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Project Conclusions

Research results of this grant (NAG-1-1397) entitled ROBUST STABILITY OF
SECOND-ORDER SYSTEMS sponsored by NASA Langley Research Center are included
in the following four papers:

1. "Controller Designs for Positive Real Second-Order Systems," Proceedings of 1st
International Conf. on Motion and Vibration Control, Yokohama, September 1992.

2. "A Robust Controller for Second-Order Systems using Acceleration Measurements,"
Proceedings of AIAA Guidance, Navigation and Control Conference, Monterey, August
1993.

3. "A Passivity Based Controller for Free Base Manipulator,” Proceedings of AIAA
Guidance, Navigation and Control Conference, Monterey, August 1993.

4. "Nonlinear Control of Space Manipulators with Model Uncertainty," Proceedings of
ATAA Guidance, Navigation and Control Conference, Scottsdale, August 1994.

The four papers have been published in the conference proceedings as indicated
above and they are either in the review process or to be submitted for technical journal
publication. The objectives of this project have been demonstrated in the four papers.

In the paper "Controller Designs for Positive Real Second-Order Systems,"
necessary and sufficient conditions for positive realness of second-order SISO systems
have been derived. For the MIMO case, two designs using different choices of output
variables have been presented for the system without velocity output. And a possible
control method for such systems has been examined, illustrated by the simple example.

The paper "A Robust Controller for Second-Order Systems using Acceleration
Measurements” presented an interesting practical control method. Only acceleration at
certain locations of the system needs to be measured by using common available
accelerometers. The design is model independent and no knowledge of the constants of the
dynamic system is required. Any strictly positive real controller can be used. Thus it is
possible to choose one that yields a satisfactory transient response.

In the paper "A Passivity Based Controller for Free Base Manipulator," a control
method based on feedback linearization and passivity concepts that was proposed earlier for
fixed base robots is modified and extended to the case of space robots. The control law
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results in asymptotic joint angle tracking in the face of bounded uncertainties. For the first
time, closed-loop simulation results are presented using this control method. For the one
link and two link manipulator examples illustrated in the paper, the control method shows
promising results. Specifically, it was shown that significant simplifications to the
nominally complex feedback linearization controller are possible when the proposed robust
control method is used for synthesis.

In the paper "Nonlinear Control of Space Manipulators with Model Uncertainty," a
nonlinear dynamic model was obtained for space manipulators with uncontrolled base. A
robust control method based on feedback linearization and passivity concepts was proposed
for space manipulators. The method is applicable to fixed base manipulators as well. The
control law results in asymptotic joint angle tracking in the face of bounded uncertainties
such as those due to imprecise friction modeling.

Further research is needed to extend the robust stability results of this study to a
commercial application. Structure damage is a crucial problem of public safety. The robust
stability feature ensures that an installation of active controllers will always improve the
safety and performance. If the controllers of this study are validated by experiments,
transfer of this robust stability technology to commercial sectors will be accelerated.
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CONTROLLER DESIGNS FOR POSITIVE REAL SECOND-ORDER SYSTEMS

C.-H. Chuang, Olivier Courouge, and J. N. Juang
Georgia Institute of Technology, Atlanxa GA 30332 USA.

ABSTRACT

It has been shown recently in {1, 2} how virtual passive ‘controllers can be designed for second-order dynamic systems to
achieve robust stability. The virtual controllers were visualized as systems made up of spring, mass and damping elements. In this
paper, 8 new approach emphasizing on the notion of positive realness to the same second-order dynamic systems is used.
Necessary and sufficient conditions for positive realness are presented for scalar spring-mass-dashpot systems. For multi-input
multi-output systems, we show how a mass-spring-dashpot system can be made positive real by properly choosing its output
variables. In particular, sufficient conditions are shown for the system without output velocity. Furthermore, if velocity cannot be
measured then the system parameters must be precise to keep the system positive real. In practice, sysiem parameters are not
always constant and cannot be measured precisely. Therefore, in order to be useful positive real systems must be robust to some
degrees. This can be achieved with the design presented in this paper.

KEY WORDS: positive real, second-order system, multivariable system, controller design
1. INTRODUCTION

The concept of positive realness was first used in network theory. A function that can realized as the driving point
impedance of a passive nctwork is called positive real (PR). In general, 8 linear system is called positive real (PR) when it is
possible o define an energy term that is not generated within the system. PR systems have many important applications in control
theory; however, much attention has been paid in the literature for finding criteria for positive realness of linear systems (see [3]).
PR systems have also been used for shape control of large flexible structures. Nevertheless, positive realness of multivariable
second-order systems was never studied in details. For most PR designs in the literature, the output of the plant is usually a vector
of velocity sensors collocated with a set of points actuators.

In this paper, we use a more general approach for PR systems and present several possible PR designs. First we review basic
definitions and theorems and clarify the physical meaning of positive realness. Then we find necessary and sufficient conditions for
positive realness of single-input single-output spring-mass-dashpot systems. For multi-input multi-output systems, the Kalman-
Yakubovitch Lemma is used to find sufficient conditions. The sufficient conditions state that given a spring-mass-dashpot system it
is possible to define an output variable which will make the system PR. Since certain variables of the system may not be always
measurable, we consider the positive realness under restrictions of available measurements. With uncertainty in the system
parameters the positive realness of a system without velocity output will not hold anymore. In this case we present a design method
using a feed-forward loop to achieve positive realness. The robustness of a general positive real second-order system can thus be
achieved by using this method. Finally, the design method is demonstrated in a simple example.

2. REVIEW OF DEFINITIONS AND THEOREMS
2.1 Positive Real Systems

Definition 1 [5): An nxn matrix is called positive real if it satisfies all the following conditions:
1. G(s) is real rational.
2. G(s) is analytic in Re(s)>0.
3. Poles of G(s) on the imaginary axis are simple md the residues of these poles are Hermitian and positive semi-
definite. .
4, G(o)+G*(jw) 2 0 for all real w.
The above definition does not have any physical interpretation. Another definition of PR systems is given in the time
f}?n;ml;‘ which uses the concept of passivity and allows a physical interpretation of positive realness. This definition is shown in
¢ following.
Definition 2 {5}: Let a lincar time-invariant system have the a minimum state space representation (A,B,C,D). Let u be an
mx] control vector, y be an mx1 observation vector, and x be an nx1 state vecior. Then the system is passive if and only if there

exist two functions §(x) and A(x,u) such that the scalar product of input with output can be expressed for all t 2 1, by

[ yTea=rtm, + aawa W

with A(x,u)20 for all x and u.

Remark 1: y' u is the external power input and - A(x,u) is the internal power generation. Equation (2) indicates that the
variation of stored energy is equal 1o the external energy input plus the internal energy generation. Since A(x,u) 2 0, the internal
power generation is always negative and so is the internal energy generation at any time 1. As a consequence, passive systems are
systems that do not generate energy. Nevertheless, the energy will not always have a physical interpretation. In the above
definition £(x) can be any function of x, and it may not have any obvious physical meaning.

The following theorem states a relationship between linear PR systems and passive sysiems.

Iheorem 1 (5): Consider a time-invariant linear system with transfer matrix G(s). G(s) is positive real if and only if the
system is passive.,

Hence positive real linear sysiems are linear systems for which the energy is not internally generated by the system. Positive
real matrices can also be characterized in the time domain by using the following Kalman-Yakubovich Lemma.
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TIheorem. 2. Kalman-Yakubovich (K-Y) Lemma [5): Let G(s) be an nxn real rational matrix, with G(eo)<ee. Let (A,B,C.D)
be a minimum realization of G(s). Then G(s) is positive real if and only if there exist real matrices P, Q, R and S such that:

PA+ATP=-Q, B™P+§T=C, D+D"=R )

Q s
whereP>0and | 20.
S R

2.2 Swrictly Positive Real Systems

Definition 3 [5].: An nxn matrix G(s) is sictly positive real (SPR) if there exists a positive number € such that H(s-¢) is
positive real.

A system with a strictly positive transfer matrix will be called SPR. In practice, SPR systems are systems that dissipate
energy. For such systems, the intemal energy generation is strictly negative whenever there exists a non-zero external energy input.
Therefore SPR systems are sometimes called dissipative systems. However, the concept of dissipativeness can also be applied 10
nonlinear systems. Hence SPR systems are dissipative, but the converse is not true. The two notions are equivalent only for the
linear time invariant case.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR POSITIVE REALNESS OF SECOND-ORDER SCALAR SYSTEMS

Here we derive necessary and sufficient conditions for the positive realness of scalar second-order scalar systems.
Theorem 3: A scalar second-order system described by

mi+ck+kx=u and y=h,X+h,X+h,x 3)
is PR if and only if

()b, 20,h,20,h, 20 and (ii)}ymh, - kb, |s ch, @)

Proof: The transfer function of the system in Eq.(3) is

h,s’+h,s+h,

G(s)= (5)
ms“+cs+k
Conditions 1 and 2 are satisfied. Conditions 3 and 4 are checked in the following. Rewrite Eq.(5):
Re[G(jw)] = {mh,0* + (-mhy + ch, - kh,)0? + kh, } / {(k - mw?)? + c?w?}
(6)

2 2
-{mh,[(oz-o-( mh s, kh.)] _omhy s b0 m‘},{(k_mz)z”zwz}
a L]

Re[G(jw)] approaches h,/m when w approaches infinity. Hence h,20. For w=0, we obtain hy20. Thus we have the following two
cases:
(a)h, 20,h, 20,and(-mh, +ch, ~kh,)20

(b)h, 20,h, 20,and(~mh, +ch, —kh,)<0 ™

For Case (a), Equation (6) is positive as seen from the first expression of (6). Note &ut since ch,2mhy+kh,, we obtain ch 20

which implies h,20. Furthermore, we have Jch, szh. + kh, . For Case (b), since the square term of the numerator can be made
equal 10 zero, we need to check the following inequality:

(-mh, +ch, - kh,)?
4mh

+kh, 20 (8)

that is (ymh, — kb, )? Sch, Smh, +kh,, From the left inequality we have ch,20, which implies h,20. Now taking the square
roots of the inequality yields

th, —\}kh,|s ¢h, S4mh, + kh, . ©)

Combining both cases, we have (i) and (ii) of (4). -

The poles of G are the solutions of the equation ms2+cs+k=0. Double imaginary poles are only possible if ¢=0 and k=0,
However, from (9) we have hy=0. Therefore, the zero pole is simple.’ As a conclusion, G has no double pole on the imaginary axis.
Now it remains (o show that the residues of the imaginary poles are real and positive. If k = 0, then the residue of the pole at zero
is h,/m, which is real and positive. If k#0, G(s) has some poles on the imaginary axis only when ¢=0. The poles are
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ij 7m and - Wk / m. The residue for the both poles is

mh j.‘,-lfnr h
Res= T3 =-2-F20 (10)
m (2mj /)

which is real and positive. Hence the theorem is proved.

