the points begin at the trailing edge on the upper surface of the airfoil and end
at the trailing edge on the lower airfoil surface. Note that in general these points are
not points defined by the computational grid. The coordinates of the grid nodes (i.e.,
the vector x) will be denoted using lower case letters, i.e., (z,j/), to distinguish the
nodes of the computational grid from the points defining the airfoil shape.

Figure 3.4 shows a schematic of an airfoil defined by some finite number of points,
N. The points begin at (Xi, FI) and end at (X^, VN). In addition, the initial estimate
of the stagnation point is denoted by (^"STAG, FSTAG)- The arc length, 5, of each of
these points measured from the trailing edge of the upper airfoil surface is then
calculated at each point based on its X and Y location. Once the arc length has been
calculated, the X and Y locations are given a "functional" definition using a cubic
spline. In this way, the X and Y location of the surface of the airfoil is defined to be
a function of S.

Although the airfoil shown in Fig. 3.4 has a sharp trailing edge, it should be noted
that this analysis is not restricted to airfoils with sharp trailing edges. Actual airfoils
usually have rounded (or blunt) trailing edges. Unfortunately, the wake boundary
condition is difficult to apply near rounded trailing edges. In such cases, it is useful
to "cut off" the airfoil near the trailing edge so that there is a space between the first
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Figure 3.5: Typical computational grid illustrating modifications for airfoils with
blunt trailing edges. Multiple passages shown for clarity. The highlighted lines define
the actual computational grid.

and last point of the airfoil definition. The resulting computational grid around such
an airfoil is shown in Figure 3.5. Note that there is constant spacing between adjacent
blade passages from the trailing edge to the downstream far field of the computational
grid. This space is intended to model the flow deficit due to a viscous wake. Placing
the grid boundaries on either side of this space is analogous to representing the
displacement thickness of a viscous boundary layer by a solid surface in an inviscid
analysis. Although no displacement thickness modification has been applied to the
airfoil surface, the space in the wake represents an estimate of the actual viscous wake
region. Inside the space between the grids there is no fluid flow. The wake boundary
conditions are then applied in the usual fashion, on either side of the space. Previous
researchers [35, 24] have shown that modeling a blunt trailing edge through a space
in the computational grid results in a solution that satisfies the Kutta condition, and
hence no spurious stagnation points arise along the wake boundary.

Finally, there are four other parameters that define the computational grid. The
first two are the x-location of the upstream far field, XMIN, and the inflow angle fi_oo.
The other two are the x-location of the downstream far field, ZMAX, and the flow exit
angle, OOQ. Although the inflow and exit flow angles may change during the course of
the steady solution procedure, ZMIN and ZMAX remain fixed. These four parameters
are shown in Fig. 3.5, and they complete the specification of the computational grid.
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3.1.3 Finite Element Discretization

The next step in the analysis is to calculate the steady flow. As was shown in
Chapter 2, the governing equation is the steady version of the full potential equation,
Eq. (2.11). Following the notation in the previous section, the discretized set of steady
flow equations has the form

N($,x;Z) = 0 (3.9)

where N is a vector of nonlinear functions. Note that Eqs. (3.8) and (3.9) are both
nonlinear in $ and x. Since the objective given earlier is to solve the equations
simultaneously, Newton iteration will be used to solve the grid and flow equations.
Consequently, it will be useful to discretize the steady flow equations in a manner
consistent with Newton iteration.

From the functional given in Eq. (2.62), it is clear that a perturbation expression
for the steady pressure is required. To do this, consider the steady Bernoulli equa-
tion, Eq. (2.10). If the current estimate of the steady pressure is P and the current
current estimate of the steady potential is $, then to compute the new value of the
steady pressure, we expand Eq. (2.10) in a Taylor series about the current value of
P, retaining terms to second order. In terms of the perturbation potential, $', the
new estimate of the steady pressure may be written as

PNEW = p- 7?V$ • W - W • V$' + - (V$ • W) + 0($') (3.10)

where PNEW is the new estimate of the steady pressure. In Chapter 2, it was noted
that Taylor expansions within variational principles must be carried out to second
order if a first-order result is desired. This is because taking the variation will reduce
these second-order terms to first order. Since first-order terms are required in a
perturbation expression for the pressure, the Taylor expansion in Eq. (3.10) is carried
out to include terms of second order.

Now, rewriting the steady flow functional given in Eq. (2.62) to second order
results in

Hsteady = P ~ #V$ • V*' - W - V*' + ~ (Vd> - V*')'f W - V*' +

where the boundary integral has been omitted for the time being. Taking the first
variation and setting to zero gives

= JJ R [~Ollsteady
j ju

I I
_l v$ • V$'V$ • V£$' d£ drj = 0 (3.12)

For Hsteady to be stationary, £nsteady must be zero for all admissible variations in
<&'. Since the area of the domain £ is arbitrary, the expression inside the integral
in Eq. (3.12) must be zero (i.e., it is the Euler-Lagrange equation of the variational
principle). Hence, discretization of the functional given in Eq. (3.11) will result in a
set of nonlinear equations of the form given in Eq. (3.9), which is the desired result.
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The variational principle may be discretized using conventional finite element
techniques. In the present work, a four node bilinear isoparametric element will be
used. The values of the perturbation steady potential at the corners of a given element
n may be interpolated into the interior of the element using an interpolation of the
form

*U»?)=LNJn* /n (3.13)

where
LNJ n =LM,^2,^3 ,^4jn (3.14)

is a row vector of interpolation functions and $'n is the vector containing the corner
values of the perturbation steady potential. Similarly, the gradient operator may be
represented by the gradient of the interpolation functions, i.e.,

where
ON*

(3.15)

(3.16)
dNi dN* dN4

dr) ' dr) ' dr) ' dr)

Substituting these expressions into the functional given in Eq. (3.11) results in

R,,
nsteady = P-

dr, (3.17)

Setting the first variation to zero results in the Newton iteration equation for the
perturbation of the flow

steady =<5II
J ./£„

+ ̂ [N'£V$V$T[N']n$'n R d x d y =

Rearranging, this may be written as

<msteady = [N']I -[I] +

(3.18)

^c/r/ = 0 (3.19)

In finite element notation, then, the steady flow equations for each element may be
written in the form

[K]n$'n-En = 0 (3.20)

where the elemental stiffness matrix, [K]n, is

(3.21)[K]n = // [Nil (-[I] + ̂ V$V$T) [N']nJR d( dr,
J JZn V L> /
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and the elemental force vector, En, is

En = // [N'^VStf d£ dr, (3.22)
J ./Sn

The elemental stiffness matrix and force vector are computed for each cell in the
computational domain. These elemental values are assembled into a global stiffness
matrix and force vector so that the steady flow governing equation, Eq. (3.9), may be
solved using Newton iteration. Also included in the global stiffness matrix and force
vector are contributions from boundary integral terms resulting from the steady flow
variational principle. The boundary conditions will be discussed in the next section,
followed by a description of the global matrix assembly and solution procedure.

3.1.4 Near-Field Boundary Conditions

Periodic Boundary Condition

In Chapter 2, it was stated that the steady periodic boundary condition is that the
difference in the steady potential between two adjacent periodic boundaries is a con-
stant. In addition, it is clear from the discussion of the grid generation procedure
that the periodic surfaces on the upper and lower boundaries of the computational do-
main must be separated by the specified blade-to-blade gap, G. There is an additional
requirement of the steady flow solution on the periodic boundaries, however. .

Earlier in this chapter, we stated that we wish to have the computational grid
follow the flow streamlines. Because the periodic boundaries are attached to the
airfoil, the periodic boundaries must be stagnation streamlines of the steady flow.
Consequently, we wish to formulate boundary conditions to enforce this requirement.

The stagnation streamline condition may be enforced through the application of a
"Kutta condition" requirement on the periodic boundaries. This may be accomplished
by implementing two separate boundary conditions. First, there is a condition that
is purely a function of the grid locations. In general, the shape of the stagnation
streamline from the inlet to the leading edge of the airfoil is not known a priori.
Often the boundary has some curvature, because the stagnation streamline must be
normal to the surface of the airfoil at the stagnation point, which is not necessarily
the same direction as the specified flow direction in the upstream far field. Hence,
the grid locations on the periodic boundaries are not fixed, but are adjusted during
the solution procedure, so that the same relative spacing along the boundaries is
maintained. Specifically, on the lower (j = 1) periodic boundary of the computational
domain, the boundary condition for the grid is that at grid station i, the x- and y-
coordinates are the appropriate fractional arc length between the upstream far-field
boundary and the airfoil surface, so that

- (Fi - Fi-tf [(Z.VH - z,)2 + (yi+i - ytf] = 0 (3.23)

where the superscript x refers to the x grid equation for the computational node (i, j)
indicated by the subscripts, and Fi refers to the fractional arc length array described



54 CHAPTERS. NUMERICAL SOLUTION METHOD

in the previous section. This boundary condition is applied from node i = 2 to
node i = ILE — 1 (see Figure 3.2). At the inlet (i = 1) boundary, the x-location is
prescribed. The y-location is permitted to change to satisfy Eq. (3.23).

On the upper (j = J) periodic boundary of the computational domain, the x-
coordinate of the grid node is the same as the lower boundary, and the t/-coordinate
is one blade-to-blade gap larger than the lower boundary, i.e.,

Mf,j = *i,J - *i,i = 0 (3.24)

and

M?,J = yi,J ~ J/«M -G = Q (3.25)

The other boundary condition for closure is purely a function of the steady po-
tential. In Chapter 2 during the discussion of the steady wake boundary condition,
it was noted that if the jump in steady potential across the wake is the same as the
jump in potential at the trailing edge, the Kutta condition is automatically satisfied.
This condition may be applied in an analogous fashion on the upstream boundary. If
the jump in potential across the periodic boundary is the same as the jump at the
stagnation point (i.e., zero), then the periodic boundary is a stagnation streamline of
the flow. This condition may be expressed as

M^ = ($t-+liJ - $,-+lil) - ($,-,j - $;,!) = 0 (3.26)

The result of these boundary conditions is that the upstream periodic grid boundaries
are stagnation streamlines of the converged solution.

Airfoil Surface

As was noted in Chapter 2, on the airfoil surface, the steady flow satisfies the natural
Neumann boundary condition, i.e., no through flow. Since it is the natural bound-
ary condition of the variational principle, no additional expressions are required to
enforce this condition. The grid equations, however, are another matter. For each
computational node on the airfoil surface, there are boundary conditions that must
be satisfied.

The first set of boundary conditions requires that the computational nodes lie on
the airfoil surface. For the lower (j = 1) boundary of the computational domain, this
condition may be expressed by the equations

Affi = xitl - Xs(sitl) = 0 (3.27)

and
,l) = Q (3.28)

where ^5 and YS are cubic spline evaluations of the airfoil surface coordinate corre-
sponding to the arc length Sit\ for the computational node at the zth station on the
j = 1 surface. Note that s^i is a new variable that is stored only for the airfoil surface
points (i.e., from i = ILE to i = ITE). This new variable will require an additional
boundary condition to close the system, which will be described shortly.
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It should be clear now why the airfoil definition points (X, Y) are referred to
separately from the grid nodes (x,y). At each iteration of the Newton solver, the
nodes of the computational grid are permitted to "slide" along the surface specified
by the airfoil defining points. The coordinates of the points containing the airfoil
definition are fixed during the steady solution procedure. Hence, these points must
be considered separately from the grid node locations.

On the upper (j = J] surface of the computational domain, the grid nodes must
also lie on the airfoil surface, so that

,j) = Q (3.29)

and
-G = 0 (3.30)

where the latter equation also ensures that the blade-to-blade gap is constant along
the blade, and s^j refers to the arc length of the computational node i on the j = J
surface.

The other boundary condition for closure is that the arc length that the nodes
on the airfoil surface "slide" is a specified value of the fractional arc length between
the stagnation point and the spline endpoint. This condition is applied at all airfoil
surface nodes except the stagnation point. Recall that earlier in this chapter, the
arc length fraction F+ was defined. Using this definition, the arc length at station i
and (i — 1) on the lower (j = 1) airfoil surface of the computational domain may be
expressed as a function of the arc length at the stagnation point and the arc length
at the trailing edge, so that

M = -sit! + SSP - Fi (SSP - Si) = 0 (3.31)

M = -Si.!,! + SSP - F^ (SSp - 5j) = 0 (3.32)

where SSP is the arc length at the stagnation point. Solving both of these equations
for SSP and setting them equal to each other results in an expression for S,-FI that is
only dependent on the specified fraction array F, the arc length at an adjacent node,
s,-_i,i, and the arc length at the trailing edge, Si (see Fig. 3.4). Hence, the boundary
condition that enforces the fractional arc length distribution on the (j = 1) airfoil
surface may be written as

.> - THSr1 Si = 0 (3.33)i r i— i

Note that the J+l designation on M indicates that this equation is solved in addition
to the grid and flow equations for the J nodes at each i station. Hence, Eq. (3.33) is
stored in the x grid equation for the "fictional node" J + l. This boundary condition
is applied from node i = ILE + 1 to i = ITE on the j = 1 surface.

In a similar fashion, the boundary condition on the j = J airfoil surface may be
written as

!—±- *_ l f j - /_ t'1 SN = 0 (3.34)
f i— \ 1 -Ti— l
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This equation is stored in the y grid equation for the "fictional node" J + 1. Like the
j = 1 surface, this boundary condition is applied from node i = ILE +1 to i = ITE
on the j = J surface.

These last two boundary conditions essentially state that any change in position
of the stagnation point will result in a proportional change in the position of the grid
nodes on the airfoil surface.

Stagnation Point

Next, we consider the boundary condition at the stagnation point. This boundary
condition is extremely important because the description of the unsteady vorticity
given in Chapter 2 is only valid if the stagnation point is identified accurately. The
boundary condition is that the steady potential, $, has a minimum value on the
surface of the blade at the stagnation point. In other words, the derivative of the
steady potential in the tangential direction (i.e., with respect to the arc length) is zero.
Discretizing this derivative using a second-order finite difference operator allowing
variable grid spacing results in

1
SILE+I,I—SILE+I,J

SILE+I,I —

SILE — SILE+I,J

. . . . . = 0 (3.35)
— SILE+I,J

where ILE refers to the grid station i corresponding to the leading edge of the airfoil
(see Fig. 3.2). The i = ILE grid station is also the stagnation point. Note that the
potential on the upper (j = J) surface of the computational domain must be evaluated
on the reference airfoil, so the jump in potential between adjacent blades, V-^G^ must
be subtracted from the value of the upper surface potential, $ILE+\,J- Furthermore,
note that s only has a single subscript at the leading edge. This is because the arc
length at the leading edge is the same for both airfoil surfaces. Hence, only one
additional variable must be stored, which results in there being only one additional
boundary condition at the leading edge stagnation point.

Downstream Wake Boundary

The last near-field boundary conditions are applied at the downstream wake bound-
ary. Like the upstream periodic condition, the grid line attached to the trailing
edge must be a stagnation streamline. Hence, the boundary conditions on the wake
surfaces are nearly identical to those on the periodic surfaces. First, the boundary
condition on the grid for the lower (j = 1) surface of the computational domain is

- x,-)2 + (y,-+i - y,f = 0 (3.36)
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Also like the periodic boundary, the grid boundary conditions on the upper (j = J)
surface are

M*J = X^J ~ *.M = 0 (3.37)

and
Mi,j = Vi,J - yi,i ~[G- (Yl - YN}\ = 0 (3.38)

where the last two terms in Eq. (3.38) account for any space in the downstream wake
due to a blunt trailing edge, as described earlier in this chapter.

Finally, similar to the upstream periodic boundary, the boundary condition that
enforces the Kutta condition may be written as

M?,i = (*i,J ~ $.M) - ($i-i,J ~ $i-u) = 0 (3.39)

there are two differences between the wake boundary condition expressed in Eq. (3.39)
and the periodic boundary condition given in Eq. (3.26). First, the jump in the
potential is measured at the i and (i — 1) points instead of the i and (i + 1) points.
This is because the wake boundary conditions are applied from node i = ITE + 1
to i = /. Hence, so that a single condition may be used at all of these nodes, the
difference is computed in the "upwind" (i.e., negative i) direction. Upstream, because
the boundary condition is applied at the i = 1 node, the difference is computed in
the "downwind" (i.e., positive i) direction. The second difference between the wake
condition and the periodic condition is that there is a finite jump in potential across
the wake if there is circulation around the airfoil.

All of the near-field boundary conditions necessary for the calculation of the steady
flow have now been presented. The final step in the steady flow solution procedure
is to examine the steady far-field boundary conditions.

3.1.5 Far-Field Boundary Conditions

Upstream Far-Field Boundary

There are three boundary conditions the grid and steady flow must satisfy on the
upstream far-field boundary. The first is that the y-component of velocity must be
equal to a specified value. This condition effectively specifies the steady potential
at the upstream boundary, as shown in Eq. (2.91). Computationally, this may be
accomplished using the finite element procedure known as the penalty method [53].
Using the penalty method, the boundary condition may be written as

Nlti = [Kh,,-*! - EU - kp ($!,, - V-^J = 0 (3.40)

where the matrix [K] and vector E are the stiffness matrix and force vector described
earlier, and kp is called a penalty number. As kp approaches infinity, the condition
$1)j = V_ooJ/i,j is exactly enforced. For computational purposes, it is sufficient to
choose kp to have a large finite value.

The other two conditions apply to the location of the grid nodes on the upstream
far-field boundary. The boundary is a line of constant z-coordinate, while the y-
coordinate is specified as a fraction of arc length through the F array described
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earlier. The a;- coordinate is computed through the equation

Mfj = xij - xi.i = 0 (3.41)

Note that the value of x^i is computed as part of the periodic boundary conditions
described in the previous section. The ^/-coordinate is computed in a similar fashion,
i.e.,

M?j = yi,j ~ 2/1,1 - FjG = 0 (3.42)

where Fj is the value of the far-field arc length fraction array corresponding to node
j (see Fig. 3.3), and G is the blade-to-blade gap.

Downstream Far-Field Boundary

The downstream flow boundary condition specifies the mass flux through the compu-
tational domain. Because the governing equation of the steady flow is the conservation
of mass, specifying the mass flux at the exit fixes the mass flux at the inlet. The cir-
cumferential grid lines are modeled as streamtubes, so that the flow through each
tube is proportional to its fraction of the gap at the far-field boundary. It should be
noted that the downstream gap is not necessarily the same as the blade-to-blade gap,
G, due to the space left in the wake for airfoils with finite thickness trailing edges. To
prescribe the mass flux at the boundary, the desired mass flux is added to the "force
vector" computed from the finite element procedure, i.e.,

and

NIij+l = [K]/J+1$/ - E/J+1 - Ifl^t/^— — £_— (y/i-+1 - y/ij) = 0 (3.44)
2 G - (Yi - YN)

The last term in Eqs. (3.43) and (3.44) represents the mass flux through the stream-
tube defined by two adjacent streamlines (i.e., lines of constant j}. The grid equations
at the downstream far-field boundary are analogous to those at the upstream bound-
ary, i.e.,

M?,j = xi,i ~ */,i = ° (3-45)

and
2//,i - Fj[G - (Y, - YN}} = 0 (3.46)

where again the blade-to-blade gap, G, is modified by the space left in the wake due
to finite thickness trailing edges.

3.1.6 Assembly and Solution

The final step in describing the steady flow solution method is to explain how the
equations given in the previous sections are actually assembled and solved. Earlier in
this chapter, it was noted that the governing equations and boundary conditions for
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the grid and steady flow could be expressed as two sets of nonlinear functions, M and
N [see Eqs. (3.8) and (3.9)]. It was also noted that the equations would be solved
simultaneously using Newton iteration. Schematically, the steady solution procedure
may be written in the form

n+l dN
<9x

dM dM
<9x

-i

(3.47)

where n denotes the current estimate of the solution and n + 1 denotes the new esti-
mate. Literally structuring the equations in this way would result in a sparse matrix
of extremely high bandwidth. Large bandwidth sparse matrices are not conducive
to efficient solution. Fortunately, the bandwidth of the matrix may be substantially
reduced by reordering the equations.

At each computational node, there are three equations to be solved, for variables
$, x, and y. Examination of the equations derived in this chapter shows that the
discretized form of the governing equations and boundary conditions at a grid station
i are at most dependent on variables at the (i — 1), z, and (i + 1) stations. The
boundary conditions may depend on variables at any j station, however. Hence, the
equations may be reordered so that the global matrix is block-tridiagonal, where each
block equation represents a single grid station i.

