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ABSTRACT
=»

It was proposed to design and conduct experiments in the NASA-Ames Research

Center, 11-foot wind tunnel, that would assess the role of freestream turbulence and

surface roughness on swept-wing transition to turbulence. The work was be a cooperative

effort that had direct application to hybrid laminar flow control (HLFC) airfoils. The first

part of the proposed work, initiated in FY92 and continued into FY93, concentrated on the

| design of such an experiment whose results may be compared with results obtained in other

i wind-tunnel facilities. At the same time, concurrent work in the ASU Unsteady Wind

j Tunnel would be conducted on the effects of surface roughness. The second part of the

I work, which was to be initiated in FY94, would have consisted of experiments conducted

in both the 11-foot tunnel at NASA-Ames and the ASU Unsteady Wind Tunnel. However,

this work was not continued. This report summarizes the experimental design

considerations and some preliminary experiments that made up the first part of the work.
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1. INTRODUCTION

The origins of turbulent flow and the transition from laminar to turbulent flow are the

most important unsolved problems of fluid mechanics and aerodynamics. There is no

dearth of applications where information regarding transition location and the details of the

subsequent turbulent flow are extremely valuable. The one example that is applicable to

this work, is skin-friction reduction on subsonic transports.

In this report, we first discuss the important application of Laminar Flow Control (or

LFC) on the passenger transports commonly used today. Some recent research results in

the area of transition to turbulence are reviewed and their importance to the application is

shown. Because of the preliminary nature of this work, the author relies heavily on the

following references which are to be considered the primary source material: Arnal and

Michel (1990); Cousteix (1992); Gaster (1991); Hussaini and Voigt (1990); Morkovin

(1983); Reshotko (1984); Thomas (1985).

1.1 Importance of Drag Reduction

Prior to the global fuel crisis of the early 1970's, fuel efficiency was only a minor

feature of the design of civil air-transport systems (and automobiles). The trend in world

fuel prices implies that now one can no longer ignore fuel efficiency in the design of

aircraft. Indeed, the high fuel prices justify extraordinary means of fuel efficiency. For
o

example, a 20% reduction in fuel consumption amounts to a saving of 10 liters of gasoline

over a lifetime of a typical transport. At the price of gasoline these days, this could pay for

a rather large aircraft. As another example, a new Boeing 747-400 has a take-off weight of

380,000 kg and a fuel load of 145,000 kg. A reduction of fuel by 25% saves 36,000 kg;

this is on the order of the passenger payload.

Fuel consumption is, of course, related to total drag and it is possible to make the

following ranking of drag of a generic aircraft.

1. Skin-friction drag due to the formation of the viscous boundary
layer (typically turbulent) - 50% of total drag.

2. Lift-induced drag due to the circulation established around finite-
span wings - 35% of total drag.

3. Pressure drag due to open separation in the afterbody and other
regions - 8% of total drag.
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4. Interference effects between different aerodynamic components - 3%
of total drag.

5. Wave drag due to compressibility effects at near-sonic flight
conditions - 2% of total drag.

6. Roughness effects and leakage (miscellaneous) - 2% of total drag.

Obviously the biggest target for drag reduction (and fuel savings) is the turbulent

skin-friction drag. This is discussed in the next section. Work on control of separation

through better configuration design and the reduction of induced drag through the use of

winglets (the Boeing 747-400, Airbus A320, and Douglas MD-11 are examples) is

continuing with some success.

1.2 Skin-Friction Reduction and Aircraft Design

There are two fundamental approaches to skin-friction reduction. The first is to

maintain a laminar boundary layer and take advantage of the lower skin-friction coefficient

and the second is to modify or restructure the turbulence within the boundary layer by

means of changing surface conditions. When comparing laminar and turbulent boundary

layers it is important to note that the turbulent skin-friction coefficient is at least 5 times

greater than the laminar case over the entire Reynolds number range. Sustaining a laminar

boundary layer in order to take advantage of an 80% reduction in skin friction is called

laminar flow control or LFC. Just being able to sustain laminar flow to 75% chord on the

wings results in a 25% reduction in fuel. It is unlikely, for a number of reasons, that

laminar flow can be maintained on the fuselage or the empennage. In these areas, turbulent

skin-friction reduction by means of riblets can be achieved on the order of 6%. The topic

of modifying turbulence is another area of active research.