4. SUFFICIENT CONDITIONS FOR POSITIVE REALNESS OF SECOND-ORDER MULTIVARIABLE SYSTEMS

In general, a second-order MIMO system can be made positive real by properly choosing the output variables. For the
system with velocity and displacement output, a sufficient condition of the positive realness is the collocation of the both outputs
with the controlier. Moreover, if only velocity output is available, the collocated system is still positive real. The velocity is an
important factor of making the system positive real. For example, if only displacement output is available then the system cannot
be made positive real. In some space applications, velocity is the most difficult measurement 1o obtain. Here we discuss condiuons
for which the system without velocity output can be made positive real.
4.1 Acceleration and Displacement Output

Consider a system represented by

Mx +Dx+Kx=Buandy=H,X + Hyx )

Assume rank(B)=m, and let L=B(BTB)'1. Furthermore, define H: =LH, and H" =LH ‘ and let P be the 2m x 2m matrix

e [H:TM H:’x]

. . 12
HM H]K 42

Theorem 4: If P20, then the system is positive real.
Proof: The input-output scalar product can be expressed as
yTu=y'L"Bu=(Ly)"(Bu) (13)
- Therefore,

yTu = (H)% + Hyx)T (Mx + Di + Kx)
= (Hi% + Hyx)T Dx + (H{% + Hjx)T (Mx + Kx)

- %%(iTH:TDi +xTHTDx)+ G xT) P (:) (14)

Therefore, we can define A(X,u) = (iT x) P (:) If P is positive semi-definite, then A(X,u) is positive for every X and every

u, and hence the system is positive real.

Remark 2: If rank(B)<m, a new input vector u of smaller dimension can be defined, and this input will be such that the new
matrix B will have rank m. Thus Theorem 4 can be applied in general cases.

The following theorem can be applied 10 make P positive semidefinite.

Theorem S: P is positive definite if and only if

B(B"B)'H,M™ 20and H, = H, MK (15)

Proof: Assume that P is positive semi-definite. Since M is nonsingular, there exists a positive real number k such thai the mauix

H) + XM is non-singular. For such a k assume that the matrix E =K - M(H + kM)~ ! (H: + kK) is not equal to zero. Then

there exists a vector x, such that Ex, is not zero. Define x)=-(H: +kM)-1(H; +kK)x2. As a consequence, if
T .

X=(x] x;)T. we have X P X=-k "Mxl + Kx4r=- k“E xz]r which is stricly negative. This is impossible. As a

consequence, E must be equal to zero , ie. K= M(H, + kM)"(H;+ kK). Multiplying through this equality by

(H;+ kM)M™" yields H,M'K = HY. Thes,



592
x - .
T x7) P[x;} (Mx, + Kx ) M7 H. (M, + Kx,) a6)

Since x; and x, can be chosen arbitrarily, another necessary condition is that the matrix M"H:'r be positive semidefinite.
Hence necessary conditions for positive semidefiniteness of P are

M7 HT 20and H; = HM™'K an
Those two conditions are clearly also sufficient conditions. Conditions (17) can be rewritten using the initial matrices:

B(B"B)'H M 20and H, = HM 'K (18)

Combining Theorems 4 and 5 leads to the following theorem.

Theorem 6: If conditions (18) are satisfied, then the system represented by Equations (11) is positive real.

Remark 3: The conditions stated in Theorem 6 are necessary and sufficient in the scalar case. They can be compared 10
conditions (4) with h,=0.

4.2 Displacement Output with Feed-Forward Loop

In Theorem 6 if no exact values of the matrices M and K are known, then the theorem cannot be implemented. In this case
the following theorem can be used instead.
Theorem 7: Assume that the system is represented by

Mi+Di+Kx=Buandy=H,x+Ju (19)

where K > 0, D > 0, and J is an m x m matrix. Then there exists a positive real number M such that the system is positive real
when

Hy=0a,B" and} =BB™B (20

with ap>7 and b2uj /2.

Proof: The idea here is that u is a function of Mx + Dx + Kx . Therefore u includes information on the velocity x and adding u to
the system output makes the system positive real. Furthermore, the input v is measurable in many applications. The system is
represented by the following equations:

{X=AX+ B,u
¢2)}

Y=CX+Du

0 I 0 Q sl
where A = = - ., B, =| _ ,C=|H, 0]and D=J.HmweusemeK-YLemma.Tomake[ |
[—M 'K -M ’D] 2 [M ‘n] [H, o] ls" &/
positive semi-definite, let us choose Q21 and R2SST. Let Py=0a;K+a3D, Py=a,M and Py=a3M. This yiclds
2a,K 0
Q‘[ 0 m,n-za,M] @2

Since K>0, there exists a §=§(K) such that a3>§ which implies Qy=2a3K21. For c3-0.3°>§. as D > O, there also exists a positive
number n4(a3,D,M) such that ay2ng which implies Qym209D-2a3M21.. Therefore Q21.. Now we want 10 have R =D+D725sT. Let

T -
§=CT-PB, s[H‘ “’B] 23)
-a,B

Let H = asBT. Then §'S = u:BTB. Therefore, we must have D+ D' 2 a,’ B'B. Select D= B B"B and ;3". such that

D+D' =28 B'B2alBB. This is satisfied whencver B 2 a? / 2. Finally P must be positive definite. Since M>0, we can
find a positive number ) (a3,.M,K.D) such that a;>n; which implies P>0. To finish the proof, let n=max(np.n,).

5. CONTROL OF POSITIVE REAL SECOND-ORDER SYSTEMS
Consider the following feedback control scheme for the plant.
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u 1 1 y
G >
Y2 u2
. C —
Fig. 1

It is easy to show that the closed-loop is positive real if G and C are positive real. Hence the closed-loop system is stable, but not
necessarily strictly stable. Its transfer matrix may have some poles on the imaginary axis. As a consequence, the output of the
system will not necessarily converge to zero when u=0. If the systems G and C are strictly positive real, the closed-loop system is
strictly positive real and therefore strictly stable. In this case y will go to zero when t geis large. Still this result is not very useful
in practise since it might not be possible 10 make the plant G stricily positive real in a real application. A very interesting theorem
stated in {4] is the following.

Iheorem 8 [4] : If in the feedback system of Fig. 1 G(s) and C(s) are square transfer matrices, then the closed-loop system is
asymptotically stable in the input/output sense if G is PR and if C is SPR.

Our control objective is to have lim x = 0 when u=0. With a cenain class of controllers, it can be proved that this objective is

L= o

achieved. This result is stated in the following theorem.

Theorem 9 : If the transfer matrix of the controller is constant and positive definite, then lim x = 0 when v=0.

1= -

Proof: The system is represented by the following equations:

(M +BCH,)x + (D+BCH )x +(K+BCH )x=Bu
y=Hx+Hx+Hx @9
Let
M+BCH,,D"'=D+BCH, and K’ =K + BCH, (25)
The representation of the plant with firsi-order dynamic equations is now
X=AX +Bu
y=CX+Du @26

[x 1 . -
where X=L’.‘ ,and A= e_j_.i- M will always be non-singular when the output of the sysiem 10 be

bR MY 1
-M K -M D
controlled is designed with the method in Section 4. Furthermore, this representation will be minimal for our applications. If u=0,
we have X = AX . Since the sysiem is stable, all the eigenvalues of A have swictly negative real parts. As a consequence,

lim X = 0. This means that lim x =0 and lim x =0.

=t o t o 1=

6. EXAMPLE
Consider spring-mass-dashpot system shown in Fig.2.

| g o -
n L >
k d u

—

X
Fig. 2
The system is governed by:
mk+di+kx=u 27

The parameters m, k and d are not known precisely. Assume that 2<sm<4, 4<d<6 and 1<k<3. We will design an output y that
makes the system positive real regardless of the uncenainty on its parameters. Theorem 7 can be used here, since m, d and k are
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always stricdy positive. First 2o,k 2 1 must be chosen. If a,2 1/ (2k_,) . then this condition will be satisfied for ke [1.3}.
Let ay=1/2.Next we wantto have a, d 2 (m+ 1)/2.1f a,2 (m,,, + 1)/(2d_,), then this condition will be satisfied

for me [2,4] and de [4,6]. Hence we select a,25/8. Now the other condition s

.

o k2alm?’-a.d,ie a,2(m?-2d)/(4k). This condition is satisfied if @,2 (ml,, ~2d_/(4k_). Since

(m2,,-2d_)/(4k )= —2— = 2, this condition is reduced 10 0922 Therefore, a general constraint on @y is a322. A possible

choice is ay=2. Finally a number B > u’z /2 must be chosen. B=2 is a possible choice. As a conclusion, the output of the

sysiem is y=2x+2u. The system is robustly positive real with this choice. Any constant controller will stabilize the state x of the
system.

7. CONCLUSIONS

In this paper, necessary and sufficient conditions for positive realness of second-order SISO sysiems have been derived. In
the MIMO case, two designs using different choices of output variables have been presented for the system without velocity output.
Finally a possible contro! method for such systems has been examined, iliustrated by the simple example.
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ABSTRACT

This paper presents a robust control design using strictly
positive realness for second-order dynamic systems. The
robust strictly positive real controller allows the system to
be stabilized with only acceleration measurements. An
important property of this design is that stabilization of the
system is independent of the system parameters. The control
design connects a virtual system to the given plant. The
combined system is positive real regardless of system
parameter uncertainty. Then any strictly positive real
controllers can be used to achieve robust stability. A spring-
mass system example and its computer simulations are
presented to demonstrate this controller design. Robust
perfarmance property of this design is also demonstrated in a
simple example.

1. INTRODUCTION

Positive real (PR) systems have many applications for
shape and vibration control of large flexible structures. In
most of those PR designs, the output of the plant is usually
assumed to include velocity, and the sensors are assume {0
be collocated with the actuators, In 1), position and velocity
feedback are used together to contro! large space structures,
and the controllers are strictly positive real. PR feedback
with velocity measurement is examined in (2] for control of
a flutter mode. [3) presents a robust multivariable control of
structures using a passive controller in which the velocity
sensors are collocated with the control actuators. Several
passive control designs using acceleration, velocity and
position measurements are presented in [4). [5] generalizes
the designs in {4] to handle nonlinear systems. The method
presented in [6] uses displacement sensors. Similarly, [7)
examines direct position plus velocity feedback. A
feedforward positive real design can be seen from [11).

Nevertheless, in some application areas, only
acceleration is directly measurable. Even though velocity and
position can be obtained by integrating the measured
acceleration, exact initial values of velocity and position are
needed to achieve asymptotic stability. The bias in
acceleration measurement can also decreases the integration
accuracy. In this study we develop a virtual system which is
connected to a strictly positive real (SPR) controller for

multivariable second-order system when only acceleration is
directly measurable. Although integration is carried out in
the virtual system, initial values of the the states of the
virtual system can be arbitrary and the closed-loop system is
asymptotically stable. Furthermore, the bias in acceleration
measurement can be scaled down by the system matrix of
the virtual system. Since any SPR controllers can be
connected to the virmal system, the controller design here is

different from an integral control.

In this paper, we review some definitions and a theorem
associated with dissipativeness and passivity.
Dissipativeness and passivity are then related to strictly
positive realness and positive realness. Using these
backgrounds we develop a virtual system to compute an
output which will make the combined system of the plant
with the virtual system positive real. The inputs to the
virtual system are only acceleration and the control force
applied to the plant. More important, the virtual system is
model independent, and thus the global system is robustly
positive real. Therefore an input/output controller can be
constructed by using any strictly positive real controllers.
When the stiffness matrix of the second-order system is
positive definite, we show that it is possible to stabilize the
displacement if the actuators are properly located. With this
design, the displacement is globally asymptotically stable.
A spring-mass example with three masses and no damping
is used to illustrate our design method. Robust performance

-is demonstrated for a spring-mass system with only one

mass and one spring. Computer simulations are also
presented.

