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Abstract

Simulations of astronaut motions during extravehicular activity (EVA) tasks were
performed using computational multibody dynamics methods. The application of
computational dynamic simulation to EVA was prompted by the realization that physical
microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks;
friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction
in suspension mechanisms. These limitations can mask critical dynamic effects that later
cause problems during actual EVAs performed in space.

Methods of formulating dynamic equations of motion for multibody systems are
discussed with emphasis on Kane's method, which forms the basis of the simulations
presented herein. Formulation of the equations of motion for a two degree of freedom
arm is presented as an explicit example. The four basic steps in creating the
computational simulations were: system description, in which the geometry, mass
properties, and interconnection of system bodies are input to the computer; equation
formulation based on the system description; inverse kinematics, in which the angles,
velocities, and accelerations of joints are calculated for prescribed motion of the endpoint
(hand) of the arm; and inverse dynamics, in which joint torques are calculated for a
prescribed motion. A graphical animation and data plotting program, EVADS (EVA
Dynamics Simulation), was developed and used to analyze the results of the simulations
that were performed on a Silicon Graphics Indigo2 computer.

EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as
performed during Space Shuttle mission STS-63 (February 1995), served as the subject
for two dynamic simulations. An EVA crewmember was modeled as a seven segment
system with an eighth segment representing the massive payload attached to the hand.
For both simulations, the initial configuration of the lower body (trunk, upper leg, and
lower leg) was a neutral microgravity posture. In the first simulation, the payload was
manipulated around a circular trajectory of 0.15 m radius in 10 seconds. It was found that
the wrist joint theoretically exceeded its ulnal deviation limit by as much as 49.8° and
was required to exert torques as high as 26 N-m to accomplish the task, well in excess of
the wrist physiological limit of 12 N-m. The largest torque in the first simulation, 52 N-
m, occurred in the ankle joint. To avoid these problems, the second simulation placed the
arm in a more comfortable initial position and the radius and speed of the circular
trajectory were reduced by half. As a result, the joint angles and torques were reduced to
values well within their physiological limits. In particular, the maximum wrist torque for
the second simulation was only 3 N-m and the maximum ankle torque was only 6 N-m.
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1. Introduction

By way of introduction, this first chapter familiarizes the reader with the concept of

extravehicular activity performed in spaceflight, the motivation for applying multibody

dynamical simulation to extravehicular activity, and the objectives and contribution of the

research effort. The chapter concludes with a synopsis of the contents of the report.

1.1 Objectives and Contribution
The primary objective of the research described in this report is to demonstrate the

significant value of multibody dynamics analysis for the simulation of EVA tasks. In

particular, it is believed that computational dynamic simulation has certain advantages

over physical simulators and complements them very well. The main advantage is the

ability to represent all the degrees of freedom available to a body in weightlessness (six

degrees of freedom for a single isolated body - three translational and three rotational)

and at the same time avoid some of the detrimental effects that physical simulators are

subject to, such as friction in air bearing floors or viscous drag in neutral buoyancy

facilities. Other advantages include low cost, flexibility, quick turnaround, low manpower

requirements, and ease of operation.

Of course there is a price to pay for all these advantages. Simulation of multibody

dynamics is inherently computationally intensive. In addition, greater accuracy and

realism is gained through adding degrees of freedom and geometric detail to the dynamic

system model, further increasing the complexity of the simulation, the computer

processing time, and the work required of the analyst. In practice, the analyst must

consider a tradeoff between the complexity of the dynamic system model and the

accuracy and validity of the results in regards to the particular situation being simulated.

Certain specific objectives were established to guide the research effort. These 8

prioritized objectives are:

1) Develop a convenient means of modeling the dynamic system and tailor

it to the particular needs of EVA simulation.

2) Transform the description of the dynamic system into equations of

motion represented in computational form.



3) Develop computer code to drive simulations of the dynamic system

under a variety of conditions.

4) Explore methods of prescribing the motions to be performed in a task-

oriented form, the way that an astronaut or trainer might think of the

operation, without the need to explicitly specify the kinematics (positions,

velocities, and accelerations) of each segment. In other words, perform an

inverse kinematics analysis, given only the motion of the endpoint of the

system.

5) Determine the joint torques required to drive the system in performing a

particular motion by using the calculated segment kinematics in an inverse

dynamics analysis.

6) Create a graphical animation and data display user interface.

7) Show how the results of the inverse kinematics and inverse dynamics

analyses are interpreted.

8) Demonstrate the means by which simulations are improved in an

evolutionary manner.

To achieve these objectives a seven segment model of an astronaut is created with an

eighth segment attached to the hand representing a large mass to be manipulated during

an EVA task. The equations of motion are derived using SD/FAST, based on Kane's

method, which creates code to represent the equations of motion in computational form.

Additional code is created to drive the system during two simulations, the second

simulation being an improvement on the first. Finally, the results are visualized through

the aid of an animation and data plotting program, which has been named EVADS (EVA

Dynamic Simulation). All of these operations are performed on a Silicon Graphics

Indigo2 computer.

1.2 Synopsis of Report
In addition to the introduction chapter presented here, this report is comprised of

chapters dealing with background information, methodology, results, and discussion and

conclusions. The Background chapter provides a brief history of EVA; a description of



the space environment encountered in EVA (mostly in low Earth orbit); a summary of

spacesuit requirements and the effects of the spacesuit's construction on human body

dynamics; a discussion of training methods and physical simulators used in preparation

for EVA; an introduction to computational simulation of multibody dynamics; and an

example of dynamical simulation as applied to the modeling of the Intelsat VI satellite

capture EVA.

The Methodology chapter first works through an example of dynamical equation

formulation applied to a simple two degree of freedom system; then describes the Space

Shuttle mission STS-63 Spartan mass handling EVA which serves as the subject for the

two main simulations presented in the report; and finally presents the details of how the

dynamic simulations are performed, including the creation of the system's description

file, formulation of the equations of motion, inverse kinematics, inverse dynamics, and

animation and data plots using EVADS. In both simulations, the EVA task is to

manipulate the Spartan pay load around a circular trajectory. In the first simulation, the

radius of the circle is 0.15m and the trajectory is completed in 10 seconds. In the second

simulation, the radius of the circle is 0.075m and the trajectory is completed in 20

seconds. In addition, the lower body joints (ankle, knee, and hip) are fixed in the first

simulation, but are allowed some compliance (by means of passive springs and dampers)

in the second simulation.

The Results chapter first presents data obtained from joint torque test functions,

followed by data obtained from the two EVA simulations. It is observed that, in the first

simulation, the wrist joint exceeds the range of motion limits and is required to exert

torques beyond the level of human capability. The second simulation solves these

problems by starting with the arm in a more comfortable position and by requiring the

hand to follow a smaller circular trajectory at a lower speed (thus requiring less torque).

The chapter concludes by presenting results of the animation and data plotting functions

of EVADS.

