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AN ANALYTIC APPROXIMATION TO
VERY HIGH SPECIFIC IMFULSE & SPECIFIC POWER
INTERPLANETARY SPACE MISSION ANALYSIS

Craig Hamilton Williams®

A simple, analytic approximation is derived to calculate trip time and

for propulsion systems of very high specific impulse (50,000 to 200,000 seconds)
and very high specific power (10 to 1000 kW/kg) for human interplanetary space
missions. The approach assumed field-free space, constant thrust/constant specific
power, and near straight line (racial) trajectories between the planets. Closed form,
one dimensional equations of motion for two-burn rendezvous and four-bumn round
trip missions are derived as a function of specific impulse, speciﬁc power, and
propellant mass ratio. The equatxons are coupled to an optimizing parameter that
maximizes performance and minimizes trip time. Data generated for hypothetical
one-way and round trip human missions to Jupiter were found to be within 1% and
6% accuracy of integrated solutions respectively; verifying that for these systems,
credible analysis does not require computationally intensive numerical techniques.

INTRODUCTION

Through countless millennia, mankind has ventured to unknown worlds in the pursuit of wealth,
knowledge, freedom, adventure, and international prestige. To date, human exploration of space has been
primarily driven by the pursuit of international prestige. Because of the high cost and long trip times associated
with human interplanetary exploration, such endeavors are expected to remain unattractive to any potential
sponsor other than the governments of the most financially capable and technologically advanced nations.
While it is difficult to imagine a low cost solution to human interplanetary travel, far-term technically feasible
concepts do exist that could significantly reduce the expected long trip times. This could obviate larger and
more complex spacecraft, higher operations costs, inordinately long return on investment times compared to
commercial ventures, and the unappealing sacrifice of the spacefarer’s personal time. Conventional chemical,
and nearer-term electric and nuclear fission propulsion technologies would require multi-year round-trip times
to even the closest planets. Although long duration missions have been the norm for unmanned probes, they
represent a real hardship for human travel. More advanced propulsion technologies, however, could provide
trip times comparable to some commercial terrestrial operations --- several weeks, perhaps even days. AsD.
Cole pointed out in his 1959 paper on minimum trip time travel to the planets, the evolution of terrestrial
propulsion systems has been from the inexpensive “minimum energy” sailing vessels to the more costly
“minimum time” aircraft!. Advanced space propulsion systems could catalyze future interplanetary travel
predicated on the private, not public, sector market. High specific impulse(I;)/high specific power (&) systems
could accomplish this by traversing almost straight line trajectories between planets due to their expected
ability to generate large accelerations. These propulsive technologies, unfortunately, are well beyond near-
term feasibility and require solving some formidable technical challenges.

* M. Williams is an aerospace engincer at the NASA Lewis Research Center, Mail Stop 500-201, 21000 Brookpark Road, Cleveland,
Ohio, 44135. Phone: (216) 977-7063, FAX: -7125. 28 August 1995 CHW.aiaad




Because of the technological immaturity and perceived remoteness of these advanced propulsion
concepts, most human interplanetary mission studies have been predicated on trip time and propulsion system
performance data generated by analysis tools designed to model either I.-limited systems ¢high thrust) or a-
limited systems (low thrust). As a result, high I /high a technologies are infrequently studied and therefore
have few analytic tools designed te model them. Fortunately, due to the nature of their operation, simple
analytical techniques can provide reasonably accurate estimates of their mission travel times and performance
capabilities, These simple, first-order analytical methods can greatly assist in focussing des clopment of
requisite precursor technologies. Very high thrust propulsion systems rould produce acceleri.tions greater thap
the local acccleration due to solar gravity at Earth’s orbit (0.6 E-3 g). The normally thought-of conics of
minimum energy trajectories degencrate into straight line transfers at these acceleration levels, A “field-free
space” approximation can then be invokex: to greatly simplify the usually complex orbital mechanies. Gravity
losses and optimum steering concerns can be neglected without introducing too much error, obviating the need
for computationally intensive, numerically integrated solutions to support a proof of concept analysis. Asa
result, an analytic closed-form solution ¢an be derived that calculates minimized trip time and maximized
performance capability in a single equation (or at most two).

