
(NASA-CR-199627) CHARACTERIZING N96-13367
PARALLEL FILE-ACCESS PATTERNS ON A
LARGE-SCALE MULTIPROCESSOR (Duke
Univ.) 8 p Unclas

63/62 0073746

J

NASA-CR-199627

-t* 2. -

Characterizing Parallel File-access Patterns on a
Large-scale Multiprocessor*

I

A. Purakayastha and Carla Ellis
Dept. of Computer Science

Duke University
Durham, NC 27708

{ap,carla} @ cs.duke.edu

David Kotz and Nils Nieuwejaar
Dept. of Computer Science

Dartmouth College
Hanover, NH 03755

{dfk,nils} @cs.dartmouth.edu

Michael L. Best
Media Laboratory

MIT
Cambridge, MA 02139
mikeb@media.mit.edu

Abstract
High-performance parallel file systems are needed to

satisfy tremendous I/O requirements of parallel scientific
applications. The design of such high-performance paral-
lel file systems depends on a comprehensive understanding
of the expected workload, but so far there have been very
few usage studies of multiprocessor file systems. This
paper is part of the CHARISMA project, which intends
to fill this void by measuring real file-system workloads
on various production parallel machines. In particular,
here we present results from the CM-5 at the National
Center for Supercomputing Applications. Our results
are unique because we collect information about nearly
every individual I/O request from the mix of jobs running
on the machine. Analysis of the traces leads to various
recommendations for parallel file-system design.

1 Introduction

Parallel scientific applications require not only fast com-
putation but also a large and fast I/O subsystem to provide
the required data-transfer bandwidth. Such an I/O subsys-
tem must be optimized for the most common traits in the
I/O workload. Unfortunately, parallel-I/O workloads have
not been thoroughly characterized. There have been I/O-
workload characterization studies of mainframes, individ-
ual Unix workstations, distributed systems, and some sci-
entific vector applications. However, for parallel scientific
applications the few characterizations have either been hy-
pothetical or limited to selected applications.

We started the CHARISMA (CHARacterizing I/O in
Scientific Multiprocessor Applications) project with the
goal of collecting traces from various production parallel
scientific workloads. We recorded such details as individ-

*This work was supported in part by the National Science Foundation
under grant number CCR-9113170, the National Center for Supercomput-
ing Applications, NASA Ames Research Center under agreement number
NCC 2-849, and Thinking Machines Corporation.

ual reads and writes, so that spatial and temporal patterns
can be determined. The first results of the CHARISMA
project involve a tracing study done on an Intel iPSC/860 at
NASA's Ames research facility [19]. This paper describes
results from a different platform, the CM-5 at the National
Center for Supercomputing Applications (NCSA). Some of
the questions that we are trying to answer from the collected
data are:
About Jobs: How many jobs ran concurrently? On how
many processors did they run? How long did they run?
How many files did each job open?
About Files: How many files were only read, only written,
or both read and written? How large were the files? For
how long were they open? How much inter-processor file-
sharing was there?
About I/O requests: How were the request sizes dis-
tributed? Which request sizes transferred the most data?
How many different request sizes were there per file? How
much access-sequentiality was there?
About Policies: Did the data suggest usefulness of a par-
ticular kind of caching or prefetching?

In Section 2 we outline related work and provide some
background information. In Section 3 we describe our data-
collection methods. In Section 4 we discuss the analysis re-
sults. We conclude in Section 5 by summarizing important
observations and inferences.

2 Background

In this section we first outline previous work on file-I/O
characterization; then we briefly describe some related mul-
tiprocessor file systems; finally we summarize the relevant
components of the CM-5 system.

2.1 Workload Studies

There have been many file system workload studies.
Smith [30] studied file-access behavior of IBM main-
frames. Porcar [25] analyzed dynamic trace data for files

in an IBM batch environment. Floyd and Ellis [12,13] and
Ousterhout et al. [23] studied file-access patterns from iso-
lated Unix workstations. Baker etal. [3] studied access pat-
terns in Sprite, a distributed Unix system. Ramakrishnan et
al. [28] studied file access patterns in a commercial com-
puting environment, on a VAX/VMS platform.

