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INTRODUCTION

The goal of this project is to develop satellite-based observational techniques for measuring both

oceanic and atmospheric variables using passive polarimetric radiometry. Polarimetric radiometry

offers a potential alternative to radar scatterometry in observing global ocean surface wind direction

from satellites. Polarimetric radiometry might also provide a means of detecting cell-top ice in

convective storms by virtue of the polarizing properties of oriented ice particles, and thus facilitate

estimation of the phase of the storm.

The project focuses on the development of polarimetric microwave radiometers using digital cross-

correlators for obtaining precise measurements of all four Stokes' parameters. As part of the project

a unique four-band polarimetric imaging radiometer, the Polar Scanning Radiometer (PSR), is being

designed for use on the NASA DC-8 aircraft. In addition to providing an aircraft-based

demonstration of digital correlation technology the PSR will significantly enhance the microwave

imaging capability of the existing suite of DC-8 instruments. During the first grant year excellent

progress has been made in the following areas: (1) demonstrating digital correlation radiometry, (2)

fabricating aircraft-qualified correlators for use in the PSR, and (3) modeling observed SSM/I

brightness signatures of ocean wind direction.

The development of the PSR is supported both by this project's grant (NAGW-4191) and a grant

from the U.S. Office of Naval Research (ONR grant # NOOO14-95-1-0426). Specific tasks funded

under NASA support are related to the development of the PSR digital correlator hardware, the

integration of an 89-GHz radiometer into the PSR, and the modeling and analysis of polarimetric

microwave imagery over the ocean. Other PSR-related including most major hardware development

tasks, are funded by the ONR.



SUMMARY OF ACTIVnTES

Activities sponsored by this grant at Georgia Tech during the period from August 1,1994 through

July 31,1995 include (1) the demonstration of a prototype digital correlator for passive polarimetric

radiometry, (2) the development of aircraft-qualified digital correlator hardware for in-flight

demonstration of polarimetric radiometry on the Polar Scanning Radiometer (PSR), and (3) the

development of a new non-stationary ocean surface model for the prediction of upwelling

polarimetric brightness temperatures.

A. Digital Correlator Development

Several hardware techniques have been demonstrated for measuring the third and fourth Stokes'

parameters (e.g., [Dzura et al., 1992; Swift and Helvisi, 1994; Johnson et al., 1993]). In each of these

techniques a correlation of the orthogonally-polarized field components received by a dual-linearly

polarized antenna is performed. Two classes exist: adding correlators and multiplying correlators.

In the adding correlator the orthogonally-polarized signals are added then detected using a square-law

detector. That is, if VA and ^ are complex signals for antenna polarizations A and B, then the

detector output is proportional ;to |vA+vB|2. The correlation signal, which is the cross term in the

squared-sum, is obtained by subtracting independent measurements of |vA|2 and |^ f. While the

required hardware for this technique is simple, the calibration is not straightforward since the cross-

correlation signal is computed as the difference between large noisy signals.

Multiplying correlators, in contrast, eliminate the need to subtract independent measurements of |vA|2

and |vB|2. If implemented using analog hardware, however, they are subject to drift. Although analog

multiplying correlators can be stabilized it is possible to eliminate many of the problems caused by

drift and to obtain large bandwidths (several hundred MHz) by digital sampling and correlation. An

added advantage of such a digital correlator over an analog correlator is simplicity in calibration.

With the digital correlator only two unknown gain and offset parameters per channel (a total of four

system parameters) require estimation. These four parameters can be measured during operation

using conventional unpolarized hot-and-cold blackbody standards.



A demonstration of digital correlation radiometry and its advantages over analog correlation

radiometry with regard to calibration was performed using a 200-MHz bandwidth emitter-coupled

logic (ECL) correlator viewing a polarized calibration load. The demonstration used an existing dual-

channel 92-GHz radiometer interfaced to custom 1.6-bit (three level) correlators using 24-bit

accumulators. The intermediate frequency (IF) input signal was sampled at a rate of 400 Ms/sec. The

correlator equipment (illustrated schematically in Fig. 1) was trained on the polarized calibration load

described by Gasiewski and Kunkee [1993]. Rotation of the polarized load resulted in brightness

temperature variations in all three measured Stokes* parameters TA, TB, and T0. The data represent

the first demonstration of digital correlation radiometry for passive polarimetric measurements.