An extensive literature search surfaced three published approaches that solve only select portions of
this problem for a constant thrust engine; though it is also worth noting that a few papers have also been
written on the simpler to analyze, constant acceleration (variable thrust) device'. During the 1950's, H.
Preston-Thomas of the National Research Council of Canada derived several one dimensional velocity
equations®. Found just prior to the publication of this paper, Preston-Thomas® work contains trip time
relations, but sparse derivations and few equations of motion made assessment of the approach difficult.
Wolfgang Moeckel of the NASA Lewis Research Center developed a simple analytic approach using a one
dimensional “flat solar s;'stem™ model to calculate trip time using the quotient of velocity and distance during
the 1960's ®. High and low thrust systems were treated separately; the high thrust relations based on vehicle
AV calculated by the classic rocket equation, the low hrust relations based on the time integral 0" accelera.ion
squared equation (*J parameter), modified to optimize engine-on time. Moeckel’s apnroach had the advantage
of extreme simplicity with reasonably good accuracy. However, the segregation of hig.. and low thrust systems
into separate equations did not illustrate the explicit dependence of trip time as an function of only distance, L,
acd e in advanced very high I/very high @ systems.

Professor Dennis Shepherd of Cornell University developed an alternate approach in the 1960's*.
Based in part on some earlier work by Ernst Stuhlinger, Shepherd’s approach used a one dimensional, finite
burn model (continuous thrusting with no coast phases). He derived a closed-form equation for distance
traveled in fielc -free space by an accelerating rocket at constant thrust in terms of 1, &, and trip time. The
classic rocicet equation served as the starting point, later incorporating an optimizing parameter to maximize
performance and minimize trip time. One adventage of Shepherd'’s finite burn approach was a more
conservative representation of one dimensional motion. More important, however , was the explicit
appearance of I,, with a in a single equation optimized for payload and trip time, thus providing the analyst
with a convenient way of evaluating the relative effect of distance, L, , and & on trip time for any mission
distance. The main limitation was that the relation was valid for one-way flyby missions only, where the
spacecraft would not rendezvous with the destinaticn planet.

The problem solved in this paper is an extension of Shepherd’s work. Two-burn “rende zvous™ and
four-burn “round trip” mission equations of motion are derived with an optimization condition imposed. Each
leg of the trip consists of an acceleration bum from Earth's heliocentric position followed immediately by a
deceleration burn (with no intervening coast period) which terminates at the heliocentric position of the
destifiation planet (with zero redial velocity with respect to the sun). The transfers are assumed to originate and
terminate outside the effective planetary gravity wells. These one dimensional straight line approximations
along the heliocentric radius vector closely resemble numerically integrated solutions (Figure 1).
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APPROACH
Review and Reformulation of the Solution to the One-Burn Flyby Problem

Shepherd's ¢ approach will be briefly
summarized. The basic rocket equation for a
constant I, vehiele is: ) )
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Substituting for the propellant mass ratio into figure 1: Continuously Thrusting Trajectories
the rocket equation yields:
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From the definitions of jet power and specific power, a structure to propellant mass ratio can be defined:
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Shepherd introduced a parameter he called the characteristio velocity V,, which upon substitution lows for a
useful expression for the structure to propellant mass ratio;

(-4

V= /J2g.nel thus: Moo (e
® My ®

Substituting Eq. (9) into Eq. (4) yiclds a relation for payload ratio in terms of AV, exhaust and characteristic
velocities:

2
M, i} Vv, e
M, & V.

c

oxp (10)

Shepherd illustrated through a series of plots the implications of such an expression, primarily the existence of
an optimal I, (in which the payload is maximized) for a particular mission AV. He demonstrated this by
differentiating the above expression with respect to the parameter ¢/V, and setting it equal to zero. The result
is the optimization parameter:

AV 2
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Shepherd then took the classical distance equation for a single bumn, continuously accelerating rocket
(neglecting gravity losses):
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and solved for total distance traveled in time T (assuming zero initial velocity):
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By substituting the optimization parameter Eq. (11) for the exponential temm in the denominator of Eq. (13),
we have:
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At this point, Shepherd concluded with discussion of the implications of this acceleration-only distance
equation.

What is of primary interest is to rewrite Shepherd’s single bumn flyby mission distance equation into a form
where trip time is explicitly a function <. Jistance, I, and «. Expressing ¢ as g I and recalling the definition
of V,, Eq.(14) can be rewritten as a quadratic in T:
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Solving for trip time via the quadratic formula:
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Where only the positive radical term is meaningful.