In the Discussion and Conclusion chapter, the research objectives are recapped and

the extent to which they were achieved is indicated. The results of the two simulations are

deliberated with particular attention given to the success of implementing compliance in

the lower body joints. The effectiveness of the animation and data representation abilities

of EVADS is assessed. Some general conclusions about the research are drawn,

especially relating to the feasibility of using computational multibody dynamics to

simulate EVA tasks. Finally, the chapter concludes with suggestions for further research

and a short summary of the report.
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2. Methodology

This chapter describes how computational multibody dynamics can be applied to the

analysis and simulation of EVA tasks. The first goal is to familiarize the reader with the

process of multibody dynamical equation formulation and to demonstrate the complexity

of these equations. A detailed example of this process as formulated by hand for a

relatively simple system presents the equations in an,explicit form. For clarity and

convenience, the Lagrangian method is used for this first example. The remainder of the

chapter describes how computational methods are employed to create computer

simulations of more complex systems. The main steps are: the creation of a system

description file; employing SD/FAST to derive the dynamical equations and simplify

them using symbolic manipulation; development of user-written simulation driver code;

and analysis of results by means of animation and plots. To illustrate these steps, a

particular simulation example is presented based on an actual EVA mass handling task

recently performed in space. In this case, the equations of motion are highly complex and

would take several pages to write out. This would be extremely tedious to perform and

would defeat the purpose of representing the equations implicitly by means of computer

code and performing the analysis by numerical means. This chapter focuses on

explaining how the system description file is created and how the simulation and analysis

is carried out, while the interim step of generating the equations of motion is the domain

of the commercially available program SD/FAST. Some general points on the SD/FAST

computations were presented in the previous chapter. For more details on how the

equations of motion are formulated, the reader is referred to additional references

(Hollars, Rosenthal et al. 1994) (Kane, Likins et al. 1983) (Kane and Levinson 1985)

(Rosenthal and Sherman 1986).

2.1 Example of Dynamical Equation Formulation
A relatively simple multibody system example has been chosen to ensure readability.

The example is a two-body, two-d.o.f model of an astronaut's arm performing a

manipulation task. It has been assumed that the rest of the astronaut's body has no

influence on the dynamics of his arm motions because his torso is fixed in inertial space.

As highly simplified as the scenario sounds, there is a conceivable situation in which the

astronaut's backpack is affixed to an object with a much larger mass, such as the Space

Shuttle Orbiter. The inertia of such a massive object would constrain the accelerations of
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the astronaut's trunk to insignificant values allowing one to make the approximation that

the trunk is stationary in inertial space. To further simplify the model, the arm is

restricted to planar motion and only has two degrees of freedom: shoulder planar rotation

and elbow joint extension and flexion. The upper and lower arm are modeled as rigid

segments with constant moments of inertia. The hand is considered to be attached to the

center of gravity of the object being manipulated. This model is sketched in Figure 2.1.

Figure 2.1 Two d.o.f. model of astronaut arm

As mentioned previously, the two most common classical formulations of multibody

dynamics are the Newton-Euler formulation and the Lagrangian formulation. This

astronaut arm motion example derives the equations of motion by means of the

Lagrangian formulation in which the behavior of a dynamic system is described in terms

of work and energy stored in the system. The advantage of the Lagrangian approach is

that the constraint forces involved in the system are automatically eliminated, as opposed

to the manual elimination required in the Newton-Euler method. Furthermore, the closed-

form dynamic equations can be derived systematically regardless of the coordinate

system chosen. The derivation given below is based on the description of Lagrangian

dynamics given in the text Robot Analysis and Control (Asada and Slotine 1986).

2.1.1 Lagrangian Formulation
If q ! , . . . , qn are the generalized coordinates describing the orientation of a system,

and T and U are the total kinetic energy and potential energy respectively, then the

Lagrangian L is defined by

(2.1)
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The equations of motion of the system are given by

d dL dL _
-3--3- = G, i = l , . . . , n (2.2)
dt dqi dqt

where <2, represents the generalized force that corresponds with q,, the joint angle

coordinates.
Ultimately, the objective is to obtain a formula for calculating the inertia tensor of the

system. First, however, the Jacobian matrices relating the geometry of the segments and
their joint centers are expressed in the form

/(•) _(•;(•) /(/) o olJ L ~[JL\ • • • JU U . . . UJ

/(o _ r rw /(«) o oJA ~ [JAI • • • JM u • • • u

Each column vector is given by

1bj_i for a prismatic joint

bj_i x r0ci for a revolute joint

(2.4)

for a prismatic joint
for a revolute joint

where j represents the the column number in the Jacobian matrix, £7_, is the 3 x 1 unit

vector representing joint axis j-1, and r0c/ is the position vector to the centroid of

segment / with reference to the base coordinate system. A prismatic joint allows only
translational relative motion and a revolute joint only allows rotational relative motion
between connected segments.

The total kinetic energy stored in the system is given by

and is expressed in terms of the joint velocities q = [<?,, . . . ,qn] that are the derivatives

of the joint displacements q = [<?,, . . . ,qn] that represent a complete set of generalized

13



coordinates. The matrix H is known as the manipulator inertia tensor1 and contains the

mass properties of the complete arm linkage. This n x n matrix is obtained from the

formula

(2.6)

The manipulator inertia tensor is a symmetric positive definite matrix whose quadratic

form relates to the kinetic energy. It is important to note (hat, since Jacobian matrices are

involved, which vary with the orientation of the arm, the manipulator inertia tensor is

configuration-dependent and represents the combined mass properties of the whole

system for a given configuration. A consequence for computer simulations is that the

terms of the matrix must be recalculated for each time interval during the execution of a

movement, and this can significantly increase processing time.
The next step is to consider the generalized forces Q = [Q^ . . . ,Qn] that account

for all the forces and moments acting on the arm linkage other than the inertial and

gravity forces. The generalized forces are identified as

*« (2.7)

where T represents the joint torques and Fext represents the external forces acting on the

system. Finally, the equations of motion are obtained from the expression

; = , ;=! *=1 (2.8)

where

_dH j L_]_dH J L

iik ~ dqk 2 dqt

and

'Derived from robotic systems terminology.
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G, = 2X
'=' (2.10)

Note that //^ represents the term or expression in the /-th row andy'-th column of H. The

first term in equation 2.8 accounts for the inertial torques, the second term represents the

centrifugal and Coriolis effects, and the third term is the torque due to gravity. This

formulation directly provides the closed-form dynamics equations.

2.1.2 Equations of Motion for a Two Degree of Freedom Arm
When the general Lagrangian equations given above are applied to the specific case

of the two segment, two degree of freedom arm illustrated in Figure 2.1, the following

equations of motion are obtained:

The manipulator inertia tensor is given by

IT _ n^lci +1\ + "h (tf + £2 + 2 Vc2 cos #2)+ ^2 "hWd cosq2 + mfcl + 721 n \ j \

where

2 ' 21 ' ' (2.13)
and h = m2lllc2 sin q2

The lengths /cl and /c2 are measure from the joint center to the corresponding segment's

center of mass. Note that the gravity terms normally appearing in the equations of motion

have dropped out due to the weightless environment. Also, only joint torques appear on

the right hand side of the equations of motion (2.11) since it has been assumed that there

are no external forces acting on the arm.

Fairly complex equations of motion are seen for a relatively simple dynamic system.

As more segments and more degrees of freedom are added, not only do the individual

elements of the manipulator inertia tensor become longer expressions, but also the

number of elements increases according to the square of the number of degrees of

freedom. Clearly, it soon becomes impractical to formulate the equations of motion by

15



hand. It is for this reason that so much effort has been invested in developing computer

programs that formulate the equations computationally. The simulation methods and

results presented in the remainder of this report take advantage of, and build upon,

powerful computational techniques that have been developed for the purpose of

analyzing more complicated dynamic systems.