There have been a few studies of I/O from scientific
workloads. Del Rosario and Choudhary [10] provided an
informal characterization of some grand challenge appli-
cations. Powell [26] concentrated mainly on file sizes on
a Cray-1. Miller and Katz [21] and Pasquale and Polyzos
[24] studied I/O-intensive Cray applications. Jensen and
Reed traced file archive activity on a Cray at NCSA [16].

Experimental studies of I/O from parallel scientific pro-
grams running on multiprocessors have been rather limited.
Crockett [7] and Kotz and Ellis [18] described hypothetical
characterizations of a parallel scientific file system work-
load. Gormen and Kotz [6] discussed desirable characteris-
tics of parallel I/O algorithms. Reddy etal. [29] studied I/O
from parallelized sequential applications, but their applica-
tions were handpicked and I/O was not parallel. Cypher
et al. [8] studied selected parallel scientific applications,
mainly to establish temporal patterns in I/O rates. Gal-
breath etal. [15] used anecdotal evidence to provide a high
level picture of I/O from some parallel applications. Bagro-
dia et al. proposed using Pablo to analyze and characterize
specific applications [2].

The only file system workload study of a production par-
allel scientific computation environment was that of Kotz
and Nieuwejaar [19], as part of the CHARISMA project.
They instrumented an iPSC/860 at NASA Ames. Here we
describe a similar study on the NCSA CM-5 that captured
a wide range of applications from a large number of users.

2.2 Existing Parallel File Systems

Existing parallel-I/O models are often closely tied to the
machine architecture as well as to the programming model.
Typically jobs can access files in different I/O "modes",
which determine how a file pointer is shared among clients
running on individual nodes [7, 4, 18, 14, 22]. The Hur-
ricane [20] and KSR1 [17] file systems use a memory-
mapped interface. The nCUBE [9] and Vesta [5] file sys-
tems allow more user control over data layout by providing
per-process logical views of the data. In PIFS (Bridge) [11],
the file system controls which processor handles which part
of the file to exploit memory locality.

2.3 The CM-5

The CM-5 is a scalable message-passing multiprocessor.
It may contain from tens to thousands of processing nodes
(PNs) and a few Control Processors (CPs). Each PN has

only private memory. The PNs communicate via scalable
interprocessor communication networks. Typically a group
of PNs (called ^partition) is managed by a CP. Several jobs
timeshare a single partition.

The CM-5 supports a variety of I/O devices. The device
of interest to us is the Scalable Disk Array(SDA). We con-
centrated only on the SDA file access because it was the pri-
mary high-volume, high-bandwidth storage device on the
CM-5 at NCSA. The SDA is an expandable RAID-3 disk
system that typically provides 25-200 Gbytes of disk space
and I/O bandwidth of 33-264 MB/sec. The SDA is man-
aged by an Input/Output Control Processor (IOCP). The
Scalable File System (SFS) resides on the SDA. It is an en-
hancement of the Unix file system with extensions to sup-
port parallel I/O and very large files. Each CP can also have
a set of local Unix file systems, which typically hold the ex-
ecutables and the user's private files. The SFS is optimized
for parallel high-volume transfer.

The CM-5 supports two primary programming mod-
els (data- and control-parallel), each with its own I/O
model. We characterize I/O from programs written in either
CMF (a Fortran-like data-parallel programming language)
or CMMD (a control-parallel messaging library). The CMF
programming model presents a single thread of control to
the user. CMF I/O is a library of support routines that al-
lows users to access arrays in SDA files via either special
library calls or normal Fortran READ and WRITE state-
ments. CMMD allows multiple threads of control, one for
each PN. CMMD I/O provides a variety of I/O "modes" -
in some, action is taken by a single PN; in others, all PNs
co-operatively perform parallel I/O [4].

3 Tracing Methodology

The 512-node NCSA CM-5 is generally divided into 5
partitions of size 32,32,64,128 and 256 nodes; at times the
machine is reconfigured as a single 512-node partition. The
SDA has 118 data disks and 1 parity disk for a total capac-
ity of about 138 Gbytes. A single file system resides on the
SDA. The logical block size of this file system is 29.5 KB
and the physical disk block size is 59 KB. There are roughly
1000 user accounts on this machine. The CMF users dom-
inate the CMMD users by roughly 7 to 3 [1].