2. PRELIMINARIES

The concept of dissipativeness describes an important
input-ouput property of dynamical systems. Consider a
system with input u and output y, where u is an mx1 vector
and y is a px1 vector. A supply rate for the system is
defined as follows.

Definition 1 [8): A supply rate is a real function of u
and y defined as

w(u,y)=y'Qy+2y"Su+u"Ru m

1. School of Aerospace Engineering, Assistant Professor, AIAA Senior Member
2. School of Aerospace Engineering, Graduate Research Assistant

3. Spacecraft

pacecraft Dynamics Branch, Principal Scientist, AIAA Fellow

Copyright ©1993 by the American Institute of Aeronautics and Astronautics, Inc. All n;hts reserved.
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where Q, S, and R are any constant real matrices with
dimensions pxp, pxm and mxm respectively.

Q and R are usually symmetric matrices, and w(u,y) is
often called the input energy into the system,
Dissipativeness is defined with respect to the supply rate
w(u,y) in the following definition.

Definition 2 [8): The system with input u and output y
is called dissipative with respéct to the supply rate w(u,y) if
for all locally integrable u(t) and all T2t,, we have

_[: w(t)dt20 @

where x(tg)=0 and where w(t)=w(u(t),y(t)) which is
evaluated along the trajectory of the system interested.

Eq.(2) means that an initially unexcited system can only
absorb energy as long as the system is dissipative. If the
supply rate represents the input energy into the system, then
Eq.(2) states that a system with no initially stored energy
transforms the input energy into either stored energy or
dissipated energy. Thus no energy can be generated from a
dissipative system. Note that the dissipative system defined
by (1) and (2) are not necessary the systems which
"dissipate” energy by a usual sense.

Paséivity is defined as a special case of dissipativeness
defined by (1) and (2).

Definition 3 [8]: A system is passive if and only if it is
dissipative with respect to the supply rate

w(u,y)=u"y ®

An algebraic condition for passivity can be found if the
system is represented by the state-space equations

x=f(x)+G(x)u @)
y=h(x)+J(x)u

where f(x) and h(x) are real vector functions of the state
vector x, with £(0)=0, h(0)=0, and G(x) and J(x) are real
matrix functions of x. These four functions are assumed to
be infinitely differentiable. We also assume that u and y
have the same dimension. The system is furthermore
assumed to be completely controllable. Theorem 1 provides
a test for the passivity of a system written in the form of

Eqg. (4).

Theorem 1 [9]): The system is passive if and only if there
exist real functions f(x), 1(x) and W(x) with ¢(x) continuous
and with

¢(x)20, VxeR® 6))

#0)=0 ©
such that

Q) Vem(x)=-17(x)i(x)
(ii) %G’(x)wxxkh(x)-WT<x)l<x> Y
(i) Jx)+IT(x)=WT(x)W(x), VxeR®

Moreover, if J (x) is & constant matrix, then W(x) may be
taken to be constant.

The function f(x) is generally not unique for a given
passive system. Nevertheless, the function ¢(x) has a
physical meaning which is shown in [9] that

2" uT(y(1)dt = OLX(T)} - 61x(t,)]
b T
+ j ‘.[l(x)+W(x)u]"[l(x)+W(x)u]dl ®

Eq.(8) may be interpreted as the conservation of energy

equation. 4 ¢(x) is a stored energy for the system. The left-
hand side integral of Eq. (8) corresponds to the input energy
to the dynamic system. The right-hand integral is
proportional to dissipated energy, and it is always non-
negative. As a consequence, Eq.(8) means that the energy
input is equal to the variation of stored energy plus the loss
of energy which is a positive function.

A linear system is passive if and only if its transfer
matrix is positive real [10]. Passivity can thus be seen as a
generalization of positive realness for nonlinear systems.
Since the systems investigated here are linear, we will
cquivalently use these two concepts for the rest of this
paper.

3. A VIRTUAL SYSTEM DESIGN

The multivariable system (Plant (P)) is described by
Mx+Di+Kx=Bu o)

where u is an mx1 control vector, x is an nx1 state vector,
M is an nxn symmetric positive definite matrix, D and K
are nxn symmetric positive semi-definite matrices, and B is
an nxm matrix. Let a virtual system (V) be defined by the
followmg equauon

X =Ax+Bu (10)
where L is a pxn matrix, B' is a pxm matrix, and x, is a

pXp vector. The following theorem allows us to compute an
output y that will make the global system (a combined
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system of the given plant and the virtual system) positive
real. Note that since A has pxn dimensions, the number of
state variables for the virtal system x; can be made smaller
than the number of the plant state variables x.

Theorem 2: Let Hy, A be chosen such that

2§,A=B*
T
B™T = 2H, an

where M, is 2 px p positive semi-definite matrix. If
y=H,x%, (12)
then the system with input u and output y is positive real.
This scheme is illustrated in Fig. 1

Acceleration

System y

Plant >
| 4%

@

Figure 1. A Virtual System

Proof: For this proof, it is useful to represent the system -

with a state-space representation. Let
XT=[x] x] x] x;1=[xT x" x7 ]} 13)

The equations describing the global system may be rewritten
as

X = f(X)+G(X '
{Y: h((x))-f-J((X)): a4

X,
-M'Dx,-M"Kx, 15
Xy
-AM*Dx,-AM7Kx,
0
G(X)= MolB (16)
AM'B+B

f(X)=

960

0
n(x)=| 9 an
Hvx4

IX)=0 19
Let a candidate for the function f(X) in Theorem 2 be

oK)= SATMx+ 21K x4 2 (%, = AN M, (%, - A%)
R as)

where M, is positive semi-definite. The sum of the first two

terms corresponds to the stored energy of the plant. The third
term is added to achieve a positive real design. The function
f(X) can be written using the state variables as

1

1
«X):Elex, + 5

1
x Kx, +5(x‘ - Ax,)™ M, (x, - Ax,)

(20)

f(X) is a positive function and f(0)=0. It must be checked
that there exists a function 1 (X) such that

VTo(X) £(X) = -1T(X)1(X) @1

This calculation is considerably simplified when we notice
that

Va0 = 20| @)
(L]
As a consequence we have
VIo(X)f(X)=2T(Mx+Kx)
+-;-(§.-Ai)7 M, (&, -Ai)+-;-(i. — AR M, (u=A %)
@3
When u = 0, the last two terms cancel out and therefore
VTo(X)f(X)=xT(Mx+K
(X I(X)=%x"(Mx+ X)._o 24)
Thus we finally have
VO(X)f(X)=-x"Dx = -x] Dx, 29

Since D is positive semi-definite, it is possible to find a
matrix R such that D=RTR. The above equality becomes

VXIX)=-Rx,) Rx)=-T"(IX) @6

where 1 (X)=Rx,. Thus equality (i) from Theorem 1 is
satisfied. Equality (iii) of Eq. (7) reduces to



JX)+IT(X)= W (X)W (X)=0 @7

The function W(X) is therefore equal to zero. Equality (ii) of
Eq. (7) becomes

h(X) =%G’(X)V¢(X) ] (28)

Since the first and third rows of G(x) are zero, only the
partial derivatives with respect to velocity are needed to
evaluate Eq. (28). Therefore, we have
2. xs M+(Ax;-x)TM, A
%::b, (29)
3;:= (X‘ -sz)T M‘

The function h(X) is such that

\T T
2 h(X) = (M-] B)T(-aﬁ_) + (A M'IB + B')T(—a-g-) (30)
ox, o,

Obvious simplifications yield
2h(X)=(B"-B"MJ A)x,+B™MTx, @n
h(X) is equal to H x4 if the following equations are satisfied

B"-B"MTA=0 (32
B"M! =2H,

Those equations can be rewritten as

2H A=BT 33)

BT MI =2H,
and the theorem is proved o

There are several possible ways to solve the above
system of equations. Given H, and B, we can solve for
some possible L, M, and B'. At the end of the calculation, it
must be checked that M, is positive semi-definite. Another
method consists of choosing B, L and a positive semi-
definite M, and then solving for possible B' and H,,. Note
that the choice of the virtual system in Eq. (10) is
independent of the plant parameter M, D, and K. This means
that the virtual system will make the global system positive
real regardiess the uncertainty in M, D, and K.

4. CHOICE OF A CONTROLLER
If the output of the global system is chosen according to

Theorem 2, then the global system is positive real. Thus the
closed-loop system is uniformly asymptotically stable with

zero input if the controller is strictly positive real [3]. That
is, for this case, we have

tim (H,%,)=0 (34)

Our next goal is to let x go to zero. Theorem 3 may be used
to achieve this goal.

Theorem 3: Assume that Theorem 2 is used to make the
global system PR. Furthermore assume that

() B"x=0and u=0implyx=0.
(ii) K is positive definite.

(iii) The system is connected to a SPR closed-loop
controlier.

Thea limx(t)=0.
t=bom

Fig.2 shows the control scheme for the plant (P) and
virtual system (V).

Acceleration
+ u
Plant System}{ Y
T e [ »w T
x A
u
SPR

Controller [

Figure 2. A SPR Controller for the plant and the Virtual
System

Theorem 3 allows us to design a robust controller for
Plant (P). No knowledge of the constant matrices M, D and
K is required. Furthermore, the only measurements needed
are acceleration and input. Acceleration may easily be
mecasured for many practical systems by using
accelerometers. The input u may be obtained by measuring
the output of the SPR controller.

The proof of Theorem 3 uses the following lemma.
Lemma I: Let €(t) be a function of time and let €(t) go to
zero as time increases. Then if x satisfies the differential
equation

Dx+Kx=¢ 39

where D is positive semi-definite and K is positive definite,
then x converges to zero.

Proof: Let m denote the rank of D. There exists an
invertible nxn matrix P such that
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D'=PDP! (€)]

)

Note that since D is positive semi-déﬁnite. the aero
cigenvalues appear on D*. P is an orthogonal matrix
consisting of the eigenvalues of D matrix. Therefore, D, is

an mxm positive definite matrix. Let K* be defined as
K'=PKP" (38)

K* may be written as

hd Ku K (39)
K= [sz xﬁ]

The dynamical equation can be written as

PDP' (Px)+PKP (Px)=Pe(t) (40)

Let y =Px and n(t)=Pe(t). The system is now described
by

D y+K'y=n(1) @1

Lety= (y')andﬂ (;).Eq.(u)isxeduced:o

{Kn N+ sz Ya=m, (1) @2)
Dp¥,+Ky Yy, +Kp y, =1, (1)

The first equation of (42) can be solved in terms of y 1-and
Eq. (45) reduces to

{ Y =_'K;;‘ 1’(;2 Yat I&? ! (Y]
Dypy,+(Kp-KyKy Kp)y, =n, (0 + Kz: " 711 )
@3)

Note that since K is positive definite, K, is invertible. Dy,

and (K3, - K3 K;;' K}, ) are positive definite matrices. Thus
y, may be considered as the output of a strictly stable

-system. The output of the strictly stable system converges

10 zer0. The parameter y, will therefore go to zero. The first
equality in Eq.(43) shows that y, also goes to zero.
Consequently, y converges to zero and so does x.