It is important to emphasize that skin-friction reduction is only a part of an energy

efficient aircraft. If one considers the overall design requirements, the features of an

energy-efficient aircraft will have the following characteristics:

1. Super-critical airfoils

2. LFC

3. Turbulent drag reduction

4. Winglets

5. High-aspect-ratio wings with trusses

6. High by-pass engines
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1. Unducted fans

Thus, laminar flow control is only one part of the complete design problem. It

should be obvious that one cannot separate aerodynamic design from the structural design

and the propulsion requirements.

1.3 Stability and Transition

The role of LFC is to keep the boundary layer laminar and avoid the occurrence of

transition. The boundary-layer transition problem consists of three important phases —

receptivity, linear disturbance amplification, and nonlinear interaction and breakdown

(Arnal, 1992; Saric, 1986, 1992). The Navier-Stokes equations are the appropriate model

for all of these phases. However, techniques to solve these equations for the entire range

of the transition problem are only now being developed. Most experimental and theoretical

examinations are presently focused on the second of the phases — linear disturbance growth

in a laminar boundary layer. It is this region where laminar flow control is effective.

The process of laminar-turbulent transition is generally the result of the uncontrolled

growth small disturbances. A number of instability mechanisms may be in operation

within the boundary layer on the surface of a wing. They are (1) stream wise instabilities,

(2) crossflow instabilities, (3) curvature induced instabilities, and (4) attachment-line

instabilities.

The streamwise instability is a viscous instability wave called a Tollmien-Schlichting

(T-S) wave. These waves are initially two-dimensional and are selectively amplified or

damped depending on Reynolds number and frequency. This instability is most important

in the mid-chord region where the C distribution may be flat or decelerating. This

mechanism is reviewed by Arnal (1992) and Saric (1985a, 1992).

A second type of instability results when a three-dimensional flow exhibits an

inflection velocity profile (in this case due to crossflow on swept wings). The initially

favorable pressure gradient over the swept airfoil deflects the inviscid streamlines inboard.

Because of viscosity, the deflection is greater inside the boundary layer giving rise to a

component of velocity perpendicular to the inviscid streamlines that is called the crossflow

velocity. This profile undergoes a dynamical instability which becomes more important as

sweep angle increases. It dominates in the leading-edge region where the crossflow is

maximal due to favorable pressure gradients. Thus it is amplified by favorable pressure

gradients. This instability is characterized by streamwise vortices all having the same sense
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of rotation that are called crossflow vortices. The details of this mechanism are reviewed

by Reed and Saric (1989).

Another type of dynamical instability that can occur, depends on the nature of the

wall curvature. The presence of concave curvature and the accompanying centrifugal

forces give rise to the Gortler instability (Saric, 1994). In this case the instability is in the

form of counter-rotating vortices. Finally, there is the case of leading-edge contamination

and attachment-line stability which involves the propagation along the attachment line of

disturbances that originate from local disturbances or from the turbulent boundary layer on

the fuselage. This is called the Pfenninger instability (Reed and Saric, 1989).

1.4 Laminar Flow Control

The principle behind LFC is to keep the growth of these disturbances within

acceptable limits so that 3-D and nonlinear effects do not cause breakdown to turbulence.

With this philosophy, one only deals with linear disturbances and thus, the difficulties with

transition prediction do not arise.

Linear stability is governed by the linearized, unsteady Navier-Stokes equations in

the form of what is called the Orr-Sommerfeld equation. It is well known that the velocity-

profile curvature term in the Orr-Sommerfeld equation, -d2U/dy2, is the important driver

of the stability behavior. The boundary layer can be made to be more stable by making the

profile curvature more negative near the wall. The boundary-layer momentum equation can

be evaluated near the wall, as shown in Eq. (1) and used to illustrate the stabilizing effects

of different LFC techniques (Saric, 1985b, 1992).