For a computational grid with I nodes in the axial direction and J nodes in the
circumferential direction, the matrix to be solved at every iteration has the form

' BJ Ci
A2 62

A,-

/_i B/_a

A/

(3.48)

where each block row corresponds to an axial grid line. For each i block equation, A;
contains terms that multiply variables at the (i — l)-station, B, contains terms that
multiply variables at the i-station, and C,- contains terms that multiply variables at
the (i + l)-station, so that

A,-
S&1 - *?_!

+ B,-
,1+1s-i - xi-1

$,n+1 -
..,1+1 _
•*•»' •

C,-
M,-

Nt-
(3.49)

where [^"+1 — $",x"+1 — x"JT is the change in the solution vector at the z-station,
and (_M;,N;Jr is the residual at the i-station.

The sub-matrices A,-, B,-, and C,- are large sparse matrices. For all i stations
except those on the airfoil surface (i.e., from i = ILE to i = ITE) each of blocks are
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of size 3J x 3J, because there are three equations per node, for variables <fr, x, and
y. The variables are ordered so that

,,
X

,,"+1 _ „,"

i^t1 _ $«.

1,.7

xi,J -

(3.50)

For i-stations on the airfoil surface, there are an additional two equations per
node to compute the stagnation point location and grid movement along the airfoil
surface, as described earlier. Hence, the blocks at these stations are formally of size
(3 J + 2) x (3 J + 2) (although one of these equations is actually not necessary at the
i = ILE station, since there is only one additional equation at the stagnation point).
The arc length variables s^i and s^j are stored at the end of the vector given in
Eq. (3.50) at these stations.

The entries in the global matrix shown in Eq. (3.48) and its corresponding residual
are computed in two ways. The terms due to the steady flow governing equation are
assembled from the elemental stiffness matrix and force vector given in Eqs. (3.21)
and (3.22), respectively. The stiffness matrix is evaluated at each computational cell,
and its entries are assembled into the appropriate locations in the global matrix. The
force vector is also evaluated at each computational cell, and its entries are assembled
into the appropriate locations in the residual vector.

The entries due to the grid generation equations, Eqs. (3.3) and (3.4), and the
boundary conditions described in the previous sections are computed by linearizing
the grid discretized equations and boundary conditions with respect to the value of
the steady potential and grid location at the current iteration. For example, earlier
in this chapter [Eq. (3.25)] we said that the boundary condition on the ^-coordinate
on the upper (j = J) surface of the computational domain on the periodic boundary
may be written as

M?tJ = yi,j - yiti -G = Q (3.51)

To perform Newton iteration on this equation, we rewrite it in the form

(3-52)

or
(3.53)
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where the right-hand side of Eqs. (3.52) and (3.53) is the residual of Eq. (3.51)
evaluated at the current iteration. The remaining boundary conditions and the grid
equations may be linearized with respect to these variables in a similar fashion. Once
the linearization has been performed, the entries need only to be assembled into their
proper locations. The resulting linear system of equations may then be solved very
efficiently using LU decomposition.

After each Newton iteration, the grid locations and potential are updated to obtain
a new estimate of the solution. This process is repeated until the error in the residual
vector |_M,NJT is less than a specified tolerance.

3.2 Unsteady Flow Solution Procedure

Now that the steady solution has been obtained on a streamline grid, the unsteady
flow may be calculated. For unsteady flows with vorticity (i.e., the forced response
problem), the drift function and rotational velocity must be calculated at the before
the assembly of the unsteady field equations and boundary conditions. For unsteady
flows due to blade motion (the flutter problem), the unsteady grid motion must be
calculated before the unsteady field equations and boundary conditions.

3.2.1 Drift Function and Rotational Velocity Calculation

Drift Function Evaluation

The first step in the vortical analysis is to calculate the drift function, A, since the
stream function, \&, is already known from the grid generation equations. Since the
grid follows the flow streamlines, it is sufficient to define the stream function at each
point along the inlet (i = 1) boundary. From the discussion in Chapter 2 [Eq. (2.49)],
the stream function may be expressed as

tfij = fl_ootf-oo(j/ij - yi.i) = Qoo(yi,j - yi.i) (3-54)

where R-<x> and U-oo are the upstream steady density and z-velocity, the product of
which is equal to the prescribed mass flux at the exit boundary of the computational
domain, Q<x>- Note that the value of the stream function on the stagnation streamline
on the lower boundary of the computational domain, \I/o, is assumed to be zero.

For this analysis, the drift function will be set to zero at the upstream far-field
boundary. Because the drift function measures the relative time it takes a fluid
particle to move along a streamline, the initial value may be any arbitrary constant.
Zero has been used here for convenience. Since the steady solution procedure resulted
in a streamline grid, the calculation of the drift function at each grid location is
relatively straightforward. Using the definition from Chapter 2 [Eq. (2.22)], the drift
function may be calculated using the compound expression

0 t = l
(3.55)
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The drift function is measured relative to the upstream far-field boundary, so the
drift function at the i = I axial grid station is zero. Once the drift function has been
calculated, the rotational velocity, VR, may be calculated.

Rotational Velocity Calculation

The calculation of the rotational velocity, VR, may be accomplished largely through
Eqs. (2.37) and (2.54) described in Chapter 2, i.e.,

\ + #2#)] (3.56)

and

<^=4-U + 27r(l

x ««?[;(#! A + #2W)] (3.57)

Here the constants Cj and 02, and the "wave numbers" KI and /^2 may be calculated
using the upstream divergence-free condition of VR [Eq. (2.33)] and the choice of the
magnitude and phase of the vorticity. The stream function, \£, may be determined
as part of the grid generation procedure, and the description of the drift function
calculation was given earlier. All of the upstream flow conditions are prescribed.
Hence, the only remaining tasks to determine VR are the calculation of the stagnation
point constant ao and the gradients of the drift and stream functions.

Recall from Eq. (2.28) that the constant ao is defined as

(3.58)
SP

Numerically, ao may not be evaluated exactly at the stagnation point. Instead, we
wish to calculate CQ at the midpoint between the stagnation point (i = ILE] and
the previous adjacent grid point (i = ILE — 1). Using a simple finite difference
expression, ao may be written as

SILE - SILE-I = \J(XILE,\ - z/r,E-i,i)2 + (VILE.I - yiLE-i,i)2 (3.60)
where

Numerical experiments have shown that v^ is relatively insensitive to the details of
the numerical calculation of ao; i-e., different numerical formulations of OQ did not
result in a measurable difference in the resulting unsteady potential.

Finally, the gradients of the drift and stream functions must be evaluated. A
general and straightforward approach to numerically calculating the gradient of a
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function is to use a generalized coordinate transformation [54]. Specifically, the gra-
dient will be evaluated in the (E, H) grid generation coordinate system. This may be
accomplished by considering the derivatives with respect to x and y using the chain
rule, i.e.,

d <9E 8 dH d

and
dx dx dz, dx dH

d__dE_d_ dH d
dy dy dE dy dH

(3.61)

(3.62)

Ideally, however, we only wish to evaluate derivatives with respect to .r, and H. This
may be accomplished using the transformation matrix [J], which is defined as

dE_ dS
dx dy

dH dH
(3.63)

dx dy

To obtain the derivatives we desire, the matrix [J] may be inverted, resulting in

dy/dH dH dy/dEdE
dx

dE
dy

dx

dx/dH dH _ dx/dE

where

imi = f—^L- dx dy^I L J l \dEdH dHdE

-i

(3.64)

(3.65)

(3.66)

Combining the above expressions, the derivatives in Eqs. (3.61) and (3.62) may be
rewritten as

and

dx

_
dy E dEdH

(3,T)

(3.68)

Note that now all derivatives are with respect to ,=, and H. These derivatives may be
computed using centered finite differences modified for variable spacing in E and H.
The gradients of the drift and stream functions (or any other scalar) may be evaluated
using this approach. Once the gradients have been calculated, the rotational velocity
may be determined at each computational node.

3.2.2 Unsteady Grid Generation

For flutter problems, the motion of the computational grid must be computed before
the calculation of the unsteady flow. The motion of the grid boundaries is easily
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specified. The motion of the grid on the airfoil surface is required to match the
vibrational mode shape of the blade motion. There is no grid motion in the far
field to simplify the implementation of the far-field boundary conditions. Finally, the
periodic and wake boundaries must smoothly connect these specified boundaries.

Previous researchers have solved Laplace's equation to determine the grid motion
throughout the computational domain [30, 35, 24]. Laplace's equation was used so
that the grid motion varies smoothly throughout the computational domain. As a
result, derivatives of the grid motion may be computed with minimal truncation error.
Furthermore, in finite difference discretizations using centered differences, grid motion
that does not vary smoothly may excite sawtooth modes in the unsteady solution.

In the present method, sawtooth modes are not admitted into the finite element
solution, so the grid motion need not be as smooth as for centered finite difference
schemes. The truncation error of the derivatives must still be kept to a minimum,
however. In this report, the calculation of the grid motion will be performed using
a linear distribution of the grid motion over a few adjacent grid lines. A linear dis-
tribution is quite simple to implement, results in a relatively smooth distribution of
grid motion, and does not significantly increase the overall truncation error of the
unsteady solution method. For most cases examined in the present work, approxi-
mately five grid nodes in each direction were sufficient to obtain the correct unsteady
solution. Mathematically, this may be expressed as

fij = Li LJ TAIR (3.69)

where fAiR is the grid motion at the nearest grid point on the airfoil surface, and
Li and LJ are functions that contain fractional values to distribute the grid motion
smoothly.

3.2.3 Finite Element Discretization

The next step is to compute the stiffness matrix and force vector for the unsteady flow
equations. The variational principle governing the unsteady flow was developed in
Chapter 2 [Eq. (2.74)]. As for the steady flow, the variational principle is discretized
using bilinear quadrilateral isoparametric elements. Since the unsteady flow problem
is linear, however, the solution may be computed in one iteration. At each element
n, the values of the unsteady potential at each of the corners are interpolated into
the interior of the domain using the interpolation

0B (3-70)

Similarly, the gradient operator may be written as

n (3.71)

Substituting these expressions into the unsteady functional given in Eq. (2.74), results
in

linear = \ /£ R {-^[N'£[N']n0n + ̂  [^[N'£ V'd> V'd>
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V'<I>r[][N'Un + V - fV'

// V-^INJn^n^*/ (3.72)
•/ -/2n

+

Setting the first variation of this functional to zero results in the discretized governing
equations for the unsteady flow

R -[N']I[N']n + ±

([I] - ^ V'$ V'$T) [N']n - ^f - V* [NJ n

v • fv'$T - -v'$r[j]v /$v'$T [N']n

/ • f -
^^ = 0 (3.73)

From this form of the first variation, it is clear that the local stiffness matrix, [k]n,
may be written as

R - N ' n

f <*, (3.74)

and the corresponding unsteady force vector, en, is

"= IL ^«^ •'Sn \ ,

'$T[J] + V • fV'$T - --V'$T[J] V$V'$T [N']n

V - f - V'$T[J]V'$ [NJn + V - #v*|NJn e^ ̂  (3-75)

As in the steady flow calculation, the elemental stiffness matrix and force vector are
computed for each cell in the computational domain and assembled into a global
stiffness matrix and force vector. The next section describes the unsteady boundary
conditions which also contribute terms to the global stiffness matrix and force vector.
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3.2.4 Near-Field Boundary Conditions

Periodic Boundary Condition

In Chapter 2, it was noted that the periodic boundary condition would be enforced
as part of the numerical solution procedure. This is not the only way to apply this
condition, however. In Hall's original linearized potential formulation [24], a Lagrange
multiplier was used to enforce cascade periodicity on the upstream periodic boundary.
Although this approach will result in the correct solution, it does not lend itself well
to the sensitivity analysis procedure. Consequently, in this work a slightly different
approach is used to enforce cascade periodicity.

Examining the periodic boundary condition, Eq. (2.79), shows that the unsteady
potential on the upper and lower periodic surfaces of the computational domain are
not independent. Hence, the value of the unsteady potential on one of the periodic
boundaries need not be calculated explicitly. The number of equations at each axial
station in the periodic region may then be reduced by one. This new vector of the
discretized unsteady potential and the original vector are related by a simple linear
relationship. If the original unsteady potential vector is denoted by 0, and the new
reduced vector by <£, then

<£=[!]<£ (3-76)
where

1
1

(3.77)

Note that the matrix [I] is rectangular, of size J x (J — 1).
The variational principle describing the flow may be written as

II = ^j>T[k}(t> - ~$Te = min (3.78)
Li

where [k] is the global stiffness matrix and e is the force vector. Substituting the
solution vector transformation equation, Eq. (3.76), results in

where the overbars again denote the complex conjugate. Setting the first variation of
this expression to zero gives

SU = [l]T[k][I}4> - [J]Te = 0 (3.80)

This is the equation that must be computed. In practice, Eq. (3.80) means that the
periodicity condition is enforced by pre- and/or post-multiplying the stiffness matrices
and force vectors by [I]T and [I], respectively, once the block stiffness matrices and
force vectors have been computed. Hence, the block stiffness matrices [a;], [bj], and
[c;] and block force vector e,- at each station i are replaced according to the following
table
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i =

[a,-] ->

[b,-] ->

N -

e, -»•

1

—

fr[b,][i]

ffiTN[i]

[I]Te,

2 -> ILE-1

frwn
Sr[b,-]ffl
mem

[I]Te,-

ILE

«Twin
[i]T[b,][i]

fiFM
[I]Te,.

ILE+1

[a,][I]

[b,]

N

e,

ILE+2 -> . . .

[a,-]

N

N

e,

So, for example, from axial grid stations i = 2 to i = ILE — 1, the block equation to
be solved is of the form

[a,-] Ji-i = e; (3.81)

where [a,-], [b,-], [c,-], and e, are the block stiffness matrices and force vector, respec-
tively, that have been modified according to the table given above. Although this
may appear to be somewhat complicated, the sparseness of the transformation ma-
trix actually results in very few changes to the computed stiffness matrices and force
vector, and eliminates the need to use Lagrange multipliers.

Airfoil Surface

The boundary condition on the airfoil surface is that there is an upwash on the surface
of the airfoil due to blade motion and if there is a nonzero rotational velocity on the
blade surface. Recall from Chapter 2, that the boundary integral terms in the first
variation of the unsteady variational principle may be written as

R juf • n - [J] V$ • n + VR n -
on

ds = 0 (3.82)

The first two terms in the boundary integral arise as the natural boundary condition
of the variational principle. The third term, however, was added separately to account
for the upwash due to a nonzero rotational velocity on the airfoil surface. The integral
of this third term is discretized using one-dimensional finite elements, and the result
is added to the inhomogeneous term e. On the (j = 1) surface, the equation to be
solved is

= e,-tl
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- ' (3-83)

where the x and y subscripts refer to the x- and y-components of the rotational
velocity VR, respectively. On the (j = J) surface,

[k],-,j& = etW --

— 3
D

(3.84)

For airfoils containing a stagnation point, of course, it was shown in Chapter 2 that
vfi is zero on airfoil and wake surfaces using the Atassi modification. So this term
need only be computed for airfoils that do not contain a stagnation point and the
Atassi formulation is not used.

Downstream Wake Boundary Condition

As was shown in Chapter 2, there are two separate parts to the wake boundary
condition that need to be considered. The first is the auxiliary pressure continuity
condition, Eq. (2.86). In discretized form, the pressure continuity condition for node
i may be written as

, . >
=0 (3.85)i -"^-i/^'i-i/j v0' "»-*/ / \

L v6* Ai-U

where /

(3.86)

Equation (3.85) provides closure for the wake displacement variable r;.
The other condition is that mass must be conserved on the wake surface. Specif-

ically, as shown by Eq. (2.88), there is an additional upwash that must be added
due to the displacement of the wake. This additional upwash is added on both wake
surfaces in the computational domain. On the (j = 1) surface, the equation that
must be solved is

[k]t-,!<k - e,-,!

--Ri+i/2 VJ+i/2 (r,-+i - r;) - -jwRi+l/2 (si+l - s^ (rt+1 + 2r<)

--^_i/2 Vi-i/2 (rt - r;_i) - -
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(3.87)

and

si+1 - si = \ x i + i - x,-)2 + (j/i+i - i/,-)2 ' (3.88)

The last term on the left-hand side of Eq. (3.87) represents second-difference smooth-
ing applied to the wake displacement to prevent sawtooth modes. For most cases,
the coefficient, e, is equal to 0.1.

Similarly, on the (j = J) surface,

VJ+1/2 ,-+i - ri) + -
D

; - r,_a) + -
D

si+i - Si) (r,-+1

Si - s^) (2r,-

+ e (r,-,! - 2r,- + ri+1 ) e^ = 0

2r;)

(3.89)

With the addition of the wake displacement variable, r,-, and the boundary con-
ditions given above, note that there are now J + 1 equations for J + 1 variables at
each i-station in the wake. It is useful here to define a new vector to represent the
combination of the potential at each node and the wake displacement, i.e.,

(3.90)

Hence, including the auxiliary boundary condition for the wake displacement, the
block stiffness matrices [a;], [b,-], and [c;] and block force vector e,- are replaced ac-
cording to the following table

i =

[ad -

M -

N-

e; ->

. . . -> ITE-2

W

[b,]

N

e;

ITE-1

w
[b,]

py
e;

ITE

w
ft]

[«.']

w
6i

ITE+1 -> IMAX-1

[«.']

[b,-]

N

\j
e,

IMAX

W

[b,]

—

w
6i

So, for example, from axial grid stations i = ITE + 1 to i = IMAX — 1, the block
equation to be solved is of the form

[a,-] <£,-_! + [b,-]</>,- + [cij^i-t-i = e,- (3.91)

where [a,-], [b;], [c,], and e; are the block stiffness matrices and force vector, respec-
tively, that have been modified according to the table given above.

Finally, the computation of the rotational velocity upwash is calculated on the
wake surface the same way as on the airfoil surface, using Eqs. (3.83)- (3.84).
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3.2.5 Far-Field Boundary Conditions

In Chapter 2, the basic analytical description of the unsteady flow in the far field was
developed. In this section, the numerical solution of these equations is considered,
including the presence of unsteady vorticity. In both the upstream and downstream
far-field regions, the steady flow is assumed to be uniform. If, in addition, the com-
putational grid is regularly spaced in the axial direction, the unsteady flow at each
axial grid station i satisfies the equation

[a;]̂  + [b,-]<fc + [c,-]<fc+1 = e< (3.92)

where the inhomogeneous term e,- results from either non- divergence-free unsteady
vorticity in the flow, or a specified acoustic gust. This inhomogeneous equation may
be solved by examining the combination of the homogeneous part of the potential,
<f>i , and the particular part of the potential, 0,- . The goal of this analysis is to com-
pute these two potentials so that the combination of the two results in the unsteady
potential that makes the far-field boundaries nonreflective, i.e.,

& = 4>? + <tf (3.93)

Substituting this expression into Eq. (3.92) results in

?-i + Ci) + [b.-] (>f + 0f ) + N «! + 0f+1) = e, (3.94)

which may be written as two separate equations: a homogeneous equation

[a,-]^ + [bt]<£? + [c,-]̂  = 0 (3.95)

and an inhomogeneous equation

[a^L + [b^f + [c^f+1 = e, (3.96)

Homogeneous Solution

The solution of the homogeneous problem may be computed by considering how
pressure and vorticity waves propagate from one axial grid station to the next. For
example, if 0f represents the homogeneous potential at grid station z, how can $?_ l

be represented? The desired relationship between the two is of the form

0f_i = [T] 4? (3-97)

where [T] is a matrix that acts to filter out pressure waves approaching from outside
of the computational domain. This matrix may be constructed in three interme-
diate steps. First, the as yet unknown potential vector at the far field is Fourier
transformed, so that

di,m = ^ 1° 4(xi, y) exp(-j/3my) dy (3.98)
(j Jo
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where di>m are the Fourier coefficients at axial grid station i. In the present method,
the coefficients are computed using the trapezoidal rule. Typically, the coefficient
vector d, is much smaller in length than the number of computational nodes in the
circumferential direction, since truncation error increases greatly for higher harmonics
of the principal circumferential wave number. For most cases considered here, five
Fourier modes (—2 < m < 2) are sufficient to describe the unsteady flow. In matrix
notation, Eq. (3.98) may be written in the form

d; = [F^f (3.99)

where [Fa] is a (generally rectangular) matrix that represents the discretized form of
the trapezoidal rule.