Proof of Theorem 3: Refer to Fig.2, (-u ) is the output
of the SPR controller. Since a SPR controller is always

strictly stable, when y goes to zero, u also goes to zero.
Furthermore, we have

2H,x.=2H,Ax+2H,B'u @44)

by multiplying Eq.(10) with 2H,. Since 2H,A=BT, this
equation may be rewritten as

B"x=2H, x.-2H,Bu “5)

2HyB'u goes to zero as u goes to zero. Furthermore, we
know that y=H_ X, converges to zero as time increases. -

Let x, denote the state of the SPR controller. Since the
controller is linear, the system can be described by

x.=Rx_ +Sy
y.=Tx, @6)

where R, S, and T are constant matrices. Therefore, the
global system becomes

M + Bx + Kx = —BTx,
y=(H,A)%-(HBT)x,
X.=Rx, +Sy @7

Further define x = [x'r Txly"I Eq. (47) is rewritten in
the form

% = Ax @8)
where
0 1 0 0
A= -MK -M'B -M'BT 0
| o 0 R S
0 HA -HBT 0

(49)

Since A is constant, the solution for y can be rewritten as

y= 2,0 M pi(t)
; (50)

where O; are complex constants and

p()= ) Bt
g' (D

Note that n is the number of dimension of matrix A. Since
Em y(t)=0, a, <0 for all i. Therefore,
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im 2 = m (4, + o) M, 0
+ a (a+ gl(t) =0
; i© at ) (52)

As a consequence, BT x goes to zero. The equations
describing the system are linear and consequently

continuous. Thus, if BT x and u go to zero, x goes to zero
according to assumption (i) in Theorem 3. The dynamics of
the closed-loop system is now

Di+Kx=Bu-Mx=¢(t) (53)
where £(t) vanishes as time increases. Using Lemma 1 we
conclude that x (t) goes to zero.

5. EXAMPLES

Two spring-mass systems will be used to demonstrate
the controller design.

The first example is a system with three masses, three
springs and no dashpots. The example is shown in Fig. 3.

x1 x2 x3
>
ml m2 E

k1 k2 k3

Figure 3. A Spring-Mass System

This system needs to be stabilized as it is not naturally
asymptotically stable. With no control and non-zero initial
conditions, the three masses oscillate since there is no
damping. The dynamic equations describing the system in
Fig.3 are

ml il+(kl + kz)xl "kz x: = I.ll

myxs—-k, X, +ky Xy =,
The matrices M, D and K are
- m, 0 O
0 0 m,
D=0 (56)
k, +k, -k 0
K=|-k, = k,+k, -k, G
6 ~k, k,

M and K are positive definite as long as none of the masses
and the spring constants is equal to zero. Several possible
controller designs can be used here. Although we select m=p
in the following example, m#p is allowed for this
controller design.

There are three control parameters here, A reasonable

choice is

100

B=/0 10 (58
0 01

and the control vector u is defined by u” =[u, u, ).
Obvious solutions to Eq.(11) are given by

A=l
=B
B'=AB

1
.-'):Im

(59)

where A is an arbitrary strictly positive real number. As a
consequence, the virtual state vector x, is generated by the

differential equation
in = i"’ X B u (m)

All the assumptions of Theorem 3 are satisfied. The vector x
may therefore be controlled with the help of any SPR
feedback controller. A simple choice is a constant controller,
that is a controller with a transfer matrix of the form k I,
where 1 is the identity matrix and k is a constant,

The following values are used in the simulation:

m=my=my=1 (61
k=1 k=2 k,=3 (62)

The initial conditions are arbitrarily chosen to be

x,(0)=9 ©3)
x3(0) = —4 ©

x,0)=5
%(0)=3

x,(0)=-2
%,(0)=5

For the vector x,, we choose the simple initial conditions
X. = 0 X = 0 (65)

-~

The constant A is selected to be 0.5. The gain of the
feedback controller is k =1. The three displacements of the
three masses are shown in Fig. 4. In the following figures,
xj is indicated by — xj is indicated by ... and x3 is
indicated by — — —.
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Figure 4 Displacements of xj, x2, and x3

The control goal is achieved since the three
displacements vanish with time. Nevertheless, this design
requires that a force be applied to each masses. It is possible
to reduce the number of actuators with the following control
designs.

Here only two forces are applied to the system. Thus
there are three possible choices, depending on what masses
the forces are applied. Let us assume

10
B=[0 1] (66)
00

This choice means that the forces are applied to the masses
m, and m;, only. The control vector u is isu” =[u;, u,).
The vector x, is now a vector with dimension 2. Eq.(11) has
the following solution

H =1, (1]

where A is an arbitrary strictly positive real number , and
where I denotes the 2x2 identity matrix. Thus x, can be

computed from the following differential equation.

964

id = x-l +l[ul] .
xa)] |x, u; (68)
. 1. .
and the output of the system is ¥ = KX.. In this example,
the number of the virtual states is Jess than the number of

the plant states.

A SPR controller must be chosen to control the system.
Here again, a constant controller is a possible choice. Its
transfer matrix is k I, where k is 2 positive constant.

It remains to ensure that B” x = 0 and u=0 imply x=0. If
B"x=0 and u=0, then the dynamical equations of the
system become

(k, +k,)x, +k,x, =0
-klz Xl f.'(klz + kz’)az - k, X, = 0 (69)

myxs—kyx, +k;x,=0

By differentiating the second equation and solving for xs, we
have

X3 =-—-§1i:+g&+—k-32§z (70)
2 3

Since X: and x, are both equal to zero, x; is also equal to
zero. Thus Eq. (69) is reduced to Kx = 0. Since K is positive
definite, this yields x = 0. Therefore, all the assumptions of
Theorem 3 are satisfied and we are now assured that x will
RO 10 2e70.

The closed-loop system is simulated with the same
parameter choice as before. The three displacements are
shown in Fig. 5. Here again the stabilization is achieved
since the three displacements vanish as time increases.



Figure 5 Displacements of x, x3 and x3

It is also possible to stabilize this system with a
different distribution of forces. For instance, two controllers
are applied to mass 2 and mass 3 or two controllers are
applied to mass 1 and mass 3. The results are all similar to
Fig. §.

Here we design a control system with only one actuator.
This actuator may be located on any of the three masses. Let
us first apply a force on mass 1, i.e. the matrix B is

B=[$J an
0

Eq.(11) in Theorem 2 has the following obvious solution

A=B"
1
H=3 (72)
B'=
1
M, ==
A

where A is an arbitrary strictly positive real number. The
state x, is calculated by integrating the differential equation

‘ xR+ o
s = X1+
A

(73)

1.
The output of the system is Y = -l-x‘ .

Here again a SPR controller is chosen to be constant. Its
transfer matrix is of the form G(s) = k, where k is any

strictly positive real number. With this choice x converges
10 zero0. .

It should be checked as before that BT x =0 and u=0

imply x=0. The procedure is unchanged and once again
those assumptions yield K x = 0, Since K is assumed to be
positive semi-definite, x must be equal to zero.

The simulation is run with the same choice of initial
conditions. The constant A is still equal to 0.5, and k is
equal to 1. The three displacements go to zero as expected
which can be seen in Fig. 6.

~

(-]
235238

d & &

o&
L

Time
Figure 6 Displacements of x1, x5, and x3

The force could be applied to mass 3. However, if we
choose to apply the force on mass 2, the design cannot be
completed. In this case,

B
B=l1
0 ™)

It can be checked that condition (i) of Theorem 3 is not
satisfied. Thus no controller design can be implemented with
the above choice.

To see the robust stability, let's study the example with
m=n=p=3 again. The system is now perturbed to m;=1.5,
my=2, m3=3, k=2, kp=1.5, and k3=3.5 while the controller
is kept the same as before. The simulation is shown in Fig.
7 which clearly indicates robust stability.
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Time
Figure 7 Displacements of xj, X2, and x3
The second system consists of one spring and one mass.
The system is described by
mi+kx=u
y=x a5

If a simple integration of the output acceleration is used for
the feedback control, it can be shown that

o do
lim = = [(0) - ¢(0)] -

where d is the feedback gain, x(0) is the true initial
velocity, and ¢(0) is the estimated initial velocity. Since
velocity is not measurable, c(0) is not equal to X(0).
Therefore, asymptotic stability is not achieved.

However, if a virtual system is used by selecting

A=1H, =+ B=1M, =1

2 an

The global system is robustly positive real. Using a simple
constant feedback with 2d as the gain leads to the following
closed-loop system

regardless of the initial velocity x(0). Therefore, the
asymptotic stability of this design is independent of the
initial velocity.

The performance of the controller can be obtained by
optimization. The real part of the closed-loop eigenvalues
can be minimized with respect to the feedback gain. For
m=1 and k=1, the optimal feedback gain d is calculated to be
d=0.52. Fig. 8 shows the response for the optimal feedback
gain d=0.52, and Fig. 9 shows the response for the feedback
gain d=2. It is clear that when d=0.52 the system performs
better than the system with d=2. The robust performance is
also demonstrated in Fig. 9 in which the mass and spring
constants are perturbed to m=1.5 and k=1.2.

2t J
2t ]
- . . . .
0 s 10 15 20 2s 30 3s ©
Time
Figure 8 Displacement for d=0.52

mi+kx=u
. X, =X+u
u= -dx. (78)
It can be shown that “ s 1015 2 0 3
Time
tim [ xdt - (2EDk(0)] =0
!i_.rg x(t)=0 ) Figure 9 Displacement for d=2
966



Figure 10 Displacement for m=1.5, k=1.2, and d=0.52

6. CONCLUSIONS

In this paper, a virtual system has been developed for
second-order systems with only acceleration output. The
combined system of the virtual system and the second-order
system is positive real which allows infinite uncertainty in
mass, spring constant, and damping coefficient. The states
of the virtual system are not necessary the same as the states
of the plant. The number of the virtual states can be made
smaller than the number of the plant states. Furthermore,
any strictly positive real controllers can be used to achieve
the asymptotic stability of the closed-loop system. This
design is particular of interest for practical applications since
only acceleration measurement is required. Asymptotic
stability can be achieved with infinite uncertainty in the
system parameters and a large set of SPR controllers can be
selected to optimize the performance. Two spring-mass
systems have been used to demonstrate the virtual systems
and controller designs. Extension to robust performance
along this line of research is possible since one of the
examples has been shown with some degree of robust
performance.
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Abstract

A feedback linearization technique is used in
conjunction with passivity concepts to design robust
controllers for free base robots. It is assumed that
bounded modeling uncertainties exist in the inertia
matrix and the vector representing the coriolis,
centripetal, and friction forces. Under these
assumptions, the controller guaraniees asymptotic
tracking of the joint variables. A Lagrangian approach
is used to develop a dynamic model for space robots.
Closed-loop simulation results are illustrated for a
simple case of a single link planar space manipulator
with freely floating base.

Introduction

The dynamics of the space manipulators differs
from that of the ground based manipulators since their
base, the spacecralft, is free to move. The movement of
the manipulator produces reaction forces and torques on
the base. Therefore the resulting motion of the
spacecraft has to be accounted for in the dynamic model
for the manipulator. However, it is shown in reference
[1] that a dynamic model for space robots developed by
taking into account the motion of its base is similar in
structure to dynamic models of fixed base manipulators.
For instance, the inertia matrix in each case is
symmetric and positive definite.