3.1 Trace Collection

The CHARISMA project is a multiplatform tracing
project. We defined a generic set of trace records that
logged events such as open, close, read, write, trun-
cate/extend, link/unlink, etc. The actual format of the
records differed slightly depending on the platform and pro-
gramming model. Detailed formats of event records are
listed in [27].

We specifically considered user-program I/O only to and
from the SDA. Serial NFS I/O was not considered because
we expected that it would have much less data traffic due to
limited bandwidth.

We instrumented the run-time CMF I/O libraries to col-
lect traces. The normal I/O library was replaced by our
tracing library, and all CMF programs linked to the trac-
ing library by default. Almost all CMF jobs that ran on
the NCSA CM-5 in the 23-day period from June 28, 1994
(about 10:15 AM) to July 20,1994 (about 11:30 AM) were
traced. Some users preferred not to have their jobs traced
and turned off tracing at run-time. Tracing was continuous
except for scheduled maintenance periods. In total, 1760
jobs were traced. They represent 434 distinct applications
(different executable path names) run by 384 users.

We were concerned both with performance degradation
and perturbation of the workload caused by tracing. We
wrote the per-job trace files onto the serial Unix file sys-
tem to avoid contention with SDA I/O. We buffered the
trace records in memory and wrote them to the trace file
in large blocks. User-provided anecdotal evidence showed
less than 5% overhead in execution time for several appli-
cations.

The CMMD tracing library was developed off-site, so
we were not allowed to make it the default library. We re-
lied on volunteer users who linked their programs to the
CMMD tracing library for us to collect traces. We gath-
ered traces from June 23, 1994 to July 6, 1994 from 127
jobs representing 29 distinct applications run by 11 distinct
users. The user population represented heavy (probably so-
phisticated) SDA users who were interested in parallel I/O
behavior. This workload was I/O-intensive compared to the
CMF workload. This difference should be considered when
interpreting the CMMD data.

CMMD I/O is implemented as a client/server architec-
ture in which a privileged CM-5 host process is responsi-
ble for running a server loop. We monitored CMMD I/O by
piggybacking trace records on the client/server protocols,
thereby achieving minimal perturbation. The actual trace
records were produced on the CM-5 compute nodes, com-
municated to the host server, then written to the local Unix
file system. Since the clock-skew between PNs was in the
order of microseconds, we ignored the theoretical inconsis-
tency in PN-generated timestamps in the context of I/O op-
erations that took milliseconds to finish.

4 Results

In this section we first characterize jobs, then files, and
then individual I/O requests. We then analyze for sequen-
tiality, sharing, and synchronization in access patterns.

64 128 256 512

Number of nodes

Figure 1: Distribution of the number of nodes used
by jobs (choices limited by partition sizes).

1.0-

„ 0.8-

•5 0.6-

£ 0.2-

0.0

CMF jobs

/ CMMD jobs

1 10 100 1000 10000 1e+05 16+06

Duration of execution (in seconds)

Figure 2: Cumulative Distribution Function (CDF)
of duration of jobs.

4.1 Jobs

Figure 1 shows the number of nodes used by jobs. About
60% of CMF jobs used the smallest available partition of
size 32 nodes. About 20% of CMF jobs use 128 nodes or
more. On the other hand, since the CMMD workload was
self-selecting and included fairly large and I/O-intensive
applications, we observe a bias toward large numbers of
nodes.

The duration of jobs is shown in Figure 2. The number
of CMF jobs that ran for each logarithmic quantum were
comparable to each other, but taking a closer look we found
that there were only a few distinct applications with life-
times between 1000 and 100000 seconds (about 50), each
rerun a large number of times. In contrast, the number of
distinct applications that ran for less than 1000 sees is large
(more than 400). Indeed, many jobs (about 164) took less
than 2 seconds to complete. We believe that these were
mostly aborted executions and would be a feature in any
general workload. We did not find very short-lived jobs in
the CMMD workload, because these were large debugged
applications. We also observed that load conditions varied
widely over the tracing period. Clearly an effective file sys-

<n 80~

| 40-
CD

°- 20-

0-

n CMF jobs (total jobs = 1760)
m CMMD jobs (total jobs = 127)

n f
0 1 2 3 4 +

Number of files opened

Figure 3: Distribution of number of files opened per
job.

tern must allow efficient access over a range, from small
short-lived jobs to large, long jobs and respond to varying
system load conditions.