The next step in the analysis is to filter and propagate these Fourier modes to the
next grid station. In the far field, since the steady flow is assumed to be uniform, the
wave numbers of the wave propagation are known analytically. From the analysis in
Chapter 2, the harmonic behavior of the potential may be written as

oo

4>(x,y} = H! dmexp\jam(x-x e)+jPmy] (3.100)
m=—oo

where Xg is the x-coordinate of the far-field boundary being examined. Therefore, if
the spacing between nodes on adjacent axial grid stations is known, then the propa-
gation of the Fourier coefficients may be expressed as

"i—l,m = "«,m exP [~J&m(xi ~ xi-\) ~ ] Pm\Hi ~ J/i-l)J (3.101)

where

U* + V-2 -
am — £2 _ jji

and

(3.103)

In matrix notation, the filter and propagation relationship may be written as

di_! = [F2]d,- (3.104)

where [F2] is square and diagonal, and the diagonal entries are the above exponential
expression for outgoing modes; the entries corresponding to incoming modes are zero

'so that their contribution is not included in the final solution.
The third step in the solution process is to perform an inverse Fourier transform

on the Fourier coefficients d,_i to recover the the new values of the potential at each
node. In matrix form, this may be written as

^ = [F3] d,-_! (3.105)

where the (also generally rectangular) matrix [Fa] is the discrete matrix form of the
inverse Fourier transform.
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Taken together, these three steps result in

<£?_! = [F3] [F2] [F!] 0f = [T] tf (3.106)

so the transition matrix, [T], is now known. Now that the behavior of the continuous
part of the potential has been described, the particular part due to incoming gusts
may be calculated.

Particular Solution

The particular solution may be calculated by considering the propagation character-
istics of the incoming acoustic or vortical gust. Because the waves convect with the
steady flow and the steady flow is uniform in the far field, the convection relation
may be expressed as

0£n = *n^f (3-107)
where

zn = exp [/nap(z<+i - Xi) + jn(3p(yi+l - y$] (3.108)

For a pressure gust, the wave numbers ap and j3p have the same form as those for
am and (3m as shown above in Eqs. (3.102) and (3.103). For a vortical gust, the wave
numbers ap and j3p are defined as

,

and

(3,09)

ftf = § (3.110)

with U and V being the x- and y-components of the steady velocity at the far field.
Consequently, the equation that describes the particular solution in the far field,

Eq. (3.96), may be written as

[a^f + [b,-]<£f + z [c,-]tf = * (3.111)

So the particular solution may be computed by solving the above linear system, i.e.,

<Af = f- W + N + z [c,-]l ' et (3.112)
LZ J

Equation (3.112) gives a relatively simple result that is best applied when a vortical
gust is present. For an acoustic gust, there is a simpler approach. The unsteady
pressure is linearly related to the potential by the expression

p(x, y) = -R \ju + V$ • V] i(x«, ye) exp \jap(x - xs) + j(3p(y - ys)} (3.113)

where (xff ,yg) refers to a coordinate at the far-field boundary. Hence, the particular
solution may be specified once the magnitude and phase of the gust has been chosen,

it,V\
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Now that the general procedure for calculating the homogeneous and particular
parts of the unsteady potential have been described, the actual implementation for
each boundary may be examined.

Upstream Far-Field Boundary

At the upstream far-field boundary, the homogeneous part of the potential satisfies
Eq. (3.95) with i = 1.

[ai]^ + [bjj^f + [ca]0f = 0 (3.115)

where the block matrices and potential vectors have been modified in the periodic
boundary conditions using Eq. (3.76). The transition matrix from Eq. (3.106), may
be modified in a similar fashion, i.e.,

[T] -* [lHT][i] = [t] (3.116)

Hence, Eq. (3.115) may be written as

[b1])^f + [c1]0f = 0 (3.117)

and in light of Eq. (3.93), some algebra results in

ft]& + [£i]52- = (ft] + z [£!]) 0f = el (3.118)

where
ft]=([ai][t] + [b1]) (3.119)

Hence, the far-field boundary conditions modify the block matrix [bi] and the block
force vector eY

Downstream Far-Field Boundary

The downstream far-field boundary conditions are assembled in an analogous fashion
at axial grid station /, with the appropriate change in the direction of propagation of
the pressure modes in the homogeneous solution. The only major difference is that
the wake must be accounted for. Recall from Chapter 2 that there is a continuous
and discontinuous part to the unsteady potential in the downstream far field

4 = <l>c + <t>d (3.120)

Both the continuous and discontinuous parts of the potential must propagate cor-
rectly. The transition matrix, [T], derived earlier, only applies to the continuous part
of the potential. The discontinuous part propagates out of the domain as a vorticity
wave. Hence, a new transition matrix may be defined as

[T*] = [T][I-D] + z[D] (3.121)

where [D] is the matrix operator that computes the discontinuous part of the poten-
tial, and [I] is the identity matrix. The J + 1 equation is the propagated form of the
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mass conservation boundary condition. Since there is no grid motion in the far field,
the conservation of mass boundary condition is

(3.122)
On Os

In discrete form, Eq. (3.122) may be written as

- r/)
= 0 (3.123)

Solving for r/+1 gives

d/dn
+ = rI+l (3.124)

or
(3.125)

So the new transition matrix, with the additional row and column for the wake
displacement, has the structure

(3.126)

In the wake boundary conditions, we introduced a new vector that contains the po-
tential and wake displacement, so that

/ \
<t>l+l

\ rI+i )

= [T]

L ^
0

Q \

/ \
*/

V rf /

Hence, Eq. (3.126) may be written as

(3.127)

(3.128)

Using this new transition matrix, the matrix equation at the downstream far field
may be written as

-! + [bj] = - [a/ & = e}

where in this case

(3.129)

(3.130)
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3.2.6 Assembly and Solution

Like the steady flow equations, the unsteady flow equations may be assembled into
a block-tridiagonal form. Since there is only one variable per node to be computed,
however, the size of the blocks of the matrix is significantly less than the steady
flow case. Schematically, the matrix structure may be written using the notation
developed in this chapter as

c;

a/

02

(3.131)

or, more generally,
[W]{0} = {e} (3.132)

In the periodic region, the blocks of the matrix are of size (J — 1) x (J — 1), since
the periodic boundary condition eliminates one equation from each block equation.
For z-stations on the airfoil surface [signified by equation i in Eq. (3.131)], the block
matrices are of size J x J, because the boundary conditions do not change the number
of equations in this region. In the wake region, the block matrices are of size (J +
l ) x ( J + l) due to the additional wake displacement variable and its corresponding
equation. Recall that the asterisk indicates that the block matrix or right-hand side
vector are modified due to the application of the far-field boundary conditions.

The entries in the block matrices and right-hand side vectors are taken directly
from the stiffness matrix and force vector computed at each computational cell with
additional boundary conditions added in the appropriate locations as described in
this chapter. Once assembled, this linear system may be solved very efficiently using
LU decomposition to determine the unsteady potential <f> at each computational node.



Chapter 4

Sensitivity Analysis

Chapters 2 and 3 described a general method to calculate the steady and small dis-
turbance unsteady flow over a two-dimensional cascade of airfoils due to blade motion
and incoming gusts. The next task (and the primary goal of this report) is to deter-
mine the effect small changes in the airfoil shape or cascade geometry have on the
steady and unsteady flow fields. In Section 4.1, the general procedure for this sensi-
tivity analysis will be described. The sensitivity analysis makes use of the nominal
steady and unsteady flow LU decompositions so that no additional matrices need
to be factored, resulting in a very computationally efficient procedure. Section 4.2
contains a description of the steady flow sensitivity analysis procedure, including a
discussion of how the perturbation of the airfoil shape is prescribed. In a similar
fashion, the sensitivity of the unsteady flow is considered in Section 4.3.

4.1 General Procedure

The quantities of interest to be calculated in this report may be separated into four
groups: first is the nominal steady potential and grid locations, 3? and x; second,
the perturbation of the steady potential and grid due to small changes in the airfoil
geometry, $' and x'; third, the nominal unsteady potential, 0; and fourth, the per-
turbation of the unsteady potential due to small changes in the airfoil geometry, </>'.
Chapters 2 and 3 described how the nominal steady flow (i.e., <& and x) and nominal
unsteady flow (i.e., </>) are calculated. This section describes a general procedure for
calculating the remaining quantities, which are referred to as perturbations of their
associated nominal quantities. Throughout this chapter, a prime (') will be used to
denote these perturbations.

It should be noted that the perturbation of the steady potential, $', and the
nominal unsteady potential, </>, are not of the same order. Figure 4.1 illustrates these
two separate perturbations. In Chapters 2 and 3, the perturbation series we examined
were expanded using a small parameter on the order of the blade displacement, f.
Here we expand the equations in perturbation series using a small parameter on the
order of the change in geometry, which is denoted here by e. Hence, the perturbation
of the unsteady potential, (j>' is not formally second order. Instead, it is first order in
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Nonlinear Flow Equations

Expand in small parameter (blade displacement) to get:

Nonlinear Steady Flow Linearized Unsteady Flow

Discretize to obtain:

Discrete Steady Eqns.
0(1)

Discrete Unsteady Eqns.
0(f)

Expand in small parameter (change in geometry) to get:

Steady Sensitivity Unsteady Sensitivity
0(e • f)

Figure 4.1: Overview of quantities in sensitivity analysis.

both f. and f.
In Chapter 3, it was shown that the steady flow on a streamline grid may be com-

puted by solving a set of nonlinear equations, Eqs. (3.8) and (3.9), for the unknown
grid position and steady potential. Taken together, these equations may be written
as

N(*,x;Z) \ _
M($ ,x ;Z) J

(4.1)

Because this set of equations are nonlinear, we chose to use Newton iteration to reduce
the set of nonlinear equations to a series of linear equations to solve. The Newton
iteration procedure [Eq. (3.47)] may be written in the form

n+l <9N 5N l
dx

dM dM
<9x

-f

(4.2)

When the residual of the iteration procedure has been reduced to a specified tolerance,
the nominal steady potential and grid locations are obtained.

This section will consider the effect a small change in geometry has on these
solutions. Consider a small perturbation Z' in the vector describing the airfoil shape
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and cascade geometry. This will result in a perturbation of the steady potential and
the grid location. The perturbed solution will satisfy the equations

_
(4.3)

where the primed quantities are small perturbation quantities arising from the pre-
scribed perturbation in the geometry Z'. Expanding Eq. (4.3) in a Taylor series about
the nominal solution gives

r 5N <9N
dx

5M dM
(4.4)

where we have grouped the terms so that left-hand side of Eq. (4.4) contains terms
involving the perturbations of the dependent variables $ and x, and the inhomo-
geneous right-hand side contains terms involving the prescribed perturbation of the
independent variable Z. To solve for the unknown perturbations $' and x', Eq. (4.4)
is rearranged slightly to obtain

f <9N

cbc -

(4.5)

Note the similarity of Eq. (4.5) to Eq. (4.2). The same matrix must be "inverted" to
obtain the perturbed steady solution that was used in the last iteration of the Newton
solver. In other words, the same system of equations as in the nominal calculation
must be solved, only with a different right-hand side due to the perturbation Z'.
Therefore, if Eq. (4.2) has been computed using LU decomposition, and the factored
matrix has been saved, then the sensitivity analysis may be obtained for virtually no
additional computational work. This is because the perturbations $' and x' may be
computed through a simple back-substitution, which requires significantly less com-
putational time than a complete solution. Furthermore, the relative computational
savings increases with the number of design variables examined. The perturbation
of each design variable will result in a new right-hand side of Eq. (4.5), each only
requiring a back-substitution, so many design variables may be examined before the
cost of the sensitivity analysis approaches the cost of the single nominal calculation.

Consequently, the main task of the steady flow sensitivity analysis is to determine
the prescribed perturbation Z' and its associated matrices dN/dZ and <9M/<9Z. The
details of the computation of these quantities will be examined in Section 4.2.

Having computed the perturbation of the steady potential and grid due to a
change in geometry in addition to the nominal solution, we now consider the small
disturbance unsteady flow. From Chapter 3, we know that the discretized unsteady
flow may be represented by a linear system of equations of the form

= {e($,x,vfi,f,u,,<r)} (4.6)
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After solving Eq. (4.6), the perturbation of the unsteady potential due to a change
in the geometry may be calculated. The governing equations of the perturbed un-
steady flowfield due to small changes in geometry, frequency, rotational velocity, in-
terblade phase angle, and mode shape will be of the form

[W(* + $', x + x', u + u/, a + a')} {cf> + (/>'}

= e($ + $', x + x', v* + VR>, f + f, u + w', a- + a1} (4.7)

Expanding the discretized form of Eq. (4.7) in a perturbation series and collecting
terms of first order gives the desired equation for the unknown discrete approximation
to the perturbation of the unsteady potential, (/>', i.e.,

dvR

dW raw

VR> +

aw]

de-
da \

aw
(4.8)

or, more succinctly
[W]<£' = e' — [W]'</> (4-9)

Note that the computation of x' and <&' has already been described. Section 4.3
contains a discussion of the computation of u' and f for the flutter problem, and VR

for the forced response problem. In addition, Section 4.3 will contain a discussion of
the assembly of the right-hand side of Eq. (4.8).

Note that the sensitivity analysis procedure outlined in this section is not limited
to the flow model and discretization scheme chosen in the present method. Equa-
tions (4.1)-(4.9) may be applied to any linearized flow model, such as the linearized
Euler or Navier-Stokes equations. Finite difference and finite volume discretizations
also may be used. The only requirement to obtain the computational efficiency of the
procedure described in this chapter is that the nominal flow equations must be solved
using LU decomposition or some other algorithm designed to solve a linear system of
equations for multiple right-hand sides.

4.2 Steady Flow Sensitivity Analysis

4.2.1 Prescribing the Perturbation

The first step in the steady flow sensitivity analysis is to prescribe the perturbation
in the vector containing the airfoil shape and cascade geometry, Z'. In general,
the basis functions chosen to prescribe the geometry perturbation may be chosen
arbitrarily. There is no limit on the number of functions that may be chosen, nor is
there a restriction (such as orthogonality) on the choices. To provide physical insight,
however, these functions should be chosen so that they are meaningful to the designer.
In this work, the basis functions may be classified into two groups, cascade geometry
and airfoil shape basis functions.
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Recall from Chapter 3 that cascade geometry parameters refer to variables that
define the cascade behavior independently of the actual airfoil shape. For example,
the stagger angle, 0, and the blade-to-blade gap, G, are both variables that are
independent of the airfoil shape. Airfoil shape parameters refer to variables that
define the airfoil shape, for example, the magnitude of the camber and thickness.

The details of the generation of the actual perturbation of the airfoil shape is
highly dependent on the type of airfoil definition used. Although the details will not
be discussed here, Appendix B contains a detailed description of how the perturbation
of shapes from a common airfoil series (the NACA modified four digit series) may
be generated. In the current discussion, however, it is sufficient to assume that
perturbation of the airfoil shape or cascade geometry is prescribed and is contained
in the vector Z'.

Once the airfoil shape perturbation has been defined, the next task in the steady
sensitivity analysis is to define the entries in the 3M/5Z and <9N/<9Z matrices shown
in Eq. (4.4). These matrices are extremely sparse because nearly all of the inhomo-
geneous terms in Eq. (4.4) arise from the boundary conditions. In practice, these
matrices need not actually be formed; it is sufficiently straightforward to compute
the matrix-vector product [the right-hand side of Eq. (4.4)] directly.

There are three main sources of inhomogeneous terms in Eq. (4.4). First, the
near-field boundary conditions, contribute terms because these conditions require the
grid to remain on the airfoil surface. Any change in the airfoil shape, then, will
influence the location of the grid points. Second, there is a contribution from the far-
field boundary conditions primarily due to changes in the blade-to-blade gap. Finally,
there are inhomogeneous terms due to the the grid equations, Eq. (3.8), because of
the requirement that the grid follow the flow streamlines.

4.2.2 Near-Field Boundary Conditions

Periodic Boundary Condition

Consider the steady periodic boundary conditions, Eqs. (3.23)-(3.25). Taking the
derivative of the boundary condition equations with respect to the shape variables
described earlier and multiplying by the perturbation of the vector containing the
airfoil shape results in terms that contribute to the right-hand side of Eq. (4.4).
Assuming that the fractional arc length array F,- is not a design variable, the boundary
conditions on the j = 1 periodic boundary of the computational domain do not result
in inhomogeneous terms in Eq. (4.4), i.e,

*-^*-.
On the j = J surface, although the boundary condition governing the z-location is
only dependent on the grid, the y-location is also dependent on the blade-to-blade
gap, so there is an inhomogeneous term associated with the boundary condition on
the y-grid equation, i.e.,
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and

^Z'=-ff (442)

where G' is the perturbation in the blade-to-blade gap. Hence, the periodic boundary
conditions are not directly dependent on the airfoil shape.

Airfoil Surface Boundary Conditions

The next set of boundary conditions to consider are those that constrain the grid
points to lie on the airfoil surface, Eqs. (3.27)-(3.30). On the j = 1 surface, there are
inhomogeneous terms that result from the spline evaluation, i.e.,

Z' = -X^KO (4.13)

and

Z'^-Y^) (4.14)

where X's and Y$ are the perturbations in the cubic spline evaluation of the airfoil
surface coordinates corresponding to the arc length s,-^. Similarly, on the j ' = J
surface,

z' = -X'3(ailj) (4.15)

and

^ Z' = -Y&SU) - G' (4.16)

where the latter equation also includes perturbations of the blade-to-blade gap, G'.
The next two boundary conditions are those that require the grid to move propor-

tionally to the movement of the stagnation point, Eqs. (3.33)-(3.34). These conditions
are applied at every airfoil surface grid location except the stagnation point. On the
j = 1 surface,

while on the j — J surface,

Recall that Si and SN are the arc length of the first and last points, respectively, of
the set of points defining the surface of the airfoil, as shown in Fig. 3.4.

The final surface boundary condition to consider is the condition at the stagnation
point, Eq. (3.35). This boundary condition requires that the grid node at the leading
edge of the airfoil be located at the stagnation point. The right-hand side term is
found to be

. (4.19)
dZ SILE+I,I
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The term shown here arises from the steady periodicity condition. The potential
on the upper surface must be evaluated on the reference airfoil. From the steady
upstream far-field boundary conditions it can be shown that the steady potential on
the upper periodic surface and the steady potential on the lower periodic surface are
related through the parameters G and Vloo- Specifically,

$,-,i = $i,j - G V_oo (4.20)

so clearly there is an inhomogeneous term arising from perturbations in the blade-to-
blade gap.

Downstream Wake Boundary Conditions

The final set of near-field boundary conditions to consider are those on the down-
stream wake boundary, Eqs. (3.36)-(3.38). Recall from Chapter 3 that the steady
wake boundary conditions are nearly identical to the boundary conditions applied on
the periodic surfaces. Hence, like the periodic boundary, there are no inhomogeneous
terms in the perturbation of the boundary conditions on the j ' = 1 surface, i.e.,

*-«
On the j — J surface, the inhomogeneous terms account for perturbations in the
blade-to-blade gap as well as the possibility of a blunt trailing edge, so that

(4.22)

Z' = - (G' - (Y? - Y^}} (4.23)

4.2.3 Far-Field Boundary Conditions

Upstream Far-Field Boundary Conditions

On the inflow boundary, only the equations governing the computational grid location,
Eqs. (3.41)-(3.42), may result in inhomogeneous terms. Since the x-coordinate of the
upstream boundary is fixed in this analysis, however, it is not considered to be a design
variable, and therefore only the boundary condition on the y-coordinate actually has
an inhomogeneous part to consider. Linearization of the boundary conditions results
in the expressions

Z' - 0 (4.24)

and

^ Z' = -F0G' (4.25)

where it is assumed that the fractional arc length array in the far field, Fj, is not a
design variable, i.e., it is not subject to change in the design process.
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Downstream Far-Field Boundary Conditions

The boundary conditions at the exit boundary are more complicated, mainly due to
the possibility of a blunt trailing edge. It is assumed here that any perturbation in
blade-to-blade gap G' is constant throughout the computational domain. Hence, if
the airfoil being analyzed has a blunt trailing edge, the space in the grid representing
the viscous wake from the trailing edge of the airfoil to the far-field boundary (see
Fig. 3.5) is constant regardless of the perturbation of the gap. The size of the space
representing the wake is only affected by perturbations in the first and last points of
the airfoil definition. Consequently, the inhomogeneous terms arising from the flow
boundary conditions, Eqs. (3.43)-(3.44), may be written as

8Z ~ dZ ~ 2°° G- (Y, -Y N )

<„, (v, v, ^ , .[G ~ (Yl ~ YN>] (4'26)

The terms arising from the grid boundary conditions, Eqs. (3.45)-(3.46), are similar
to those for the inflow boundary, modified for the possibility of airfoil shapes with a
blunt trailing edge, i.e.,

dMx

— p Z' = 0 (4.27)
o LI

Z' = -Fi (G' - (Yi - Y^}} (4.28)

4.2.4 Sensitivity of the Stream Function

The final step in the steady sensitivity analysis is to consider the inhomogeneous
terms due to a perturbation in the stream function, \I/'. Inhomogeneous terms arise
because in this analysis the stream function at any node j is linearly related to the
blade-to-blade gap, i.e.,

*,- = Q^FjG (4.29)

where Q^ is the prescribed mass flux at the exit of the computational domain and
FJ is the fractional arc length array value at node j. Consequently, a perturbation in
the gap results in a perturbation of the stream function, so that

*;. = Q^FjG' (4.30)

Hence, any perturbation in the gap results in inhomogeneous terms in Eq. (4.4) arising
from the field grid generation equations, Eqs. (3.3)-(3.4). These inhomogeneous terms
may be written as

32
X
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and
* d*y

dZ

' (4,2)
where the primes in the denominator of some of the terms refer to the perturbation
of the finite difference representation of the d/d^/ operator. Note that the terms in
Eqs. (4.31) and (4.32) only appear if there is a perturbation in the gap.