Shepherd demonstrated that ¢/V, has limits of »0.505<=¢/V <=1.0, where the lower limit corresponds to a
zero payload ratio and the uj .- limit corresponds to a payload ratio of unity. These limits are a manifestation
of imposing the optimization parameter on the rocket equation. Since the payload ratio is a function of ¢/V,
and AV/c, and AV/c is a function of only ¢/V_, specifying c/V, is equivalent to specifying a payload ratio.

Sir ce ¢/V, is solely a function of T, I,,, and &, payload ratio can replace one of these three variables. For
example, it was convenient to express the limiting a=f(1,,,S) for the zero payload ratio case:
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Substitating Eq. (18) into Eq. (16) and selecting the meaningful root results in an equation for the limiting trip
ume: ' ’
- 168
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T
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Thus the minimum trip time for a single bum flyby mission with negligible payload and optimal @ varies

linearly with distance and inversely with I, The optimal @ can then be caleulated from Eq. (1R).

Derivation of the Solution to the Two-Burn Rendezvous Problem

Unlike the one-burn fiyby mission, the rendezvous mission would inciude a decelcration burn 1o
reduce the sun-relative radial velocity to zero by the time of arrival at the destination planet. The rendezvous
mission also presupposed the utilization of in situ resources at the destination plunet to refu=l the propulsion
system, since the vehicle would carry only enough propeliants for a one way trip. A mcdified rocket equation
to model the deceleration burn is first needed. Shepherd's time dependent form of the constant mass
flow/constant thrust rocket equation for the acceleration burn (0 <t <=t,) was:

V) =V, - g,,l,pln{l -A,-t’-l
Yo

Therefore, a new deceleration bum (t, <=t <t, ) velocity function can be modeled similarly as:
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V, is the velocity at the turn around point. This point is where the vehicle terminates acceleration, rotates 180
degrees, and commences the deceleration bum. The logarithmic term, therefore, is a negative or “braking”

AV. The distance and acceleration expressions for the deceleration phase are easily derivable. To integrate the
logarithmic term, the following substitution is convenient:
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Completing the integration results in aa equation for deccleration distance as a funetion of time:

8 = Pa-t) - el 2””’{[ 1~-Azifl] ‘"[ ! "’ha%] [ 1A ] +1}
~ 24)

Ay L4 L4

Taking the time derivatives of the velocity equations result in the acceleration and deceleration equations as a
function of time:
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A representztive plo} of the position, velocity, and Continuous Acceleration/Deceleration Mission
acceleration expressions for an example mission are Constant Thrust, Isp, & P

illustrated in figure 2. Example: Isp=50,000 sec and Alpha= 100 kW/kg
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It is reasonable to assume that the magnitude of the
change of velocities will be equal:
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Figure 2: Position, Velocity, & Acceleration



Thus, the stage prepcllant ratios are equat.
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Adding the two distance expressions (Eqgs. (12) and (24), evaluated at their respective total bumn times) and
substitating Eqs. (28) and (30) results in an equation for total distance traveled:

S = gJ,,,n[( ix*) In1-A)+ 1] - g, -)in(1 - 3) - gal,,,az—:,)[[ l{) In1-A)+ 1]

31

The total distonce traveled, S, is the straight line distance between the orbits of the two planets. It may be set to
the difference between the radii (shortest trip time) or any other distance up to the opposition of the planets.

Note that the deceleration phase propellant ratio with respect to the initial mass can be written:

b P
M M M M
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A relationship can be found relating the two burn times by noting that the mass flow rates are equal and that
the total mission time is merely the sum of the two bum phases:

e
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After replacing t, in Eq. (31) with Eq. (33), and noting that t, is the total trip time T, the logarithmic terms
cancel and the distance equation reduces to:

s = 8y

2~ (34)




This is quite different from the acceleration-only distance Bq. (13), which is a logarithmic function of . The
implication is that attempting to substitute the optimization parameter Eq. (11) (with its exponential function of
AV/c) into the distance equation, as was done in the ope-hurn flyby casc, will not result in a simple function of
distance, 1,,, and e (since there will not be a clean cancellation of the intermediate variable AV/c). The
distance and optimization equations for the two-bum rendezvous case (as well as the four-bumn round trip cas
as we ghatl see) are therefore coupled by the dependent variable A apd muni be solved by steration

