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ABSTRACT

We have classified four different images, under various levels of JPEG compression,
using the following classification algorithms: minimum-distance, maximum-likelihood,
and neural network. The training site accuracy and percent difference from the original
classification were tabulated for each image compression level, with maximum-likelihood
showing the poorest results. In general, as compression ratio increased, the
classification retained its overall appearance, but much of the pixel-to-pixel detail was
eliminated. We also examined the effect of compression on spatial pattern detection
using a neural network.

INTRODUCTION

With remote sensing studies becoming more global in nature, and computer processing
power increasing, many scientists have been turning to larger and larger data sets.
Unfortunately, storage of enormous data sets can be costly, thus making image
compression an important consideration in the remote sensing field. For typical earth
science imagery, lossless compression will result in about a 2:1 reduction. Lossy
compression methods, however, commonly provide 10:1, 20:1, or even higher ratios,
while maintaining the visual integrity of the image. The effect of these algorithms on
supervised classification is important to consider before any data is archived with lossy
compression.

JPEG IMAGE COMPRESSION

A common industry standard lossy compression method is JPEG (Joint Photographic
Experts Group), which uses the discrete cosine transform. This algorithm is both fast and
provides excellent energy compaction for highly correlated data [1].

JPEG makes use of the discrete cosine transform (DCT) for 8x8 contiguous sub-blocks
of the image. The transform matrix C = {c(k,n)} is defined as:

1

W , k=0, 0sn<7
c(k,n) = ¢y
%cosn—(z:—l)k— . 15ks7, 0<nsT.

Most of the energy is packed into the first few transform coefficients. Varying levels of
compression can be achieved by using variable quantization of these coefficients. Other
compression algorithms, such as improved quantization of the DCT [2] and wavelet
transform compression [3], are much superior both visually and in terms of mean square
error, but are not yet image processing standards like JPEG.

EXPERIMENT

Recent studies have been reported on the effect of particular compression algorithms on
subsequent multispectral analysis such as principal components and vegetation indexes
[4] and on supervised and unsupervised classification [5].

In this experiment we have compressed four remotely-sensed multispectral images to
varying degrees and have investigated the resulting supervised classifications obtained by
the minimum-distance (MD), maximum-likelihood (ML), and three-layer




backpropagation neural network classifiers. We have also looked at the effect of
compression on spatial pattern detection using a neural network.

The four classifications are:
* An urban land-use classification of Landsat Thematic Mapper (TM) satellite imagery
of Tucson, Arizona, obtained April 1st, 1987.

* An urban land-use classification of TM imagery of Oakland, California, obtained
August 1st, 1984,

» A geologic classification of Airborne Visible Near Infrared Imaging Spectrometer
(AVIRIS) aircraft imagery of the Lunar Lake Volcanic Field in central Nevada, obtained
September 29, 1989 [6].

* A combined temporal AVHRR NDVI (11 bi-weekly composites), spectral AVHRR,
and DEM land cover classification of central California, using imagery from January to
July, 1992.

For the first two images, the classifications were done two ways: 1) training on the
original image with classification on the compressed imagery, and 2) both training and
classification on the compressed imagery. For the second two images, all training was
done on the original image. Both of the training methods are valid scenarios. In the first
case, the user may have a few high quality (uncompressed) images to use for training, but
desires to browse a compressed database. In the second case, the user is starting off with
the compressed imagery.

The spatial data set is a series of synthetic aperture radar images from the Magellan
spacecraft of the surface of Venus. A previous experiment on spatial pattern detection of
impact craters [7] was reexamined after compression of the imagery.

RESULTS

Three different measures of classifier accuracy are presented in the tables. For each
case, the accuracy of the training sites is given. If training was done on the original
(uncompressed) image, this measure gives an indication of how much the compression
has distorted the class exemplar regions. If training was done on the compressed image,
this measure shows how well the classifier was able to describe the distorted training
data.

The second measure is the accuracy of test sites that are independent of the training
data. This is given for the Tucson image and helps show the generalization of the
classification.

The third measure is the percentage of pixels in the classification of the compressed
image (whether trained on the compressed image or not) that match the classification of
the original image. It is safe to assume that the classification of the compressed data will
be no more accurate than that of the original data. Thus, this measure gives a maximum
bound on classification accuracy.

All of the classifications performed well for moderate compression ratios. In general,
the maximum-likelihood and neural network classifications were more accurate on the
original images than minimum-distance. The ML classifier, however, tended to
deteriorate the most with increased compression. For the Tucson image, both the training
and independent test sites degraded much more rapidly for ML than for the other two
classifiers, as did the % match measure. Fig. 1 shows how the classifiers performed, after
being trained on the original Oakland image, on a 28.5:1 compressed image.

It is intuitive that the MD classifier would not degrade as quickly as a parametric
classifier. While individual pixel values can become quite distorted, and the class




distributions can change significantly with high JPEG compression (the classes tend to
lose their spectral correlation, see [8]), the class means, on which the MD classifier
depends, remain relatively constant.