A few concepts have been proposed for joint
trajectory control and inertial end tip motion control of
space manipulators. Vafa and Dubowsky [2] developed
an analytical tool for space manipulators, known as the
virtual manipulator concept. The virtual manipulator is
an idealized kinematic chain connecting its base, the
virtual base, to any point on the real manipulator. This
point can be chosen to be the manipulator's end
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Postdoctoral Fellow, AIAA Member.

Prinicipal Scientist, ATAA Fellow.
“Copyright ©1993 by the American Institute
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effector, while the virtal base is located at the system
center of mass, which is fixed in inertial space. As the
real manipulator moves, the end of the virtual
manipulator remains coincident with the selected point
on the real manipulator. Additionally, it can be shown
that the change in orientation in the virtual
manipulator's joints is equal to the change in the
orientation of the real manipulator's joints. While these
features give the designer the ability to represent a free
floating space manipulator by a simpler system whose
base is fixed in inertial space, the associated
transformation depends on knowing the system
parameters exactly. Alexander and Cannon [3] showed
that the end tip of the space robot can be controlled by
solving the inverse dynamics that includes motion of
the base. Their method assumes the mass of the
spacecraft to be relatively large compared to that of the
manipulator ‘it carries, and also requires much
computational effort to determine the control input.
Note that, future systems are expected to have the
manipulator and spacecraft masses of the same order.
Umetani and Yoshida {4] proposed the generalized
Jacobian matrix that relates the end tip velocities to the
joint velocities by taking into account the motion of the
base. The control method presented in the above
reference is based on the concept of Resolved Motion
Rate Control. However, only the kinematic problem
was treated. Masutani et. al. [5) proposed a sensory
feedback control scheme based on an artificial potential
defined in the sensor coordinate frame. This scheme is
based on proportional feedback of errors in the end tip
position and orientation as well as feedback of joint
angular velocities.

In this paper a robust control scheme based on
feedback linearization and passivity concepts is
proposed for space robots. A similar control scheme
has been proposed earlier for fixed base robots [6]. The
extension to space robots is in the spirit of the [1],
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where it was proposed that due to the striking similarity
in the structure of the equations of motion of fixed and
free base robots; almost any control scheme used for
fixed base robots can be applied to free base robots.
The contro] scheme uses inverse dynamics; however, it
is robust in the face of bounded modeling uncertainties
which might be due to imprecise modeling and/or
intentional simplifications to the mode! based control
law in order to reduce computational effort. The
controller asymptotically tracks prescribed time varying
Jjoint angle trajectories whose acceleration is bounded in
the L2 space.

D ics of Space Manipulator S i
Attitde Control of the Base

The development of the equations of motion for
space robots presented here closely follows that given
in [5]. A space manipulator system in the satellite orbit
can be approximately considered to be floating in a
non-gravitational environment. As shown in Figure 1,
the manipulator and the base can be treated as a set of
n+1 rigid bodies connected through n joints. The
bodies are numbered from zero to n with the base being
0 and the end tip being n. Each joint is then numbered
accordingly from one to n. The angular displacements
of the joints can be represented by a joint vector,

q = [q; 9p...q,)7 )

The mass and inertia tensor of the ith body are denoted
by m; and 1j, and the inertia tensor is expressed in the
base frame coordinates.

Kinematics

A coordinate frame fixed to the orbit of the satellite
can be considered to be an inertial frame, denoted by .
In addition to Zj, another coordinatc frame ZR is
defined that is attached to the base with its origin
located at the base center of mass. The attitude of the
base itself is given by roll, pitch, and yaw angles. In the
sequel, all vectors are expressed in the base fixed
coordinate axes.

Let Vj and Q; be the linear and angular velocities
with respect to the inertial frame, and ; be the angular
velocity with respect 1o the base frame for the ith Link.
Then for the ith link

Vi=VB +vj + 0B x7j €)]
Qi =Qp + o @

where 1; is the position vector of the ith body with
respect to the base center of mass, and v, =f;,. VB and

Qg are the linear and angular velocities of the base with
respect to the inertial frame. v; and w; for each link can

be represented by the following forms
vi =Ju@)d 5)
o; =JA(9)9 (6)

where J1i(q) and JA (@) € R3*2 are the Jacobian
matrices for the ih link .

The position of the system center of mass with
respect to the base frame depends on the joint angles.

Given below are two measures related to the system
center of mass

)

®

Figure 1. A Free Base Space Robot.

Dynamics
The total kinetic energy of the space robot can be
written as
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B R . L

- 1 =T - axa
T-}‘q D(q)4, DeR ©)

where D is the inertia matrix of the system and is given

by
H, HoT'
- T T v w
D=H,-[H], ng][HT H, [ ](10)

It can be shown that D = DT > 0. Hg is the inertia
matrix corresponding to the fixed base manipulator

H, z[mJ Ju+Iklia] HoeR™ 1)

The second term on the right hand side of Equation (10)
arises due to the fact that the base of the space robot is
free. Since the working environment is non-
gravitational and no actuators generating external forces
are employed, the linear and angular momenta of the
whole system are conserved. Since the inertial frame is
fixed to the orbit, the whole system can be assumed to
be stationary at the initial state. Thus the above two
momenta are always zero for the whole system. Note
that it is implicitly implied that the satellite is a non-
_spinning body. Using the assumption of zero initial
" momenta the individual components comprising the
second term on the right hand side of Equation (10) can
be written as

H, =m],,; , H, eR* "(12)
n n
Ho=3 1 + Ym;[r;x]7[r;x), Ha eR¥™®  (13)
i=0 i=]
H,q=-m[r,x], H,qeR¥ (14)
H, = )n:milu. H, eR>™" Q15)

i=]

Hq, = i‘l{u wmilnxly}, Ho €R™ (16)
ix

where for any vector

f;
=1, a7
fs
0 -f, f,
[fX] L 3 f3 0 -fl (18)
and I3x3 is the 3x3 identity matrix.

Since there is no potential energy in non-
gravitational environment, the Lagrangian, A, is equal
to the kinetic energy

A=T T (19)
So the system dynamics are given by
d{oA) dA
dz(aq) % 20)

where T is an nx1 vector of input torques. Paralleling
the development for fixed base robots in [7], the
equations of motion for space robots can be written as,

D(q)j +h(q.q)=1 @n
where

h(q.9)=C(q.9)4 (22)

and the elements of the matrix C are given by

>3
xJ 2 =] aQ) aq; aqk
Base Motion
The conservation of linear and angular momenta

yields expressions for the base translational and angular
velocities

V] [H, Hg TH, 1.
[QB]-—'[HEQ Hg [Hﬂq]q @)

Using the above expressions, the evolution of the base
position and orientation with time can be determined as
follows

Xp | |CyCo CySeSe —SyCo CySeCy + SySe
Vb |=| SyCo SySeSe + CyCq SySeCq — CySe [VB(25)
z, ) CoSy CoCy

¢ 1 s,tan(@) c, tan(0)
8j={0 -s, [ (26)
V| [0 s45ec(8) c45ec(0)

where

" ¢y =cos(), sy msin() @7
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Control System Design

Assuming that the dynamics of the space robot are
described by Equation (21), where D and h are
completely known, the feedback linearization or inverse
dynamics technique [7] can be used to design
controllers for tracking prescribed command trajectories
for the joint angles. This can be accomplished by
letting

1=Du+h (28)
where u is the pseudo-control, i.e., it is the control input

to the linearized system. With the control law given by
Equation (28), the closed-loop system becomes

AR

-

A simple PD (Proportional-Derivative) type of control
law is chosen for the feedback linearized system

where

u=§44+K,(qs -4)+K;(q4-9q) @31

where K1 and K, are proportional and derivative gain
matrices, respectively. These matrices are usually
chosen to be diagonal in order to achieve decoupled
response among the joint angles. Substituting for u
from Equation (31) into Equation (29), one obtains

é=A.e (32)
where e=(ef el)T,e,=q,-q,e,=4,~-G¢ and
A, =A-BK. If K; > 0 and K2 > 0, the error

dynamics as given by Equation (32) are asymptotically
stable. The freedom in selecting the gain matrices can
be utilized to meet performance specifications for the
closed-loop system.

The preceding discussion assumes availability of
perfect knowledge about the system dynamics.
However, in practice, D and h are usually imprecisely
known due to modeling inaccuracies. Furthermore, D
and h may be 100 complex to be used for real-time
control implementation. In the following sub-section, &
control law that is robust for bounded uncertainties in D
and h is given. The control law results in closed-loop
asymptotic tracking.

The development in this section follows that given
in [6] very closely. In the presence of modeling
uncertainties, the control law is given as -

t=D.u+h, (33)

where D, and h are computed versions of D and h
respectively. Substituting for 1 and u from Equations
(33) and (31) into Equation (21) it can be shown that
the closed-loop system dynamics are given by
é=A_e+Bv (34)
where
v=Au+d 35)

and
A=(1-D7'D,), §=D7'(h-h,) (36)
The first step in the design proposed in [6] is to choose

the gain matrix K = [K; K3] and an output matrix F
such that the linear system given by

é=A_+Bv
37
y=Fe
_is SPR (Strictly Positive Real) [8]. This can be
achieved as follows.
Theorem 1 [6]). Let Kj and K be such that
Kl = diag[kh]; k“ > 0, i= l,...,n
K, = diaglk,;); ky; >0,i=1,...,n (38)

(k5)2.>ky;, i=1,..,n
then if F = K, the system described by Equation (37) is
SPR.

The proof is omitted here, the interested reader is
referred to [6]. Note that the conditions of the theorem
given in Equations (38) are extremely easy to satisfy.

With the linear system (37) being SPR, the
passivity theorem [9] can be used to design
asymptotically stable controllers as shown in the
following theorem. The theorem is very similar to that
given in [6], with the only difference being in the way
in which the uncertainty bound on the h -vector is
characterized. '
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Theorem 2. Let the following two inequalities hold

D<-1;l (t>0) (39)
[ -ho, < dJuly +d VT>0
(€20,d20)  (40)

Furthermore, let §, € L2. Thenif D, = al where

as> Sl @1)
) ¢

the closed-loop system is asymptotically stable.
Proof. The closed-loop system as given by Equation

(34) can be represented in block diagram form as shown
in Figure 2. It is first shown that the nonlinear block in

the feedback path is passive [9].
y [A.B.K] |_Ke
- SPR
v +

—v=— u v
v Au—6 T qd

Figure 2. Robust Feedback Linearization Using
Passivity Theorem.