2.2 STS-63 Spartan Mass Handling EVA Task
Before delving into the details of how the simulations are performed, it is helpful to

consider a brief description of the actual EVA on which' the simulations were modeled.

The Spartan spacewalk, performed on Space Shuttle mission STS-63 in March 1995, had

two primary objectives: firstly, to test the use of thermal insulation in the EMU gloves in

cold attitude operations (crewmembers in shadow) and to gain experience with handling

large masses. It is the second objective that serves as the subject task for simulation.

A free flying payload, the Spartan 204 astronomy spacecraft, served as the mass

handling test object for the EVA crewmembers. A NASA photograph image of the

astronauts with Spartan is shown in Figure 2.2. Although the Spartan 204 was designed to

be deployed and berthed by means of the Orbiter's Remote Manipulator System (RMS),

or robot arm, a contingency EVA was planned in which manual berthing of the payload

could be achieved in case of a failure of the nominal RMS berthing procedure.

Contingency EVAs are often planned, and trained for, with free flying payloads of this

type, although, other than the opportunities presented during the Hubble space telescope

repair mission, little experience has been gained in the manipulation of objects with

significant inertia! properties.

16



Figure 2.2 EVA crewmembers with Spartan 204 free flyer payload. (Source: NASA)

17

ORIGINAL PAGE IS
POOR QUALTTY



In addition to the contingency procedure, it was proposed that Spartan could be used

for a scheduled EVA in which crewmembers could practice handling this massive object

as a way of preparing for similar mass manipulation tasks to be performed very often

during the construction and servicing of the international space station. The mass

properties for the Spartan free flyer are presented in Table 2.1.

Table 2.1 Mass property data for Spartan 204 free flyer

Mass: 1,201.07 kg (82.30 slugs)

Center of Mass (PASt):

X= 0.622 m (2.04 ft)

Y = -0.48 1m (-1.58 ft)

Z= 0.572m (1.88 ft)

Moments of Inertia:

Ixx = 325.73 kg-m2 (240.31 slug-ft2)

Iyy = 352.28 kg-m2 (259.90 slug-ft2)

Izz = 334.79 kg-m2 (246.997 slug-ft2)

Products of Inertia:

Ixy = -3.75 kg-m2 (-2.77 slug-ft2)

Ixz = 92.67 kg-m2 (68.37 slug-ft2)

Iyz = -28.34 kg-m2 (-20.91 slug-ft2)

t PAS = Payload Axis System, defined with respect to the bottom left corner on the thermal louver side.

The most striking value in Table 2.1 is the Spartan payload's mass, which is more than

fifteen times the mass of an average crewmember (not including EMU). Clearly, this

represents a far greater mass than anything a person might have experience handling in a

one-g environment.

While it is true that in a weightless condition one can theoretically move objects of

unlimited size, any relative kinetic energy that the crewmember imparts to the object

must similarly be removed by the crewmember if he wishes to keep hold of it. The

crewmember could find himself trapped between two objects (i.e., the pay load and the

RMS or Orbiter), or forced into limb hyperextension, resulting in bodily injury or damage

to the spacesuit, if he does not anticipate the object's motion.

It is difficult for astronauts and mission operations personnel to predict, at any

quantitative level, the types of loads that might be experienced in handling large objects

in weightlessness, both because of the lack of empirical data on this procedure and lack

of analytical models of the multibody dynamics involved. The prime objective of this

study is to demonstrate how a computer program, which combines the mathematical rigor

of computational multibody dynamics and the communicative strengths of animation and

18



data plots, might be used to predict the quantitative and qualitative aspects of human

performance in extravehicular activity. The sections below describe how this objective

was pursued.

2.3 Simulation Objectives
The particular scenario that is modeled during these simulations is that of an EVA

crewmember manipulating the Spartan 204 free flyer along a particular trajectory at

constant speed. A circular trajectory of radius 0.15 m with an angular velocity of 0.628

radians per second (one complete revolution in ten seconds) is prescribed for the center of

mass of the crewperson's hand. The orientation of the Spartan payload remains fixed with

no angular velocity being imparted. Translations are confined to the vertical plane. It is

assumed that the astronaut maintains a rigid grip on a handle attached to Spartan.

It is necessary, at this point, to distinguish between the terms endpoint coordinates

and joint coordinates. The relationship between the two systems is illustrated in Figure

2.3. Endpoint coordinates refers to the description of the position and orientation of the

end-effector of a multibody chain dynamic system (typically a robot arm or a human

limb). Usually, an endpoint coordinate system is specified at a particular point on the last

body in the chain. The position and orientation of the coordinate system is described in

reference to the global coordinate system, usually fixed in an inertial reference frame.

Joint coordinates, on the other hand, describe the state of the multibody system in terms

of the angular orientations (or linear displacements in the case of sliding joints) of the

bodies, with respect to either the inboard body or the global coordinate system (called

"generalized" coordinates). The two coordinate systems are related through the Jacobian

matrix of the system.

There is an important difference between the two coordinate systems. While the joint

coordinate system always describes the state (configuration) of a system uniquely, a

description of the state of a system in terms of endpoint coordinates may not specify the

system's configuration uniquely if there are redundant degrees of freedom. A redundant

degree of freedom condition arises when there are more joint coordinates than endpoint

coordinates. The problem introduced for inverse kinematics is that there may be multiple

configurations (or states) of a system producing a given endpoint state. At the same time,

in terms of inverse dynamics, this means that there may be different joint torque (and

force) solutions that satisfy the given end-effector forces and torques. The geometric

ambiguity is shown by means of the dashed outline in Figure 2.3 (Configuration 2).
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Configuration 2

Configuration 1

Xe,Ye = endpoint coordinate system

x, y = origin of endpoint coordinate
system in terms of global
coordinates

qi, q2> qs = joint coordinates

Figure 23 Illustration of joint coordinates and endpoint coordinates and occurrence of multiple solutions
in systems with redundant degrees of freedom.

It is particularly desirable to be able to specify the motion to be performed by the

crewmember in terms of endpoint coordinates only, that is in terms of the X and Y

positions of the c.m. (center of mass) of the hand. Describing the motion in this manner

demonstrates that it is possible to perform a simulation by knowing only the motion data

associated with the task itself, without the need to explicitly prescribe the motion being

performed in terms of joint coordinates. Only the initial angles for the wrist, elbow,

shoulder, hip, knee, and ankle joints need be known. The subsequent time histories of

position, velocity, acceleration, and torque for these joints are calculated during the

simulation. The importance of this capability is that it allows analysts, astronaut trainers,

or mission operations personnel, to describe the parameters of an EVA task to be

simulated in a simple pragmatic way and does not require them to do extensive analysis

beforehand.

Thus the objectives of the dynamic simulation may be summarized as follows:

1) Determine the kinematics (in joint coordinates) of the crewmember's

motions given only a description of the manipulation task (in endpoint

coordinates).

2) Perform an inverse dynamics computation to determine the joint

torques in the ankle, knee, hip, shoulder, elbow, and wrist.
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3) Compare the calculated values with empirical human physiological

limit data such as joint angle limits and maximum torque availability

based on joint position and velocity.