4.3 Unsteady Flow Sensitivity Analysis

4.3.1 Sensitivity of the Drift Function

For forced response problems, the first unsteady quantity that must be examined is
the rotational velocity, vfl. In Chapter 2 it was shown that the rotational velocity
is a function of the drift function, A, the stream function, ^, in addition to the
cascade geometry and prescribed flow conditions. Since the method for computing
the sensitivity of the cascade geometry and stream function were presented earlier
in this chapter, only the sensitivity of the drift function needs to be determined to
calculate the sensitivity of the rotational velocity.

Since the perturbed grid will still follow the flow streamlines, the sensitivity of the
drift function may be calculated by linearizing Eq. (3.55), i.e.,

( , , } ( }
l *J 4-lJ ( }

Note that the drift function at the inlet boundary remains prescribed to be zero,
as shown in Eq. (3.55). Earlier in this chapter, the steady flow sensitivity analysis
procedure was described, which resulted in expressions for the grid perturbations x'
and y' and the steady potential perturbation $'. Hence, the summation in Eq. (4.33)
may be computed in a straightforward manner.

4.3.2 Sensitivity of the Rotational Velocity

The sensitivity of the rotational velocity, VR, may be computed through careful ap-
plication of the chain rule to the definition of the rotational velocity, Eq. (2.37).
Considering that the coefficients Ci and c2 as well as the wave numbers K\ and K2

may have perturbations associated with them in addition to the perturbations al-
ready discussed in this chapter, the sensitivity of the rotational velocity, VR/, may be
written as

VR' = {[(c( + JK{$ + jK, $') VA + (Cl + JK, $) (V'A + VA')
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( ~ d$\
4- I c2 + jK,$ + — 1 (V* +

X VA + ( c2 i A + K2V)] (4.34)

where V refers to the perturbation of the finite difference representation of the gra-
dient operator due to the grid perturbation. Recall from Chapter 3 that the gradient
operator used in this report is evaluated using a generalized coordinate transformation
to the C^-,H} grid generation coordinate system [see Eqs. (3.67) and (3.68)]. Hence,
perturbations in the grid locations result in a perturbation of the discretized gradient
operator.

4.3.3 Sensitivity of the Blade Structural Dynamics

For flutter problems, the first task in the unsteady sensitivity analysis is to determine
the perturbation of the blade motion. Once the perturbation in the vibratory mode
shape of the blade is known, the perturbation of the grid motion may be calculated,
so the complete unsteady sensitivity analysis may be computed.

Thus far, very little has been said about the structure of the blade. In Chapters
2 and 3, it was assumed that the vibratory frequency and mode shape are specified
as part of the flutter problem description. The question then becomes, how do small
changes in the blade shape affect the frequency and mode shape of the vibration?

It is beyond the scope of the present analysis to discuss a complete structural
model of a turbomachine blade. In this analysis it is assumed that there is some
independent structural model of the blades (e.g., a finite element model) that is
used to calculate the frequency and mode shape of vibration. For turbomachinery
blades, unlike aircraft wings, it is reasonable to assume that the ratio of the mass
of the structure to the mass of the fluid is sufficiently high that the effect of steady
aerodynamic loading on the calculation of the structural modes may be neglected.
Hence, the sensitivity of the blade vibration may be calculated independently from
the present analysis.

The sensitivity of the equations describing the blade structure may be calculated
using some of the techniques described earlier or by using similar methods developed
for analysis of structures [41, 42]. In any event, it is clear that the frequency and
mode shape of vibration are functions of the design variables. For example, if the
airfoil is described using the modified NACA four digit definition (see Appendix B),
the sensitivity of the frequency can be written as

, du . du , du .. du . du . .

^ e ^ t ' + r ' (4'35)

where mt, mc, lt, tc, and rt are the shape definition variables of the NACA airfoil
description, as discussed in Appendix B. Similarly, the sensitivity of the mode shape
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df , df , df a df „. df ,
f = 7f~m + 1T~ mc + W£t + -Zftc + 7j-r (4.36)dmt drnc d£t oic drt

 v '
To calculate the derivatives in Eqs. (4.35)-(4.36), a sensitivity analysis must be

performed on the structural model used to compute the nominal natural frequency
and mode shape of vibration. Once the derivatives of the frequency and mode shape
have been computed, Eqs. (4.35)-(4.36) may then be substituted into the overall
unsteady sensitivity analysis expression, Eq. (4.8).

4.3.4 Sensitivity of the Grid Motion

Now that the sensitivity of the blade motion has been determined, the next task is
to compute the perturbation of the grid motion in the computational domain. In
Chapter 3, the field grid motion was shown to be a linear interpolation of the motion
on the airfoil surface [Eq. (3.69)]. Hence, the sensitivity analysis is quite simple,
since the distribution fractions L{ and Lj do not change, (i.e., they are not design
variables). The perturbation of the grid motion, then, may be written as

fk = Lt L3 fV (4.37)

where f^IR is the sensitivity of the blade mode shape calculated earlier.

4.3.5 Sensitivity of the Finite Element Assembly

Now that all of the perturbation terms have been computed, the right-hand side of
Eq. (4.8) may be formed. The matrices on the right-hand side of this equation are
large sparse matrices that may be obtained by linearizing the computer code which
assembles the global matrix [W] and vector e. The elemental stiffness matrix and
force vector, along with all of the unsteady boundary conditions, all have a first-order
sensitivity that may be computed using the methods shown in this chapter.

For example, the sensitivity of the elemental stiffness matrix, [k] [defined in
Eq. (3.74)] may be computed by linearizing the matrix with respect to all of the
variables it is a function of, and multiplying by the actual perturbation, i.e.,

(4.38)'
Since $' and x' may be determined from the steady flow sensitivity analysis, and
(J may be computed from the structural sensitivity analysis, the sensitivity of the
stiffness matrix may be computed. To increase the efficiency of the right-hand side
calculation, the perturbation of the stiffness matrix is multiplied by the appropriate
entries in the <£ vector at the element level. The details of this procedure do not
substantially increase the understanding of the sensitivity analysis procedure, and
are best understood by examining the actual computer code.

The sensitivity of the force vector, e, [see Eq. (3.75)] may be computed in a similar
fashion, i.e.,

de de . de , de R/ de „. . • .
e' = ^-$' + — x' + —J + J—VR + — f 4.39Hax ou OVH of
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Like the sensitivity of the stiffness matrix, the sensitivity of the force vector [i.e., the
right-hand side of Eq. (4.39)] is best computed at the element level.

4.3.6 Near-Field Boundary Conditions
Periodic Boundary Condition

The periodic boundary condition may contribute inhomogeneous terms to the un-
steady sensitivity equation because the transformation matrix [I] [see Eq. (3-77)] is
a function of the interblade phase angle, a. As a result, for example, the linearized
form of the block equation to be solved at z-stations from i = 2 to i = ILE — 1 [see
Eq. (3.81)] may be written as

+i (4.40)

Although this appears to be a formidable equation to solve, the sparseness of the [I]
matrix requires very few entries to be perturbed. Hence, the nominal [a,-], [b,-], and
[c,-] matrices need not be stored in their entirety to perform the sensitivity analysis.

Airfoil Surface Boundary Condition

The sensitivity of the unsteady airfoil surface boundary condition need only be con-
sidered when VR is not zero on the surface. As described in Chapter 3, VR is zero
on the airfoil surface and wake for airfoils using the Atassi modification of the rota-
tional velocity. For geometries where this is not the case (e.g., flat plate airfoils using
the Goldstein formulation), the equation to be solved on the airfoil surfaces may be
derived by linearizing Eqs. (3.83) and (3.84) about the nominal solution.

Downstream Wake Boundary Conditions

Now consider the perturbation of the downstream wake boundary conditions, given by
Eqs. (3.85)-(3.89). The wake displacement has a perturbation that must be computed
along with the perturbation to the unsteady potential. The first boundary condition,
Eq. (3.85) enforces the pressure continuity across the wake. The appropriate form of
the perturbation of the pressure continuity equation may be obtained by linearizing
Eq. (3.85) about the nominal solution.

The other condition is the conservation of mass on the wake surface, given by
Eqs. (3.87)-(3.89). In matrix form, the linearized form of the block equation to be
solved at i-stations from i = ITE + 1 to i = I MAX - 1 [see Eq. (3.91)] may be
written as

[*]?,._! + [b,-]£ + [c,]^.+1 = cj- - [*]'&_! - [bj'fc - [c,]'0,+1 (4.41)

Finally, the perturbation of the rotational velocity may be computed in the same
way as on the airfoil surface, if it is required.
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4.3.7 Far-Field Boundary Conditions

Upstream Far-Field Boundary Conditions

There are new inhomogeneous terms at the far-field boundaries as well. At the up-
stream far field, the equation to be solved is

[bjj^'j + [ci]0'2 = 6j — [bj] 0j — [cjj'^2 (4.42)

where the inhomogeneous term e^ is

e^ = f [bj]' + z [GI] + 2r[ci]'j 01 + f[b^] + .z[c;i]) <p'^ (4.43)

and

The perturbation of the transition matrix, [T], using the notation of Chapter 3, is

[t]' = [F3]'[F2][F!] + [FaHF^Fa] + [FslpFaJpFa]' (4.45)
—' P

and the perturbation of the particular part of the potential, <p ,

(-!&] + &]+*[€

- (-^frl + \W + W + ̂ ^1 + ̂ ') ^ (4.46)

Hence, it is useful to retain the nominal [ai], [bi], and [GI] matrices for the sensitivity
analysis.

Downstream Far-Field Boundary Conditions

Downstream, the equations are somewhat more complicated, since the wake has a
perturbation associated with it. The equation to be solved at the downstream far-
field boundary, is

[W/-i + [b/]^/ = e*/ - [a/]'^ - [&,]>, (4.47)

where

\ z z i \ z /

The perturbation of the downstream transition matrix, [T*]', is

[T*]' = [T]'[I - D] + [T][I - D]' + z'[D] + z[D]' (4.49)

and the perturbation of the particular part of the potential is

(--[a/] + [b/]+ *[£/]) ^', = 6^
\ z /

( z rv i i rx T i fu T _L J\t. i i -.fii T I j, IA K.n\la/J + —[a./] + [t>/J + z [c/j + ^[c/j I <pi ^4.oUJ

The nominal [a/], [b/], and [c/] matrices are also stored for use in the sensitivity
analysis.



Chapter 5

Results

This chapter will illustrate how the present method may be used to analyze typical
aeroelastic and aeroacoustic problems encountered in turbomachines. The results
of the sensitivity analysis will be used to suggest design changes to improve the
unsteady aerodynamic behavior. The newly redesigned airfoils will then be analyzed
and compared to the initial design to assess the effectiveness of the procedure. The
computational cost of the procedure will also be examined. In Section 5.1, the flutter
stability of a compressor rotor will be analyzed as an example of a typical aeroelastic
problem. The aeroacoustic capabilities of the present method will be demonstrated in
Sections 5.2 and 5.3, where the acoustic response of two fan exit guide vanes (EGV)
due to an upstream vortical rotor wake will be examined. Finally, Section 5.4 will
summarize the conclusions from the results of the analysis.

In the computational results presented here, lengths are nondimensionalized by the
airfoil chord, c, steady and unsteady velocities by the upstream steady velocity |V_oo j,
frequencies by |V_oo|/c, pressures by -R-ooI'VioJ, lifts per unit span by .R.oolVl^lc,
and moments per unit span by -fiLoolVi^jc2.

5.1 Aeroelastic Analysis and Design of a Com-
pressor

5.1.1 Steady Flow Through a Compressor
To demonstrate the aeroelastic capabilities of the present sensitivity analysis, a linear
cascade of NACA four digit series airfoils will be analyzed. The nominal cascade
considered here is similar to modern compressor cascades, and is composed of NACA
5506 airfoils. The inflow Mach number M_oo is 0-5, the inflow angle fi_oo (measured
from the axial direction) is 55°, the stagger angle 0 is 45°, and the blade-to-blade
gap G is 0.9.

The steady flow through the cascade was computed using two different computa-
tional grids — a 65 x 17 node #-grid and a 129 x 33 node grid. Figure 5.1 shows the
nominal steady surface pressure, P, for these two different grid resolutions. Note the
good agreement between the coarse grid and fine grid solutions, indicating that the

89
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Figure 5.1: Steady surface pressure of cascade of NACA 5506 airfoils. M_oo = 0.5,
ft-oo = 55°, 0 = 45°.

solution is "grid converged." The steady surface pressure may be integrated along the
chord to determine the steady forces acting on the airfoil. In this case, the steady lift,
L (measured normal to the airfoil chord), is 0.2907, and the steady drag, D (measured
tangent to the airfoil chord), is —0.0177. The steady moment may be calculated by
integrating the product of the pressure and the distance to the point about which the
moment is being taken. For this case, the moment measured about the leading edge,
MLE, is —0.1215. It should also be noted that the flow is entirely subsonic with a
maximum Mach number on the suction surface of about 0.61.

5.1.2 Unsteady Flow Through a Compressor

Now that the steady flow through the cascade has been computed, we consider the
unsteady flow due to plunging and torsional vibration of the airfoils. On the surface
of the reference (i.e., unrotated) airfoil, the grid motion vector f for this rigid body
motion may be written as

f (z, y) = [-(y- yp)a] i + [(z - xp)a + h] j (5.1)

where h is the amplitude of the bending vibration normal to the blade chord, a is
the amplitude of the pitching motion (positive nose down), and the airfoil is pitching
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about the point (xp, j/p). The vectors i and j are unit vectors in the x- and y-directions,
respectively.

As described in Chapter 1, the unsteady aerodynamic portion of a flutter analysis
is to determine the unsteady work done on the blade due to self-induced oscillations.
The blade work is the product of the aerodynamic force and the unsteady blade
motion. A particularly useful quantity is the unsteady work done on the blade over
one period of the oscillation, denoted WCYCLE- The complete work per cycle is defined
as [55]

rA r - <9f
W^^-l^P-.Adsdt (5.2)

where A is the period of the oscillation, P is the complete time-varying pressure, and
n is the unsteady unit normal to the blade surface. A positive value of the work
per cycle indicates that the fluid is adding work to the motion, which continues to
increase the amplitude of the motion, and is therefore considered to be destabilizing.
After some algebra [56], it may be shown that

[(pRfi - pifR) • n - P (fR • n'/ - f/ • n'R)] ds (5.3)

where the subscripts R and I refer to the real and imaginary parts of the quantity,
respectively. The vector n' arises from the tilting of the unit normal due to the
pitching of the blade. On the reference airfoil, note that the grid motion is defined
to be purely real. We will define the unsteady lift, I, to be defined as

i = —irh <p p dx — a <p P dx (5.4)
Jr Jr

In a similar fashion, the unsteady moment, my, will be defined as

mT = -ira i p [(x - xp)dy + (y - yp)dx] (5.5)
./r

We wish to express the work per cycle in terms of the unsteady lift and moment.
To accomplish this, consider a single-degree-of-freedom bending or torsional vibration
(i.e., the blade is either pitching or plunging, but not both). In this case, from
Eq. (5.3) it may be shown that for a purely bending vibration,

WCYCLE = nh lm[l] (5.6)

Similarly, for a purely torsional vibration,

WCYCLE = T« Im[mr] (5.7)

So for a single degree of freedom motion, it is the out-of-phase (with blade displace-
ment) component of the lift for plunging motion, or moment for a pitching motion
that determines whether the motion is stable or unstable. In structural dynamic
terms, Carta [57] has shown that for single-degree-of-freedom motions the work per
cycle may be expressed as the aerodynamic damping of the system. Since the struc-
tural damping of the aeroelastic system is usually small, the aerodynamic damping
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Figure 5.2: Aerodynamic damping of cascade of NACA 5506 airfoils vibrating in
plunge at frequencies of 0.4, 0.8, and 1.6 for a range of interblade phase angles.

essentially determines the aeroelastic stability of the system. For a purely bending
vibration, the aerodynamic damping EB may be written as

.*"* p ^~^ T
TTfl

and for a purely torsional vibration, ^T is

1
7TO:

(5.8)

(5.9)

These expressions clearly show that positive aerodynamic damping indicates that the
motion is stable.

To evaluate the stability of the cascade under consideration, we will calculate the
aerodynamic damping for both plunging and pitching for three different "reduced"
frequencies. The term "reduced frequency" indicates that the frequency of vibration
has been nondimensionalized by the airfoil chord, c, and the upstream freestream
velocity, |V_oo|. Figure 5.2 shows the aerodynamic damping EB of the cascade vi-
brating in plunge at three reduced frequencies and for a range of interblade phase
angles. Note that for plunging motion, the system is stable, that is, the aerody-
namic damping is positive for all interblade phase angles. However, the aerodynamic
damping is generally less for low reduced frequencies. The pronounced peaks in the
damping curves correspond to acoustic resonances of the duct containing the blade
row. At interblade phase angles between these acoustic resonance points, at least
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Figure 5.3: Aerodynamic damping of cascade of NACA 5506 airfoils pitching about
their midchords at frequencies of 0.4, 0.8, and 1.6 for a range of interblade phase
angles.

one of the pressure modes propagates unattenuated, i.e., it is "cut-on." At interblade
phase angles outside of this region, all the pressure modes decay as the propagate, or
are "cut-off."

Figure 5.3 shows the aerodynamic damping ET for the case where the airfoils
vibrate in pitch about their midchords. Again, the cascade is least stable at the low
reduced frequencies. In particular, note that the system is unstable (E/r < 0) for
several interblade phase angles at the lowest reduced frequency u> of 0.4. In other
words, we have discovered an instability in the aeroelastic system.

We wish to use the sensitivity analysis developed in this report to suggest changes
in the shape of the airfoil so that the instability may be eliminated. Hence, it is
useful to examine in detail the case where the motion is least stable. As shown in
Fig. 5.3, the least stable case occurs when the airfoils pitch about their midchords
with a reduced frequency u> of 0.4 and an interblade phase angle a of 60° (this is the
least stable interblade phase angle for the reduced frequency u of 0.4).

Figure 5.4 shows the real and imaginary parts of the complex amplitude of the
nominal unsteady pressure, p, on the surface of the reference airfoil computed using
two different grid resolutions, a 65 x 17 node grid and a 129 x 33 node grid. Note
that the imaginary part of the pressure distribution is the part that does work on the
vibrating airfoil. For this case, it is apparent that the imaginary part of the pressure
difference across the airfoil is generally negative over the front half of the airfoil and
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5.1. AEROELASTIC ANALYSIS AND DESIGN OF A COMPRESSOR 95

positive over the aft half. Thus, since the airfoil pitches about its midchord (positive
nose up), the unsteady pressure does positive aerodynamic work (corresponding to
negative aerodynamic damping) on the airfoil over most of the airfoil, making the
cascade unstable in pitch for these conditions.