Meanwhile, the assumption of a Gaussian class distribution, shaky to begin with in
these types of classifications [9], causes the ML classifier significant problems as the
pixel values change. The neural network, which derives a class distribution non-
parametrically from the training data, suffers if the pixel values change significantly, but
often starts off with a better description of these distributions and has more leeway for
€rTor.

As the compression ratio increases, the 8x8 image blocks become more homogeneous.
The elimination of high frequency detail leads to a loss of detail in the resulting
classification. Thus, while the overall classification remains fairly accurate, with large-
scale spatial regions generally maintaining the correct classes, much of the finer detail is
eliminated.

For the spatial pattern detection, the neural network windows were expanded to 25x25
and only one image band (Magellan SAR) was used. The compression in this case
seemed to have little effect on the detection of impact craters.

CONCLUSION

Overall, it was found that high quality classifications could be obtained with any of the
classifiers for JPEG compression ratios approaching 10:1 or even higher. Qualitatively,
the classification retains its overall appearance, but the smoothing effect of high
compression tends to eliminate much of the pixel-to-pixel detail. As expected, training
on the compressed imagery could raise the training site accuracy, but did not raise the
percentage of pixels matching the original classification. For the spatial pattern detection
example presented, even severe image compression had little effect on detection ability.
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Figure 1: Classification of 28.5:1
JPEG compressed TM
Oakland image.

Band 5 of the
compressed image.

Note: The 8x8 DCT blocking is apparent.

Note: The diagonal feature is a lake.
White represents 'forest’. Other
classes include 'grassland’ and
‘residential’. The class occupying
much of the lake area in the ML
map is 'urban'.

Minimum-distance
classification

Maximum-likelihood
classification

Neural network classification.




Table 1: Tucson TM image. Classifier performance on the compressed images when
trained on the original data. Percent classification accuracies given for both the
training sites and independent test sites. See Figure 2.

Image [Minimum-| MD % [Maximum-| ML % Neural Net %
distance match |likelihood | match network match
classifier | toorig. | classifier | toorig. | classifier to
accur. % accur. % accur. % orig.

Orig. Trn: 69.7 — Trn: 96.9 —_ Tm: 96.1 —
Test: 67.0 _ Test: 89.5 Test: 94.0

1.95:1 | Tm: 69.5 97.1 Tm: 96.1 87.2 Tm: 95.5 95.3
Test: 67.2 Test: 87.1 _ Test: 93.6 _

3.8:1 Tr: 70.3 90.3 Tm: 86.3 719 Trm: 94.6 87.5
Test: 67.1 Test: 77.9 Test: 93.1

7.1:1 Trn: 69.2 83.9 Tm: 79.2 65.0 Tm: 93.9 823
Test: 67.4] Test: 71.0 Test: 92.3

16.9:1 | Trn: 68.3 76.2 Trn: 65.4 54.6 Trn: 92.7 75.4
Test: 69.0 Test: 61.3 Test: 91.9

25.3:1 | Trn: 69.2 72.4 Tm: 57.3 50.0 Trn: 92.4 71.8

Test: 69.4 Test: 49.8 Test: 91.0

Table 2: Tucson TM image. Classifier performance when both training and classification
are carried out on the compressed images. See Figure 3.

Image [Minimum-|{ MD % |Maximum-| ML % Neural Net %
distance match | likelihood | match network match
classifier | to orig. | classifier | to orig. | classifier to
accur. % _ accur. % accur. % orig.

1.95:1 Trn: 69.3 97.1 Tm: 96.4 86.3 Trn: 95.6 90.9
Test: 67.2 Test: 91.6 _ Test: 92.2

3.8:1 Trn: 70.4 90.2 Tm: 95.5 74.8 Tm: 95.1 84.9

_ Test: 67.2 _ Test: 87.7 Test: 91.3 _

7.1:1 Trn: 69.4 83.9 Tm: 96.2 65.1 Tm: 94.6 80.7
Test: 67.5 _ Test: 85.8 _ Test: 91.8

16.9:1 Trm: 68.0 76.1 Tm: 97.6 52.7 Trm: 95.7 73.3
Test: 68.1 ) Test: 80.7 Test: 91.6

25.3:1 Trn: 70.5 72.2 Tm: 96.4 46.7 Trn: 94.4 70.1
Test: 69.9 Test: 72.6 Test: 90.9




Table 3: Oakland TM image. Classifier performance on the compressed images when
trained on the original data. Percent classification accuracies are given for the

training sites. See Figure 4.

Image [Minimum-| MD % [Maximum-| ML % Neural Net %
distance match | likelihood | match | network match
. classifier | toorig. | classifier | toorig. |classifier to
accur. % accur. % accur. % orig.
Orng. 89.1 — 97.1 — 95.3 —
1.65:1 89.1 99.4 97.1 98.9 95.2 99.4
3.1:1 88.9 94.7 95.1 91.3 94.5 95.1
5.3:1 88.4 90.5 93.6 86.4 93.9 91.2
13.45:1 91.2 82.9 90.9 76.4 94.6 85.1
28.5:1 93.9 76.0 83.9 66.8 93.8 78.8

Table 4: Oakland TM image. Classifier performance when both training and
classification are carried out on the compressed images.