4.2 Files

A total of 1760 CMF jobs opened only 3780 files, while
127 CMMD jobs opened 904 files. We attribute this dif-
ference to two factors: CMMD nodes could individually
open files (CMF jobs could not), and the CMMD workload
was self-selecting and I/O intensive. For the same reason,
CMF jobs read 27.8 MB/file and wrote 25.2 MB/file on av-
erage, while CMMD applications read 117.5 MB/file and
wrote 110.2 MB/file. It should be noted that even the lower
CMF figures are an order of magnitude bigger than what
was observed in the iPSC study (read 1.2 MB/file, wrote
3.3 MB/file). Write traffic dominated read traffic. CMF
jobs used 2286 write-only files and 1271 read-only files;
they wrote 57 Gbytes and read 35 Gbytes. CMMD jobs
used 596 write-only files and 257 read-only files; they wrote
65 Gbytes and read 30 Gbytes. Very few files (5.8% of
those accessed by CMF jobs and 5.9% of those accessed
by CMMD jobs) were used simultaneously for both read
and write, which is consistent with observations in Unix file
systems made by Floyd [12], and with the iPSC results. It is
also not surprising, since co-ordinating parallel read-writes
from several nodes is difficult.

Figure 3 shows the number of files used per job. About
25% of CMF jobs did not open any SDA files at all, and
63% of CMF jobs opened 1^4 files on the SDA. CMMD
jobs opened more files, which is expected from a self-
selecting group of users interested in SDA I/O. Both CMF
and CMMD jobs had multiple files opened concurrently in
their lifetime. Therefore we stress that file systems must op-
timize access to several concurrently open files within the
same job.

Figure 4 shows that file sizes were large compared to
Unix environments traced. About 35% of files accessed by

1 n

« 0-8-
.2

1 0.6-

c
o
"o ""
CO
l~

0.2-

^x- r
^ • "

1
/ •

CMF jobs''
/ ,'

x •""
/ /

X ,'
_ J

1
,-- .• CMMD jobs

X

1 f 1 1 1 1 1 1
10 100 1e3 1e4 1e5 1e6 1e7 1e8 1e9 1e10

File size (in bytes)

Figure 4: CDF of the number of files of each size
at close.

i .\j

« °-8-s
I 0.6-
c

f 0.4-
CD

1 I

"• 0.2-

0.0-

x . —
CMF jobs -" .'

x .'

^'^ *" ,'

X ,'
/ t

s
,' ,..- CMMD jobs

.-'
1 l 1 1 1 1

1 10 100 1000 10000 1e+05 1e+06

Duration kept open (in seconds)

Figure 5: CDF of the duration for which jobs kept
files open.

CMF jobs and 50% of files accessed by CMMD jobs were
larger than 10 MB. During the tracing period, 34 files larger
than 10 Gbytes were opened. Parallel file systems must
therefore be designed to accommodate efficient access to
very large files.

Figure 5 shows the durations for which files were kept
open by jobs. For CMMD jobs, more than 50% of files
were kept open for more than 1 hour. For CMF jobs about
15% of files were kept open for more than 1 hour. On the
whole, file-open durations are much larger than observed in
Floyd's Unix file system study [13].