„ dU dP dadT d2U
pV0 —— + — ^T = lLl^rT as > > — » 0 (1)

dy ox dT dy dy

Here, p is the density, V0 is velocity normal to the wall at the wall ( + for blowing, - for
suction), U is the streamwise velocity component, P is the pressure field, fj. is the dynamic
viscosity, T is the temperature, x is the streamwise coordinate, and y is the wall-normal
coordinate.

Equation (1) shows that wall suction (V0 < 0), favorable pressure gradient (dP/dx

< 0), cooling in air (dfi /dT > 0, dT/dy > 0), and heating in water (dp. /dT < 0, dT/dy

< 0), all tend to stabilize the boundary layer by making the profile curvature more negative.

It should be pointed out that these are very sensitive mechanisms and that even weak

suction or weak pressure gradients produce strong effects. For example, a Falkner-Skan
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pressure gradient of ft = + 0.1 (which can be measured by comparing a 6.6% change in

the shape factor 8 * / Q with a Blasius boundary layer), increases the minimum critical x-

Reynolds number for stability by a factor of 9. At the same time, average suction velocity

ratios of V0/UM ~ 10~3 or 1CT4 are not unusual for LFC applications and can, for

example, reduce relative amplitude growth from e26 to e5 at low frequencies (Saric and

Nayfeh, 1977). That the system works is evidenced by the fact that the X-21 aircraft

achieved laminar flow at chord Reynolds numbers of 27 x 106 with a 20% decrease in

overall drag.

Present designs for super-critical energy-efficient airfoils have LFC systems with a

porous region near the leading edge of a swept wing in order to control leading-edge

contamination and crossflow instabilities. Appropriate shaping of the pressure distribution

stabilizes mid-chord instabilities. This arrangement has been called hybrid LFC because it

combines active LFC (suction) with passive LFC (pressure gradient).

1.5 Current Research Topics

The details of the actual research programs that are being conducted at Arizona State

University are beyond the scope of the preliminary report. It is possible however, to give a

brief overview of the topics being addressed at ASU.

1.5.1. Secondary instabilities and nonlinear stages of crossflow vortex breakdown:

Experimental, theoretical, and computational programs are progressing in order to study the

nature of the initial stages of the transition region. A new type of instability has been

discovered (Kohama et al. 1991) and indications are that the transition prediction schemes

for crossflow-dominated transition must be changed (Reed and Fuciarelli, 1991).

1.5.2. Effect of micron-sized roughness on crossflow transition: We have shown

that surface roughness near the attachment line of a swept wing that is the order of less than

a micron (roughness Reynolds numbers less than one) has a profound effect on transition

location (Radeztsky et al. 1993). This forces a reconsideration of surface-finish

requirements as well as a reassessment of the insect deposition problem.

1.5.3. Interaction of sound with 2-D and 3-D surface roughness and with different

leading edges: The interaction of sound and surface roughness and leading creates unstable

T-S waves in the boundary layer (Saric et al., 1991; Radeztsky et al., 1991; Spencer et al.,

1991). The details of this problem are being studied in order to understand how unstable

waves appear in the flow. These studies include model studies in a towing tank to examine

the structure of the flow field over small roughness elements and sensitive wind-tunnel
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experiments to examine the stability characteristics (Saric et al., 1990). Navier-Stokes

simulations are also progressing (Lin et al., 1991).

1.5.4. Stability of supersonic and hypersonic boundary layers: These are theoretical

and computational studies of laminar flow control for high speed civil transport and for

hypersonic vehicles. The three dimensionality of the mean flow is important as well as the

chemical reactions that occur inside the high-temperature boundary layer. The stability

calculations are now being conducted at ASU (Reed et al., 1992).

2. CONCURRENT WORK: ASU ROUGHNESS EXPERIMENTS

The goal of the present investigation is to determine the fundamental nature of the

crossflow instability that is characteristic of the breakdown of swept-wing flows. This

work feeds directly into the NASA-Ames supported work. Reviews of the current

literature and problems are given by Reed and Saric (1989), Arnal (1992), and Saric

(1992).