5.1.3 Sensitivity Analysis

Having computed the nominal flow through the cascade, the effect of five different
design parameters on the steady flowfield will now be studied. Two of these pa-
rameters are from the NACA four digit airfoil definition, i.e., the magnitudes of the
airfoil thickness and camber. (See Appendix B for a discussion of the NACA airfoil
definition.) Each of these quantities are measured in fractions of the airfoil chord c.
Also considered are the effect of changes in the cascade stagger angle 6, and blade-
to-blade gap G. Finally, an additional design variable, the reflex, is introduced here.
The reflex parameter modifies the height of the mean line

hm = hc + rcsin(27r£/c) (5.10)

where hm is the height of the mean line, hc is the height of the mean line due to
camber, r is the magnitude of the reflex in fractions of chord, c is the chord, and £ is
the distance along the airfoil chord. Reflex has been added to provide an "S shape"
parameter to the design, to allow more flexibility in the airfoil shape than the strict
NACA definition.

Figure 5.5 shows the sensitivity of the steady surface pressure to changes in these
five geometry variables. The sensitivities are computed using the present sensitivity
analysis; all results were computed on a 65 x 17 node grid. To check these results, the
sensitivities using a finite difference approach are also computed. The finite-difference
result is computed by solving for the steady flow about two slightly different airfoils,
differencing the two solutions, and dividing the result by the difference in the airfoil
parameter. Note the excellent agreement between the two solutions indicating that
the effect of small changes in the design variables is linear, and that the present
sensitivity analysis correctly predicts the sensitivities. Also, not surprisingly, the
largest sensitivity in pressure occurs near the leading edge of the airfoil.

Next, the surface pressure sensitivities were integrated to obtain the sensitivity of
the steady lift and drag (measured normal to and along the chord) and the moment
about the leading edge. These results are given in Table 5.1. The sensitivity to
changes in maximum camber location is also shown. In addition, the sensitivity of
the lift in the y-direction (the cascade direction) is tabulated. The steady lift in the
2/-direction is a measure of the turning done by the cascade and hence is related to the
steady work done by the cascade. Table 5.1 shows that the lift in the ^-direction is
most sensitive to changes in camber, stagger angle, and reflex. Since these parameters
control the metal angle of the trailing edge, and the deviation between the exit flow
angle and the metal angle is small for cascades, one would expect them to have a
strong influence on the steady lift.

Next, the sensitivities of the unsteady surface pressure to changes in geometry are
computed. Figures 5.6 and 5.7 show the real and imaginary parts, respectively, of
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Figure 5.5: Sensitivity of steady surface pressure of cascade of NACA 5506 airfoils to
perturbations in thickness, camber, stagger, gap, and reflex. M_oo = 0.5, fi_oo = 55°,
0 = 45°.
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Table 5.1: Sensitivity of steady forces and moment. The nominal steady lift, L, is
0.2907, the nominal drag, D, is —0.0177, the nominal moment about the leading edge,

, is —0.1215, and the nominal lift in the ^/-direction, Ly, is 0.1931.

Design Variable

Thickness

Camber

Stagger

Gap

Max Camber Location

Reflex

-0

1

-0

0

0

-1

L1

.1935

.5637

.6632

2743

0873

.5506

-0

0

-0

-0

0

-0

D1

.0135

.1446

.0642

.0244

.0083

.1476

A

-0

-1

-0

-0

-0

1

f'LE

.1234

.4003

.0548

.0764

.1060

9235

L'y

-0.1464

1.2080

-0.5144

0.1767

0.0676

-1.2008

the sensitivity of the unsteady pressure to small changes in six design variables (the
reduced frequency-u is included as a design variable for unsteady flow calculations).
All results were computed on a 65 x 17 node grid. The sensitivities are also compared
to a finite difference calculation. Note the excellent agreement between the two so-
lutions indicating that the present method correctly predicts the sensitivities. Also,
the imaginary parts of the sensitivities to changes in stagger and reflex have pressure
distributions that are fairly large in magnitude and have shapes that would tend to
do work on pitching airfoils. That is, the sign of the pressure difference across the
airfoil changes at roughly the midchord of the airfoil.

The sensitivities of the surface pressure to design variables may now be integrated
to obtain the sensitivities of the aerodynamic damping. Table 5.2 shows the sensitiv-
ity of the aerodynamic damping to small changes in the design variables, including
maximum camber location. The column labeled "Unconstrained" gives the sensitivity
of the aerodynamic damping to changes in a single parameter. Here E'x is the sensi-
tivity of the aerodynamic damping due to pitching motions, and E'# is the sensitivity
of the aerodynamic damping due to plunging motion. In both cases, the nominal
reduced frequency u is 0.4. Note that as expected, stagger and reflex have a strong
influence on the aerodynamic damping in pitch. Also note that for both pitching and
plunging, the sensitivity of the damping to changes in frequency is positive. This is
consistent with the results shown in Figures 5.2 and 5.3.

The results in the "Unconstrained" column of Table 5.2, however, can be somewhat
misleading since changing each design variable independently also changes the steady
work done by the blade row and changes the steady incidence at the leading edge
of the airfoils. Generally, one would want to leave these quantities unchanged. To
avoid this difficulty, it is useful to let two of the design variables "float" so that the
steady turning done by the blade row, Ly/G, and the leading edge incidence angle,
a, remain constant. In this study, the stagger angle 0 and the reflex r are allowed to
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Table 5.2: Sensitivity of aerodynamic damping. The nominal aerodynamic damping
in torsion, ET, is —0.0214, and the damping in plunging, E#, is 0.8882.

Unconstrained

Design Variable

Thickness

Camber

Stagger

Gap

Max Camber Location

Reflex

Frequency

^7/

— T

-0.2208

-0.0018

-0.6672

0.1723

-0.0383

0.7362

0.4030

77'
. O

0.3046

-1.9868

1.4079

-0.0237

-0.1143

2.0131

1.3337

Constrained

™'
— T

0.1344

-5.2561

—

0.2643

0.0300

—

0.4030

— /
. n

-0.1879

3.3668

—

-0.1511

-0.0159

—

1.3337

float. For example, then, if the gap G varies, the stagger angle and reflex must vary
such that

OLV ^, OLu I . OLy^f Ly ̂ , . .

> -—G =0 (5.11)

and

oG
(5.12)

Equations (5.11) and (5.12) give two equations for the two unknowns 0' and r' in
terms of the gap perturbation G' and the sensitivities. The sensitivity of the incidence
angle, a, and the resulting perturbations in 0 and r for each design variable are shown
in Table 5.3. In Table 5.2, the column labeled "Constrained" refers to the sensitivities
to each variable using this procedure. For both the pitching and plunging cases, it is
clear that changing the camber has a very strong effect on the aerodynamic damping.
In the pitching case, an increase in camber is destabilizing; in the plunging case, an
increase in camber is stabilizing.

5.1.4 Redesign of a Compressor for Aeroelastic Stability

Next, the constrained sensitivity analysis is used to redesign an unstable cascade
to make it stable. The nominal cascade has a reduced frequency u of 0.4 and an
interblade phase angle a of 60°. Note from Table 5.2 that decreasing the camber has
a stabilizing influence on torsional flutter. Thus, for the first redesign (Redesign A),
the camber is reduced by 0.004 units. Using the constraint relations shown earlier,
this requires that the stagger angle must be reduced by approximately 1.4° and the
reflex must be increased by 0.0064 units (see Table 5.3). Although the sensitivity
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Table 5.3: Sensitivity of incidence angle to design variables, and resulting perturba-
tions in stagger angle and reflex for a unit change in design variables.

Design Variable

Thickness

Camber

Stagger

Gap

Max Camber Location

Reflex

Frequency

da/d(var)

0

2/4

1

0

-2mc/(4)2

2?r

0

0'

-0.4533

6.1033

0.5465

-0.0274

0.0000

r'

0.0721

-1.6080

-0.0870

0.0680

0.0000

analysis predicts that these changes alone will make the airfoil stable, the sensitivity
analysis also predicts a large steady pressure gradient on the suction surface near
the leading edge which would very likely cause the flow to separate, an undesirable
result. To reduce the adverse pressure gradient in the pressure distribution, the
thickness is increased by 0.02 units, which in turn requires the stagger be reduced by
approximately 0.52° and 0.0014 units of reflex be added.

For the second redesign (Redesign B), the gap G is increased by 0.1. Again
Table 5.2 predicts that this change will make the cascade stable, and requires that
the stagger angle be reduced by approximately 0.61° and 0.0017 units of reflex be
added.

Figure 5.8 shows the computed steady surface pressure on the nominal and re-
designed airfoils. Also shown is the pressure predicted by the linear sensitivity analy-
sis. The good agreement between the two indicates that steady nonlinear geometrical
effects are small, at least for the subsonic flow conditions considered here. For Re-
design A, although the steady lift on the airfoil in the y-direction has only slightly
changed, the pressure distribution has changed significantly. For Redesign B, the net
lift in the y-direction has increased, since the increase in gap means that the steady
work per airfoil must increase. Note that the pressure gradient on the suction surface
is larger for both redesigned airfoils. Both redesigns are therefore likely to increase
somewhat the aerodynamic losses of the cascade.

Figures 5.9 and 5.10 show the real and imaginary parts of the unsteady pressure
on the surface of the redesigned airfoils for Redesign A and Redesign B, respectively.
Although in both cases the real part shows very little change, the imaginary part
shows significant changes, particularly on the suction surface. Although there is a
larger difference between the sensitivity analysis prediction and the actual pressure
distribution than in the steady case, the sensitivity analysis still provides an excellent
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Figure 5.8: Steady surface pressure of cascade of redesigned airfoils. M-c

ft-oo = 55°.
= 0.5,

qualitative estimate of the actual unsteady flow behavior. The actual computed
damping of the Redesign A cascade is 0.0086, indicating that the new cascade is
stable. The damping of the Redesign B cascade is 0.0015, so this cascade is also
stable.

At this point, it is useful to consider the accuracy of the sensitivity analysis pre-
diction for relatively large changes in the airfoil shape. If the change in the design
variables in Redesign A is considered to be one unit, Fig. 5.11 shows the change in the
aerodynamic damping predicted by the sensitivity analysis and the actual change for
various magnitudes of the design change. Figure 5.11 shows that the behavior of the
aerodynamic damping is remarkably linear, i.e., the airfoils become physically unre-
alistic before substantial differences occur between the sensitivity analysis prediction
and the actual airfoil behavior.

Figures 5.12 and 5.13 show the aerodynamic damping of the redesigned airfoils
for a reduced frequency u of 0.4 for a range of interblade phase angles a. In each
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Figure 5.11: Accuracy of sensitivity analysis for various perturbation amplitudes.

figure, the original nominal damping, the damping of the redesigned airfoils predicted
by the sensitivity analysis, and the actual damping of the redesigned airfoils are
presented. Note that both redesigned airfoils are stable for all interblade phase angles.
In addition, the sensitivity analysis prediction gives excellent estimates of the actual
damping of the redesigned airfoils.

5.1.5 Computational Efficiency

Finally, a note about computational times. Table 5.4 shows the CPU time required to
perform various calculations using the present method on a Silicon Graphics Indigo
R4400 workstation. All time calculations were performed using a 129 x 49 node
computational grid. The steady sensitivity analysis requires only a fraction of the
CPU time necessary to perform a single nominal steady calculation. For the six
design variables considered here, the unsteady sensitivity analysis required about
three times the CPU time as a single nominal unsteady calculation, but only about
one-fifth of what was required for a finite difference sensitivity analysis. Furthermore,
the present sensitivity analysis, unlike the finite difference analysis, is not susceptible
to truncation and round-off errors.

It should be noted, however, that for this aeroelastic example, the computational
grid was computed independently from the steady potential, since a streamline grid is
not necessary for this case. Decoupling the grid and steady flow equations significantly
reduces the computational expense of the present method, as will be shown in the
next section.
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Figure 5.12: Aerodynamic damping of cascade of redesigned airfoils (Redesign A)
pitching about their midchords at a frequency of 0.4 for a range of interblade phase
angles.

Table 5.4: Computational times for present method using 129 x 49 node grid.

Procedure CPU Time (sec)

Nominal Steady

Nominal Unsteady

Steady Sensitivity Analysis (5 var)

Unsteady Sensitivity Analysis (6 var)

85.3

12.1

10.2

30.6

Finite Difference Steady Sensitivity Analysis (5 var) 853.0

Finite Difference Unsteady Sensitivity Analysis (6 var) 145.2



5.2. AERO A CO USTIC ANALYSIS AND DESIGN OF A FAN EXIT G UIDE VANE107

in
o

— Initial Airfoil
— Prediction B

Actual B

_Stable_
Unstable

o
'-180 -135 -90 -45 0 45 90

Interblade Phase Angle (deg)

135 180

Figure 5.13: Aerodynamic damping of cascade of redesigned airfoils (Redesign B)
pitching about their midchords at a frequency of 0.4 for a range of interblade phase
angles.

5.2 Aeroacoustic Analysis and Design of a Fan
Exit Guide Vane

To demonstrate the aeroacoustic capability of the present method, in this section a
cascade of exit guide vanes (EGV) typical of those found in modern high-bypass ratio
fans is analyzed. The nominal airfoil shape is a NACA 8508-65 profile. The ratio of
the number of fan rotor blades to EGVs, NR/NV, is 0.4. The blade-to-blade gap G
is 1.0, the inlet Mach number M-^ is 0.5, the inlet flow angle Sl-.̂  is 30°, and the
stagger angle 0 is 16°. The wheel speed of the upstream rotor VR.otor is 1.5.

The physical system being modeled here is shown schematically in Fig. 5.14. A
row of exit guide vanes (EGVs) is subjected to unsteady aerodynamic excitation
arising from interaction with the viscous wakes from the upstream rotor. In the
rotor (relative) frame of reference, these wakes are steady, and the steady freestream
velocity is VRei- However, in the EGV (absolute) frame of reference, the wakes appear
to be unsteady, and the steady freestream velocity is VABS- The two reference frames
are related by the wheel speed, VRot0r, due to the relative motion of the rotor.

The unsteadiness of the rotor wakes may be decomposed into harmonics with
frequencies that are multiples of blade passing frequency (BPF). The BPF is referred
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Figure 5.14: Schematic showing wake/EGV interaction. Inserts in blade passage show
contours of "drift" (top) and a streamline computational grid (bottom).

to as the fundamental (i.e., Oth harmonic) frequency that the rotor wakes impinge
on the stator. Typically, the number of rotor blades and stator vanes are chosen so
that no pressure waves propagate ("cut-on") at this frequency. Unfortunately, it is
not possible to choose the blade counts so that pressure waves do not propagate at
harmonics of the BPF. Hence, the goal for this investigation is to use the sensitivity
analysis to suggest design changes in the airfoil shape to reduce the magnitude of the
propagating pressure waves at multiples of BPF.

5.2.1 Steady Flow Through a Fan Exit Guide Vane

First, consider the steady flow through the EGVs. The steady flow was computed
using an //-grid containing 129 nodes in the streamwise direction and 49 nodes in
the normal direction (a 129x49 grid). Figure 5.15 shows the nominal steady surface
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Figure 5.15: Steady surface pressure for cascade of NACA 8508-65 airfoils. 0 = 16°,
n.^ = 30°, M_oo = 0.5, G = 1.0.

pressure P for this case. The steady lift, L, is 0.3942, and the steady drag, D,
is —0.0168. The moment measured about the leading edge, MLE, is —0.1837. For
comparison, Fig. 5.15 also shows the grid-converged solution computed using an Euler
code [30]. The excellent agreement between the two solutions, while reassuring, is to
be expected since the steady flow is subsonic, irrotational, and homentropic.

5.2.2 Unsteady Flow Through a Fan Exit Guide Vane

Next, consider the acoustic response due to viscous wakes from the upstream fan im-
pinging on the EGV. When viewed in the EGV frame of reference, the wake excitation
has temporal frequencies u>n = 27rnVR.otor/GrR, where VRot0r is the wheel speed of the
fan, GR is the blade-to-blade gap of the rotor, and n takes on all integer values. Blade
passing frequency (BPF) corresponds to n = 1. The corresponding interblade phase
angles are crn = —2^nG/GR. The acoustic response of this cascade to excitations
at IxBPF is cut-off, i.e. the unsteady pressure decays exponentially away from the
EGVs. For excitations at 2xBPF, however, a single acoustic mode with interblade
phase angle a = 72° is cut-on in the upstream and downstream regions.

In the following, the acoustic response of the EGV to IxBPF and 2xBPF vortical
gusts with "unit amplitude" are considered. A unit amplitude gust is one in which the
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magnitude of the perturbation velocity normal to the steady flow direction would be
unity at the leading edge of the airfoil if the steady flow were uniform and undeflected
by the EG V. The real and imaginary parts of the unsteady surface pressure computed
using the present analysis are shown in Figs. 5.16 and 5.17. Also shown for compari-
son is the pressure distribution computed using the linearized Euler analysis of Hall
and Clark [30]. The agreement between these two theories is quite good, especially
considering the high reduced frequency (u = 7.54) of the 2xBPF case. These results
indicate that the 129x49 grid is sufficiently fine to resolve the acoustic behavior of
the EGV — at least up to 2xBPF. They also indicate that the rotational velocity
has been formulated and computed correctly.

Figures 5.18 and 5.19 show contours of the magnitude of the unsteady pressure
for the IxBPF and 2xBPF cases, respectively. In both cases, note that the unsteady
pressure is somewhat larger in the downstream region than in the upstream region.
The unsteady pressure in the far field of the 2xBPF case was Fourier transformed in
the circumferential direction to determine the magnitude of the single cut-on pressure
wave upstream and downstream (cr = 72°). For this case, the magnitude of the cut-
on unsteady pressure wave (for a unit strength gust) is 0.102 upstream and 0.249
downstream.

5.2.3 Sensitivity Analysis

Next, the change in the steady and unsteady aerodynamic response due to small
changes in the EGV geometry is considered. The steady sensitivity analysis was
performed using eight different design variables. Five of these variables correspond
to the modified NACA definition parameters: magnitude of thickness, maximum
thickness location, magnitude of camber, maximum camber location, and leading
edge radius. Two design variables define the placement of the airfoils in the cascade:
the blade-to-blade gap G and stagger angle 0. The final design variable is the reflex,
which was defined earlier.

Using the steady sensitivity analysis outlined in the previous section, the sensitiv-
ity of the lift, drag, and moment to changes in the design variables were computed.
These results are given in Table 5.5. Like the previous example, Table 5.5 shows
that the steady work is very sensitive to changes in camber, reflex, and stagger angle.
This is not too surprising since these parameters affect the trailing edge metal angle
of the airfoil and hence the turning (work). On the other hand, the steady work is
insensitive to changes in the maximum thickness location and the size of the leading
edge radius.

Next, the sensitivities of the unsteady pressure to small changes in the design
variables for the 2xBPF case were computed. In addition to the eight design vari-
ables described above, the frequency u and interblade phase angle a of the excitation
have been added. Figures 5.20 and 5.21 show the real and imaginary parts, respec-
tively, of the sensitivity of the unsteady surface pressure to changes in five of these
design variables. Also shown are the sensitivities calculated using a finite-difference
approach, i.e. the difference of the pressures calculated using the nominal analysis on
two slightly different airfoils normalized by the difference in geometry. The nearly
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Figure 5.16: Unsteady surface pressure of cascade of NACA 8508-65 airfoils due to
incoming vortical gust at IxBPF. u = 3.7687, a = -144°.
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Figure 5.17: Unsteady surface pressure for cascade of NACA 8508-65 airfoils due to
incoming vortical gust at 2xBPF. u = 7.54? a = —288°.
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Figure 5.18: Contours of magnitude of unsteady pressure for cascade of NAG A 8508-
65 airfoils due to incoming vortical gust at IxBPF. u> — 3.77, a = —144°.
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Figure 5.19: Contours of magnitude of unsteady pressure for cascade of NAG A 8508-
65 airfoils due to incoming vortical gust at 2xBPF. u = 7.54, cr = —288°.
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Table 5.5: Change in steady flow quantities due to unit perturbations in ten design
variables. The nominal steady lift, L, is 0.3942, the nominal drag, D, is —0.0168, the
nominal moment about the leading edge, MLB, is —0.1837, and the nominal lift in
the ?/-direction, Ly, is 0.3743.