4) Demonstrate how accuracy and realism can be improved in successive

simulations.

2.4 Dynamic Simulation
The purpose of this section is to describe in greater detail how the simulation is

actually carried out on the computer. Various phases may be identified: the creation of a

system description file; formulation of the equations of motion using SD/FAST;

development of simulation code, including steps to perform a validation of the model

based on test values of joint torque, followed by inverse kinematics and inverse

dynamics; comparison with physiological limits; and animation with data plots.

2.4.1 System Description
The first step in the development of a simulation is to develop a model of the

multibody dynamic system under consideration. It is highly advisable to design the

simplest possible model which is capable of satisfying the objectives of the simulation.

Starting with a simple model facilitates the steps of error elimination and model

validation in the early stage of a simulation. Once the rudimentary system model is

operating correctly, one can expand the complexity of the model incrementally while

verifying the validity of the model each time it is changed. Due to the inherent

complexity of multibody dynamics, this turns out to be a very wise philosophy in

practice.

In considering the structure of the human body, one might be inclined to think that the

simplest model should include fourteen segments: two feet, two lower legs, two upper

legs, a torso, a head, two upper arms, two forearms, and two hands. Certainly, models of

much greater complexity can be imagined. For example, if the full articulation of the

hands are to be modeled, then 19 degrees of freedom must be incorporated for each hand.

However, it is also possible to use simpler models of the human body depending on the

degree of localization of motion and the amount of detail required. For instance, if a task

is accomplished almost exclusively by means of arm motions, then one might be able to

assume that the torso is fixed in inertial space (thus becoming the "ground" segment) and

model the arm simply as a three segment system. In addition, symmetry can often be

exploited in both the model and the simulation. If a manipulation task is carried out in
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which both arms perform the identical motion, then it may be possible to model both

arms as a single arm, that is modeling the six segments as only three, but with double the

mass properties of each segment. Once the torques have been determined, they may be

divided in half to yield the contribution of each separate arm. This strategy relies on the

assumption that mass properties and torques may be combined in a linear fashion when

they occur in parallel.

Since the task being analyzed involves the manipulation of an object along a

trajectory confined to the median plane of the crewmember, the limbs on the left and

right sides of the body perform identical motions. In addition, it is assumed that the feet

of the astronaut are rigidly fixed to a body of large inertia and thus can be considered to

be part of the "ground" segment and not part of the dynamic system under consideration

(A foot restraint would serve this purpose in practice; although a more advanced model

might consider the compliance of the foot restraint, the RMS, and perhaps the Orbiter

too.). Given these simplifications, it is possible to model the astronaut's body by means of

seven segments with the Spartan 204 spacecraft as an eighth segment "welded" to the

hand. A sketch of this system is shown in Figure 2.4. The segments are: lower leg, upper

leg, torso, head, upper arm, forearm, hand, and Spartan.

To make it possible to specify the motion in terms of endpoint coordinates, the model

makes use of an interesting trick. The explanation of this is aided by Figure 2.4. Up to

this point, the crewmember's body is represented by a tree structure (no loop joints). In

fact the articulated bodies, from the lower leg connected to ground, to the hand as the

outermost body, represent a simple chain-link structure. The hand, however, is defined

with half the density, and thus half the mass properties, of the intended hand for reasons

that are explained below. An additional tree is now defined. Starting at ground (ankle

joint), a massless body is created with an offset equal to the distance between the ankle

and the center of mass of the hand and "attached" to ground by means of a slider in the X-

direction. Another massless body is defined and attached to the first massless body by

means of a slider in the Y-direction. This massless body is then pinned (axis in the Z-

direction) to another body with half the mass and moments of inertia of the intended

hand. This half-hand is welded to the half-hand attached to the fore-arm, thus completing

a loop structure. The resulting hand has the mass and moments of inertia of a full hand. In

this way it is possible to manipulate the arm and body of the crewmember in the X-Y

plane by prescribing the motion of the center of mass of the hand in global Cartesian

coordinates in terms of the sliding displacements of the two massless bodies.

The next step is to create a system description file. It is advisable to store this file in a

separate directory bearing the name of the simulation. This directory will then also
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contain the files generated by SD/FAST, the simulation code, and the output data files.

The filename itself will be of the form <file>.sd, where <file> is chosen to be

representative of the simulation and serves as the root for other files generated by

SD/FAST. The system description file is simply a means of conveying to SD/FAST the

relevant parameters and geometry of the system so that the equations of motion can be

formulated. Full details on how this input file should be created can be found in the

SD/FAST user's manual (Hollars, Rosenthal et al. 1994). The system description file for

the eight segment model used in this simulation is presented in its entirety in Appendix

A. A summary of the basic elements of this file will be presented here with examples

taken from the actual system description file used in the simulation.
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Figure 2.4 Sketch of eight segment system showing massless bodies and sliding joints for prescribing
motion of center of mass of hand.
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The first part of the system description file consists of comment lines which normally

indicate the name of the file, the author, date of last revision, and a short description of

the nature of the system. Other comment lines are added at appropriate points in the body

of the file. The second part is normally a "preamble" which includes any keywords

relevant to the entire system. An example of this would be the specification of gravity,

e.g., "gravity = 0 -9.8 0", but in this case gravity has been zeroed out since the situation

being simulated is assumed to occur in weightlessness. The third major part of the file

consists of one or more "body paragraphs". Each of these specifies the relevant

parameters of a body and how it is connected to other bodies in the system. All vectors

and mass properties for the bodies are specified according to a reference configuration. It

is advisable to choose a reference configuration that makes it as simple as possible to

describe the vectors and mass properties. Wherever possible, the principal axes of each

body should be aligned with one or more axes of the global coordinate system. The

reference configuration for this simulation is shown in Figure 2.5. An example body

paragraph is given below:

body = uleg inb = lleg joint = pin prescribed = ?

mass = 17.300 inertia = .294244 .055360 .294244

bodytojoint = 0 -.215 0 inbtojoint = 0.2150 pin = 0 0 1

The first keyword "body" is followed by the name of the body, "uleg" for upper-leg in

this case. Next the keyword "inb" identifies the inboard body in the structure, which in

this case is "lleg" for lower-leg. One of the bodies in the system must be connected to

ground in some way and this is accomplished by assigning "$ground" to "inb". Next

comes the joint specification. In the example above, this is simply a one d.o.f pin joint.