2.1 Basic Experiment

The present work is the result of an ongoing experiment on three-dimensional

boundary layers. We have already documented the basic stability work which includes the

wavelengths, local growth rates, frequencies, and evolution patterns of the crossflow

vortices in the linear range (Saric et al. 1989; Dagenhart et al. 1989, 1990; Dagenhart

1992). In this work, the frequencies of the crossflow instability are observed to establish

the existence of the theoretically-predicted moving crossflow vortices in addition to

stationary crossflow vortices. The nonlinear processes that control transition have been

documented by Kohama et al. (1991).

The NLF(2)-0415 airfoil (Somers and Horstmann 1985) that is used in this

experiment has a pressure minimum on the upper surface at approximately x/c = 0.71.

Wall liners within the tunnel produce an infinite-swept-wing flow with no spanwise

gradients. With a 45° sweep and a small negative angle of attack, this favorable pressure

gradient prevents T-S wave formation at moderate chord Reynolds numbers, but produces

considerable crossflow. This permits the isolated examination of the crossflow stability

problem. The instability at a = - 4° was analyzed using the MARIA and SALLY stability

codes. At a chord Reynolds number of Rec = 3.8 x 106, the maximum predicted W-factor

is N = 16.0 for/= 200 Hz. Dagenhart (1981) indicates that transition may be expected for

W-factors in the range from 9 to 11. Thus, for sufficiently high Reynolds numbers (less

than 3.8 x 106), the transition due to crossflow vortex amplification is expected to occur
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well ahead of the pressure minimum at x/c = 0.71. The fundamental linear stability results

for this configuration are given by Dagenhart et al. (1989, 1990) and Dagenhart (1992).

The secondary instability that leads to transition is described by Kohama et al. (1991).

One of the key missing ingredients in all 3-D boundary-layer experiments is the

understanding of receptivity. Here, receptivity refers to the mechanisms that cause

environmental disturbances to enter the boundary layer and cause unstable waves (e.g.

Saric et al. 1991). Receptivity has many different paths through which to introduce a

disturbance into the boundary layer. They include the interaction of freestream turbulence

and acoustical disturbances (sound) with model vibrations, leading-edge curvature,

discontinuities in surface curvature, or surface roughness. Any one or a combination of

these may lead to unstable waves in the boundary layer. If the initial amplitudes of the

disturbances are small they will tend to excite the linear normal modes of the boundary

layer.

Whereas linear stability theory predicts that the traveling crossflow waves are more

amplified than the stationary crossflow waves, many experiments observe stationary

waves. The question of whether one observes stationary or traveling crossflow waves is

cast inside the receptivity problem. Bippes and Miiller (1990) and Bippes (1991) describe

a series of comparative experiments in a low-turbulence tunnel and a high-turbulence

tunnel. Their results show that traveling crossflow waves are observed in the high-

turbulence tunnel rich in unsteady freestream disturbances and the dominant structure in a

low-turbulence tunnel is a stationary crossflow vortex. Since the flight environment is

more benign than the wind tunnel, one expects the low-turbulence results to be more

important.

Our previous work showed that detailed measurements within the boundary layer can

reveal both the traveling and stationary waves according to linear theory. However, our

recent work (Kohama et al. 1991) showed that even though the traveling wave is more

highly amplified, the meanflow distortion due to the stationary vortex induces a high-

frequency secondary instability that leads to transition. Thus, crossflow transition is

determined by the characteristics of the stationary wave.

The receptivity problem for stationary vortices is cast within sources of streamwise

vorticity. We have shown (Saric et al. 1990) that even in the Stokes-flow limit, the flow

around a small roughness within a shear layer separates and is a source of vorticity. Thus

the present work concentrates on the role of surface roughness in influencing swept-wing

transition.
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2.2 Effect of Distributed Micron-Sized Roughness due to Surface Finish

The results are obtained from naphthalene flow visualization. This technique relies

on the sublimation patterns of the naphthalene to identify the stationary crossflow structure

and the location of transition. This technique was calibrated in previous experiments by the

use of surface-mounted hot films (Dagenhart et al. 1989; Mangalam et al. 1990). Surface

roughness measurements were done by taking castings of the surface with a dental pattern

resin which created a rigid sample suitable for profilometer measurements.