Design Variable

Thickness

Max Thickness Location

Camber

Max Camber Location

Leading Edge Radius

Stagger

Gap

Reflex

0

0

1

0

0

-0

0

-2

L'y

.0289

.0084

.9254

.1991

.0000

.7558

.3008

.2190

0

0

1

0

0

-0

0

-2

V

.0284

.0082

.8941

.1959

.0000

.7266

.3220

.1827

0

0

0

0

0

0

-0

-0

D'

.0059

.0017

.3799

.0394

.0000

.2448

.0313

.4387

A

0

-0

-1

-0

-0

0

-0

2

4'LE

.1751

.0164

.6300

.2154

.0001

.0392

.1123

.4383

exact agreement between the two methods demonstrates that the present sensitivity
analysis has been formulated correctly.

Of particular interest in aeroacoustic applications is the influence of the blade
shape on the sound radiated upstream and downstream of the EGV. The sensitivity
of the magnitude of the cut-on propagating pressure waves to changes in the design
variables is given in Table 5.6. The label "Unconstrained" indicates that each of the
design variables is perturbed independently. Like the previous example, to compute
the "Constrained" sensitivity, each of the design variables is perturbed as before,
but the stagger angle and reflex are allowed to float to satisfy the constraints that
the steady work and incidence angles remain fixed. Examining the "Constrained"
columns in Table 5.6, it is clear for example that moving the position of the maximum
camber location aft now increases the magnitude of the upstream pressure wave and
decreases the magnitude of the downstream pressure wave. Note further that both
the gap G and camber have a strong influence on the strength of the acoustic waves
(although large changes in the gap are more realistic than large changes in camber).

5.2.4 Redesign of an EGV for Reduced Acoustic Response

Next, the constrained sensitivities were used to guide the redesign of the EGV to
reduce the sound pressure levels in the downstream region. As previously noted, the
camber and gap strongly influence the outgoing pressure waves. Therefore, to reduce
the downstream pressure wave, the blade-to-blade gap is increased by 0.1 and the
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Figure 5,20: Sensitivity of unsteady surface pressure on NACA 8508-65 airfoils due
to perturbations in thickness, camber, stagger, gap, and reflex, u = 7.54, a = -288°.
D, suction surface; A, pressure surface.
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Figure 5.21: Sensitivity of unsteady surface pressure on NACA 8508-65 airfoils due
to perturbations in thickness, camber, stagger, gap, and reflex, u — 7.54, a = —288°.
n, suction surface; A, pressure surface.
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Table 5.6: Change in unsteady flow quantities due to unit perturbations in ten design
variables. The nominal magnitude of the upstream pressure wave, |pup|, is 0.102, and
the magnitude of the downstream pressure wave, |pdown|, is 0.249.

Unconstrained Constrained

Design Variable

Thickness

Max Thickness Location

Camber

Max Camber Location

Leading Edge Radius

Stagger

Gap

Reflex

Frequency

Interblade Phase Angle

IPupl' bdown '

-0.8985 0.2494

0.0084 0.0082

0.4441 -1.4103

-0.1312 0.1224

0.0023 0.0023

-0.3471 0.5910

1.3244 -1.6624

1.8692 -1.5834

0.1696 -0.2830

-0.0822 0.0222

|Pup|' bdownl'

-0.9447 0.3099

-0.0810 0.1161

-6.0899 6.5867

0.1023 -0.0953

0.0023 0.0023

— —

1.4421 -1.8163

— —

0.1696 -0.2830

-0.0822 0.0222

camber is decreased by 0.0025. To satisfy the constraints, the stagger angle, 0, must
be reduced by 2.23°, and 0.0078 units of reflex must be added. Also note that the
interblade phase angle, a, is decreased by 0.5027 radians since the interblade phase
angle is proportional to the gap. For the 2xBPF case, this means that the interblade
phase angle is decreased from —288° to —317°.

Figure 5.22 shows the nominal and redesigned airfoils and their respective steady
surface pressure distributions. The redesigned pressure distribution was computed in
two ways: first by linear extrapolation using the sensitivities, and second using the
nonlinear steady flow analysis with the actual redesigned airfoil geometry. The good
agreement between the two techniques shows that the present sensitivity analysis is
valid for moderate changes in geometry. Also, one can see in Fig. 5.22 that the net
lift has increased to account for the additional steady work done by each blade due
to the increase in blade-to-blade gap.

Figure 5.23 shows the real and imaginary parts of the unsteady surface pressure
for the nominal and redesigned cascade. Note that although the sensitivity analysis
predicts the trends of the actual new unsteady pressure distribution, there is a signif-
icant difference in magnitude between the two curves. The reason for this difference
can be explained by examining the size of the design change. Figure 5.24 shows the
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Figure 5.22: Steady surface pressure for cascade of redesigned airfoils. M_oo = 0.5,
O.^ = 30°.

sensitivity analysis prediction of the change in the upstream and downstream pres-
sure waves versus the actual change for several different design change amplitudes.
The design change amplitudes are normalized by the amplitude described above, i.e.,
the above design change is considered to have an amplitude of unity. Figure 5.24
shows that the differences between the predicted pressure distribution and the actual
distribution are due to nonlinear effects that are not predicted using the present anal-
ysis. If a smaller change in the geometry had been made, the prediction would have
been more accurate. Even for this large a design change, however, the sensitivity
analysis still gives an excellent qualitative prediction of the change in the magnitude
of propagating pressure waves.

Figures 5.25 and 5.26 show the unsteady pressure contours for the redesigned
cascade for both cases. Comparing with Figs. 5.18 and 5.19, note that the downstream
pressure levels have been substantially reduced, although the upstream pressure levels
have been increased. For the 2xBPF case, the magnitude of the downstream pressure
wave was reduced about 60%, from 0.249 to 0.099. In acoustic terms, the sound
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Figure 5.23: Real and imaginary parts of unsteady surface pressure for redesigned
airfoils due to incident vortical gust at 2xBPF. u = 7.54, a = -317°.
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Figure 5.24: Accuracy of sensitivity analysis for various perturbation amplitudes,

pressure level (SPL) is reduced by 8.0 dB, since the change in SPL may be defined as

iPredesignl
Change in SPL = 20 Iog10

Ifl'nominal
(5.13)

Upstream, the SPL increased from 0.102 to 0.209, an increase of 6.2 dB. Referring to
Table 5.6, it is clear that in all cases perturbing one of the design variables so as to
decrease to sound level downstream produces an increase in sound upstream. Thus,
it is difficult in this case to simultaneously reduce the radiated noise both upstream
and downstream. Some physical insight may help to explain this behavior.

At this point, it may be unclear why changing the blade shape has any effect on
the radiated noise. Consider subsonic flow over an unloaded flat plate. Smith [10]
showed that the magnitude of the outgoing pressure waves may be expressed by an
equation of the form

\ P \ = (5.14)

where |p(a;)] is the jump in pressure at some location x on the blade surface, and
K is a kernel function relating the blade load at x to the outgoing pressure. A
similar expression may be used to describe the unsteady lift on the blade. Note that
the kernel function is essentially only dependent on the form of the incoming gust
and the steady flow conditions upstream of the airfoil. Hence, the kernel function is
essentially independent of the blade shape.
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Figure 5.25: Contours of unsteady pressure for cascade of redesigned airfoils due to
incoming vortical gust at IxBPF. u = 3.77, a = -158.4°.
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Figure 5.26: Contours of unsteady pressure for cascade of redesigned airfoils due to
incoming vortical gust at 2xBPF. u = 7.54, u = —317°.
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Next, consider the discretized vector form of Eq. (5.14), i.e.,

(5.15)

Here the left-hand side of Eq. (5.15) represents the blade row response to the gust,
consisting of the upstream and downstream going pressure waves and the unsteady
lift. The matrix [X] is the discretized form of the kernel function K. The vector F
represents the discretized values of the pressure jumps along the blade surface. As-
suming that the duct geometry, upstream flow conditions, and the form of the gust
are fixed in the design process, the matrix [X], like the kernel function, is essentially
independent of the blade shape. Therefore, the magnitude of the outgoing pressure
waves (and the unsteady lift) is only a function of the distribution of the pressure
jumps on the blade surface. Because changing the blade shape will change the distri-
bution of the pressure jumps, the magnitudes of the pressure waves will change as a
function of the airfoil shape.

The relationship between the outgoing pressure waves and blade loading may also
help explain why it appears to be difficult to simultaneously reduce the magnitude of
the upstream and downstream going pressure waves. The response of a cascade to an
incoming gust generates acoustic radiation in the flow in the form of pressure waves.
Examination of Figs. 5.17 and 5.23 shows that the magnitude of the unsteady lift is
nearly the same for the nominal and redesigned airfoil. The acoustic radiation in the
flow, therefore, should be nearly the same in both cases. Clearly, some of the radiation
contained in the nominal propagating pressure waves has been transferred from the
downstream going wave to the upstream going wave. For net noise reduction to be
achieved, however, some of the radiation must be transferred into acoustic modes that
do not propagate. In the present two-dimensional analysis, the energy would have
to be transferred to higher Fourier modes in the circumferential direction, since the
radial mode shapes are assumed to be uniform. Examination of the magnitudes of
the pressure waves before and after the redesign shows that some net noise reduction
has been accomplished.

The above discussion does not tell the complete acoustic story, however. First, the
analysis is based an unloaded flat plate theory, while the case in question has steady
loading and flow turning. Still, the analysis should be applicable in a qualitative sense.
Second, and perhaps more importantly, all radial effects have been neglected. Chapter
6 contains a discussion of the three-dimensional acoustic behavior of annular ducts.
The radial behavior of the pressure modes may be described by a series of orthogonal
mode shapes, each of which has an associated axial wavenumber that increases with
the order of the radial mode. Typically, if the pressure waves associated with a
given Fourier mode propagate, the energy is contained in a small number of these
radial modes. The higher order radial modes are cut-off. Hence, net noise reduction
may be achieved by transferring energy from the lower, propagating radial modes to
the higher, nonpropagating modes. Therefore, a three-dimensional analysis of the
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Table 5.7: Computational times for present method using 129 x 49 node grid.

Procedure

Nominal Steady

Nominal Unsteady

Steady Sensitivity Analysis (8 var)

Unsteady Sensitivity Analysis (10 var)

Finite Difference Steady Sensitivity Analysis (8 var)

Finite Difference Unsteady Sensitivity Analysis (10 var)

CPU Time (sec)

837.0

12.8

28.8

61.0

13394

256

duct acoustics appears to be important to correctly predicting the radiated noise.
Furthermore, shape changes along the span of the blade may have a dramatic effect
on the outgoing pressure.

5.2.5 Computational Efficiency
Finally, a note about the computational times for this case. Table 5.7 shows the
required computational times for the present method and for a finite difference calcu-
lation. Note that the steady flow calculation times are substantially higher than those
shown in Table 5.4. In this case, the grid and steady flow equations are solved simul-
taneously, which increases the cost of the steady flow calculation. The time required
for the unsteady flow calculation is somewhat higher due to the cost of calculating
the rotational velocity, VR. Still, the nominal computational time is significantly less
than a comparable Euler calculation, while retaining all the dominant physics of the
problem. Comparing the computational times for the sensitivity analysis to the finite
difference calculation, there is an even more dramatic difference in computational cost
than the difference shown in Table 5.4. This indicates that the computational savings
of the present sensitivity analysis greatly increases as the flow model becomes more
complicated (e.g., the Euler or Navier-Stokes equations).

5.3 Modern Fan Exit Guide Vane

The final test case is a three-dimensional fan exit guide vane from a modern high-
bypass ratio engine. In the previous example, we examined the acoustic response of
the blade row at a single representative radius of the machine. Furthermore, in the
previous example we attempted to reduce the downstream acoustic response using all
of the available design variables. In this example, the objective will be to reduce the
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Ipl = 0.350

Figure 5.27: Contours of magnitude of unsteady pressure for radial station near
the hub of a modern fan exit guide vane due to incoming vortical gust at 2xBPF.
M-oo = 0.32, G = 0.46, w = 12.5, a = -288°.

overall acoustic response using only variables that affect the airfoil shape (i.e., the
blade-to-blade gap does not change).

5.3.1 Nominal Analysis

We will examine the acoustic response and redesign the blade shape at three
representative radial locations near the hub, midspan, and tip of the vane. Because
of the solid body rotation in the steady flow due to the upstream row of rotor blades,
the steady and unsteady flow conditions vary along the span. For brevity, we will not
examine the steady flow in detail.

Consider the unsteady flow due to rotor wakes impinging on the EGVs as in
the previous section. At all radial stations, the IxBPF pressure waves are cutoff.
Figures 5.27-5.29 show contours of the magnitude of the unsteady pressure due to
the vortical wakes at 2xBPF. At the radial location near the hub, the inflow Mach
number, M_oo, is approximately 0.32, the blade-to-blade gap G is about 0.46, the
reduced frequency, u>, is 12.5, and the interblade phase angle, a, is —288°. Because
the angular gap between the blades is constant along the span, the blade-to-blade gap
increases along the span of the EGV, and the lowest value is at the hub. The Mach
number in the stator frame varies, due to the relative motion of the rotor blades, from
approximately 0.32 at the hub to a maximum of about 0.56 near the midspan and
0.40 near the tip. In a similar fashion, the reduced frequency has a maximum value
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Ipl = 0.209

Ipl = 0.200

Figure 5.28: Contours of magnitude of unsteady pressure for radial station near the
midspan of a modern fan exit guide vane due to incoming vortical gust at 2xBPF.
M_oo = 0.56, G = 0.71, w = 7.7, a = -288°.

near the hub of about 12.5, a minimum value near the midspan of about 7.7, and a
value of about 10.4 near the tip.

Note that near the hub the magnitude of the downstream pressure wave is signif-
icantly higher than the upstream wave. At the midspan, the two waves are nearly
equal in magnitude, while at the tip the downstream wave again has a larger mag-
nitude than the upstream wave. Hence, we will primarily attempt to reduce the
magnitude of the downstream pressure wave.

5.3.2 Sensitivity Analysis

Tables 5.8-5.10 show the sensitivity of the steady lift in the cascade direction and
the outgoing pressure waves to perturbations in ten design variables. Note that the
steady turning increases along the span so that the steady flow is nearly aligned with
the axial direction after it passes through the EG Vs. For the most part, the steady lift
sensitivities are very similar from hub to tip, although the actual magnitudes differ.
In particular, as was the case in the previous exit guide vane analysis, the steady
loading is strongly influenced by changes in camber, reflex, blade-to-blade gap, and
stagger.

The unsteady sensitivities are not as easily characterized. From the "constrained"
sensitivities, it is clear that thickness and camber play a significant role in the acoustic
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lpl = 0.103

Ipl = 0.263

Figure 5.29: Contours of magnitude of unsteady pressure for radial station near
the tip of a modern fan exit guide vane due to incoming vortical gust at 2xBPF.
M-oo = 0.40, G = 0.90, w = 10.4, a = -288°.

response of the EGV at all three radial locations. Also, changing the leading edge
radius and maximum thickness location of the blade results in a moderate change
in the acoustic response, considering that the leading edge radius has virtually no
effect on the steady loading. As a result, the "unconstrained" and "constrained"
sensitivities due to changes in maximum thickness location and leading edge radius
are nearly the same.

Note that there does not appear to be a clear pattern to indicate the reason for
the "trade-off" phenomena between the upstream and downstream pressure waves
encountered here and in the previous section. For example, changes in camber at the
hub and midspan require some trade-off between the two pressure waves, while at the
tip, the magnitude of both pressure waves may be reduced. The lack of consistent
behavior along the span may further indicate that three-dimensional effects play an
important role in the overall acoustic response of a blade row, as discussed in the
previous section.
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Table 5.8: Change in steady and unsteady flow quantities due to unit perturbations
in ten design variables near the hub of a modern fan exit guide vane. The nominal
lift in the cascade direction, Ly, is 0.4425, the nominal magnitude of the upstream
pressure wave, |pup|, is 0.099, and the magnitude of the downstream pressure wave,

l, is 0.350.

Unconstrained Constrained

Design Variable

Thickness

Max Thick. Location

Camber

Max Camber Location

Leading Edge Radius

Stagger

Gap

Reflex

Frequency

Interblade Phase Ang.

L'y

0.0253

0.0009

1.1135

0.2333

0.0000

-0.3880

0.5000

-1.7127

—

—

IPup ' bdown)'

0.4339 0.3562

0.0353 0.0133

0.1606 1.0434

-0.1498 -0.0747

0.0010 -0.0018

0.0591 0.2987

-0.0607 0.3196

0.5068 0.8007

0.0341 -0.0503

0.0609 -0.5775

W (Pdown 1'

0.4292 0.3937

0.0351 0.0147

-0.6320 3.9260

-0.0115 -0.1116

0.0010 -0.0018

— —

-0.0526 0.2553

— —

0.0341 -0.0503

0.0609 -0.5775

5.3.3 Redesign of EGV for Reduced Acoustic Response

Using the sensitivities contained in Tables 5.8-5.10, we now attempt to reduce the
acoustic response using changes in the airfoil shape. As noted earlier, in this example
we will only change the airfoil shape — changes in the blade-to-blade gap will not be
considered.

At the station near the hub, the leading edge radius was substantially increased,
along with a small increase in the maximum camber location. The thickness, camber,
and maximum thickness location were all decreased slightly. Figure 5.30 shows con-
tours of unsteady pressure for the redesigned airfoil near the hub. In this case, the
downstream SPL was reduced by 1.0 dB at the expense of a 2.0 dB increase in the up-
stream SPL. Because the magnitude of the downstream pressure wave is significantly
larger than the upstream wave, we consider this to be a reasonable trade-off.

At the station near the midspan, the leading edge radius and maximum camber
location were also increased, as well as the thickness. The camber and maximum
thickness location were decreased. Figure 5.31 shows contours of unsteady pressure
for the redesigned airfoil near the midspan. In this case, net noise reduction was
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lpl = 0.125
+2.0 dB SPL

lpl = 0.312
-LOdBSPL

Figure 5.30: Contours of magnitude of unsteady pressure for radial station near the
hub of a redesigned modern fan exit guide vane due to incoming vortical gust at
2xBPF. M_oo = 0.32, G = 0.46, w = 12.5, a = -288°.

lpl= 0.181
-0.9 dB SPL

lpl = 0.155
-2.6 dB SPL

Figure 5.31: Contours of magnitude of unsteady pressure for radial station near the
midspan of a redesigned modern fan exit guide vane due to incoming vortical gust at
2xBPF. M-oo = 0.56, G = 0.71, u = 7.7, a = -288°.
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Table 5.9: Change in steady and unsteady flow quantities due to unit perturbations in
ten design variables near the midspan of a modern fan exit guide vane. The nominal
lift in the cascade direction, Ly, is 0.6579, the nominal magnitude of the upstream
pressure wave, \pup\, is 0.209, and the magnitude of the downstream pressure wave,
|pdown|, is 0.200.

Unconstrained Constrained

Design Variable

Thickness

Max Thick. Location

Camber

Max Camber Location

Leading Edge Radius

Stagger

Gap

Reflex

Frequency

Interblade Phase Ang.

L'y

0.0843

0.0077

2.2503

0.3090

0.0000

-0.8514

0.4932

-3.5867

—

—

|pup ' bdown '

-0.2852 -0.1564

-0.0262 0.0106

-0.3106 0.9183

-0.2830 0.0384

-0.0023 -0.0004

-0.1605 0.3151

-0.2381 0.2108

-0.2646 0.0623

-0.1082 -0.0319

-0.7778 -0.0655

|Pup ' l^downl'

-0.3208 -0.0647

-0.0294 0.0190

-2.3070 6.5816

-0.1242 -0.5140

-0.0023 -0.0004

— —

-0.2155 0.1526

— —

-0.1082 -0.0319

-0.7778 -0.0655

achieved, by 0.9 dB downstream and 2.6 dB upstream.
At the station near the tip, again the leading edge radius and maximum camber

location were increased. Also, the thickness and camber were slightly increased,
and the maximum thickness location was decreased. Figure 5.32 shows contours of
unsteady pressure for the redesigned airfoil near the tip. A small trade-oif was made
here, decreasing the downstream SPL by 1.4 dB while increasing the upstream SPL
by 0.6 dB.

Finally, it is clear that the reduction in acoustic response is not as dramatic as
the reduction achieved in the previous example. One reason for the small reduction is
that the blade-to-blade gap was held fixed in this example. Although the sensitivities
shown in Tables 5.8-5.10 indicate that the gap only plays a moderate role in the
acoustic response, the sensitivities alone do not completely illustrate the role the
gap plays in the redesign process. Changing the gap also moderates the constraint
relationship between the camber and reflex so that larger changes in camber may
be employed, thereby achieving greater noise reduction. Changing the airfoil shape
alone appears to have only a moderate effect on the radiated noise, at least in the
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Table 5.10: Change in steady and unsteady flow quantities due to unit perturbations
in ten design variables near the tip of a modern fan exit guide vane. The nominal
lift in the cascade direction, Ly, is 0.8140, the nominal magnitude of the upstream
pressure wave, |pup|, is 0.103, and the magnitude of the downstream pressure wave,

is 0.263.