Image |Minimum-{ MD % [Maximum-| ML % Neural Net %
distance match |likelihood | match | network match
classifier | toorig. | classifier | to orig. |classifier to

accur. % accur. % _ accur. % orig.
1.65:1 89.1 99.3 97.1 97.9 94.9 94.7
3.1:1 88.7 94.7 97.0 90.6 95.2 91.1
5.3:1 88.1 90.5 — — 94.6 88.6
13.45:1 91.7 82.8 — — 95.4 83.0

28.5:1 93.6 75.7 — — — —

Table 5: Lunar Lake AVIRIS image. Training done on the original data only.
Classification accuracies are given for the training sites. See Figure 5.

Image [Minimum-| MD % [Maximum-| ML % Neural Net %
distance match |likelihood | match | network match
classifier | to orig. | classifier | to orig. |classifier to
accur. % accur. % accur. % orig.

Orig. 88.6 — 100 — 98.1 —

1.45:1 83.7 91.2 88.3 84.9 89.6 88.3

2.45:1 80.7 81.7 72.8 66.0 79.3 75.8

3.5:1 74.8 72.4 66.1 51.8 73.4 63.8

7:1 28.3 354 11.7 15.6 13.1 5.3
2 12.5:1 27.2 25.1 13.5 13.9 10.1 10.1
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Table 6: AVHRR NDVI time series/spectral/DEM image. Training done on the original
data only. Classification accuracies are given for the training sites. See Figure

Image |[Minimum-|{ MD % [Maximum-| ML % Neural Net %
distance match |likelihood | match | network match
classifier | toorig. | classifier | to orig. | classifier to
accur. % accur. % accur. % orig.

Orig. 95.1 — 100 — 99.8 —
1.9:1 95.1 99.8 100 98.9 99.8 99.7

3.9:1 95.2 98.7 99.4 92.7 99.8 98.3

6.9:1 95.1 97.7 97.6 88.0 99.8 97.2

19.1:1 96.4 95.8 94.9 83.1 99.8 95.3

38.3:1 96.9 94.0 85.9 76.4 99.8 93.6

Table 7: Number of true (out of 11) and false crater detections in Magellan imagery of
Venus using a neural network with 25x25 input nodes and 2 hidden layer nodes

for various threshold levels (net output ranges from 0 to 1).

Uncompressed 59:1 255:1
image - compression compression
Thr = 0.9 5/11, O false 5/11, O false 5/11, O false
Thr = 0.82 7/11, 2 false 8/11, 1 false 8/11, O false
Thr =0.77 11/11, 4 false | 11/11, 3 false 9/11, 4 false

Table 8: Same as above with training done on 14.5:1 compressed image.

59:1 25.5:1
compression compression
Thr = 0.9 6/11, O false 5/11, O false
Thr = (.82 9/11, 2 false 9/11, 2 false
Thr =0.77 11/11, 7 false 9/11, 8 false




Tucson TM image:
Training on original with classification on compressed

l(x) L] T T T % T LI B I | LI T 7 LI T LIS T

$
s

I
0)

.._’______._____’

y
\

90

X

80

lx'

70

60

Test Site Accuracy (%)

Ll L1 Ll | I T

——©6— Minimum-Distance
--- % --- Maximum-Likelihood
— & - Neural Network

100" T | B | T T T T T T T T

g 905 SO\ 3
eg E X ® :
3 - 3
§E s '\*ﬁ\\\\\\\\&\ E
172} - M e .
EZ qof—ein R :
o O E b S E
SE 60F - :
5.8 : - ]
o T T T s R R L T 3
Mg SO a 5

404 5 10 15 20 25 30
Compression Ratio

Figure 2: Tucson TM image. Classifier performance on the compressed images when
trained on the original data. Classification accuracy is given for test sites
independent of the training data. This data is from Table 1.




Tucson TM image:
Both training and classification on compressed imagery
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Figure 3: Tucson TM image. Classifier performance on the compressed images when
trained on the compressed data. Classification accuracy is given for test sites
independent of the training data. This data is from Table 2.
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Oakland TM image:
Training on original with classification on compressed
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Figure 4: Oakland TM image. Classifier performance on the compressed images when
trained on the original data. Classification accuracy is given for training sites.
This data is from Table 3.
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Percent match to
original classification

Figure 5:

Percent match to
original classification

Figure 6:

Lunar Lake AVIRIS image
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Lunar Lake AVIRIS image classifier performance. The data is from table 5.

Central California AVHRR
NDVI time series/spectral/ DEM image
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Northern California NDVI time series/spectral/DEM image classifier
performance. The data is from table 6.
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