4.3 I/O Request Sizes

Figure 6 shows the size of write requests from jobs. For
CMF jobs, the sizes of 90% of write requests were less
than 1000 bytes. For CMMD jobs, the sizes of 90% of
write requests were less than 400 bytes. We expected CMF
write requests to be much bigger because they are collec-
tive write requests from all nodes in a job, while CMMD
requests were from individual nodes. In CMMD jobs we
observed that nodes typically wrote small sequential por-
tions of files. In both CMF and CMMD, more than 90% of

1.0

0.8-

0.6-

0.4-

0.2-

0.0

Fraction of •' x -•writes ;;CMF
J' jobs

J
CMMD .-1

jobs../ i

Fraction
data

CMF
jobs.

oJ.̂ -1

.1

• CMMD
jobs

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8 1e9
Write size (in bytes)

Figure 6: CDF of the number of writes by each re-
quest size and the amount ot data written by each
request size.

the data were transferred by write requests of size more than
4000 bytes although 90% of write requests were smaller
than 4000 bytes. The file system therefore must achieve
low latency for small requests (that are numerous) and high
bandwidth for large requests (that transfer most of the data).
Read request sizes from jobs exhibit behavior similar to the
write requests.

4.4 Sequentiality

We define a sequential request to be one at a higher file
offset than the previous request, and a consecutive request
to be one that begins exactly at the same offset where the
previous request finished. For CMF jobs we looked at the
collective access pattern and for CMMD jobs we looked
at per-node access patterns. Both CMF and CMMD jobs
showed (Figures 7 and 8) predominantly sequential pat-
terns in accessing read-only and write-only files. Some
CMF and CMMD jobs read data in reverse of the order
in which it was previously written out, which resulted in
less sequentiality in read access compared to write access.
Read-write files were predominantly non-sequentially ac-
cessed. Since accesses from CMF jobs were considered
collectively from the application, they show more consecu-
tiveness than CMMD applications, where we looked at per-
node patterns. 95% of write-only files and 60% of read-
only files were accessed more than 90% consecutively from
CMF jobs, while only 60% of write-only files and 20% of
read-only files were accessed more than 90% consecutively
by CMMD jobs.

4.5 I/O Request Intervals

We define the number of bytes skipped between one re-
quest and the next to be the "interval size." Figure 9 shows
number of different interval sizes used for each file and Fig-
ure 10 shows number of different request sizes used per

„ „ . Read-writei °-8: ._/~
^ °-6-;
1 0.4-
2 . II
"• 0.2- Read-only ,-

00- '' Write-only '

0 20 40 60 80 100

(a) CMF jobs % Accesses sequential

1.0-
f ._._. -J

,• —' Read-write

I
^ 0.6-(

0.2 -| Read-only _ r.

' .. yYdte."?rJ .̂ - -'
0 20 40 60 80 100

(b) CMMD jobs % Accesses sequential

Figure 7: CDF of sequential access.

1.0'

J
| 0.6 H

I 0.4 H
S
"• 0.2-I

0.0

Read-write

Read-only

Write-only

0 20 40 60 80

(a) CMF jobs % Accesses consecutive

100

1.0-

I °'8'
•5 0.6-

| 0.4-
S
"• 0.2-

0.0-

Read-write
_ r Read-only

,...' Write-only

0
r

20 40 60 80

% Accesses consecutive

100
(b) CMMD jobs

Figure 8: CDF of consecutive access.

„ 80-
<t>

r 60-

| 40-

°- 20-

0-

n CMF jobs (total files = 3780)
m CMMD jobs (total files = 904)

PL

|| [Jj

0 1 2

Jm rl
3 4+

Number of different intervals

Figure 9: Distribution of number of
intervals per file.

distinct request

100 -i

<D

r eo-

§ 40-

* 20:
0-

n CMF jobs (total files = 3780)
m CMMD jobs (total files = 904)

11
0 1 2

i-i

rl
3 4+

Number of different request sizes

Figure 10: Distribution of number of distinct request
sizes per file.

file, considering global and per-node patterns for CMF and
CMMD jobs respectively. From CMF jobs 33% of files
were accessed as a whole in one request; about 40% of
files accessed by CMF jobs were accessed with just 1 in-
terval; about 79% of those 1-interval files were 100% con-
secutively accessed (interval size 0). From CMMD jobs
about a third of all files were accessed as a whole in one re-
quest. The percentage of files having 3 or more intervals
of access is more for CMMD than in CMF. We attribute
this difference to the use of independent I/O modes from
CMMD jobs. Overall, the access patterns from both CMF
and CMMD applications were predominantly regular (that
is, few different interval and request sizes).