Consider
I=[-uTvdt (T>0)
—uT(Au + §)dt

T T '
= (— | uTAudt) + (- | uT&n) (42)
0 0

Let the first and second integrals on the right hand side
be denoted by I and I; respectively. Then

Oty O}

T
I,=[uT @D -Nudt @3)
0
Noting that

D<%l = aD™—I>(ar-1)l @4)

one can obtain
I, 2 (ar- D (45)

On the other hand,
T
~1=[u'D(h-h)dt
0

slul o b - hc)IT (Holder s Inequality)
< Jul; (cful; +d) (46)

Hence
I12(ar-c- l)[[uﬁ- -dfuf; =f (IuIT) @n

It can be shown that if (ar - ¢ - 1) > 0, then

a2
f 2 -———V 20 48
(IUHT) 4(31'—(:"1) luuT ( )
Hence
T . a2
-u'vdt2-————— VT 4
£ ulvde2 oD >0 (49)

Thus a sufficient condition for the nonlinear block to be
passive is that a > (c + 1)/r. :

Additionally, the transfer function of the
feedforward block [A¢, B, K] is proper and has no poles
on the imaginary axis. Hence it has finite gain [10].
Since G, € L?, then using the passivity theorem [9],
one can conclude that the signals u, Ke, and v are
bounded. Moreover, since the feedforward block is
SPR, Ke(t) = K;e(t) + Kyep(1) goes to zero
asymptotically. This in turn implies that ¢, (t) and ex(t)
individually approach zero asymptotically [8].

The first condition of the theorem, given by
Equation (39), is easy to satisfy since D is upper
bounded. However, the second condition, given by
Equation '(40), might not be easy to verify in a
straightforward manner in al} applications.

Simulation Resul

As an example, results are illustrated for a single
link space robot shown in Figure 3. Equation (21)
describes the dynamics of this one degree of freedom
system. The system inertia, computed using Equation
(10), turns out to be
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D(q)=mP? +1, ":'l'[m'P,(Poc, +P)+LF  (50)

where
d=m'(P2+P? +2P,Pic;)+1,+],  (51)

and m’=mym, /(my +m,). Using Equations (22)
and (23), h is determined to be

m’P P,
h(Q1v41)="—dz—"si[m'Po(Po +Pc,)+ 1) )

[mPy(P,c, +Py)+ 1,147

In Equations (50) through (52),
¢, = cos(q; ),s; msin(q,).

End Tips

$

Figure 3. A Single Link Planar Space Robot.

It can be seen easily that as mg — e, and I —* e,

D-ompP?+1, h—0 (53)

. which represents the case of a fixed base manipulator.

Equauon (25) is used to determine the evolution of t.hc
base position with time

L1 (Link) 30 6.0 10 3.0

’

. m 1
xb = —'[Plsvl --{m'Pl (Pacl + Pl)+ Il} .
mg d

(P,s,, +Ps, )]d,
(4)

4

. m 1 -
Yo =—[‘chv1 + —{m?x(Pocl +P)+ ll} :
my d

(P‘c,, +P.c, )]c'h
where

Sy1 =sSin(y +q;), ¢y =cos(y +q,)  (55)

Finally, the base attitude dynamics is obtained using
Equation (26)

. 1 ;
Y= —E[m'Pl (Pocy +Py)+] ]‘h (56)

Next, a feedback controller is designed for the
space robot using the results of Theorems 1 and 2.
Closed-loop results are generated for a step command
of 1 radian to the joint angle. Note that in general, for
end tip motion control in the inertial space, the inverse
kinematics problem needs to be solved to generate a
command trajectory for the joint angle. Table 1 lists
physical parameters of the example robot used in
simulation. The base and link masses are of the same
order of magnitude.

Table 1. Physical Parameters of Example Robot.
Body p(meter) I(meter) m(kg) I(kg.m?)
0 (Base) 30 - 50 300

The feedback gains are chosen tobe ky = 0.4 and ko =
1.0. This choice of gains satisfies Equations (38) and in
case of no modeling uncentainty, yields a closed-loop
response without any overshoot. The fact that the
system center of mass should remain stationary in
inertial space is used to monitor numerical accuracy of
integration. Simulation results are shown for the case in
which there is no modeling uncertainty, and for two
other cases that involve differing degrees of uncertainty.
It is assumed that Equations (21) and (50) through (52)
represent the true robot; the uncertainty is introduced in
computing D and h. An upper bound for the system
inertia, needed for condition (39) of Theorem 2, is
given for this particular case by

=m’P} +], (57)

CR

a in Theorem 2 is assumed to be 1.1/r for both cases
involving uncertainty. The choice of he however, is
different for the two cases. In the first case, the
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following simplification to h is used for computing the
closed-loop control

b, =mPPsid, (58)

The second case corresponds to an even greater
simplification to h

b, =mP,P,q, (59)

Figures 4 through 7 show closed-loop results for

the nominal case and for the first case involving

uncertainty. ¢ = 0.01 was chosen to satisfy condition

(41) of Theorem 2. d was chosen to be 2.5. Figure 4
shows that asymptotic tracking in the joint angle is

: bllominal, = Unce:nainty

-
(7]

Joint and Base Angles (rad)

Time (seconds)

Figure 4. Joint and Base Angle Responses for the
Nominal Case and the First Case Involving
Uncertainty.

£
&
o : :
= H :
o : :
e
8 : ;
2 H 4 H
0 5 10 15 20
Time (seconds)

Figure 5. Joint Torque Input for the Nominal Case and

the First Case Involving Uncertainty.

achieved in the face of uncertainty. This is associated
with a slight performance degradation in the joint angle
response in the sense that it has an overshoot. Figure 5
shows that higher magnitudes of joint torque are
required for the case involving uncertainty. Figures'4
and 6 show that the base moves in reaction to link
motion; this is due to the conservation of linear and
angular momentum as discussed previously. However,
the joint angle still achieves the right commanded
value. Figure 7 shows that the choice of ¢ and d used in
this case satisfies condition (40) of Theorem 2.

0.2 : I:Iominal, — Unce;rtainty
g 135 1 ISP Sspes S xp ]
:g 1) SO O SO St -
B oo LN ]
LRPP "
03 i i i

10 15 20
Time (seconds)

Figure 6. Motion of the Basc Center of Mass for the
Nominal Case and the First Case Involving

Uncertainty.
3 1 1] T
o=
5
|5
2
2
g
£
8
=
: l l i i
0. 5 10 15 20
Time (seconds)

Figure 7. The Quantity cjul; +d-|D~ (h - h,)|_r for
the First Case Involving Uncertainty.
Figures 8 through 11 show closed-loop results for

the nominal case and the second case involving
uncertainty. For the second case, ¢ and d are chosen to
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be ¢ = 0.01 and d = 5.0. Trends similar 1o the previous
case are noticed here also. However, since the extent of
uncertainty is greater, there is more deviation in the
responses as compared to the previous case. This is
observed in Figures 8 through 10. Figure 11 confirms
that the choice of ¢ and d satisfies the requirements of
Theorem 2.

: Nominal, —- : Uncertainty

%} 1.5 _
e Q
8 b :
&0 ;
&
§ 0.5 O S - S ............... -
/R
'g 1)) SO S % ............... .
g v_
g 05 i i
0 5 10 15 20

Time (seconds)

Figure 8. Joint and Base Angle Responses for the
Nominal Case and the Second Case Involving
Uncertainty.

6 : Nomina], e Uncc'nainm

Joint Torque (N-m)

Time (seconds)

Figure 9. Joint Torque Input for the Nominal Case and
the Second Case Involving Uncentainty.

Conclusions
A control method based on feedback linearization
and passivity concepts that was proposed earlier for

fixed base robots is modified and extended to the case
of free base robots. The control law results in

0.4 : IjominaL;—- : Unce?nainty
E 020 PR S N xp
g
E
I U o _
5 P b
g N
m . N N

0.4 : - :

0 5 10 15 20

Time (seconds)

Figure 10.Motion of the Base Center of Mass for the
Nominal Case and the Second Case Involving

Uncertainty.

5 1 1) T
o<
& J

4 T S U  SU
:
3’ 3 T N OOV U S ORI VPPN —
8]
£ 2
8 r_ ........ —
£
: 1 1 n

0 5 10 15 20

Time (secpnds)

Figure 11. The Quantity cjul; +d - [D™(h - hc)L
for the Second Case Involving Uncertainty.

asympiotic joint angle tracking in the face of bounded
uncertainties. For the first time, closed-loop simulation
results are presented using this control method. For the
simple example illustrated in the paper, the control
method shows promising results.
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Abstract

For robotic manipulators, nonlinear control using
feedback linearization or inverse dynamics yields good
results in the absence of modeling uncertainty.
However, modeling uncertainties such as unknown joint
friction coefficients can give rise to undesirable
characteristics when these control systems are
implemented. In this work, it is shown how passivity
concepts can be used to supplement the feedback
linearization control design technique, in order to make
it robust with respect to bounded uncertain effects.
Results are obtained for space manipulators with freely
floating base; however, they are applicable to fixed base
manipulators as well. The controller guarantees
asymptotic tracking of the joint states. Closed-loop
simulation results are illustrated for a planar single link
space manipulator.

1. Introduction

The dynamics of space manipulators differs from
that of fixed base manipulators since their base is free to
move. The base could be either a spacecraft or a
satellite. The movement of manipulator arms produces
reaction forces and torques on the base. Therefore the
resulting motion of the base has to be accounted for in
the dynamic modeling of the manipulator. However,
Papadopoulos and Dubowsky! showed that a dynamic
model for space manipulators with a free base is similar
in structure to the dynamic model for fixed base
manipulators. An obvious similarity is that the inertia
matrix in each case is symmetric and positive definite.
In fact, the dynamic model for fixed base manipulators
can be viewed as a subset of the model for space
manipulators. In the past, a great deal of attention has
been paid by researchers in -the area of dynamic
modeling of space manipulators. Some interesting

Postdoctoral Fellow, AIAA Member.

Assistant Professor, ALAA Senior Member.

Principal Scientist, AIAA Fellow.
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notions have emerged from modeling studies, of
significant importance among which is the idea of
virtual manipulators2. On the other hand, little effort
has been made in the area of robust tracking control law
synthesis for space manipulators. A few concepts have
been proposed for joint trajectory control and inertial
end tip motion control of space manipulators.
Alexander and Cannon? showed that the end tip of a
space robot can be controlled by solving the inverse
dynamics that includes motion of the base. Their
method assumes the mass of the spacecraft to be
relatively large compared to that of the manipulator it
carries, and also requires much computational effort to
determine the control input. Note that some future
space systems are expected to have the manipulator and
spacecraft masses of the same order. Yoshida and
Umetani4 proposed the generalized Jacobian matrix that
relates the end tip velocities to the joint velocities by

. taking into account the motion of the base. However,

robustness of the control scheme with respect to
modeling uncertainties was not addressed.

A nonlinear controller based on feedback
linearization and passivity concepts was developed by
Chuang, Mittal, and JuangS. The feedback linearization
technique for nonlinear control system design has been
generally accepted to yield good results. However,
these type of controllers require full inversion of the
nonlinear system model in real-time. This
computational imposition can restrict and limit the
applicability of the technique. In Ref. §, it was shown
that if simplifications to the nonlinear model are made
in 8 manner such that the passivity of the closed-loop
system is preserved in a certain sense, the feedback
linearization technique retains it's asymptotic
stabilization properties.

In this paper, a nonlinear dynamic model for space
manipulators with uncontrolled base is first derived.
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The development of the expressions for linear and
angular momenta of the system closely follows that
given in Ref. 6; however, the form of the final equations
of motion is different. It is then shown how passivity
concepts can be used in conjunction with the feedback
linearization technique to design robust nonlinear
controllers for space manipulators. The proposed
control scheme can be used for fixed base manipulators
also. The control scheme uses inverse dynamics;
bowevez, it is robust in the face of bounded modeling
uncertainties which might arise due to a number of
factors including improper friction modeling. The
controller asymptotically tracks prescribed time varying
joint lngle trajectories whose acceleration is bounded in

the L2 gpace.