The specification "prescribed = ?" notifies SD/FAST that prescribed motion may be used

as an option for articulating this body. The question mark makes it possible to turn

prescribed motion on and off from within the simulation driver code. The second line in

this example specifies the mass and inertial properties of the body in SI units. If only

three values follow the keyword "inertia" then it is assumed that these are the principal

moments of inertia. It is possible, however, to specify a full 3x3 inertia tensor for an

asymmetrical body. The last line contains three vectors describing the geometric state of

the body when the system is in its initial reference configuration. (The reference

configuration for this system, shown in Figure 2.5, has the astronaut standing up straight

with his arms hanging straight down next to his sides.)
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Figure 2.5 Reference configuration for description of dynamic system.
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The first vector, "bodytojoint", extends from the body's center of mass to the joint

connecting it to the inboard body. The second vector "inbtojoint" extends from the center

of mass of the inboard body to the same joint. The last vector describes the direction of

the joint axis (the axis of rotation, in the case of a pin or revolute joint, or the axis of

translation for a sliding joint). Only the direction of this vector matters, so it is common

to present it in a normalized form. Several of these body paragraphs make up the bulk of

the system description file. Most of them follow the same format described above,

however, one of these paragraphs is slightly different. This paragraph is

body = hslide inb = harm joint = weld

bodytojoint = 000 inbtojoint = 000

pin = 0 0 1 bodypin = 001

inbref = 010 bodyref = 010

The code given above does not represent an actual body, but is used to tell SD/FAST how

to weld the two halves of the hand together. The vectors "pin", which must align with

"bodypin", and "inbref, which must align with "bodyref and is perpendicular to the

"pin" vector, are used to ensure that the two parts are welded together in the appropriate

relative orientation. Since the weld joint connects two tree structures together, that

originate from the same base (ground), it constitutes a "loop" joint.

2.4.2 Formulation of Equations of Motion
Once the dynamic system has been fully specified in the system description file, the

next step is to process the system description file using SD/FAST. This step is a fairly

easy one for the analyst. SD/FAST is invoked by simply typing

sdfast -Ic

at the UNIX shell prompt. The "-Ic" option tells SD/FAST to generate code in the C

language. The name of the system description file can either be specified in the command

line or entered when prompted by SD/FAST. If no syntactical errors are found and the

input file is successfully processed, several new files are created: a Dynamics File

(identified by <file>_dyn.c) that contains subroutines (or "functions" for C code) specific

to the dynamic system and representing the equations of motion numerically; an

Information File (identified by <file>_info) containing text and various parameters of use

in creating the simulation driver code; and an Analysis File (identified by <file>_sar.c)
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containing simple analysis routines that can be called during simulation runs. When the

simulation driver code has been written, it is compiled and linked along with the

Dynamics File and the Analysis File. Once again, a more detailed description of this step

can be found in the SD/FAST user's manual. The next three sections describe the three

major parts of the simulation driver code which is presented in its entirety in Appendix B.

2.4.3 Joint Torque Test Functions
The first step in the simulation is to verify the validity and accuracy of the dynamic

model by executing three test functions which return forque values for the shoulder,

elbow, and wrist. Only the arm joints are tested since it is the arm motions and torque

values that are of primary interest in this simulation. By choosing a trivial configuration

and simple motion, it is possible to calculate torque values for each of the joints by hand

and these are compared with the values returned by the computer simulation.

The initial configuration of the body is with the lower leg, upper leg, and trunk

straight up, as in the reference configuration, but with the arm straight out in a horizontal

position. This configuration is shown in Figure 2.6.
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Figure 2.6 Initial configuration of system for application of test functions.
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During each of the three phases, one of the joints is assigned a prescribed acceleration

of 5 deg/sec2 while all the other joints (including the hip, knee, and ankle) are assigned a

prescribed acceleration of 0 deg/sec2. In this way the bodies outboard of the test joint

rotate as if they were one rigid body, while the bodies inboard of the test joint remain

fixed because they are ultimately joined to ground at the ankle joint. For the outboard

bodies moving in unison, it was possible to calculate their combined mass moment of

inertia using the parallel axis theorem

where

7 = total moment of inertia

Icm = moment of inertia of body i with respect to its center of mass

d = distance of body i center of mass from the joint under consideration

m = mass of body /

n = number of bodies outboard of joint under consideration

The torque applied at a joint can be calculated from the effective moment of inertia of the

outboard bodies and the acceleration at the joint using the rotational (Euler) form of

Newton's second law, T = 7a. A comparison of the computer calculated and hand

calculated torque values for these test functions is presented in the next chapter.

2.4.4 Inverse Kinematics
The next step in the simulation is the inverse kinematics phase. It is termed inverse

kinematics because only the motion of the endpoint is prescribed and this is used to

determine the corresponding motion of the system in terms of joint coordinates. Before

executing the motion, it is necessary to place the system in its initial configuration. It was

chosen to place the trunk and legs in the neutral body posture for weightlesssness as

specified in NASA Man Systems Standard 3000. The joint angles for an unsuited

crewmember are used since no values for neutral body posture for a spacesuited

crewmember could be found. The arms are placed in an initial configuration that allows

for the Spartan 204 to be conveniently manipulated along a circular trajectory.

To simplify the simulation, it was specified that the ankle, knee, and hip joints should

remain fixed at their starting angles. This was accomplished by prescribing zero angular

acceleration and zero velocity for each of these joints. In addition, the hand is maintained
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in a fixed orientation so that the Spartan payload does not rotate as the hand follows the

prescribed trajectory. By simplifying the motion in this way, the redundant degrees of

freedom are canceled by the constraints and only two remaining degrees of freedom, in

the elbow joint and shoulder joint, remain to match the two degrees of freedom in the

endpoint (hand) coordinates. This strategy is in keeping with the philosophy of getting a

simpler simulation to work before modifying it to represent a more complex situation.

The simulation system is able to obtain solutions to inverse kinematics when

redundant degrees of freedom are present by employing a linearized least squares root

finder to determine the joint angles (and their derivatives) required to achieve the

prescribed endpoint motion. If more degrees of freedom are allowed, however, then it

becomes necessary to implement some form of control in some of the joints or unrealistic

motion will result. More explicitly, if all the joints in the body are passive, and the hand

is "dragged" along a certain trajectory, then the body will behave somewhat like a rag-

doll where its posture is determined only by the mass properties of the segments. One

way of controlling the posture of the body is to specify springs and dampers at certain

joints which apply torques in proportion to the displacement and angular velocity of those

joints. These springs and dampers mimic the passive behavior of muscle groups actuating

a joint in the human body. The simulation can be modified slightly by including torsional

springs and dampers in the ankle, knee, and hip joints. These joints then seek to achieve a

certain prescribed angle but are allowed some play based on the compliance of the

springs and dampers and this results in a somewhat more realistic motion than the rigid

posture obtained by fixing the joint angles. This technique is implemented in a second

simulation.

The inverse kinematic phase of the simulation now proceeds with the lower leg, upper

leg, and trunk segments maintaining a fixed position while the upper arm, forearm, and

hand move in appropriate ways to follow the circular trajectory while satisfying the

constraints mentioned above. A circle was chosen as the trajectory because of its

simplicity and because the smoothness reduced the peak accelerations (and thus peak

forces and moments) required in the arm joints. To follow a square path at a constant

speed, for instance, would require infinite accelerations (and infinite loads) in the joints at

the corners. The initial configuration of the body and the circular trajectory followed by

the hand are shown in Figure 2.7.
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Figure 2.7 Initial configuration for first simulation and prescribed circular trajectory of hand.
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The initial conditions are obtained by performing an assembly and initial velocity

analysis through calls to SD/FAST routines. The outcome of these calls is a fully

compatible state vector (the first half of the state vector represents all the position values

in the system, and the second half represents all the velocity values.) Following this, the

simulation code calls a routine which integrates the arm motion repetitively through small

time steps (0.05 sec was used) until the full trajectory is completed. During each time

step, the position, velocity and acceleration of the center of mass of the hand were

prescribed using the following expressions:

xcm=-co2rcos8

where,

co = angular velocity

r = radius of circular trajectory

At each incremental time step during the motion simulation, the values for position,

velocity, and acceleration of each joint in the body (excluding the sliding joints

connecting the massless bodies) are recorded in a two dimensional state-time array.