4.6 Synchronization

Though CMF users could perform asynchronous nodal
I/O via CMMD calls, only 18(1%) jobs in total used it.
CMMD applications also chose to do the bulk (78%) of
their I/O in synchronous-sequential mode. This mode al-
lows nodes to read/write sequential and possibly unequal
file portions in parallel. Most of these accesses also had
equal request sizes from nodes. The local-independent

1.0-
n
1 0.8-
"o

| °-6~
| 0.4-
it

0.2-

0 _

(a) CMF jot

1.0-
tf>

1 0.8-

| °'6"
| 0.4-
£

0.2-

n

Write/Bytes

f Write/Blocks
1 _ r

/ — ~ Read/Bytes

Read/Blocks J
1

0 20 40 60 80 100

s Percent shared

Write/Bytes
1> 1

_.- ' 1
Write/Blocks; |

f ---Reaves Read/Blocks j
1

0 20 40 60 80 100
(b) CMMD jobs Percent shared

Figure 11: CDF of sharing between nodes in read-
only and write-only files at byte and block granular-
ity.

mode was hardly ever used (0.88% of total I/O), which is
expected, because that mode does not provide efficient par-
allel I/O from SDA files. Synchronous-broadcast mode,
in which the file pointer is at the same file position in all
nodes, accounted for 8.7% of total I/O, and mainly read
common information for all nodes. Global-independent
mode, which allows all nodes to access a single file for in-
dependent reading and writing, was only used to do 11.9%
of total I/O. Anecdotal evidence suggests that users really
want high-performance independent I/O but they do not use
it on the CM-5 because of poor performance. This is an ex-
ample of how the capabilities of an existing machine influ-
ence user behavior.

4.7 Sharing

A shared file is one that is opened by more than 1 job
or node. When the opens overlap in time the file is said
to be concurrently shared. A file is write-shared if any
of the opens involve writing the file. We did not find any
files shared between jobs, although most files were shared
among the nodes of a single job. Thus, we looked at sharing
at the byte and block granularity (Figure 11). Of files writ-
ten by CMF jobs (Figure 1 l(a)), 95% were completely un-
shared (that is, 0% byte-shared), because it is rarely mean-

r 10
•c

«i 0.8-
CB
CD

£ 0.6-
CO0}

§" 0.4-
B
§ 0.2-

1£ 0.0-

•— j-~" • /

if''1/ t
t *

j J /

/ 4 I

f 'f reads(CMF)
J ,J writes(CMF)

-//'"/ writes(CMMD)

i i i i i i i i
1e-4 1e-3 0.01 0.1 1 10 100 1000 1e4 1e5

Elapsed time (in seconds) between
consecutive reads/writes to the same block

Figure 12: CDF of elapsed time between re-read
and re-write of blocks.

ingful for some bytes to be written multiple times. Of
files read by CMF jobs, about 24% were completely shared
(100% byte-shared), replicating the data set on all nodes.
Figure 1 l(a) also shows that 64% of all read-only files were
100% block-shared, although only 24% were 100% byte-
shared. This difference implies that 40% of read-only files
had all of their blocks shared despite having few bytes
shared, a situation called false sharing. This situation oc-
curred when the data set was partitioned among the nodes
in such a way so that some of the file blocks contained
data destined for different nodes. Read-write files tended
to have little byte sharing, because it is relatively difficult
to coordinate concurrent read/write access to shared data,
but plenty of block sharing, for the same reasons as above.

In CMMD jobs (Figure ll(b)) we found more byte-
sharing than in CMF jobs. We do not know the reason for
this difference. It may simply be the nature of the particular
CMMD applications involved.

Overall, the low amount of write sharing and the high
amount of read sharing indicates that caching may be use-
ful, even on the nodes themselves, in addition to caching on
the I/O control processor.

4.8 Time between re-writes and re-reads

Figures 12(a) and 12(b) show elapsed time between con-
secutive accesses to the same block. For CMF jobs, the re-
write time was between 0.01 sec and 1 sec in 85% of re-
writes. For CMMD jobs, the re-write time was between 0.1
sec and 1 sec in 90% of re-writes. This short interval in-
dicates that writes could be buffered and deferred by per-
haps 10 seconds. Combining this fact with low write shar-
ing across nodes, we feel that per-node write caches can
be useful. Reads generally showed the same behavior as
writes but there were some re-reads that were about 3000
and 100 sec apart for CMF and CMMD applications respec-

tively. We attribute this to long program loops, re-reading
the same information at the beginning of each iteration.