As can be seen in Fig. 2, the Tv variations are in phase quadrature with those of TA and TB, and the

amplitude of the Tv variations are nearly equal to the amplitude of the TA and TB variations. These

forementioned features are anticipated consequences of the Stokes' parameter rotational transform

[e.g., Chandrasekhar, 1960; Tsang et al., 1985]. It is important to note that only conventional hot-

and-cold blackbody standards were used to calibrate the digital correlation radiometer. Thus, the

digital technique is expected to be immediately applicable to spaceborne implementations which

require a minimum of calibration hardware. Furthermore, the anticipated results were achieved using

a relatively noisy 92-GHz dual-channel radiometer with receiver temperatures of approximately 1600

and 2300 K. Improved results can be expected using modern low-noise receivers.

B. PSR Digital Correlator Development -

To facilitate application in an aircraft environment, the prototype correlator has since been simplified,

made more mechnically robust, and considerably increased in bandwidth. In order to achieve the

desired wide bandwidth needed for precision measurements of the three Stokes' parameters (at least

500 MHz for channels near 37 and 89 GHz) the sample rate of the correlators was increased from

400 Ms/sec to 1000 Ms/sec. This task was successfully accomplished by adhering to standard

microwave circuit design and layout principles. The correlator design was simultaneously simplified

by the use of high-speed ECL components in only those portions of the circuitry that are required to

operate at the main clock rate of 1000 MHz. Circuit boards for eight correlators were subsequently



etched, then assembled. Surface-mount components were used to maximize reliability of the boards

under mechanical and thermal stress. A circuit layout for the improved correlator card is shown in

Fig. 3.

The eight correlator cards along with appropriate clock and computer interface hardware will be

incorporated into the PSR in August, 1995. Initial operation of the PSR using the correlator

hardware is expected during the fall of 1995.1 Data flights of the PSR on the NASA DC-8 are

currently under negotiation, but are expected to be scheduled for the spring or summer of 1996. In

addition to the correlator hardware a low-noise dual-channel 37-GHz radiometer has been purchased

under this grant to facilitate polarimetric radiometer experiments. This receiver will be installed in

the PSR along with the correlator hardware.

C. Non-stationary Ocean Surface Modeling

Efforts to model ocean wind direction signatures observed using the DMSP Special Sensor

Microwave/Imager (SSM/I) have been similarly successful. A new non-stationary ocean surface

model was combined with a simple geometrical optics electromagnetic emission and scattering model

to predict the upwelling thermal emission from the ocean surface [Kunkee and Gasiewski, 1995a,

1995b]. The non-stationary model is based on a Monte Carlo surface simulator that uses a random

spectral generator for the ocean surface, but includes an algorithm that prescribes a known phase

distribution to the short gravity and capillary wave components. Using the above algorithm,

asymmetric waves typical of a real wind-driven ocean surface are constructed; The asymmetric

wave/geometrical optics (AWGO) model also includes the effects of multiple geometric scattering

and shadowing, both of which are important effects at incidence angles near and beyond that of the

SSM/I instrument (53 degrees and higher).

1 An intensive design and fabrication effort was started in January 1995 with the goal of
flying the PSR on the NASA DC-8 during the MACAWS. While this goal was not met, the
fabrication of the PSR progressed at a rapid rate. Laboratory operation of the PSR is now
expected for October, 1995.



As seen in Fig. 4, the model is well corroborated by SSM/119 and 37 GHz oceanic wind direction

signatures at both moderate (~7 m/sec) and high (~12 m/sec) wind speeds [Wentz, 1991; Wentz,

1992]. The fact that the AWGO model successfully explains the brightness temperature signatures

of wind direction without a diffraction-based electromagnetic model suggests that the thermal

emission mechanism for the ocean surface is primarily the result of broadband specular scattering and

emission. Such broadband signatures were noted in 10,37, and 92 GHz aircraft data observed during

constant-angle bank turns during TOGA/CO ARE [Kunkee and Gasiewski, 1994], albeit at relatively

low wind speeds. The broadband nature of the wind direction signature in radiometry thus contrasts

with that of radar scatterometry in which the wind direction signatures are predominantly the result

of Bragg backscattering from capillary wavelets. The model further shows that the amplitude and

harmonic content of the passive wind-direction signatures are heavily influenced by the presence and

extent of ocean wave asymmetry and ocean foam. The AWGO model is the first physcially-based

thermal emission model to be successfully corroborated using the SSM/I satellite data.