These values are subsequently recalled in a "playback" mode during the inverse dynamics

phase described next.

2.4.5 Inverse Dynamics
During the inverse dynamics phase of the simulation, the values of joint position,

velocity, and acceleration determined during the inverse dynamics phase are recalled and

used to prescribe the motion of the system in a "playback" mode. Prescribed motion is

turned "on" for the pin joints and "off for the sliding joints and the one pin joint

connecting a massless body to the hand. After each time step, the joints are assigned the

prescribed values associated with the point in time during the motion and the simulation

calls an SD/FAST function, called "sdhinget", for each joint to determine what torque is
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required in that joint to achieve the required motion. The resulting time histories for

torque are presented in the next chapter.

2.5 Comparison with Physiological Limits
Once the data for the position, velocity, acceleration, and torque of the joints has been

obtained, it can be further analyzed to evaluate the physiological state of the crewmember

in the simulation. It is of interest to compare the values obtained with human

physiological limits such as joint range of motion and muscle strength.

Due to the preliminary nature of this simulation and trie philosophy of beginning with

a simple case, there is as yet no mechanism built into the simulation which enforces the

physiological limits of human motion. The joint position, velocity, acceleration, and

torque values calculated are entirely theoretical and represent the values required to

accomplish the manipulation task while obeying the laws of multibody dynamics. There

is no guarantee that these values fall within the range of human capability. For this

reason, it is very useful to compare these theoretical values with experimentally

determined values of human performance. Of particular interest are the limits of joint

range of motion and of maximum joint actuation strength. Joint range of motion limits

are obtained from the "NASA Man-Systems Integration Standards" (NASA 1987) and are

plotted along with the theoretical values of joint angle. Joint actuation strength is

represented by torque values as a function of joint angle and joint velocity. These

maximum torque values are obtained from a human strength model developed by the

Anthropometries and Biomechanics Laboratory at NASA's Johnson Space Center

(Pandya, Hasson et al. 1992; Pandya, Maida et al. 1992).

2.6 Animation and Data Display
An animation and data display program called EVADS (EVA Dynamic Simulation)

has been developed for the purpose of communicating graphically both qualitative and

quantitative information about the simulation. Both animation and data plots are

displayed simultaneously so that the plots can be correlated with the three dimensional

image of the system.

Data for this program is input in the form of text files created by the simulation driver

code. Due to the large quantity of data, especially in systems that have several segments,

four separate files are input for position, velocity, acceleration, and torque data. In the

future it is hoped that this program can be linked with the simulation driver code so that

the simulations can be controlled in a more visually interactive manner.
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The three-dimensional rendered images in the animation are of great help to the

analyst. One can determine at a glance whether the overall system starts off with the

correct initial configuration and executes motion that makes sense. The user can very

conveniently alter the viewing angle and size of the animation image by means of the

mouse controls and simple keystrokes.

The data is plotted below the animation portion of the window. At present, only one

data category (e.g., elbow torque) can be plotted at a time, but there are plans to allow

multiple plots to be displayed simultaneously in the future. The parameter to be displayed

is selected from an array of virtual buttons arranged vertically along the right side of the

screen. The plot itself is displayed in green with a fine grid in the background. The

vertical axis displays the parameter chosen and the scale is automatically chosen to

accommodate the limiting values in the data set. The horizontal axis always displays time

and the scale is fixed. To allow for time histories of varying length, however, the

horizontal axis has the ability to scroll left and right. The point in time representing the

state of the animated image is identified on the plot by means of a red vertical line.

During the course of an animation run, this line moves along the plot in synchronization

with the animated image. It is also possible to step through the animation manually, either

forwards or backwards, using the ">" and "<" keys respectively. This mode is particularly

useful for observing various parameters at specific points in time during the simulation

and for debugging. Figures showing the computer images generated by EVADS are

presented in the next chapter.
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3. Results

This chapter presents the results of two dynamic simulations. The multibody model

and associated system description file is the same for both simulations. Equations of

motion are formulated by SD/FAST (using Kane's method) and represented in an implicit

computational form. Specific simulation code performs four analyses on the dynamic

system: joint torque test functions, assembly and initial velocity analysis, inverse

kinematics, and inverse dynamics. The data is then visualized on the computer by means

of three dimensional rendered animation and parameter time history plots.

The following sections present the results of: a comparison between the computer

calculated and hand calculated joint torques for the test functions; the numerical results of

the first simulation; the numerical results of the second simulation; and the animation and

parameter plots of the EVADS interface. Numerical results for each of the two

simulations are described in two subsections: data obtained from the inverse kinematics

phase (joint angles, velocities, and accelerations) and joint torques obtained from the

inverse dynamics phase.

3.1 Joint Torque Test Functions
The correlation between the hand calculated and computer calculated torque values

for the test conditions described in the previous chapter are shown in Table 3.1.

Considering that the parallel axis theorem was used to approximate the moments of

inertia of segments moving in unison, the correspondence between values is remarkably

good. The percent error was calculated by subtracting the torque values from the

computer simulation from the hand calculated torque value, dividing the difference by the

former, and multiplying by 100. The largest error, a value of -0.030 %, occurs in the wrist

joint. While this value is still very low, the slightly larger error is probably accounted for

by the close proximity of the wrist joint to the center of mass of the Spartan payload,

reducing the accuracy of the parallel axis approximation.
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Table 3.1 Comparison of hand calculated and computer simulation torques for test conditions in
shoulder, elbow, and wrist joint.

Joint

Shoulder

Elbow

Wrist

Torque from Hand

Calculation [N-m]

211.441

138.196

86.951

Torque from Computer

Simulation [N-m]

211.419

138.210

86.977

Percent

Error

+0.010

-0.010

-0.030

3.2 Simulation No. 1 - Fixed Lower Body
Two simulations of an EVA task were run. In the first simulation, the lower body

joints (ankle, knee, and hip) were held in fixed positions, while in the second simulation,

the lower body joints were given some compliance by means of virtual springs and

dampers representing the passive mechanical properties of these joints. The numerical

results of each simulation run are presented in a series of four figures. The first three

categories, namely, joint angle, joint velocity, and joint acceleration are presented in this

subsection for the fixed lower body simulation. Joint torques are presented in the

following subsection. Each of the figures consists of a composite of six subplots

depicting the data obtained for the ankle, knee, hip, shoulder, elbow, and wrist joints. In

each case the relevant parameter is plotted against time as the independent variable. In all

cases the curve depicting the actual kinematic or dynamic state of the system is shown as

a solid line. Where limits on the parameter are available, for instance joint range of

motion or maximum torque, the upper limit is plotted as a dashed line while the lower

limit is plotted as a dash-dot line. For convenience, this key is summarized in Table 3.2

below. In viewing the plots it should be noticed that the vertical axis varies according to

the range of data values represented. The automatic scaling of the plots helps to bring out

details, but should be carefully considered when comparing plots with one another. The

complete set of numerical data used to create the plots of the various system parameters

and their limits is available in a separate document held at the MIT Man-Vehicle

Laboratory. For conciseness, this chapter lists values only for specific conditions, such as

the maxima and minima of each relevant parameter.
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Table 3.2 Key for interpreting multi-curve plots.