The transition location, xtr/c, was observed to increase with subsequent levels of

polishing of the model. The original experiment had a painted model and the peak-to-peak

roughness was around 8 to 10 fJ.m. Transition experiments were conducted at a number of

different chord Reynolds numbers, Rec. The model surface was then polished to 0.5 ^ m

rms finish and the experiments were repeated. The model was then subjected to a

systematic hand-polished effort and the surface was brought down to a 0.25 /im rms

finish. The results are shown in Figure 1. The painted surface results are from Dagenhart

et al. (1989). The polished surface results show the effect of surface finish.
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0,2 L-1-
1.6

Final Polish (0.25nm)

First Polish (0.5(im)

Paint (10jim)

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

Figure 1. Naphthalene flow-visualization measurements of average transition

location with three different surface finishes and a = -4°.

On the next page, Table 1 is an example of the data from one typical chord Reynolds

number.
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Table 1. Transition location as a function of roughness height, k is the nominal

roughness height in microns, xtr/c is transition location, N(co = 0) is the
amplification factor for most amplified stationary crossflow wave, and N is

amplification factor for the most amplified traveling wave. Rek is the

roughness Reynolds number based on k and the velocity at that height. Rec

= 2.7 x 106

k[ f im\

9

0.5

0.25

xtr/c

0.40

0.61

0.68

N(co = 0)

5.5

8.4

9.2

AT

7.1

11.0

11.8

Rek

0.30

< 10"3

< 10"3

It may be just a coincidence, but the stability amplitude ratios are in the proportion

1:18:40 while the initial amplitudes of the surface roughness are in the proportion of

1:1/18:1/36 near the leading edge. This initially suggests that a quantitative measure of

stability/transition N-factor may be determined from surface roughness. These dramatic

and remarkable results are typical of the whole Reynolds number range.

2.3 Effect of Isolated Roughness Elements

The roughness elements are obtained by applying "rub-on" symbols from transfer

sheets commonly used in the graphic arts. Geographies Inc. manufactures a large variety

of symbols which includes a convenient range of sizes of circular dots. The dimensions of

the applied elements are carefully calibrated by repeatedly applying them to an aluminum

block. The applied elements are carefully measured using a dial-indicator displacement

gauge and a profilometer. The average height of the elements is 6 fJi m. Note that earlier

reports indicated a height of 9 fj.m, based on preliminary measurements. The surface of

the elements is uneven, with thickness variations on the order of 20%. Taller elements are

created by stacking the 6 fj,m dots. Careful measurements indicate a mean thickness of 6

/u. m per layer, with very little compression of the lower layers. The sides of the elements

are not perfectly straight because the pressure applied during installation spreads the

material slightly at the edges.

When a 6 \i mm roughness element (3.7 mm diameter) was re-introduced at x/c =

0.023, local transition returned to its original upstream location at xtr/c = 0.40.

Preliminary reports on this work contained a misprint which identified the roughness

location as x/c = 0.04. The value x/c = 0.023 reported here is the correct position.
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Moreover, naphthalene flow visualization reveals that the early transition occurs in the

vicinity of the particular stationary crossflow vortex which passes near the roughness

location. Roughness elements were placed along the chord direction and it was found that

transition was not influenced. Thus, the roughness effect seems to be confined to a small

region near the attachment line where crossflow disturbances first begin to be amplified.

This justifies a posteriori the use of naphthalene in the mid-chord region.

Sound, along with 2-D and 3-D roughness (following Saric et al. 1991 for 2-D

boundary layers), has no observable effects on transition. This further substantiates the

role of the stationary crossflow wave.