Unconstrained Constrained

Design Variable

Thickness

Max Thick. Location

Camber

Max Camber Location

Leading Edge Radius

Stagger

Gap

Reflex

Frequency

Interblade Phase Ang.

L'y

0.0921

0.0122

1.9340

0.2967

-0.0002

-0.7708

0.4326

-2.4583

—

—

biipl' |Pdown|'

1.2871 -1.6826

0.0782 0.0534

-0.5630 -0.2809

-0.0227 -0.0706

0.0008 -0.0025

-0.2338 -0.5205

-0.8044 1.4336

0.1682 0.6038

-0.2758 0.2425

-0.8420 0.5372

IPup ' bdown '

1.2239 -1.8322

0.0698 0.0335

-3.2040 -6.6747

0.1325 0.3363

0.0009 -0.0021

— —

-0.7506 1.5608

— —

-0.2758 0.2425

-0.8420 0.5372

present two-dimensional analysis.

5.4 Summary

Although extensive parametric studies have not been performed, the results presented
in this chapter point to some possible general trends. It appears that the effectiveness
of the sensitivity analysis increases with reduced frequency. The redesign of the
aeroacoustic examples resulted in a much larger change in the unsteady aerodynamic
behavior than the aeroelastic example. This may be due to the difference in frequency
(an order of magnitude) between the two cases. At high frequencies, the wavelengths
of the unsteady waves are shorter, and therefore are more dependent on the airfoil
shape.

An interesting result from the first aeroacoustic example was that there appears to
be a trade-off between noise reduction upstream and downstream. In other words, it
may be difficult to achieve global noise reduction for a particular operating condition.
The analysis appears to be better suited to cases where there is a noise problem either
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lpl = 0.110
+0.6 dB SPL

Ipl = 0.224
-1.4dBSPL

Figure 5.32: Contours of magnitude of unsteady pressure for radial station near the
tip of a redesigned modern fan exit guide vane due to incoming vortical gust at
2xBPF. M-oo = 0.40, G = 0.90, w = 10.4, a = -288°.

upstream or downstream of the blade row, but not both. An analysis using subsonic
flat plate theory described a possible reason for this trade-off between the upstream
and downstream radiated noise, and concluded that three-dimensional effects may
play a large role in the accurate prediction of the outgoing pressure.

In all three cases, the steady loading on the redesigned airfoil was moved forward,
with an increase in the steady pressure gradient on the surface. This points to the
need for a viscous version of this analysis, so that the increase in steady aerodynamic
losses can be quantified.

Finally, the computational efficiency of the analysis indicates that the computa-
tional savings greatly increases with the complexity of the flow model. Consequently,
the results presented here would be even more impressive if a Euler or Navier-Stokes
analysis had been used.



Chapter 6

Application to Three-Dimensional
Problems

Although the preceding development is well-suited to the design and analysis of
two-dimensional cascades, it is not entirely obvious how to analyze an actual three-
dimensional blade row using this method. This chapter provides a framework for
analyzing three-dimensional aeroacoustic problems using the present two-dimensional
procedure. Section 6.1 contains a discussion of the general three-dimensional problem
and the importance of the annular nature of the geometry. In addition, an analyti-
cal procedure for calculating the natural acoustic modes of an annular duct will be
developed. Next, Section 6.2 contains a discussion of how the unsteady pressure at
the far field of a three-dimensional blade row may be calculated. Finally, in Section
6.3, a general method for calculating the magnitude of the outgoing three-dimensional
pressure waves in the far field from the computed two-dimensional unsteady potential
will be described. Also, the application of the sensitivity analysis to the calculation
procedure described in this chapter will be discussed.

6.1 Acoustic Modes in an Annular Duct

The fluid in an axial flow turbomachine is typically modeled as flow through an
annular duct. A schematic of such a duct is shown in Figure 6.1. The duct has an
inner (or hub) radius, r#, and an outer (or tip) radius, TT- A key parameter defining
the duct geometry is the so-called hub-to-tip ratio, TH/TT- As this ratio approaches
unity, the flow becomes nearly two-dimensional. For lower hub-to-tip ratios, however,
annular effects become more significant.

The first step in analyzing the three-dimensional acoustic behavior of a blade row
is to examine the natural acoustic modes in an annular duct such as the one shown in
Figure 6.1. For a completely general steady flow, this would be a formidable problem
to solve analytically. Fortunately, the steady flow field is relatively uniform away
from the blade row (i.e., the far field). Furthermore, in this analysis, all streamtube
contraction effects are neglected, i.e., the hub and tip radii are constants along the
axis of the turbomachine. It is also assumed that there is no radial component of the

134
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U

Figure 6.1: Annular duct geometry.

steady flow.
For steady flows without swirl, a classic analysis of acoustic modes in annular

ducts applied to axial flow turbomachines was performed by Tyler and Sofrin [62].
The following analysis, to a large extent, will follow their approach. It is assumed
that the steady flow is entirely axial, with velocity U. Instead of using a reference
frame fixed in space, however, it will be convenient to solve for the acoustic modes in a
reference frame attached to the steady flow field, i.e., the relative steady fluid motion
is zero. In this case, the unsteady pressure field is governed by the three-dimensional
wave equation in cylindrical coordinates, i.e.,

(6.1)

where a2 i d i a2 a2

+ f af + f2 a02

Here x is the axial coordinate, 9 is the circumferential coordinate, and f is the radial
coordinate in the reference frame attached to the fluid. Substituting this expression
into Eq. (6.1) results in

dp
af2

_ _ _ =

c2 at2 ~ (6.2)

As was assumed earlier, the small disturbance unsteady flow is harmonic with
known temporal frequency cu, as yet unknown axial wave number or, and known
circumferential wave number (3m. In this analysis, the circumferential wave number
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will be referred to by an integer m that denotes the circumferential mode number,
i.e.,

(& + 2irm)0
Pm = ^ QG ' (6.3)

where QQ is the angular gap between the blades. For now, the radial behavior of
the unsteady pressure is still unknown. Hence, the behavior of the unsteady pressure
may be written in the form

p(r, 0, x, t) = n(f) exp[jm6 + jax + jut] (6.4)

where /j,(f) is some as yet undetermined function. Substituting this functional form
into Eq. (6.2) results in

Ida n
--£r dr r2

w
™C2

If a new variable a* is defined such that

*"=^-«2

(6.5)

(6.6)

then Eq. (6.5) may be written as

. = 0 (6.7)

Equation (6.7) is simply Bessel's Equation. The solution, therefore, is composed of
Bessel functions of order m, i.e.,

= AJm(a*r) (a*r) (6.8)

The constants A and B are determined by the boundary conditions on the radial
behavior of the unsteady pressure. Because the hub and tip are solid surfaces, the
flow tangency boundary condition requires that radial component of velocity on these
surfaces must be zero. From the radial momentum equation, then, the radial (or
normal) component of the pressure gradient at the hub and tip surfaces must be zero,
i.e.,

dp

and
dp
dr

= 0

= 0

(6.9)

(6.10)

Application of the boundary conditions results in a homogeneous system of equations
for the constants A and B. Cramer's rule implies that if the constants A and B are
not both zero, then

dJm / * \ d 1m i if \-^(a ftf) -jjr(a*rH)

dJ

= 0 (6.11)
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Figure 6.2: Typical radial mode shapes [Mmn for annular duct. Hub-to-tip ratio,
TH/TT = 0.5; solid line, n = 0; dashed line, n = 1; dotted line, n = 2. Left, Fourier
mode m = 1; center, Fourier mode m = 2; right, Fourier mode m = 8.

This transcendental equation has an infinite number of roots a* for every integer
TO. For simplicity, the roots will be ordered by magnitude and denoted by the index
n. Hence, the radial mode shape nmn(f) has n zeros in the interval r# < f <
Tf. The mode shapes are also orthogonal with respect to the weighting function f.
In addition, since Eq. (6.11) only determines the constants A and B to within an
arbitrary multiplicative factor, the constants may be chosen so that the radial mode
shapes are orthonormal with respect to the weighting function f, i.e.,

for all i ^ n, and

/:
[TT

JrH

f df = 0

f df = I

(6.12)

(6.13)

for all i = n.
Figure 6.2 shows some typical radial mode shapes fimn computed using this anal-

ysis. As noted above, each mode shape has n zeros between the hub and tip radii.
Now that the radial mode shape is known, the only remaining variable is the axial
wavenumber amn.

The axial wave number amn corresponding to the radial mode specified by a*mn
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may be determined from the roots of Eq. (6.11), and Eq. (6.6), so that

77171 /^2 77171 y\J. IT: J

In summary, if the steady flow relative to the frame of reference is zero, the behavior
of unsteady pressure waves in an annular duct may be determined by the temporal
frequency u, the circumferential mode number m, and the hub and tip radii, r// and
rT.

6.2 Calculation of Far-Field Unsteady Pressure

We wish to apply the sensitivity analysis procedure developed in this report to the
complete three-dimensional flowfield. At first glance, it would appear that one pos-
sible approach would be to simply solve the three-dimensional governing equations
of the fluid instead of the two-dimensional versions developed here. To obtain the
computational efficiency of the present method, however, the nominal steady and
unsteady flow equations must be solved using LU decomposition, i.e., the discretized
flow equations must be solved directly. Unfortunately, a direct solution of the three-
dimensional flow equations is not feasible on current computers. Hence, an alternative
approach to calculating the three-dimensional flowfield needs to be developed.

Because even iterative fully three-dimensional unsteady aerodynamic analyses of
cascades have only recently become available for use on modern workstation com-
puters, most cascade analyses have used a two-dimensional aerodynamic model. The
blades are analyzed in what is referred to as "strip-theory." In this approach, the un-
steady aerodynamic loads at a number of radial locations along the blade surface are
computed using a two-dimensional aerodynamic model. In the aeroelastic problem,
these aerodynamic loads are then integrated along the span to obtain modal forces.
In the aeroacoustic problem, the unsteady pressure at the far field p(r, x) may be
computed from these iaerodynamic loads using a Green's function approach, i.e.,

p(r ,x)= np(r0,xo)lG(r,x]ro,x0}dY (6.15)
Jr

where |p(rOi xo)I is the jump in pressure at the point (r0,z0) on the blade surface,
and G is the Green's function derived for a specific annular geometry and steady flow
condition [1, 58]. The Green's function may be considered an "influence coefficient"
relating the loads on the surface to the pressure in the far field. The Green's function
approach relies on a relatively idealized model, however. Typically, the model does
not include blade thickness or camber, and may only approximate the actual steady
loading on the blade.

The linearized potential analysis described in this report improves on the Green's
function approach by solving the governing equations of the steady and unsteady
flow using modern computational fluid dynamic techniques. Arbitrary blade shapes
may be analyzed, the actual steady blade loading is accounted for, and the far-field
pressure is computed with the rest of the unsteady flow solution.
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Although the strip theory approach for modeling quasi-three-dimensional effects is
a simple and straightforward method, it should be noted that in some cases the results
computed in this way may be misleading. In particular, Hall and Lorence [35] found
that real three-dimensional effects may be extremely important in the aeroelastic
behavior of fans and compressors with low hub-to-tip ratios.

With this in mind, the next step is to calculate the magnitudes of the actual
three-dimensional outgoing pressure waves in the duct using the two-dimensional
analysis developed in this report. Specifically, the two-dimensional unsteady potential
calculated at the far field will be matched with a three-dimensional analysis of the
surrounding duct.

6.3 Calculation of the Outgoing Pressure

As described earlier in this chapter, Tyler and Sofrin developed an analytical descrip-
tion of the small disturbance behavior of acoustic modes in annular ducts. However,
their analysis is limited to flows without mean flow swirl. For more general steady
flows, a more complicated model is required. For example, Kerrebrock [59] has de-
veloped an analytical model for certain cases of swirling flows. General analytical
solutions for flows in annular ducts, however, are not available. If the mean flow field
is axisymmetric, however, the shape of the eigenmodes in the circumferential direc-
tion will be Fourier modes. Hall, Lorence, and Clark [51] developed a procedure to
take advantage of this behavior in their formulation of fully three-dimensional non-
reflecting boundary conditions for the linearized Euler equations. Their method will
be adapted here to compute the magnitude of the actual three-dimensional outgoing
pressure waves using the unsteady potential computed from the analysis developed
in this report.

The modeling of the three-dimensional flowfield begins with the full unsteady
Euler equations in cylindrical coordinates expressed in the rotating frame of reference,
which may be written as

<9U 1 drH
(6.16)

Here x, 9, and r are the coordinates in the axial, circumferential, and radial directions.
Also, U is the vector of conservation flow variables, and F, G, and H are the flux
vectors, and S is a source term due to rotation. These terms are given by

U =

P

pu

pv

pw

e

pu

pv? +p
A A Apuv

puw

pul

G =

pv

pvu
A O , Av* +p

pvw
*pvl
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H =

pw

puw

pvw

w* +

pwl

p

S =

0

0

-pw(v/r - 2ft)

0

where p is the density, p is the pressure, e is the internal energy, and / is the rothalpy.
Here we have assumed that the coordinate system is rotating about the z-axis with
rotational speed fi. The pressure, p, and the rothalpy, / are given by

p = (7 - ft V

and
= _ + 2+

7 - 1 p 2 2

where r is the distance from the x-axis (r = vV2 + z<2}- Note that u, t), and w are now
the flow velocities in the axial, circumferential, and radial directions, respectively.

It is assumed that the mean flow, U, is axisymmetric and uniform in the axial
direction. The small disturbance behavior in the far field is then governed by

au ou U ~ (6.17)

where u is the perturbation flow and <9F/<9U, dG/dU, dH/dU, and dS/dU are
Jacobians based on the mean flowfield, U.

As discussed in Chapter 2, it is assumed that the shape of the eigenmodes in
the circumferential direction are Fourier modes. In addition, it is assumed that the
frequency of the unsteady excitation is u and the interblade phase angle is a. Using
these assumptions, the unsteady conservation variables may be expressed as the series

u ( x , 0 , r , < ) = wmnu (r) jamnx (6.18)
=—oo n=—oo

where (3m == (a + 2?rm) is the circumferential wave number of the roth Fourier mode,
QG is the angular gap between any two adjacent airfoils, wmn is a coefficient which
indicates how much of a given mode umn is contained in the solution u.

Substituting Eq. (6.18) into Eq. (6.17), and noting that each term in the series
must vanish gives

[I] umn + jaTi

1 d

'dF
UT d\3

ur

(6.19)
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Equation (6.19) is an eigenvalue problem for the mnth eigenvalue amn and associated
radial eigenvector umn(r). Because the hub and tip casings are solid surfaces, this
eigenvalue problem is solved subject to the condition that there be no radial flow on
these surfaces. Since no closed form solution exists for Eq. (6.19) (except for a few
special cases), the eigenmodes and eigenvalues must be found numerically. This may
be accomplished by discretizing Eq. (6.19) on a one-dimensional computational grid
which extends from the hub to the tip of the duct at the far-field boundary. The
derivatives in Eq. (6.19) may be approximated using finite difference operators. For
each Fourier mode m, the resulting eigenvalue problem will be of the form

[Mm]umn = amn[Nm]ur (6.20)

where [Mm] and [Nm] are sparse, complex, non-Hermitian matrices of size 5K x 5K
where K is the number of grid points in the radial direction.

To determine the direction the eigenmodes travel, we examine the wave numbers
of the eigenmodes. As described in the far-field boundary condition section of Chapter
2, waves that have complex wave numbers decay as they propagate and hence do not
contribute to the radiated noise. We only wish to examine the waves which propagate
unattenuated (i.e., the wave number is purely real). Recall from Chapter 2 that the
direction of propagation is determined by the group velocity, given by Eq. (2.96).
Because the propagating pressure waves have distinct eigenvalues, we may calculate
da/du using the expression [60]

(6.21)
JN,

where v^n and umn are the left and right eigenvectors of the mode. Hence, once the
eigenvalues and left and right eigenvectors of the individual modes are known, the
group velocity may be determined, which specifies the direction of propagation.

The next step is to determine the far-field values of the conservation variables from
the two-dimensional analysis. Because the steady flow is subsonic, there is a simple
linear relationship between the primitive and conservation variables, i.e., u = £[up],
where up is the vector of primitive variables and £ is a linear operator. Hence, for
simplicity, we write the primitive variables in terms of the unsteady potential,
that

so

up =

p
u

V

w

p

H f
- ~~c~2(

= d4>/dx

= d(f>/dy

= 0

= -R (jt-

(6.22)

Note that the radial component of the velocity, w, is zero because the potential has
been calculated using a two-dimensional aerodynamic model.
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Next, the unsteady conservation variables are Fourier transformed at each radial
station at the far field. The mth Fourier coefficient is given by

° m (6.23)
fc><3 JO

Equation (6.23) may be approximated numerically using the trapezoidal rule.
For each Fourier mode, in general the vector um is composed of both incoming

and outgoing eigenvectors, umn. We wish to modify the solution (now denoted u^d)
so that only the contribution due to the outgoing propagating modes are retained. To
accomplish this, we discretize Eq. (6.19) to obtain the eigenmode description of the
mth Fourier mode. Having computed these mode shapes, we expand u^d as a sum of
eigenvectors as in Eq. (6.18) Using the biorthogonality condition, the coefficient wmn

may be expressed as
vr fNju

mnl J71) -Wmn ~

Hence, to eliminate all but the outgoing propagating modes from the solution, we let

lnold
\^..new _ V^ ,. m n . m m _ [17 1.,o (K oc-\Um ~ 2_> Umn T ,„ , - - [AnJUm (6.25)

nprop ^mni^mj^-mn

In this form, Eq. (6.25) acts like a linear filter, removing all but the propagating
outgoing modes. This process is repeated for each Fourier mode. The modified
Fourier coefficients u^ew are then summed using Eq. (6.18) to form the new solution
u at the far-field boundary. The new solution may then be used to calculate the
sound pressure level (SPL), sound power level (PWL), or other measure of the sound
output from the blade row. The process may then be repeated for other multiples of
the blade passing frequency (BPF) to determine the complete tonal noise signature
of the blade row.

Equation (6.25) is an important result. Recall that the computation of the eigen-
analysis required only the duct geometry and the steady flow at the far field. Hence,
the matrix [Zm] is not dependent on the airfoil shape if the steady flow angle at the
far field does not change.

The calculation of the perturbation of the radiated tonal noise, then, is actually
quite straightforward. From Eq. (6.25), the perturbed solution at the far field may
be written as

/new try 1,,/oU \r* 1',,old I c. i)c\
Um = [*m]Um - [L m \U m (6.26)

where the primes refer to the perturbed quantities. If the duct geometry and steady
flow at the far field do not change (a very reasonable assumption), then [Zm]' is
zero, and there is simply a linear relationship between the perturbation of the solu-
tion calculated by the two-dimensional analysis and the perturbed three-dimensional
radiated noise.

In summary, because of the simplicity of the model, this method is an efficient
approach to more realistic three-dimensional modeling of the aeroacoustic behavior
of a blade row. Furthermore, the method is well-suited to the sensitivity analysis
developed in this report, and is consistent with three-dimensional analysis techniques
currently in use.



Chapter 7

Conclusions and Future Work

This chapter summarizes the important features of the present method, and includes
the important conclusions from the computed results. In addition, some suggestions
for future work in this area are offered.

7.1 Conclusions

This report has presented a new method for calculating the aeroacoustic and aeroelas-
tic response of a cascade to small changes in the airfoil or cascade geometry. Previous
methods have calculated the steady and unsteady aerodynamic behavior of a cascade
based on the airfoil shape and flow conditions. The present method addresses how
the steady and unsteady flowfields are dependent on the airfoil shape and cascade ge-
ometry. The information from this sensitivity analysis can be used to suggest design
changes for improved aeroacoustic and/or aeroelastic performance. In this report,
the procedure has been applied to the linearized potential equation. The method is
general in nature, however, and may be applied to other flow models.