Curve

T Tnnf*r T irnit

Actual State of System

Lower Limit

Line Type

-.-.-.-.-.

Before looking at the numerical data in depth, it is helpful to obtain a mental picture

of the simulation run. For this reason, a composite of six images is shown in Figure 3.1.

Each of these images shows the state of the system at intervals of 2.0 seconds, beginning

with the initial configuration and ending with the final configuration. In this case, the

initial and final configurations are exactly the same since the motion involves

manipulating the object through a circular trajectory.

It can clearly be seen how the lower body (lower leg, upper leg, and trunk) is

stationary, while the motion is carried out by the arm segments alone. Notice also that the

Spartan payload is kept at a constant orientation throughout the simulation and

experiences only translational motions. The next subsection presents the results of the

inverse kinematics analysis in the first simulation, followed by a subsection presenting

the joint torques found in the inverse dynamics analysis.
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Kijjure 3.1 Animation sequence for simulation no 1 - fixed lower body Intervals are 2 seconds
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3.2.1 Inverse Kinematics (No. 1 - Fixed Lower Body)
The first category of data, namely, joint angles, is presented in Figure 3.2. The limits

on joint range of motion were obtained from the listings for the EMU (Shuttle spacesuit)

mobility in the NASA "Man-Systems Integration Standards" (NASA-STD-3000)

publication (NASA 1987). The range of motion values are summarized in Table 3.3. In

general, the values were calculated by taking the average between the 5th and 95th

percentile values which were originally derived from measurements on a statistically

large population of test subjects. The exception to this method was the wrist joint, for

which spacesuit data was not available for the particular joint axis desired (wrist radial

and ulnar deviation). Wrist values were calculated by taking 85% of the unsuited (shirt

sleeve environment) values listed in the same reference. The fraction of 85% was used

because this is the general estimated mobility for the EMU, which was also obtained

from NASA-STD-3000.

Table 3.3 EMU joint range of motion limits (edited from NASA-STD-3000).

Joint

Ankle

Knee

Hip

Shoulder

Elbow

Wrist

Lower Limit [deg]

-40.0

0.0

-70.0

0.0

0.0

-28.3

Upper Limit [deg]

40.0

120.0

0.0

180.0

130.0

22.8
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Figure 3.2 Joint angle plots for simulation no. 1 (fixed lower body).

41



As expected, the first three plots in Figure 3.2 confirm that the joint angles of the

ankle, knee, and hip, remain fixed at the initial values of 21°, 47°, and -52° respectively.

This is exactly what was intended since these joints were prescribed to remain at these

angles throughout this particular simulation run.

The shoulder, elbow, and wrist plots are more interesting. The shoulder joint data

follows a roughly sinusoidal trend. It starts at and returns to a value of 29°. Again, this is

as expected since the hand c.m. describes a closed circle. The maximum and minimum

angles reached in the three articulated joints are summarized in Table 3.4. Note that the

term "minimum" refers to the lower of the two values on a signed scale so that a negative

angle is called a "minimum" even if its absolute magnitude is larger than a "maximum"

positive value. This convention is also followed for the velocity, acceleration, and torque

parameters.

Table 3.4 Maximum and minimum angles reached by articulated joints during simulation No. 1 - Fixed
Lower Body.

Joint

Shoulder

Elbow

Wrist

Time of

Max. [sec]

6.20

0.00 & 10.00

4.25

Max. Angle

[deg]

65.1

130.0

-2.9

Time of

Min. [sec]

1.35

5.15

9.10

Min. Angle

[deg]

4.9

40.4

-67.9

By observing the limiting curves for joint range of motion, it can easily be seen that

the wrist is the only joint exceeding its range of motion. In this case, however, the

excursions below the lower limit of -28.3° are so severe, the maximum deviation is

-49.8°, the task becomes completely impossible. Changes incorporated in the second

simulation sought to avoid this problem.

Values of joint velocity are displayed in Figure 3.3. As expected the ankle, knee, and

hip joints exhibit zero velocity since their angles are fixed. The range of values attained

by the remaining three joints are shown in Table 3.5. No limits are shown on the plots in

Figure 3.3 because no data has been found on the limits of human joint velocity in a

spacesuit.
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Table 3.5 Maximum and minimum velocities for articulated joints during simulation No. 1 - Fixed
Lower Body.

Joint

Shoulder

Elbow

Wrist

Time of

Max. [sec]

3.65

2.80

0.55

Max. Velocity

[deg/sec]

19.4

-25.4

24.5

Time of

Min. [sec]

9.90

7.55

6.75

Min. Velocity

[deg/sec]

-23.2

25.4

-20.5

A quick check of the velocity data is available by comparing the velocity curves with

the joint angle curves. It is observed that the joint velocity curves do in fact represent the

derivative of the joint angle curves as expected.

The last data set that falls under the description of inverse kinematics, are the joint

acceleration curves shown in Figure 3.4. Once again the ankle, knee and hip joints are

fixed. The shoulder, elbow, and wrist joint acceleration curves are the first derivatives of

the corresponding velocity curves and attain the extreme values shown in Table 3.6.

Again, no data has been obtained on the limits of joint acceleration for a person wearing a

spacesuit. In the case of acceleration, however, it would seem that these limits would be

of little value, particularly since the mechanical properties of a spacesuit appear to

depend primarily on joint angle (torsional spring force), with possibly some lower level

forces from damping (velocity dependence). At any rate, since joint acceleration is

related to joint torque, the limits on human strength, displayed along with the joint torque

values, provides an indication as to whether acceleration values are realistic.
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Table 3.6 Maximum and minimum accelerations for articulated joints during simulation No. 1 - Fixed
Lower Body.

Joint

Shoulder

Elbow

Wrist

Time of

Max. [sec]

0.95

5.15

9.50

Max. Acceleration

[deg/sec2!

22.1

24.6

23.6

Time of

Min. [sec]

5.20

0.15

. 5.10

Min. Acceleration

[deg/sec2]

-11.9

-20.9

-12.8

3.2.2 Inverse Dynamics (No. 1 - Fixed Lower Body)
Values of joint torque, obtained from the inverse dynamics phase of the first

simulation, are displayed in Figure 3.5. In this case, the curves of the system joint torques

reveal fairly smooth sinusoidal shapes. The biggest difference between this family of

plots and those in the inverse kinematics section is the fact that the ankle, knee, and hip

joints now exhibit non-zero and non-stationary values. Non-zero torques should be

expected because even though the joints maintain a constant position, they must exert

varying amounts of torque to hold that position as the configuration and torques in the

rest of the system change. One might think of these torques as reaction torques. The

maximum and minimum values reached by the system torque curves are listed in Table

3.7.
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Table 3.7 Maximum and minimum torques reached by system joints during simulation No. 1 - Fixed
Lower Body.

Joint

Ankle

Knee

Hip

Shoulder

Elbow

Wrist

Time of

Max. [sec]

4.55

4.20

3.65

2.85

3.05

3.00

Max. Torque

[N-m]

52.0

40.5

44.6

39.9

36.0

26.1

Time of

Min. [sec]

9.55

9.20

8.65

7.85

8.30

8.00

Min. Torque

[N-m]

-51.8

-40.3

^44.5

-39.9

-31.8

-26.1

Three interesting facts surface upon surveying the values in this table. Firstly, all of the

joints with the exception of the elbow joint, exhibit maxima and minima that are exactly

5.00 seconds apart (half of the total simulation time). The time between the maximum

and minimum torque values for the elbow joint is a slightly larger value of 5.25 seconds.