In order to fully characterize the effect of isolated roughness near the attachment line,

a variety of roughness sizes are introduced at x/c = 0.023. Roughness diameters, D,

ranged from 0.3 mm to 3.7 mm, which corresponds to 0.08 to 0.5 times the stationary

crossflow vortex spacing. Heights varied between 6 ^m and 36 /im. The roughness

Reynolds number, Rek, based on roughness height and local velocity ranged from 0.12 to

4.5. Flow visualization measurements reveal a strong dependence of transition location on

both the roughness height and the roughness diameter as shown in Figure 2. The transition

location moves forward for the larger diameters and heights, and moves downstream as the

roughness size is reduced. However, Figure 2 also shows that once the roughness

diameter becomes smaller than about 0.1 times the vortex spacing, the transition returns to

the x/c - 0.7 (pressure minimum) location, and is not influenced by the roughness, even as

the height is increased. This may be because at these small diameters, the roughness

induces no net streamwise vorticity on the scale of the stationary vortices.

2.3.1. Roughness Diameter

The effect of roughness diameter on the transition location is repeated at three

different unit Reynolds numbers. The results are shown in Figure 3. This figure shows

transition Reynolds number versus roughness diameter. It is apparent that for small

roughness diameters, the transition Re returns to the clean-surface value. It is clear that the

dependence of transition on Rec is not really a unit-Reynolds-number effect, but instead is

an Rek effect.

These measurements illustrate the importance of spanwise scale, vis a vis with ACF,

in assessing the role of surface roughness. Note that these conclusions are for Rek < 4.5.

Obviously, small diameter but larger roughness heights (like paint specks) could cause

early transition.
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Figure 2. Naphthalene visualization results showing location of transition wedge

behind the applied roughness elements. Roughness is at x/c = 0.023. Rec =

2.6 x 106. a = -4°.
2.0

1.8

1.6

¥
O

oT
cc

1.2

1.0

0.8
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 3. Variation of transition Reynolds number with roughness diameter.

Roughness is at x/c = 0.023. Roughness height is 6 fj.m. a = -4°.
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2.3.2. 3-D Roughness Location

The effect of roughness location is determined by systematically applying single 6

mm elements at chord locations between x/c = 0.005 and x/c = 0.045. Figure 4 clearly

shows that the transition location is very sensitive to the roughness position. For the data

shown, the attachment line is at x/c = 0.007 and the neutral point is at x/c = 0.02. When

the roughness is located upstream of the neutral point, the crossflow modes influenced by

the roughness will initially decay, so the influence of the roughness is minimized. For

roughness too far downstream of the neutral point, the influence is also minimized, with

roughness beyond x/c = 0.04 having no effect on the transition location at least for Rek <

4.5. This quantitatively justifies the early comments about the role of roughness in the

mid-chord region.

<Dcr

2.0

1.8

1.6

1.4

1.2

1.0

0.8

(x/c)R

Figure 4. Variation of transition Reynolds number with roughness position.

2.4 Comparison with 2-D Boundary Layers

In the case of 2-D boundary layers (either unswept wings or swept wings in the mid-

chord and weak dp/dx) small 3-D roughness does not directly influence the T-S instability.

Here, 2-D roughness is more important as a receptivity mechanism (Saric et al. 1991).

The von Doenhoff and Braslow (1961) collection of data, refers only to cases where

the 3-D roughness directly trips a transition wedge. As such, it is basic-state independent
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since transition is occurring due to a wake instability of the flow behind the roughness

element (they refer to this as T-S but it is neither T-S nor crossflow). Hence, because

much of the data are taken from 2-D boundary layers, only the "direct trip" mechanism is

recorded and any influence on the linear stability part of the process is by-passed. In

contrast, the present results show how roughness influences the linear stability part of

crossflow-vortex amplification.

2.5 Summary

We have shown that micron-sized roughness can strongly influence crossflow-

dominated transition and the effect of roughness height and roughness diameter is

quantified. This effect is confined to roughness near the attachment line and is not

influenced by sound. Moreover, there exists a critical size below which the roughness has

no effect. Detailed hot-wire measurements confirm the excitation of neighboring vortices

as predicted by Mack (1985).
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3. DESIGN CONSIDERATIONS

3.1 Design of the Model

After completion of the roughness experiments, a student, Mr. Mark Reibert, was

trained to carry out the design of a HLFC experiment for the NASA-Ames 11-foot tunnel.