The present method begins with the assumption that the nonlinear unsteady flow
may be split into a nonlinear steady (or mean) flow, and a small disturbance un-
steady flow that is harmonic in time. The steady flow is modeled by the steady form
of the full potential equation, which is discretized using a variational finite element
technique. The discretized steady equations are solved using Newton iteration with
LU decomposition at each iteration. Once the steady flow has been computed, the
unsteady flow is governed by a set of variable coefficient differential equations (the
discretized form of the linearized potential equation), where the coefficients are de-
pendent on the steady flow. The linearized potential equation is also discretized by
a variational finite element procedure. For flutter problems, the variational principle
incorporates a deforming grid to improve the accuracy of the unsteady solution. For
forced response problems, the variational principle includes the effect of incident vor-
tical gusts using rapid distortion theory. The discretized small disturbance equations
are solved using a single LU decomposition.

The sensitivities of the steady and unsteady flow to changes in design variables
are computed in a straightforward fashion by expanding the steady and unsteady flow
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equations in perturbation series and collecting terms of equal order. The resulting
equations for the sensitivities may be solved very efficiently by performing one forward
and one back substitution for each design variable using the LU factors obtained from
the nominal solutions.

To demonstrate the effectiveness of the procedure, representative examples of
aeroelastic and aeroacoustic problems in turbomachinery were presented. In the first
example, a cascade of compressor blades that was aeroelastically unstable in torsion
was redesigned to be aeroelastically stable. In the second example, a fan exit guide
vane was redesigned to significantly reduce the downstream acoustic response. In the
final example, a fan exit guide vane was redesigned to reduce the overall acoustic
response using only changes in the blade shape. In all three cases, the redesign
was accomplished while keeping the steady work done by the cascade and the airfoil
incidence angle unchanged.

Analysis of the computed results indicates that the sensitivity analysis gives excel-
lent predictions of the the actual redesigned airfoil response. In addition, it appears
that the effectiveness of the modifying the blade shape to improve unsteady aero-
dynamic performance increases with frequency, i.e., high frequency problems appear
to be more heavily dependent on the details of the airfoil shape. For aeroacoustic
problems, there appears to be a trade-off between upstream and downstream acoustic
radiation, indicating that it may be difficult to simultaneously reduce the upstream
and downstream radiated noise, at least in the present two-dimensional analysis. Fi-
nally, the sensitivity analysis was found to be computationally very efficient, with the
sensitivity analysis requiring a fraction of the time necessary for the nominal calcu-
lation, and orders of magnitude less time than a finite difference calculation would
require. Furthermore, the computational efficiency dramatically increases with the
size of the problem, so the savings will be even more dramatic for flow models with
increased sophistication.

7.2 Future Work

Although the results presented here are extremely encouraging, more work needs to
be done to fully realize the potential of this method as a design tool. This section
will discuss some possible avenues for future research.

7.2.1 Other Flow Models

Throughout this report, it was emphasized that the sensitivity analysis procedure
presented here is general in nature and may be applied to a wide variety of flow
models and discretization schemes. Hence, the first logical extension of the present
method is to apply it to a more sophisticated flow model.

Linearized Euler analyses of unsteady flow problems have become more common
in recent years [30, 31, 35]. Unlike the linearized potential formulation, the Euler
equations allow transonic problems including shocks to be modeled accurately by
including the effect of vorticity and entropy generation. One advantage of this ap-
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proach is that a sensitivity analysis using the linearized Euler equations could be used
to predict the movement of the shock location due to changes in the airfoil shape.

A more powerful application would be to apply the sensitivity analysis proce-
dure to the linearized Navier-Stokes equations. Recently, Clark and Hall [34] used
the linearized Navier-Stokes equations to examine stall flutter in cascades. Although
they used an iterative approach to calculate the steady and unsteady solutions, their
procedure could be used to generate the matrix entries for a direct solution method.
There are several advantages in using a Navier-Stokes-based approach. For example,
the steady losses due to blade shape changes can be quantified. This would allow the
designer to examine the actual trade-off between steady efficiency and unsteady per-
formance. Another example is that the sensitivity analysis could be used to examine
stall flutter problems. Specifically, the analysis could suggest design changes to help
prevent flow separation, or at least blade design changes which suppress stall flutter.
Although Navier-Stokes-based analyses are relatively immature, a sensitivity analysis
based on the Navier-Stokes equations would be a powerful design tool.

7.2.2 Multidisciplinary Optimization

As was demonstrated in Chapter 5, the aeroacoustic and aeroelastic design strategy
currently implemented involves simply using the results of the sensitivity analysis di-
rectly. A more sophisticated design strategy would be to consider finding the optimal
design of an airfoil for an operating condition. For example, a designer may wish
to minimize the radiated noise subject to the constraint that the desired turning is
achieved. Additional constraints may be necessary. For example, a constraint on the
surface pressure gradient may be imposed so that the flow does not separate. The
resulting optimal solution may be determined through the use of a nonlinear con-
strained minimization procedure [63]. The problem is nonlinear because the acoustic
behavior of the cascade is a nonlinear function of the blade shape. Efficient opti-
mization procedures require accurate estimates of the sensitivity of the cost function
being optimized to changes in the design variables. The previously described sensitiv-
ity analysis is well-suited to such a procedure because the sensitivities are calculated
accurately and efficiently.

Another advantage of an optimal design procedure is that it may be multidisci-
plinary. The sensitivity analysis procedure developed in this report only addresses
the aerodynamic behavior of the aeroelastic or aeroacoustic problem under consider-
ation. Similar analyses could be performed, for example, on the equations governing
the blade structure. In the optimization procedure, both the structural and aero-
dynamic sensitivities could be combined to create a multidisciplinary optimal design
procedure.

7.2.3 Multiple Blade Rows

In this report, the blade row being analyzed is assumed to be isolated in an infinitely
long duct. In reality, of course, these blade rows are not isolated, and in fact the blade
rows in a turbomachine are spaced together quite closely. As a result, it is necessary
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to model the blade row interaction to obtain a more complete model of the flowfield
within a turbomachine. Unfortunately, blade row interaction is a very complicated
problem to model because of the relative motion between blade rows. This relative
motion produces a shifting of the frequencies of the acoustic, vortical, and entropic
waves as they propagate from one blade row to the next. Furthermore, the blade
rows reflect these waves at a number of shifted frequencies and scattered interblade
phase angles, violating the assumption that the solution is harmonic in time with a
fixed interblade phase angle.

Recently, Hall and Silkowski [64] and Hanson [65] have developed a technique
to analyze blade row interaction by analyzing each blade row independently, and
computing the reflection and transmission coefficients for each pressure and vorticity
mode in the duct. A set of linear equations may then be constructed that couples
together these coefficients to determine the interaction. Although these methods so
far have used only flat-plate unsteady aerodynamics, in principle any linearized so-
lution procedure could be used to model the unsteady flowfield. Hence, the present
sensitivity analysis could be applied to this procedure. Changes to the airfoil shape
or cascade geometry will result in perturbations in the reflection and transmission co-
efficients associated with the blade row. Also, perturbations in the incoming pressure
and vorticity waves to a blade row will also affect its unsteady response. Once these
sensitivities are calculated, the coupling equations may be expanded in a perturbation
series. The first-order terms will determine the change in the blade row interaction
due to a change in the blade shape.

7.2.4 Three-Dimensional Problems

In Chapter 6, some aspects of the three-dimensionality of unsteady flows in tur-
bomachines were examined. A framework was then presented of how the present
two-dimensional analysis could be used to analyze three-dimensional problems. Al-
though the approach described in Chapter 6 is clearly better than simply ignoring
three-dimensional effects, it does not model fully the annular nature of the blade
row. To do this, a fully three-dimensional model is required. Unfortunately, most
three-dimensional unsteady aerodynamic models are extremely computationally ex-
pensive, due to the large number of computational nodes required. Potential methods
are generally not suitable for three-dimensional analyses because they are unable to
model the mean flow swirl produced by the rotating blades. As a result, the Euler
equations model the minimum amount of physics necessary to realistically examine
the three-dimensional unsteady aerodynamic problem. Three-dimensional linearized
analyses are relatively new, the first implementation being the Euler method of Hall
and Lorence [35].

Unfortunately, even if a linearized solver has been obtained, extending the pre-
vious two-dimensional approach to three dimensions is not a straightforward task.
In particular, LU factorization requires far too much computer time and computer
storage to be feasible. To overcome this problem, Hall and Lorence used an iterative
method to compute the steady and unsteady flowfields. This approach, however, is
not useful for the sensitivity analysis because the computation of the sensitivities
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would take as much time as the nominal calculation.
One possible approach to the three-dimensional sensitivity analysis would be to use

a preconditioned conjugate gradient (CG) method, such as GMRES [66]. Burgreen
and Baysal [67] have used such an approach for steady aerodynamic optimization
problems. In addition, to reduce the computational expense, they used the domain
decomposition scheme developed by Eleshaky and Baysal [68], where the computa-
tional domain is divided into subdomains, each of which contains internal cells and
boundary/interface cells. In this method, the subdomains are solved independently
after the influences of the boundary cells is calculated. Unfortunately, the GMRES
algorithm would still have to be applied for each right-hand side, which significantly
reduces the efficiency of the sensitivity analysis.

A solution method developed for solution of a system of linear equations with
multiple right-hand sides is required. Consider the following approach. Instead of
insisting on exactly factoring the large sparse matrices in the steady and unsteady
solution procedure, an approximate but accurate factorization based on the Lanczos
algorithm may be sufficient. The Lanczos algorithm is a recursive algorithm which
factors a matrix into a symmetric tridiagonal matrix and an orthonormal matrix con-
taining the so-called Lanczos vectors at each iteration [69]. In principle, the recursive
algorithm exactly factors the matrix after n iterations where n is the number of un-
knowns. However, unlike LU decomposition, the recursion may be stopped after only
m iterations where m <C n to obtain an approximate factorization of the matrix.
In this case, only m Lanczos vectors are retained, and the solution to the system of
equations may be obtained for considerably less computational effort than solving the
system exactly. Furthermore, the Lanczos vectors only depend on the matrix, not
the right-hand side, so once the Lanczos vectors have been computed, the solution for
multiple right-hand sides may be obtained for little additional computational effort.

The proposed algorithm is similar in many respects to the popular GMRES algo-
rithm. In fact, the conjugate gradient algorithm may be derived from the Lanczos
algorithm. One of the disadvantages of the conjugate gradient method, as noted
earlier, is that it is a "one-shot" method. For each right hand side, the GMRES
algorithm must be restarted. The Lanczos approach, on the other hand, retains the
approximately factored matrix for reuse. This approach has the potential to extend
the encouraging results presented in this report to three dimensions.



Appendix A

Nomenclature

Roman

[A], [B], [C] Steady block matrices
[a],[b],[c] Unsteady block matrices

[a], [b], [c] Unsteady block matrices in periodic region

[a], [b], [c] Unsteady block matrices in wake region
-(0|V*|/0n)i>

C Speed of sound
c Blade chord
GI , c2 Coefficients in Goldstein rotational velocity
[D] Matrix operator for </>£>
d Vector of Fourier coefficients
E Steady force vector
e Unsteady force vector
[FI] Discrete Fourier transform matrix in far field
[F2] Filter and propagation matrix in far field
[F3] Discrete inverse Fourier transform matrix in far field
F Fractional arc length array
f Vector of grid motion
/ x-coordinate of grid motion
G Blade-to-blade gap
GT Blade-to-blade gap in rotated coordinate system
g ^-coordinate of grid motion
H y-computational coordinate for grid generation
[I] Identity matrix
/ Number of computational nodes in axial direction
[I] Modified identity matrix for periodic boundary conditions
[J] Jacobian of coordinate transformation

[J] [J]T[J]-ffl
J Number of computational nodes in circumferential direction
Jm Bessel function of the first kind
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J
K Steady stiffness matrix
K\, KI "Wave numbers" in Goldstein rotational velocity
k Unsteady stiffness matrix
kp Penalty number
L Grid motion distribution array
M Vector of grid equations
M Mach number
m Circumferential mode number
N Vector of steady flow equations
[NJ Row vector of interpolation functions
NR Number of rotor blades
Ny Number of stator vanes
n Unit normal to surface
n Normal direction
P Steady pressure
p Unsteady pressure
Q Steady prescribed mass flux
q Unsteady prescribed mass flux
R Steady density
RU Universal gas constant
r Wake displacement
r* Radial coordinate in three-dimensional analysis
TH Hub radius
TT Tip radius
S Arc length of points in airfoil definition
s Unit tangent to surface
s Tangential dirction
Sf Entropy of fluid
[T] Transition matrix in far-field analysis
Tf Temperature of fluid
t Time
U Steady velocity in x-direction
V Steady velocity in y-direction
VT Steady free stream velocity in rotated coordinate system
Vg Group velocity
v Velocity
VG Goldstein rotational velocity
vfi Rotational velocity
[W] Global matrix of discretized unsteady flow equations
X z-component of points in airfoil definition
x Vector of computational grid coordinates
x First physical coordinate
XT Rotated x-coordinate for far-field analysis
x* Axial coordinate in three-dimensional analysis
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Y i/-component of points in airfoil definition
Ym Bessel function of the second kind
y Second physical coordinate
j/r Rotated ^-coordinate for far-field analysis
Z Vector of cascade geometry definition
2 Coefficient of propagation in far field

Greek

a, /3,-y, 8 Coefficients of grid generation equations
a Axial wave number
ctr Axial wave number in rotated coordinate system
ap Axial wave number of 4>P

P Circumferential wave number
/?r Circumferential wave number in rotated coordinate system
ftp Circumferential wave number of <pp

F Surface in variational principle
7 Ratio of specific heats Cp/Cv
A Drift function
8 Variational symbol
£ Coefficient of smoothing in wake
77 y computational coordinate
0 Stagger angle
QG Angular gap in three-dimensional analysis
0 Angle of rotation for discontinuous potential analysis
9* Circumferential coordinate in three-dimensional analysis
K Blade number
A Period in variational principle
E ^-computational coordinate for grid generation
EB Aerodynamic damping due to plunging vibration
EX Aerodynamic damping due to torsional vibration
£ x-computational coordinate
II Variational functional
TT cos-1(—1)
p Density
E Domain in variational principle
a Interblade phase angle
r t-computational coordinate
$ Vector of nodal values of $
$ Steady potential

$ Coefficient of potential in rapid distortion theory
4> Vector of nodal values of <f>
cf)H Homogeneous part of vector of nodal values of <j>
(j) Particular part of vector of nodal values of $
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0 Reduced form of <f> in periodic boundary conditions

</> Form of 4> in wake boundary conditions
(/> Unsteady potential
<j) Complex conjugate of (f>
<j> Potential in rapid distortion theory
<j)u Unsteady potential on upper surface of comp. domain
<f>* Unsteady potential on lower surface of comp. domain
<f>c Continuous part of far-field potential
<f>d Discontinuous part of far-field potential
4>'d Discontinuous part of far-field potential in rotated sys.
\1/ Stream function
\I/o Stream function value on stagnation streamline
r/> Distance in streamwise direction
fi Wheel speed of rotor in three-dimensional analysis
fi_oo Inlet flow angle
fioo Exit flow angle
u> Frequency

Script
A Constant in stagnation point analysis
B Constant in rapid distortion theory analysis
C Constant in Bernoulli's equation
T>, £ Coefficients in discontinuous far field analysis
P Grid spacing function for E grid generation equation
Q Grid spacing function for H grid generation equation '

Superscripts
x z-grid equation
y y-grid equation

Subscripts
—oo Upstream far field
co Downstream far field
1 Associated with grid i-station
j Associated with grid ./-station
0 Reference value
T Total or stagnation quantity



Appendix B

Sensitivity of the NACA Modified
Four-Digit Airfoil Definition

As an example of how airfoil shapes and their perturbations are calculated, the NACA
modified four-digit series of airfoils will be examined [61]. The NACA four-digit
definition allows the specification of five variables to determine the airfoil shape: the
magnitude of maximum thickness, mt, the magnitude of the maximum camber, mc,
the chordwise location of the maximum thickness, £t, the chordwise location of the
maximum camber, £c, and the leading edge radius, rt.

The thickness distribution is defined by the following two equations:

a\x + a2x2 + a3x
3 (B.I)

ahead of the location of maximum thickness, and

±yt = do + ̂ (1 - x) + d2(l - z)2 + d3(l - xf (B.2)

aft of the maximum thickness location, where lengths have been nondimensionalized
by the blade chord, c. The positive sign of yt corresponds to the upper surface of the
airfoil, while the negative sign refers to the lower surface.

The four coefficients d0, di, d2> and d3 are determined from four boundary condi-
tions. The first is that the thickness at the maximum thickness location is one-half
the magnitude of the maximum thickness. Second, the thickness at the trailing edge
is zero. Third, the slope of the thickness distribution at the maximum thickness lo-
cation is zero. Fourth, the slope of the thickness distribution at the trailing edge is
specified, so that the airfoil has a finite wedge angle at the trailing edge. The specified
slope may be determined from the following curve fit:

dyt
dx

= -mt (0.775 + 2.51667x - 13.625z
2 + 35.8333x3 - 12.5z4) (B.3)

TE

where TE refers to the trailing edge of the airfoil.
The four coefficients a0, ai, 02, and 03 are also determined from four boundary

conditions. First, as before, the magnitude of the thickness at the maximum thickness
location is specified. Second, the slope of the thickness distribution at the maximum
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thickness location is zero. The third condition is that the curvature (or second deriva-
tive) of the thickness distribution at the maximum thickness location is the same as
that computed from the aft coefficients. Fourth, the leading edge radius is speci-
fied, i.e., the thickness at the leading edge radius location is the leading edge radius
(yt — x)- According to the definition, the leading edge radius is

n = 1.1019 (B.4)

where / is the first digit following the dash in the designation and the value of / does
not exceed 8.

For each set of coefficients, a linear matrix equation may be constructed. The
solution of these two equations results in the coefficients. Functionally, it is clear that

) (B.5)

and
, r t) (B.6)

where d and a are vectors containing the defining coefficients.
The specification of the mean line is considerably more straightforward. The mean

line is defined by two equations:

ym = ̂  (24x - x2) (B.7)
*-c

ahead of the maximum camber location, and

aft of the maximum camber location. Note that the shape of the mean line is simply
two parabolas connected together with Cl continuity.

The actual airfoil definition is the superposition of the mean line and the thickness
distribution, i.e.,

T/AIR = y m ± y t (B.9)

where the surface is determined by the sign of yt. In practice, the airfoil definition
points are calculated at some finite number of locations, N. This set of (x, y] locations
is then rotated through the stagger angle, 0, about a specified rotation point (x r ,y r),
so that

Xi = (a AIR,- - xr) cos 0 - (yAiR; - yr) sin 0

•1 = 1 ,2 , . . . ,^" (B.10)

Yi - (a: AIR; - xr) sin 0 + (yAlR; - 2/r) cos 0

where Xi and Yi are the airfoil defining shape points discussed in Chapter 3. The arc
length, Si, is then computed at each point, and the X and Y locations are splined
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as a function of S. The X and Y locations may be used to form the airfoil shape
portion of the vector Z in the grid and steady flow equations, Eqs. (3.8) and (3.9).

Now that the airfoil definition and spline generation procedure has been explained,
the perturbation of the airfoil defining points, Z', may be computed. Consider the
effect of a small change in the magnitude of the airfoil camber, m'c. The perturbation
of the unrotated points defining the airfoil shape is

'

ahead of the maximum camber location, and

c - (B.ll)

AIR = - [(1 - 24) + 24* - z

aft of the maximum camber location. Because the z-locations of the defining points
do not change, x'MR is zero.

In general, then, the perturbation of the y-locations of the defining points may be
written as:

dym , dym , ( dyt , dyt ,-m + £ ±

This perturbation at each point is then rotated through the stagger angle, so that

X- = (xAiRi - x'r) cos 0 -

(B.14)

— (x AIR. - xr)Q' sin 0 + (J/AIR; - 2/r)0' cos 0

Y!= (xtjsk - <) sin 0 + (yAm- - y'r) cos 0

(B.15)

— zr)0' cos 0 - (j/AiRi - yr)Q' sin 0

where 0' is the perturbation in the stagger angle, and x'r and y'T are the perturbations
in the x- and y-location of the rotation point, which are included here for complete-
ness. The perturbation in the arc length at each point, 5"', may also be computed.
The perturbations are then cubic splined as a function of arc length.

In summary, then, this appendix has shown how the vector of defining points
that form part of the vector Z could be calculated for an actual airfoil shape. The
perturbation in these points, Z', due to small changes in airfoil defining parameters
may be calculated by perturbing the analytical expressions that define the airfoil.
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