It was found to be easicst to have A serve as the iteration parameter.  Remanber that the 4 wied above was
defined ns a stage propellant ratio. It must first be replaced wath the eqmivalent expression for the total
propelinnt ratio, which is implicit in the aptimizing patameter equaton

A'/
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M . M , M' Stage " stag stag:
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This quadratic in A,,,, has a solution of :
A, =12 JT-A
stage \/ total (36)

For the cases of interest here, where ~0.505<= ¢/V <=1.0, only the negative root term is meaningful. Using
this expression to replace A, With Ay in Eq. (34) yields:

S = 8T Y1~ M) or Ay, =1 1= 25 _|°
(14yT= T ’ 81, 1+S
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The optimizing parameter Eq. (11) can be expressed as a function of Ay, 1,,, and & by recalling the definition
of A from the rocket equation and the definition of ¢/V. as a function of L, &, and T (Eq. (8)). Substituting
these relations, the optimizing parameter can be rewritten as :

2
c[ sp [ 22 total -1
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(38)

Eqs. (37) and (38) are sufficient to solve the two-burn rendezvous problem. By choosing an initial value of
At and substituting into Eq. (38), an initial trip time can be found. (From Shepherd, an initial (maximum)
Ayea Value of 0.796812 is suggested. *) The trip time can then be substituted into Eq. (37) to find a new value
of A Repeated iteration using the average of the A, values as the new A, was found to converge quite
rapidly in most cases.



Once a converged solution is found, +>veral dependent variables of interest can easily be caleulated. The first
burn propellant ratio and ¢/V, can be calculated from Eqs. (36) and (8) respectively. The structure, payload,
and initial & final thrust-to-weight ratios are then given by:
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As in the single burn acceleration case, payload ratios can be specified and the limiting I;’s and a’s can be
calculated. The value of the parameter ¢/V_ for each corresponding value of payload ratio must be found first.
This can be accomplished by solving the rocket equation (rewrnten in terms of mass ratios) and the
optimization parameter simultaneously after specifying the desired payload fraction. These equations are
coupled, but were found to be easily solved by iteration. Shepherd had provided an approximate value of

- - —0:505-for the-zero-paylead-ease: Alemate-end-more-exact values were-desired-for analysis-purposes~For 6% ==~ === == = -
and 25% payload fractions, the values of ¢/V_ were calculated t be 0.504976295 and 0.736886943

.. respectively. The yalue of A,,,, can then be found by inserting.the optimization parameter Eq..(11) into the... . . ..

rewritten rocket equation Eq. (10) (replacing the exponential term), substituting Eq. (36) for the equivalent
AV/c term, and solving for A, The resultis:

l < ]

stagecy,,

(43)



0nge A ., i3 kRowm, the optimum travel time can be ensily caleulaied from Eq. (34)  The opiinim e can then
he calevlated from Eq. (). At this point, the fwo-burn problem and the parameters of interest arc solved
These velations can he manipulated by hand or easily asscainbled mnto a short computer routne.

Derivation aof the Solution to the Four-Burn Round Trip Prohlem

A smimilar ret of equations were derived for a four-hurn round tip masston, where the spaee craft would cars, afl
of itz propellant without the use of in situ propellant refuehng. The cquations were found 1o he sonalin to the
two-burn rendezvous mission,  ‘The two-bumn rendezvou: mission ean e thought of as Ui retuen leg of o
vound trip mission. The velocily equations ars of the same form as the two=bum mission, a4 are the
acceleration equations  Sinee the outgoing and returning distances will be assumed 1o be edgual

) N ___g"_“’/’_(_'.'_'f""fl.",'_”&! ; ’1_:‘_’1_"7_'_/‘"”"" "3
ontyomy Preturang " A T N A
& e .
: ‘ (44)
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The relationships between trip times and A's must be found. Since the mass flow rates are constant:

Mm ~|Mp2
Tourgomg - _-A'{I - A]'*Al(‘“ll)
Toowrn — Mp My, A (1= +Ay(1-2)(1-A,)
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Equating Eqs. (45) and (46), A, and A, are thus related by:

= ll
3T 1A,
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An expression for A's in terms of A, can be found since:
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Substimting Eq. (47) into Eq. (4R) results in a quadratic expression for A, in terms of & .,

A 1:::‘/1—2\
lf - Ayt el 0 with roots of ll:-—————-f?-'—"l
4 2 (49)

Only the negative radical term is meaningful. Notice that this first bum propellant fraction is half the
expression found in the two-bum rendezvous case (Eq. (36)).