Fig. 1.

A Space Robot.

The development of a nonlinear dynamic model for
& space manipulator system whose base is uncontrolled
is discussed in this Section. A space manipulator
system in a satellite orbit can be approximately
considered to be floating in a mon-gravitational
environment. As shown in Figure 1, the manipulator
and the base can be treated as a set of n+1 rigid bodies
connected through n joints. The bodies are numbered

from zero to n with the base being 0 and the end tip
being n. Each joint is then numbered accordingly from
one to n. The angular displacements of the joints can be
represented by a joint vector,

a=[o a9, B

The mass and inertia tensor of the ith body are denoted
by m; and I;; and the inertia tensor is expressed in terms -
of the base frame coordinates.

2.1 Kinematics

A coordinate frame fixed to the orbit of the satellite
can be considered 10 be an inertial frame, denoted by X;.
In addition to Xj, snother coordinate frame Ip is
defined that is attached to the base with its origin
Jocated at the base center of mass. The attitude of the
base itself is given by roll, pitch, and yaw angles. Inthe
sequel, all vectors arc expressed in the base fixed
coordinate axes.

Let R; and r; be the position vectors of the center of
mass of the ith link with respect to frames Xj and Ig,
respectively. Then

Ri = Rn +71; ¢))]

where Rp is the position vector from the origin of the
frame X to the base center of mass. Let Vjand Q; be
the linear and angular velocities of the center of mass of
the i link with respect to frame Ij and v; and w; be the
linear and angular velocities of the same point with
respect to frame Zp. Then V; and Q0 can be written as

V=V +v; +0p x1, 3)
Q=0 +0, O]

VB and QB are the linear and angular velocities of the
base center of mass with respect to frame Xj. Note that
for any space manipulator, v; and w; for each link can
be represented by the following forms

v; =J1:(q)4 %)
o; =J,(9)9 ©

where JL,(q) and JA Q) € R3’“' are the Jacobian
matrices for the ith link.

The position of the system center of mass with
respect (0 the base frame depends on the joint angles.
Given below are two measures related to the system
center of mass.

'ﬂ‘g imi (7)

i=0
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i m;r;(q)
(Q)= =0 . ®)

m,

22 Lincar and Angular Momenta

The linear momentum P and the angular
momentum L of the whole system are defined as
follows ‘

P= i4}:0"1ivi ®)
L= iolliﬂi + miRi XV;] (10)
i=

Substituting Equations (2) through (8) into Equations
(9) and (10) yields

P= va‘ + Hvonn + quq an
L=HlgVp +HoQp +Hg G+Rg xP (12)
where
H, =m_],,,. H, €R™ 13)
Hg=-m/[r x]}, Hg eR™ (14)
n
Ho=YmJy, HgeR™ as)

i=]

T
Hp= ioli + imi[ri x] [r;x], Ho eR™  (16)
i=0 =l

Ho, = 'i‘{xgAi +m;[r;xPu). Ho, €R™ (7)

For any vector f=[f; f, f,] , [fx] is defined as

0 -fy f,
[f X] = f3 0 -fl B
-fz fl 0

Since the working environment is non-gravitational
and no actuators generating external forces are
employed, the linear and angular momenta of the whole
system are conserved. Since the inertial frame is fixed
to the orbit, the entire system can be assumed to be
stationary with respect 1o the inertial frame at the initial
state. Thus the above two momenta are always zero for
the system. Note that it is implicitly implied that the
satellite is a non-spinning body. By using the fact that
the linear and angular momenta are zero, Equations (11)
and (12) result in

Vs =~ H;![H,of5 + Hyqd] (18)

0y =-[Ho-HLHHa] -
[Hm - HIDH;1qu ]q ()

23
The total kinetic energy of the space robot can be
written as

T=2i(mVIvi+0fL0) @

i=0

Using Equations (3) through (8) and (13) through (17)
the kinetic energy can be expressed as

| H, Hgq H.[Vs
'r=-2-[v'£ 0] q"IH. Hg Hg || @D
T T ;
H, HL H, ¢

where Hq is the inertia matrix corresponding to the
fixed base manipulator

< T T
Ho=Y[mIlJu+Iklda) HoeR™ (@2
i=}

Equation (21) for thc system kinetic energy can be
simplified as follows. Substituting for Vg from
Equation (18) leads to

'r=-;-n,TMQ, + QlZ4 + %q’wq 23)
where

M=Hg-HHHq MeR™  (24)

Z=Hg -HH'H,,, ZeR*" (25)
W=H_-HLH;'H,, WeR™ (26)

Further, substituting for Qp from Equation (19), one
obtains an expression for the system kinetic energy

.solely in terms of the joint variables.

-l . T . x
T—Eq D(q)Qo DeR™ [vX))

where D is the inertia matrix of the system and is given
by

D=W-ZTM'Z = 28)

It can be shown that D = DT > 0. It is interesting to
note that the system inertia matrix obtained in
Reference [1] is of the same form as above. However,
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the expressions for W, M.lndZmamcesmdxfme
’mlsxsbecauseadxﬁmupptmch viz., the concept of
barycenters, is used in the model derivation of
Reference [1). It is also noteworthy that the inertia
matrix obtained above requires only a 3 x 3 matrix
inversion, while that obtained by Masutani, Miyazaki,
and Arimoto® requires a 6 x 6 matrix inversion.

Since there is mo potential energy in non-
gravitational env;romnan,'the Lagrangian A, is equal to
the kinetic energy -

A=T (29)
So the system dynamics is given by
d{oT) oT
&5 &

where t is the n x 1 vector of joint torques. The
equation of motion for space manipulators is then

obtained by using Equation (30).

D(Q)3 +h(g.q)=1 31)
where

h(q.49)=C(q.4)4+ 7 (32)

Paralleling the developmem for fixed base robots given
by Spong and Vidyasagar’, the elements of the matrix
C are obtained as

Cht-z

l-l

aD,) Dy aD;;
aQ1 aq) aqk

% represents the joint torque vector due to friction. As
pointed out by Craig8, the otal friction at each joint can
be regarded as the sum of Coulomb friction and viscous
friction. Coulomb friction is constant except for a sign
dependence on the joint velocity. Viscous friction, in
general, depends on various powers of joint velocity.
However, higher powers contribute significantly only at
high joint velocities. Manipulators usually do not attain
such high velocities. Therefore, it is sufficient to
consider only the linear dependence of viscous friction
on joint velocity. Figure 2 shows a friction model
consisting of Coulomb friction and linear viscous
friction. Using this model, the joint friction torque
wvector can be represented as

1, = Xsgn{q}+T'q C(34)

]ﬁi (33)

where X is a diagonal matrix consisting of Coulomb
friction constants for the joints, and I" is a diagonal

matrix consisting of viscous friction coefficients for the
manipulator joints. The vector sgn{g} is defined in a
component-wise sense. It turns out that in many
manipulator joints, friction also displays a dependence
on joint position. However, such effects are not
considered here. There are other effects like bending
effects that are difficult to model and also neglecied in
the present model.

Joint
Friction
Torque Viscous
* Friction
Static Coulomb's Friction /
Kinetic Covlomb's Friction
i

Joint Velocity

/

Fig.2. Joint Friction Model Consisting of Coulomb’s
Friction and Linear Viscous Friction.

2.4 Base Motjon

The translational vclocity of the base center of
mass can be written in terms of joint velocities by using
the expression for Qg from Equation (19) in Equation

(18).

Vp =-H;'[H -H,oM'2]q 35)
Also, the base angular velocity from Equation (19) is
Qp =-M"2Z4 (36)

Using the above expressions, the evolution of the base
position and orientation with time can be determined.

3. Control System Design

~ Assuming that the dynamics of the space
manipulator is described by Equation (31), where D and
h are completely known, the feedback linearization or
inverse dynamics’ technique can be used to design
controllers for tracking prescribed command trajectories
for the joint angles. This can be accomplished as
outlined in the following sub-section.
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3.1 Feedback Linearization
Let the joint torque vector be of the following
form. ‘

t=Du+h 37
where u is the pseudo-control, i.e., it is the control input

to the resulting linearized System. With the control law
given by Equation (37), the closed-loop system

T g

01 0
alo of2-i]
A simple PD (Proportional-Derivative) type of control
law is chosen for the feedback linearized system

(38)
where

(39)

u=§,+K,;(§,-9)+K,(q.-9) (40)
where K; and K3 are proportional and derivative gain
matrices, respectively. These matrices are usually
chosen to be diagonal in order to achieve decoupled
response among the joint angles. Substituting for u
from Equation (40) into Equation (38), one obtains

@

é=Ace

where

A, =A-BK,and K= [K, K,]. IfK;>0andK; >
0, the error dynamics as given by Equation (41) is
asymptotically stable. The freedom in selecting the
gain matrices can be utilized 10 meet performance
specifications for the closed-loop system.

The preceding discussion assumes availability of
perfect knowledge about the nonlinear sysiem
dynamics. However, in practice, D and h are usually
imprecisely known due to modeling inaccuracies. For
instance, the controller would be designed using the
best estimates for friction coefficients. The actual joint
friction might be different from that which is assumed

“for the controller design. Thus the controller uses
computed versions of D and h. The objective here is to
design a control law that is robust for bounded
variations in D and h due to bounded uncertain dynamic
effects. This issue of robust control design is discussed
in the following sub-section, where it will be seen that
the control law results in closed-loop asymptotic
tracking.

°=[°;r °I]T'ﬁ =q4-9q,6;=44-q.

3.2 Robust Feedback Linearization Using Passivi
In the presence of modeling uncertainties, let the
control law be given as
t=Du+h+w 42)
where D and h are computed versions of D and h,
respectively. The additional feedback w(t) has been
introduced to compensate for the modeling
uncentainties. Substituting for ¢ and u from Equations
(42) and (40) into Equation (31) it can be shown that
the closed-loop system dynamics is given by

é=A.e+Bv 43)
where
v=Au+d (44)
and
a=[1-DD}, §=D"[n-h-w] 5)

The first step in the proposed design is to choose

the gain matrix K=[K, K,] and an output matrix F

such that the linear system given by
®

é=A.+Bv

yuFe (46)

is SPR (Strictly Positive Real). This can be achieved as
outlined in the following Theorem. A definition of the
concept of Strictly Positive Realness can be found in
Slotine and Li?.

Theorem 1 (10]. Let Ky and K2 be such that
Kl =diag[kh]; k“ >0, i= 1....."
Kz = diag[kz,]; kZi > 0, i= 1.....“
2
(ki) >ky;,

@n

i=l...n

then if F = K, the system described by Equation (46) is
SPR.

Note that the conditions of the Theorem as prescﬁbcd
by (47) are extremely easy to satisfy.

With the linear System (46) being SPR, the
Passivity -Theorem!! can be unsed to design
asymptotically stable controllers as shown in the
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T 1/2
following Theorem. The notation [x}; = ( §xTx dl)

0
is used in the sequel.

Theorem 2. Suppose that

(2) The desired trajectory for joint variables is such
that §, € 12.