The procedure followed that of the benchmark work of Saric et al. (1990) and Dagenhart et

al. (1989, 1990) in that a systematic stability analysis accompanied the airfoil design

consistent with the tunnel operating conditions. The airfoil design, which resulted in the

new airfoil, was based on the already successful experiments at ASU. We designed the

transition model that can incorporate suction to have the capabilities for (1) pure crossflow

in accelerated flow, (2) combined weak crossflow and weak T-S in a flat Cp, (3) strong

T-S and weak crossflow in the pressure recovery region, and (4) very strong T-S and

strong crossflow in the pressure recovery region. In order to minimize difficulties with the

adaptive-wall liners over most of the parameter space, the zero-lift condition (a = -3°) was

designed for strongly-amplified C-F waves.

Figure 5 shows the airfoil profile and the Cp for the a = -3° condition. The profile

is a modification of the NACA-67, 1-015 and, as one can see from the Cp, it should

generate plenty of crossflow for the experiments. Camber was added to control lift and

curvature was added near the trailing edge. The chord remains at 1.83 m and the flap has

been discarded. The designation for this airfoil is ASU (67)-0315.

The model can be made of a solid foam with a fiber-glass skin. Previous

experiments (Radeztsky et al. 1993a) indicate that surface roughness need only be

controlled within 10% of the attachment line so we recommend a solid aluminum insert in

the suction panel region whose tolerances are carefully controlled and whose surface is
polished to 0.2 fj.m rms. Contoured end liners are used to simulate infinite swept-wing

flow conditions. The model is mounted vertically from the test-section ceiling to floor with

the leading edge swept back at 45°. The liner shapes are computed using a quasi-three-

dimensional modified version of the MCARF two-dimensional airfoil code which accounts

for boundary-layer displacement effects and the presence of the wind-tunnel side walls.

Two rows of streamwise pressure orifices, one on each side of the test region, are used to

assess both chordwise and spanwise pressure gradients.
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Figure 5. Profile and Cp for the ASU Suction Model: ASU (67)-0315.

Unswept (2-D) crossection at a = -3°

The airfoil Cp is established to control the T-S growth in the mid-chord region. The

airfoil design and tunnel operating conditions will be established to assess the role of

freestream turbulence in the 11-foot tunnel by overlapping with existing data in low-

turbulence facilities. The roughness experiment described in some detail in Section 2 of

this report is a good example of a comparative experiment.

The data of Radeztsky et al. (1993) show an insensitivity to sound in all of the

important frequency ranges and hence, there are strong reasons to believe that the leading-

edge roughness effects on transition will be similarly unaffected by freestream turbulence.

Thus, this is the first study that should be attempted in the 11-foot tunnel. Whereas the

Radeztsky et al. (1993) experiments were crossflow dominated, mixed cases of crossflow

and T-S will be more important. The chord-Reynolds-number range of the 11-foot tunnel

is realistic and should provide an adequate data base.

3.2 Surface Roughness Experiments

It is recommended that the same experimental procedures, established the ASU

swept-wing experiment and described in Section 2, be followed for code validation and

instrumentation development. The guidelines for stability experiments, outlined in Saric

(1990), will also be followed.
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Micro-thin hot-film gauges have been established at ASU (Mangalam et al. 1990;

Glauser et al. 1994) to be suitable for transition studies. It is recommended that this

instrumentation be used in the Ames experiment. At the same time, it is recommended that

the NASA-Ames capability for infra-red transition detection be used.

It is recommended that the flow-field codes and the boundary-layer stability codes

established at ASU be used during the experiment.

It is also recommended that the ASU Swept-Wing Model, NLF(2)-0415 be used in

high-Reynolds-number tests at NASA-Ames.

Based on the success of the first phase of this program described in Sections 2 and

3.1, joint NASA-Ames/ASU experiments should be conducted on isolated and distributed

roughness effects on swept-wing transition to turbulence following the work of Radeztsky

etal. (1993).
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