Finatly, the outgoing trip time can be expressed as a fraction of the total round trip time by again noting that
mass flow rate is constant:

Tomgomg - Mi - }"1(2 *)'l)
T ka +MP2 +MP3 +Mp4 A, (2 "')"1) +A,(2 -34,)
M,
(50)

Substituting Eq. (50) into the round trip distance Eq. (44):

A'1 gcls 7( )‘1
Sroundm‘ = 2Sr¢ndezvous = ZngpT outgoing( 2_)‘1] = 2p 1-A

\ 1) (51)

As was done for the rendezvous case, this can be solved for A, using Eq. (49). For convenience, the distance
can be written in terms Of S,y yvous Tather than 8o,

28 y = gclspdl -V 1 -Atotal) or A )= 1 _( 1- 8Sr¢ndavous ] 2
e TR ot g T+ 48, .

Using this equation and the optimization parameter Eq. (38), the round trip mission trip time can be calculated
in the same way as was done for the rendezvous case. The ¢/V_, structure, and payload ratios are calculated the
same as in the rendezvous mission (Eqgs. (8), (39), and (40)). The optimum fixed payload (Eq. (43)) is reduced
by a factor of one half as per Eq (49). The thrust-to-weight ratios are;

F = 10)»“082 = 4.&.{il

— - 1-A )
. t T :tage( stage,
& & (53)
. —cxstage't _A & I sp A :tage(l _)':taga)

F 1
n,f g (t4_t3)(l -)'smge4) g T (l -2}'stage)2 (5 4)
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RESULTS

Iterations on the trip time/optimization parameter equations were well behaved and converged
rapidly. Although samvle hand calculations were not found to be overly burdensome, a simple computer
routine was written to calculate almost all of the following data. As an example, rendezvous and round trip
r.issions to Jupiter were calculated.  After this data was generated, the same mission-space paramieters were
caleulated using a large, aumerical integration trajectory optimization routine to independently verify the data
and establish the limits of validity of this approach. The position of Jupiter was aasumed to be at minimum
distance from Earth (4.203 AU) at departure. Round trip missions essumed no dwell time at the destination
and no significant relative motion of the planets. Ranges of I,, from 50,000 to 200,000 seconds and a from
100 to 1000 kW/kg were representative of what a propulsion system must operate at to perform multi-week/
multi-month transfers to this nearest of major planets. Overali propulsion system efficiency was set to unity.
Figure 3 illustrates rendezvous mission rip time as a function of both I, and a. A rendezvous trip time to
Jupiter of six weeks, for example, will require propulsion technologies with L's of at least 50,000 seconds and
a’s of at least 100 kW/kg. For constant I, , increasing o always decreases trip time since the engine jet power-
out increases (and/or the 51 ucture mass decreases). For constant «, increasing I, always lengthens trip time
as the propulsion system negins to act more like a low thrust electric device. L,’s beyond the 50,000 to
100,000 seconds levels are ~xocessive for interplanetary AV’s mless a corresponding (significant)
improvement in & also ocours. A propulsion system engineer, planning to conduct proof of concept
experiments, can use these observations to readily trade-off work on one parameter for the other depending on
the judged engineering difficulty. Propulsion technology research can thus be guided by the knowiedge of the
relative merit of pursuing greater thrust vs. greater power.

Using the fixed payload mass fraction equatious, payload contours can be superiraposer; onto the I
& a plots as a means of measuring performance. Two performance levels were calculated, 3 0% (fastest trip
time) and a 25% payload mass fraction. Other desired payload mass fractions between these two values can be
approximated by interpolation. Greater velues should not be estimated in this way due to the non-linearity of
the function as ¢/V, increases. For trip times of approximately six weeks, the maximum payload mass fractions
for I's between 50,000 ana 100,000 seconds were 3% to 25% repectively. To halve trip times (three
weeks), I's would have to be doubled and a’s would have to be improved by an order of magnitude.