4.9 Physical I/O

Both CMMD and CMF provide the users with the facil-
ity of "physical I/O", which provides the highest-bandwidth
parallel I/O to the SDA but places data in a non-transferable
device-dependent layout. Only 26 CMF jobs and 23
CMMD jobs used physical I/O. However, physical I/O ac-
counted for 24.4% and 30% of total I/O from CMF and
CMMD jobs respectively. This indicates that some special-
ized users found the feature very useful.

5 Conclusion

We found important differences between file-access pat-
terns on multiprocessors and Unix platforms including
larger files, longer file-lifetimes, dominance of writes, and
more concurrent interprocess file-sharing. Low-latency
and high-bandwidth both must be achieved to satisfy nu-
merous small requests as well as large requests that trans-
fer most data. We believe that simple extensions of normal
Unix I/O will not be effective and that interface re-design
is required.

We also found important differences with previous stud-
ies of vector scientific applications, particularly the dom-
inance of small I/O requests. To some extent, this is the
result of partitioning a data set across many processors,
particularly in patterns that did not conform to the layout
of data within the file. However, it may also be inherent
in some of these applications, since we found that CMF
applications— which make only collective-I/O requests—
also made small requests.

In CMMD applications we observed that most I/O was
done in synchronous-sequential mode, with equal amounts
of data per node. It appears that a collective-I/O request in-
terface from a CMMD-like environment would be useful.

We found that write traffic (number of files only writ-
ten, bytes written) was consistently higher than read traf-
fic. Files were not shared between jobs. Most read-only
files were either completely shared across nodes within a
job or were completely unshared. Write-only files were
rarely shared, re-write times to the same blocks were
short, and request sizes were small, indicating that node-
caching of write-only files may be feasible, if a good cache-
consistency solution can be found.

Acknowledgments

We thank Michael Welge for providing access to the
NCSA CM-5. We thank Curtis Canada of NCSA for sys-
tems support. Many thanks to all NCSA users, especially

Robert Sugar, Diane Cook, Kathryn Johnston, Fady Naj-
jar, Kapil Mathur, Greg Bryan, Chris Kuszmaul, and Tom
Cortese. Thanks to David Phillimore at TMC for helping
with the CMF sources, and Doreen Revis at Duke for help-
ing us acquire sources and documentation.

References

[1] Personal communication with NCSA consulting staff and
NCSA CM-5 systems staff, June 1994.

[2] R. Bagrodia, A. Chien, Y. Hsu, and D. Reed. In-
put/output: Instrumentation, characterization, mod-
eling and management policy, 1994. On WWW at
http://www.ccsf.caltech.edu/SIO/SIO.html.

[3] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,
and J. K. Ousterhout. Measurements of a distributed file sys-
tem. In Proceedings of 13th ACM Symposium on Operating
Systems Principles, pages 198-212, Oct 1991.

[4] M. L. Best, A. Greenberg, C. Stanfill, and L. W. Tucker.
CMMD I/O: A parallel Unix I/O. In Proceedings of the Sev-
enth International Parallel Processing Symposium, pages
489-495, 1993.

[5] P. F. Corbett, D. G. Feitelson, J.-P. Prost, and S. J. Baylor.
Parallel access to files in the Vesta file system. In Proceed-
ings of Supercomputing '93, pages 472-481, 1993.

[6] T. H. Gormen and D. Kotz. Integrating theory and practice in
parallel file systems. In Proceedings of the 1993 DAGS/PC
Symposium, pages 64—74, Hanover, NH, June 1993.

[7] T. W. Crockett. File concepts for parallel I/O. In Proceedings
of Supercomputing '89, pages 574-579, 1989.

[8] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Archi-
tectural requirements of parallel scientific applications with
expb'cit communication. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages
2-13, 1993.