(b) Finite B, and B, exist such that the uncertainty in
h is bounded as follows.

|h-ﬁL < Bilul; + B, (8,20, B, 20)VT20 (48)

{c) The additional feedback w(t) in the control law of
Equation (42) is of the following form.

w(t)=au(t) (a20) 49)
Under these conditions, if o is chosen such that
a>x(ﬂzoﬂk) (50)
1

where

©) % Oy, (D), Oy = 0, (D-D), AmA,,(D); then

the closed-loop System (43) is asymptotically stable.
Brogf. The closed-loop system as given by

Equation (43) can be represented in block diagram form

as shown in Figure 3. It is first shown that the
nonlinear block in the feedback path is passive!!.

SPR

y e=Ae+Bvl_Ke
y=Ke

-V

+
~v=>-Au-d p qd

Passive
Fig. 3. Robust Feedback Linearization Using
Passivity Theorem.
Consider
T
I=-fuTvdt (T20) (€3]
0

From Equation (44), v is given as follows.

v=Au+§
=[1-D-Du+ D“[h -h-w]
=Dx~Dlw ' (52)

where x = [D - f)]u +h-h. Substituting for v from
Equation (52) into Equation (51), the integral becomes .

T T
I= (— | uTD"xdt)+ ( | nTD"wdl) 7(53)
0 ]

Let the first and second integrals on the right hand side
be denoted by I and I respectively, Then

T
-I=[u"D'xdt
0

< [uITID”xL (Holder's Inequality) (54)

Note that
AP T Tr-Tn
[o7'x). = [x"D "Dzt
0
T
Shen (DD [xTxat  155)
0 |
and g

T 1 1
Aox(D"TD) =02, (D)= 56
nu( ) omx( ) T—_cm(D)‘?x- (56)
Substituting for An,,(D"TD™) from (56) into

Inequality (55) and then taking the square root of both
sides, one gets

a1
fo-is] < . Ixlly (57)
Using Inequality (57) in (54),
-1, s-—‘-lun,lxu, (58)
0,

Recalling that x= [D- f)]u +h-h, and using
Schwarz's Inequality,

b <fo-slf +p=i],
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Since
'[D - ﬁ]"L S Opu(D-DYuly = oluly,  (60)

then Inequality (59) can be expressed using Inequalities
(48) and (60) as

Ik s (o, +B))luk +B2 (61)

Finally, using Inequality (61) in Inequality (58), a lower
bound for I; is obtained in the following form.

1
Lol Bz +Balike] @)
Now consider
T
L= [u'Dlwat
0

T
=afo’Dudt
0

T
2 0 g, (D7) fuTudt (63)
1Y
Noting that
1.1

an upper bound for I, is obtained as follows.
5, 2 5 |l 65)
Thus, using Inequalities (62) and (65) in Equation (53),

a O, +
IZ(I-

)luﬁ -%flulr =f(jul;) (66

Iwanbeshownthauf(: Szaiﬁl-)w.men
1

6"

which in turn would imply

VT20 (68)

Thus a sufficient condition for the nonlinear block to be

passive is that a>1( ;B )
1

Additionally, it is observed that the transfer
function of the feedforward block [A. B, K] is proper
and has no foles on the imaginary axis. Hence it has
finite gain!2, Since according to Assumption (a) of the
Theorem §, € L2, then using the Passivity Theorem!!,
one can conclude that the signals v, Ke, and v are
bounded. Moreover, since the feedforward block is
SPR, Ke(®) = K;e,(t) + Kjye (t) goes to zero
asymptotically. This in turn implies that e, (t) and e,(t)
individually approach zero asymptotically3.

Remartks.

(i) Some of the methods proposed in the past for
designing robust controllers for robotics problems result
in introduction of chattering in the control’. When the
design method is modified to make the control smooth,
closed-loop asymptotic tracking is generally
compromised to some extent, In the control design
proposed by Theorem 2, the achievement of robustness
can be qualitatively understood as follows. The control
law given by Equation (42) compensates for the
uncertainty due to unknown D and h by employing
additional feedback w. If the choice of w satisfies the
assumpuons of the Theorem, asymptotic stability for
the joint error states is achieved.

(ii) The results of the Theorem are applicable to space
manipulators as well as fixed base manipulators.
Finally, it should be noted that the control design
suggested using the results of the Theorem is not
unique. First of all, w(t) need not be restricted to be of
the form given by Equation (49) and second, even
within the scope of the suggested design, there is a
considerable amount of margin for performance
optimization,

4. Simulation Results

The results of applying Theorems 1 and 2 in order
to achieve a robust control design are illustrated for 8

. planar single link space manipulator. Figure 4 shows

such a planar one link space robot. A nonlinear
dynamic model for the robot is obtained using the
results of Section 2. [Equation (31) describes the
dynamics of this onc degree of freedom system, The
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system inertia, computed using Equation (28), turns out
to be

D(q)) =Wy, -23, /M, (69)

where
W, =mgpt+], (70)
Zy, =mypy Pty + Py )+ )

Mys=mg (Pg +pr+ 2Popxcx)+ L+l (72)

End Tip

Fig.4. A Single Link Planar Space Robot.

Using Equations (32) through (34), h is found to be

. m s
h(g,,q))= ‘J;ngg'u'[mmpo(l)o +Picy)+ Ia]‘
33

[moxpx (PoCy +P1)+ ll]élz +%sgn(q, ) +9,

(3

where x and y are respectively the coefficients of
Coulomb and viscous friction. In Equations (70)
through (73) my=mem;/m,, m,=my+m,,
¢, = cos(q; ), and s, msin(q, ).

~ It can be seen easily that as mg ~» e and Iy — oo,

D mp} +1;, h = xsgn(q, )+ ¥, (74)
which represents the case of a fixed base manipulator.
Equation (35) is used to determine the evolution of the
base position with time

. m Z,, .
Xp = ;":'[szvl - ﬁ%(l’osv +PiSyi )]Q1
' (75)

. . m Z : .
Yo = ;L['plcvl "’ﬁ%(l’o% +PiCy: )]‘h

¢

where s, msin(y +q;), ¢y; ®cos(y+q;). Finally,

the base attitude dynamics is obtained using Equation
(36):

. Z,, .
v h—d;:(h (76)

Assuming that no modeling uncertainty exists, a
feedback linearizing controller is designed for the one
link space manipulator using the control law given by
Equation (37). Simulation is carried out using
automatic step size second and third order Runge-
Kutta-Fehlberg integration methods!3. Table I lists
physical parameters of the example robot used in the
simulation. Note that the base and link masses are
assumed to be of the same order of magnitude. The
values of Coulomb and viscous friction coefficients are
taken to be

x=0.5 N-m, y=2.0 N-m~s/rad (77)’

Closed-loop results are generated for a step command
of 1 radian to the joint angle. The feedback gains are
chosen to be k; = 0.4 and ky = 1.0. This choice of
gains satisfies Conditions (47) and yields a closed-loop
response without any overshoot, as shown in Figure 5.

Table 1. Physical Parameters of Single Link Planar
Space Robot.
Body p(meter) l(meter) m(kg) I(kgm?)
0 (Base) 3.0 - 5.0 30.0
1 (Link) 3.0 6.0 1.0 3.0

Next, it is assumed that the value of the Coulomb
friction coefficient, x is unknown, but that

0.5%<0.75 . (78)

Since uncertainty exists in the h vector, the computed
version of h is given by

i;=hll"i (79)
where ¥ =0.5, which is the nominal value of the

Coulomb friction coefficient. The response of the
controller with x = 0.75 and without any additional
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feedback is shown in Figure 6. It can be seen that there
is a steady-state error in the joint angle response. The
steady-state error in this particular instance can be
eliminated by adding an integral feedback term to the
control law given by Equation (40); however, this is
accompanied by a large overshoot. Hence, a need
exists for making the control law robust with respect to
the uncertainty. The results of Theorem 2 are used for
the design. It is first noted that

- 8] =[x -o)sem(an)];
T ) 1/2 (80)
- -4 Jfm(a o]

1 Response Without Uncertainty

0 5 10 15 20
Time (seconds)

Fig. 5. Joint Angle Response With No Modeling

Uncertainty.

Clearly, Ih - h_r is maximum when [x-% is
maximum. Hence the controller is designed for x =
0.75, and it works for all other values of i lying in the
range indicated by (78). The design involves
determining & suitable value of a that satisfies
Inequality (50), assuming that finite B; and B2 exist for
the bound given by Inequality (48). Figure 7 shows the
variation of system inertia, D, given by Equation (69),
with respect to the joint angle. From this plot, it is

casily found that A = 10.2273, and 6] = 5.3571.

Clearly, by definition, 62 = 0. Hence the requirement
(50) of Theorem 2 translates to:
a>1.91(8,) (81)
The values of B; and B2 are obtained in an iterative
manner. Starting with an assumed set of values for
these parameters, closed-loop simulation is performed
with the resulting value of a as obtained by Condition
(81). If the joint error states are not asymptotically

stable, this implies that Inequality (48) must have been
violated. The amount by which violation occurs is used
as a measure to update the estimates of B and B2. The
process is repeated until convergence is obtained. For
the present example, it was found that By = 12.5 and B
= 1.5 satisfy Inequality (48). This resulted in a choice
of a = 25.0 for the design. Note that the process
implicitly assumes at the outset that condition (b) of
Theorem 2 will hold.

‘Robust Control, --:Nominal Control

1
o 08}
E 0
% O
< 04}
.=
2 02
0
0 5 10 15 20
Time (seconds)

Fig. 6. Joint Angle Response With Bounded
Uncertainty in Friction Modeling.

12

10+

System Inertia, D
o0

-4 2 0 2 4
Joint Angle (rad)

Fig.7.  Variation of System Inertia Matrix With the

Joint Angle.

Figures 6 and Figures 8 through 12 show the
closed-loop responses for the design, with and without
the inclusion of additional feedback. Figure 6 shows

‘that asymptotic tracking in the joint angle is achieved in

the face of uncertainty. Figures 9 and 10 show that the
base moves in reaction to link motion; this is due to the
conscrvation of linear and angular momenta as
discussed in Section 2. Figure 11 depicts the

1017



0.4
g
2
B
K
2
15 20
Time (seconds)
Fig. 8. Joint Velocity Response With Bounded
Uncertainty in Friction Modeling.
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Fig. 9. Base Attitude Response With Bounded

Uncertainty in Friction Modeling.
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Fig. 10. Base Position Response With Bounded
Uncertainty in Friction Modeling.

20

= 5
E 4
B

8 3
[}

£ 2
P
2 0

0 S 10 15 20
Time (seconds)

Fig. 11. The Quantity B,}jul; + B, —Ih - EL With
Bounded Uncertainty in Friction Modeling.
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Fig. 12.Joint Torque Input With Bounded

Uncenainty in Friction Modeling.

satisfaction of Inequality (48). Figure 12 shows the
joint torque input requirements. It was confirmed
through simulations that the controller designed works
well for any value of ¢ within the range indicated by
(78). Indeed for any value of i < 0.75, the uncertainty
bound on h is satisfied by a greater margin.

5. Conclusions

A nonlinear dynamic model was obtained for space
manipulators with uncontrolled base. A robust control
method based on feedback lingarization and passivity
concepts was proposed for space manjpulators. The
method is applicable to fixed base manipulators as well.
The control law results in asymptotic joint angle
tracking in the face of bounded uncertainties such as
those due to imprecise friction modeling.
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