Figure 4 illustrates the results for round trip missions, using similar ranges of I, and «. In the round
trip mission, the spacecraft departing from Earth carries all the fuel required to perform the entive mission. By
observation, the data illustrates that (like terrestrial travel) refueling 2t a destination is a compelling way to
operate. For e-ample, 2 zero payload/ 50,000 second I, vehicle that refuels at a destination would take half
the time (2 X 40 days) to perform the same mission as a same initial weight vehicle carrying all of its
propellant from the start. This enhances the attractiveness of travel to the major outer planets due to their
abundant supply of potential fuels and propellants such as hydrogen, deuterium, and helium-3. These
materials are pleatiful in both free molecular form in planetary atmospheres and in bound forms on the surfaces
of their moons. Major planets would not only be destinations, but transportation nodes as well, supplying
resources for fuels/propellants and human consumption.

Figure 5 and Table ] contain additional rendezvous mission data: mass fractions, trip times, and
thrust-to-weight data for I,, = 50,000 seconds plotted as a function of &. For fixed I,;, as a iucreases, the
amount of propellant needed increases at the expense of payload fraction. The structure ratio reaches a
maximum at approximately 26% as Shepherd’s work had predicted ¢. As trip time is reduced by increasing a,
payload ratio becomes vanishingly small. Thryst-to-weight ratios depart from near constant values as o
increases. Fi;mre 6 and Table 2 contain similar data for round trip missions, plotted as a function of I,,.
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Example: Mission to Jupiter (Rendezvous)
Trip Time vs. Isp & Alpha
(Maximized payload ratio, minimized travel time)

100 -

50 -

20 -

Rendezvous (one way) Trip Time (days)

Isp =200 k sec
-
100 k sec

50 k sec
25% Payload

%

10 al ol el PO wt 9 1 a2l | A TN
10 25 50 100 250 500 1,000 2,500 5,000 10,000
Specific Power (kW/kg)

Figure 3. Rendezvous Mission TripTime

Example: Mission to Jupiter (Round Trip)
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Figure 4. Round Trip Mission TripTime
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) Fi ure 5. Selected Misgion Data
Example: Mission to Jupiter (Rendezvous)

Mass Ratio , Trip Time, & Thrust -to-Weight vs. Specific Power

Isp = 50,000 Sec
%{m‘ m%lﬂl 7 Paylosd ‘l’n%ﬁm hylm?l’:)m
200 06
qos
1% |
3 4 o.
gtoo - qo.
£
” o
401
° 0
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oo . i
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§°.°3 - gl” -
§0.02 - é 100 F
£
go.m- _._,.._a. Y
- - —. ="
Yo 25 s.o ';s I;O % 25 0 » xéo
Specific Power (KW/kg) Specific Power (W/g)
Table 1. Selected Mission Data
Isp = 50,000 Sec
Specific Time Payload  Structure Total 1st Burn A Frwt Frwt
Power (days) Ratio Ratio Prop Prop Initial Final
(kW/kg) Ratio Ratio Accel(g's) Decel(g's)
10 187.9 0.528 0.209 0.271 0.146 0.860 0.835E-3 | 0.115E-2
25 97.7 ¢ 282 0.260 0.458 0.264 0.754 0.271E-2 | 0.500E-2
50 64.4 0.128 0.263 0.609 0.375 0.657 0.548E-2 | 0.140E-1
75 52.0 0.063 0.246 0.691 0.444 0.597 0.769E-2 | 0.249E-1
100 45.3 0.028 0.228 0.744 0.494 0.554 0.950E-2 | 0.371E-1
Alpha = 100 kW/kg
Specific Time Payload  Structure Total 1st Bum ¢/Ve F/wt Frwt
Impulse (days) Ratio Ratio Prop Prop Initial Final
(Sec) Ratio Ratio Acuel(g's) Decel(g's)
50,000 45.3 0.028 0.228 0.744 0.494 0.554 0.950E-2 | 0.371E-1
100,000 79.3 0.468 0.219 0.313 0.171 0.837 0.457E-2 | 0.665E-2
150,000 143.1 0.758 0.113 0.129 0.067 0.934 1 0.157E-2 | 0.180E-2

200,000 2365 | 0.882 0.057 0.061 0.031 0.969 0.595E-3 | 0.634E-3
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Figvre 6. Selected Mission Data