The AWGO model also has also been used to predict the upwelling thermal signature expected for

the third Stokes' parameter (Fig. 5). As expected from laboratory wave tank measurements

[Gasiewski and Kunkee, 1994; Johnson et al., 1993] the signature for TU is quadrature-phased with

respect to the either of the signatures for Tv and Th. This quadrature phasing is also seen in the

AWGO simulations over wind-driven ocean surfaces. Thus, the orthogonal nature of T0

measurements are expected to facilitate passive wind direction retrieval by removing directional

ambiguities in the retrieved wind direction. Moreover, the AWGO model shows that TD is not as

strongly influenced as Tv or Th by either the degree of water wave asymmetry or the amount of foam

coverage on the surface. Finally, TU is a zero-mean signal, and thus (in contrast to Tv and TJ does

not need to have a large drifting baseline removed prior to interpretation.

D. Interaction with the NASA Marshall Space Flight Center

As originally proposed, this grant was intended to support the development and acquisition of

microwave hardware necessary for Georgia Tech to upgrade the NASA Marshall Space Flight

Center's Advanced Microwave Precipitation Radiometer (AMPR). Under this plan the AMPR would



have been modified to provide fully polarimetric measurement capabilities over the full swath of the

instrument. After discussions with both NASA/MSFC and NASA/Headquarters in October 1994

(during the first year of this grant) it was decided that a more suitable instrument for polarimetric

observations and retrieval technique development would be the PSR. Thus, in December 1994 a

decision was made by Georgia Tech and NASA/MSFC to leave the AMPR in its current (non-

polarimetric) configuration and to redirect the polarimetric radiometer development effort toward the

PSR.



CONCLUSIONS AND RECOMMENDATIONS

On the basis of laboratory measurements of thermal emission over water waves [Gasiewski and

Kunkee, 1994; Johnson et al., 1993] and SSM/I satellite measurements over the ocean [Wentz, 1991;

1992] it appears that it is possible to perform satellite-based measurements of ocean surface wind

direction using polarimetric radiometry. Moreover, the addition of a cross-correlation channel to

measure TU will provide independent and unique information on the direction of surface wind. In

order to develop practical retrieval techniques for passive measurement of wind direction it is

important that the model function for thermal emission from a striated ocean be more fully developed.

This task can be accomplished through (1) collection of in-situ ocean thermal emission data for a

variety of conditions from aircraft, and (2) extensions to the AWGO model to incorporate diffraction

from Bragg wavelets.

A. Airborne Passive Polarimetric Measurements using the PSR

When completed, the PSR will allow passive polarimetric observations of the ocean surface from the

NASA DC-8 aircraft over a wide range of incidence angles. The gimbal mount scanning mechanism

will allow the four PSR radiometers (at frequencies of 10.7, 18.6, 37.0, and 89.0 GHz) to be trained

on the surface at elevation angles from nadir up to 70 degrees, and over 360 degrees in azimuthal

angle.2 Thus, two-look algorithms for ocean wind direction sensing will be able to be thoroughly

tested prior to space instrument definition. A variety of scan modes will be available: cross-track,

along-track, spotlight, and conical. In the conical mode, incidence angles from zero to 70 degrees

will be selectable in-flight via software.

The four PSR channels will be useful for broadband imaging of the ocean surface at a variety of

observations angles. The broadband nature of the PSR channel set will greatly facilitate the collection

of a data set for corroborating a thermal emission model function of the ocean surface. The PSR

channels will also coincide with critical channels used by the SSM/I, SSM/I-S, and TRMM

2 The elevation angle of the forward view is limited to 53 degrees due to occultation
caused by the aircraft faring.



instalments. Thus, the PSR is expected to be a valuable underflight instrument for calibration and

validation studies involving these sensors. At this time, the 10.7, 18.6, and 37.0 GHz radiometers

have been purchased and are being installed into the PSR scanhead. In order to complete the

complement of channels it is recommended that purchase of the 89-GHz receiver1 and feedhorn be

completed in the second grant year.