[9] E. DeBenedictis and J. M. del Rosario. nCUBE paral-
lel I/O software. In Eleventh Annual IEEE International
Phoenix Conference on Computers and Communications,
pages 0117-0124, April 1992.

[10] J. M. del Rosario and A. Choudhary. High performance I/O
for parallel computers: Problems and prospects. IEEE Com-
puter, 27(3);59-68, March 1994.

[11] P. Dibble. A Parallel Interleaved File System. PhD thesis,
University of Rochester, March 1990.

[12] R. Floyd. Short-term file reference patterns in a UNIX envi-
ronment. Technical Report 177, Dept. of Computer Science,
Univ. of Rochester, March 1986.

[13] R. Floyd and C. Ellis. Directory reference patterns in hier-
archical file systems. IEEE Transactions on Knowledge and
Data Engineering, l(2):238-247, June 1989.

[14] J. C. French, T. W. Pratt, and M. Das. Performance mea-
surement of the Concurrent File System of the Intel iPSC/2
Hypercube. Journal of Parallel and Distributed Computing,
17(1-2):115-121, January and February 1993.

[15] N. Galbreath, W. Gropp, and D. Levine. Applications-driven
parallel I/O. In Proceedings of Supercomputing '93, pages
462-471, 1993.

[16] D. W. Jensen and D. A. Reed. File archive activity in a su-
percomputing environment. In International Conference on
Supercomputing, pages 387-396, 1993.

[17] Kendall Square Research. KSRI technology background,
January 1992.

[18] D. Kotz. Multiprocessor file system interfaces. In Proceed-
ings of the Second International Conference on Parallel and
Distributed Information Systems, pages 194-201, 1993.

[19] D. Kotz and N. Nieuwejaar. Dynamic file-access character-
istics of a production parallel scientific workload. In Pro-
ceedings of Supercomputing '94, pages 640-649, Nov 1994.

[20] 0. Krieger and M. Stumm. HFS: a flexible file system for
large-scale multiprocessors. In Proceedings of the 1993
DAGS/PC Symposium, pages 6-14, Hanover, NH, June
1993.

[21] E.L. Miller and R.H.Katz. Input/Output behavior of super-
computer applications. In Proceedings of Supercomputing
'91, pages 567-576, November 1991.

[22] B. Nitzberg. Performance of the iPSC/860 Concurrent File
System. Technical Report RND-92-020, NAS Systems Di-
vision, NASA Ames, December 1992.

[23] J. Ousterhout, H. DaCosta, D. Harrison, J. Kunze,
M. Kupfer, and J. Thompson. A trace driven analysis
of the UNIX 4.2 BSD file system. In Proceedings of 10th
Symposium on Operating System Principles, pages 15-24,
December 1985.

[24] B. K. Pasquale and G. C. Polyzos. A static analysis of
I/O characteristics of scientific applications in a production
workload. In Proceedings of Supercomputing '93, pages
388-397, 1993.

[25] J. Porcar. File migration in distributed computer systems.
Technical Report LBL-14763, Lawrence Berkeley Lab, July
1982.

[26] M. L. Powell. The DEMOS file system. In Proceedings of
the Sixth ACM Symposium on Operating System Principles,
pages 33-42, November 1977.

[27] A. Purakayastha, C. S. Ellis, D. Kotz, N. Nieuwejaar, and
M. Best. Characterizing parallel file-access patterns on a
large-scale multiprocessor. Technical Report CS-1994-33,
Dept. of Computer Science, Duke University, October 1994.

[28] K. K. Ramakrishnan, P. Biswas, and R. Karedla. Analysis of
file I/O traces in commercial computing environments. In
Proceedings of ACM SIGMETRICS and PERFORMANCE
'92, pages 78-90, 1992.

[29] A. Reddy and P. Banerjee. A study of I/O behavior of Perfect
Benchmarks on a multiprocessor. In Proceedings of the 17th
Annual International Symposium on Computer Architecture,
pages 312-321, 1990 1990.

[30] A. Smith. Analysis of long term file reference patterns and
their applications to file migration algorithms. IEEE Trans.
Softw. Eng., SE-7(4):403-417, July 1981.