Example: Mission to Jupiter (Round Trip)
Mass Ratie , Trip Time, & Thrust -to-Weight vs, Specific Impulse
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Power
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Table 2. Selected Mission Data
Isp = 200,000 Sec
Time Payload Structure Total 1st Bum c/Ve F/wt Frwt
(days) Ratio Ratio Prop Prop Initial Final
Ratio Ratio Accel(g's) Decel(g's)
946.1 0.882 0.057 0.061 0.015 0.969 0.149E-3 | 0.158E-3
499.5 0.788 0.100 0.112 0.029 0.943 0.520E-3 { 0.585E-3
349.7 0.711 0.132 0.156 0.041 0.920 0.103E-2 | 0.123E-2
274.2 0.647 0.158 0.195 0.051 0.900 0.165E-2 | 0.204E-2
134.8 0407 0.236 0.387 0.099 0.812 0.614E-2 ]| 0.956E-2
84.8 0.228 0.266 0.507 0.149 0.724 0.138E-1 | 0.280E-1
66.7 0.140 0264 | (595 0.182 0.666 0.207E-1 } 0.510E-1
57.1 0.090 0.255 0.655 0.206 0.624 0.266E-1 | 0.771E-1
Alpha = 25 kW/kg
Time Payload  Structure Total 1st Burn c/Ve F/wt Frwt
(days) Ratio Ratio Prop Prop Initial Final
Ratio Ratio Accel(g's) Decel(g's)
181.1 0.028 0.228 0.744 0.247 0.554 0.238E-2 | 0.927E-2
317.2 0.468 0.219 0.313 0.086 0.837 0.114E-2 | 0.166E-2
§72.6 0.758 0.113 0.129 0.033 0.934 0.392E-5 | 0.450E-3
946.1 0.882 0.057 0.061 0.015 0.969 0.149E-3 | 0.158E-3
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Table 3. Equation Summary

1 Bum 2 Bum 4 Burn
Flyby Rendezvous  Round Ty )

Total
Distance (13) 7 (52)
Optimized
Trip Time (16) (AN &(38) | (52)&(38)
Position Velocity Acceleration
Acceleration
Phase 12) (20) (25)
Decelcration
Phase (24) Q1) (26)

To check the validity of these results, a series of integrated computer runs were performed using;gm
existing, high fidelity interplanetary trajectory optimization routine * A few of the results of these runs arg}
superimposed onto the data generated and are shown in the last p! Figures 5 and 6. It was found that
these high power levels and with accelerations well in excess of th. ..cal acceleration due to solar gravity#trip
time results agreed within 1% for rendezvous and 6% for round trip missions. The larger error in round tiip
times was noticeable in cases where travel times where a considerable fraction (or greater) of one Earth year.
In these cases, the integration program significantly altered the outgoing trip to accommodate the change in
relative position of the Earth upon return. Since the approach outlined in this paper does not account for
change in the relative positions of the planets implicitly, closer agreement for round trip missions is limited to
the time scales similar to those of rendezvous missions. Table 3 provides an overall summary of pertinent trip
time relations and equations of motion for the analyst.

CONCLUSIONS

A simple, analytic approximation was shown to provide a means to readily calculate trip time and
performance of propulsion systems of very high I, & & for human interplanetary space missions. Simultaneous
solution of two equations was shown to be all that was necessary without having to resort to complex computer
programs to integrate trajectories. The simplifying assumptions of one dimensional motion, field-free space,
constant thrust/I, /&, and near straight line (radial) trajectories between the planets permitted data of sufficient
accuracy to be generated, providing insight into the relationships between distance, L, and a. An optimizing
parameter was included to maximize performance and minimize trip time. Example data was provided for
rendezvous and round trip missions to Jupiter, illustrating trip times and payload mass fractions for a wide
range of I, and &. Results indicated that a propulsion system technology must be capable of 1,,’s of at least
50,000 seconds and ¢’s of at least 100 kW/kg to travel to Jupiter in 6 weeks (rendezvous) and still allow for a
3% payload mass fraction. Overall results were shown to agree within 1% and 6% (rendezvous and round trip,
respectively) of data independently generated, verifying that for preliminary analysis, a technology planner need
not resort to large, high fidelity cornputer programs that require expert operators in order to accurately
characterize the propulsion system parameter-space. Comparison of data between two-burn rendezvous and
four-burn round trip missions illustrated the extreme attractiveness of in situ refueling at the destination planet.
Few propulsion technologies hawve been identified that a.e expected to be capable of providing such
demanding I,'s and &’s. Inertial confinement fusion systems may be capable of I;'s between 50,000 to
270,000 seconds and «’s as large as 100 kW/kg ®. Antiproton-catalyzed fusion and antiproton annihilation
are other potential space propulsion concepts that are expected to operate at or beyond this regime.
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NOTATION