Due to its wide altitude range (500 m to 12 km) and exceptional attitudinal stability the DC-8 is an

excellent platform for ocean surface emission studies. However, the PSR channel set and polarimetric

capabilities can also be used for studies of atmospheric convection. In the latter case it is desirable

to obtain platform altitudes up to 20 km in order to observe the highest cell tops. Such altitudes can

be obtained by the NASA ER-2 high-altitude aircraft. Thus, in the second grant year it is

recommended that integration of the PSR on the NASA ER-2 be considered. Since the PSR has yet

to be deployed even on the DC-8 , however, only a mechanical and cost feasibility study of ER-2

integration is suggested at this time.

B. Incorporation of Diffraction into the AWGQ Model

Without the incorporation of any diffraction from short water waves the AWGO model has

successfully explained much of the variance in Wentz' 19 and 37 GHz SSM/I wind direction data at

7.9 and 12 m/sec. This fact suggests that much of the wind-direction signature is caused by

geometrical optics reflection and emission from essentially flat ocean facets; the signature is a result

of the anisotropic tilt distribution of these facets and of nonuniform foam distribution. At wind speeds

below approximately 5 m/sec (for which foam is not present), however, the AWGO model fails to

adequately reproduce the SSM/I data, suggesting that anisotropic facet tilt is not the only cause of

the signatures. At low wind speeds it is suggested that resonant thermal emission from capillary

wavelets is the dominant signature-producing mechanism. Capillary wavelets occur primarily on the

lee side of waves, thus, a non-stationary model of the ocean surface is necessary to model the effects

of capillary waves. Accordingly, it is recommended that the AWGO model be modified to

incorporate short-wavelength capillary waves, the emission from which would be computed using a

diffraction-based electromagnetic model, for example, the small perturbation method. The resulting

8



two-scale asymmetric wave model (TSAW) model will be unique in its incorporation of non-

stationary surface behavior in a physically-based manner. Such a model will be valuable for

spaceborne wind vector sensor design.

i

C. Ground-based Polarimetric Imaging of Thunderstorms

During ground-based testing of the PSR the polarimetric emission characteristics of thunderstorms

will be studied by obtaining scanned images of the downwelling polarized brightness temperature

from precipitating clouds. Such observations will be used to investigate correlations between oriented

ice particles and thunderstorm electrification. To support this investigation, a the PSR will be

configured to obtain 32x32 pixel images with approximately 2 degree angular interpixel spacing. An

imaging time of ten seconds per frame should yield brightness temperature resolutions of

approximately 0.5-1 K per pixel while capturing significant thunderstorm evolution. Upon integration

into either the NASA DC-8 or ER-2 aircraft, the PSR will be particularly useful for studying

upwelling polarized emission from electrified thunderstorm anvils and other cloud forms over water

backgrounds.

Of particular interest is the relationship between polarimetric emission and the presence of

thunderstorm electrification. Alignment of anvil ice by charged cell tops has been observed to cause

rapid changes in satellite downlink depolarization [Cox and Arnold, 1979]. The same alignment

mechanism is expected to cause similar rapid changes in polarimetric thermal emission. Such sudden

changes will be of key interest in the ground-based PSR sky imaging experiments. If the initial PSR

imagery shows a significant level of rapidly changing polarization then the imaging experiments will

be repeated along with a quantitative characterization of the intercloud electric field using, e.g., a

ground-based field-mill probe. The results of passive radiometer imaging and coincident electric field

measurements could provide an improved understanding of propagation through regions of oriented

atmospheric ice particles, particularly thunderstorm anvils. Variability in the absorption and scattering

properties of thunderstorm anvil ice are a major source of uncertainty in radiative transfer modeling

over convective storms [Gasiewski and Staelin, 1990]. This uncertainty becomes progressively worse

at frequencies above 30 GHz.
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Brightness Temperatures for
Orthogonal Channels TA and TB

and Correlation Channel T
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Figure 2. Variations in the first three Stokes' parameters as a function of the rotational angle of a
polarize calibration load. As expected, TA and TB are in phase quadrature with TU, and the amplitude
of TU is equal to the amplitudes of TA and TB.
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Figure 4. Comparisons of measured SSM/I brightness temperature variations at 37 GHz as a function
of ocean wind direction with AWGO model calculations: (a) T^ (b) Th.
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Figure 5. Predicted 19 GHz SSM/I brightness temperature variations for Tw Th, and T0 versus ocean
surface wind direction using the AWGO model. The two columns of plots are for two different
surface foam coverage models, while the individual curves are for different degrees of ocean wave
asymmetry. Only a moderate dependence on foam coverage and wave asymmetry is seen for Tv.
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