A acceleration (f/sec**2)

a specific power (ft 1bf/(sec 1bm))

¢ exhaust velocity (ft/sec) = g1,

F thrust (Jbf)

g gravitational acceleration: 32.1739 (ft/sec**2)

g conversion constant: 32.1739 (Ibm/bf)(ft/sec**2)

I, specific impulse (Ibf sec/lbm) = thrust per mass flow rate

A propellant mass fraction (M;/M)

M mass (Ibm)

N overall propulsion system efficiency

P jet power (ft 1bf/sec)

S distance (ft)

t time (sec)

T trip time (sec)

\'A characteristic velocity (ft/sec)

\'/ velocity (ft/sec)

AV velocity increment (ft/sec)

w weight (1bf)

Subscripts

0,1,2,3,4 propulsion system burns & phases of flight

f final

i initial

P propellant

pay useful payload

s structure (including tankage & power supply)

REFERENCES

1. D.M. Cole, “Minimum Time Interplanetary Orbits”, .J. of Astronautical Sciences,1959, pp. 31-38.

2, H. Preston-Thomas, “A Note on ‘A Nuclear Electric Propulsion System™, J. of the British

Interplanetary Society, Vol. 16, 1958, pp. 508-517.

3. W.E. Moeckel, “Comparison of Advanced Propulsion Concepts for Deep Space Exploration”, 4744
Journal of Spacecraft, Vol. 9, No. 12 , December 1972.

4. D.G. Shepherd, Aerospace Propuision, American Elsevier Pub., NY, 1972, pp. 120-124, 158-167.

S. C.G. Sauer, “A User’s Guide to VARITOP - A General Purpose Low Thrust Trajectory

Optimization Program”, Jet Propulsion Laboratory.

6. S.K. Borowski, “A Comparison of Fusion/Antiproton Propulsion Systems for Interplanetary Travel”,
AIAA paper 87-1814, 26 June 1987.

7. 8.K. Borowski, personal communication and unpublished notes, 1995.

8 T. Kammash, personal communication and unpublished notes, 1995.

18



Form Approved B
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Publi ing burden tor this coliect on ia tanpanse, | Hms [ hij isting dala squrces,

- nponna ':m.hnlm?!aodn noodod mdcormbﬂag and mhgmwm;np&'mmmc&.mmm qare agt mnsau&nm:nm orrma.t::m& aspect of this
collaction of ltﬂormn ncluding s ations for reducing this burden, to Washington Head %pt ons and chom 1216 Jetlerson
Davis Highway, Sulte 1204, Arlington, VA 222024302, and to the Gffios of Management and Budget, Pmmm Rmuﬂlon Proha (0704~ 187), Washington, DC 20503,
1. AGENCY USE ONLY {Leave blank) 3. REPORT DATE 3. REROKT TVPE AND PATES COVERFD

September 1995 ‘Technical Memorandum

4. TITLE AND SUBTITLE 8. FUNDING NUMBERS

An Analytic Approximation to Very High Specific Impulse and Specific Power
Interplanetary Space Mission Analysis

& ACTHORS) — WU-242-10-01
Craig Hamilton Williams
[7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center E-9911
Cleveland, Ohio 44135-3191

9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, D.C. 20546-0001 NASA TM-107058

11. SUPPLEMENTARY NOTES
Prepared for the Sixth Space F*ight Mechanics Meeting cosponsored by the American Astronautical Society and the
American Institute of Aeronautics and Astronautics, Austin, Texas, February 11-15, 1996. Responsible person, Craig
Hamilton Williams, organization code 6840, (216) 977-7063.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 13

This publication is available from the NASA Center for Aerospace Information, (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high
specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human intesplanetary
space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line
(radial) trajectories between the planets, Closed form, one dimensional equations of motion for two-burn rendezvous and
four-bumn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The
equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated
for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of
integrated solutions respectively; verifying that for these systems, credible analysis does not require computationally
intensive numerical techniques.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Interplanetary trajéctories; High thrust; Nuclear fusion; Nuclear propulsion; Trajectory TE'FﬁTé'é‘cooio
analysis; Jupiter; Antiproton propulsion : AU3
7. SECURITY CLASSIFICATION |18, SECURITY GLASSIFIGATION |19, SECURITY CLASCIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANS! Std. 23918
298-102