Secondly, all of the joints with the exception of the elbow joint, have a maximum and

minimum torque value that are symmetrical around zero Newton-meters. The elbow joint

average torque is slightly offset from zero at a value of 4.25 N-m. Thirdly, it is clear that

the ankle joint experiences the highest torque values in both positive and negative senses,

which is not too surprising since the ankle joint is related to the object being manipulated,

and thus to the endpoint force exerted, by the longest moment arm in the body.

Furthermore, the ankle is not assisted in providing reaction torques by the weight of the

astronaut's body, as would be the case in a one-g environment.

3.3 Simulation No. 2 - Compliant Lower Body
The second simulation is an improvement on the first. Two objectives were followed

during the creation of this simulation. Firstly, violations of human physiological

constraints such as joint range of motion and torque were avoided, and secondly,

additional features were incorporated into the simulation to make the results more

realistic than those obtained in the first simulation.

The most significant concern that came out of an observation of the results from the

first simulation was the deviation of the wrist joint from its allowable range by a very

large amount. To avoid this problem, the initial configuration of the astronaut was altered

slightly. The ankle, knee, and hip joint were set to the same neutral body posture angles

as before (21°, 47°, and -52°). This time, however, the shoulder joint was set to an initial
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angle of 0°; the elbow joint was set to an initial angle of 90°; and the wrist joint was set to

an initial angle of 0°. This means that the wrist starts off in a comfortable position close

to the center of its range of motion. The initial configuration for this simulation can be

seen in Figure 3.12.

To reduce the large joint torques observed in the first simulation, the angular velocity

with which the hand c.m. traces out the circular trajectory was reduced to half of the

value of the first simulation so that the circle is completed in 20 seconds instead of 10

seconds. Initially, the simulation was attempted with the same radius as before (0.15 m).

Unfortunately, due to the new starting position, the arm ran into a singular configuration

(full extension) because part of the circle lay outside of the reach envelope of the c.m. of

the hand. To avoid this condition, the radius of the circular trajectory was reduced to 0.75

m. This also helped to reduce the required joint torques as explained below.

Instead of fixing the ankle, knee, and hip joints, torsional springs and dampers were

added to these joints to provide some passive compliance. It is a reasonable

approximation to model the passive impedance of these joints in this way since it is well

known that muscle actuators exhibit the gross mechanical properties of both elasticity and

damping (McMahon 1984). In a way, these springs and dampers act like proportional-

plus-derivative controllers which try to maintain their respective joints at the desired

angles by exerting torque proportional to the angular deviation of the joint from the

desired angle (spring) and proportional to the angular velocity of the joint (damper)

according to the relation

^joint = ~^rot ^joint "~ *?bias j ~~ ̂ damp^joint (.-* • U

where

Tj0int = passive torque exerted on joint

krot = spring constant in N - m / deg

^joint = Jomt angle measured from reference position

(Jbias = joint bias angle (desired position)

fcdamp= damping constant

4joint = joint angular velocity

An equation of this form is applied to each of the ankle, knee, and hip joints. Based on
estimates of the order of magnitude of human joint torque strength, km, was chosen to be

100 N-m/rad and b was chosen to be 10 N-m/(rad/sec) for all three joints. In addition,
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each of the three joints are provided with very stiff "joint stop" springs (krot = 1000 N-

m/rad) that are activated if the joint angle exceeds its limits.

The hand is prescribed to remain at the orientation of its initial configuration (w.r.t.

ground) so that the orientation of the Spartan payload remains fixed and it executes only

translational motions. The elbow and shoulder are allowed complete freedom in

following the prescribed endpoint trajectory, as in the first simulation. The logic behind

the choice of conditions described above, including the placement of springs and

dampers, is that the astronaut uses his lower body in a passive way, in an attempt to

maintain a certain posture, while he uses his arms to move the payload along the desired

trajectory. The wrist joint is used to keep the payload at a fixed orientation.

As with the first simulation, the sequence of motions visualized in the animation of

simulation no. 2 are shown in the six image composite of Figure 3.6. The most noticeable

difference between the animation of this simulation and the animation of the first

simulation is that the astronaut's body sways back and forth as the object is being

manipulated. At first the astronaut's body tilts backward, mainly due to ankle extension,

in reaction to the force he exerts on the payload as he pushes it away from his body. As

the payload reaches the furthest point from his chest (halfway point in trajectory), his

body tilts forward, mainly due to ankle flexion, in reaction to the force with which he

pulls the Spartan payload toward his body.
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Figure 3.6 Animation sequence for simulation no 2 - compliant lower body. Intervals are 4 second^
Red dashed lines indicate starting configuration of body to accentuate lower body motion-
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3.3.1 Inverse Kinematics (No. 2 - Compliant Lower Body)
Values of joint angle are revealed in the plots shown in Figure 3.7. Maxima and

minima for each joint angle are summarized in Table 3.8. The first noticeable difference

between this simulation and the previous one is that the lower body joints (ankle, knee,

and hip) are no longer stationary. Instead, they execute small oscillations around their

starting angles. An important difference in the second simulation is that the wrist angle

time history is entirely contained within the range of motion limits. All of the other joint

angles are contained within their range of motion limits, except for a slight dip below the

lower limit of the shoulder joint. This violation could easily be remedied by either

starting the shoulder joint at a slightly positive initial angle or by incorporating stiff

spring joint-stops in the shoulder.
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Figure 3.7 Joint angle plots for simulation no. 2 (compliant lower body).
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Table 3.8 Maximum and minimum angles reached by articulated joints during simulation No. 2 -
Compliant Lower Body.

Joint

Ankle

Knee

Hip

Shoulder

Elbow

Wrist

Time of

Max. [sec]

2.75

3.05

15.95

13.65

18.55

6.85

Max. Angle

[deg]

23.13

49.23

-51.14

25.06

99.66

20.72

Time of

Min. [sec]

18.65

18.45

7.15

18.95

6.45

16.55

Min. Angle

[deg]

19.43

46.04

-55.69

-4.82

50.92

-9.26

Angular velocity values for the various joints are plotted in Figure 3.8. The summary

of maxima and minima for joint velocities is given in Table 3.9. The velocity values for

the ankle, knee, and hip exhibit small fluctuations around an approximate mean of 0

deg/sec. The initial oscillations that last for the first half of the simulation period are

accounted for by the sudden start of the manipulation task causing abrupt peaks in

acceleration at the beginning of the simulation (seen in the acceleration plots of Figure

3.9). The velocity oscillations gradually die down due to the slight damping in the lower

body joints.
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Table 3.9 Maximum and minimum velocities for joints during simulation No. 2 - Compliant Lower Body.

Joint

Ankle

Knee

Hip

Shoulder

Elbow

Wrist

Time of

Max. [sec]

20.00

20.00

12.30

20.00

17.00

18.10

Max. Velocity

[deg/sec]

2.29

1.15

0.57

8.59

9.74

5.16

Time of

Min. [sec]

7.05

7.00

0.10

' 17.50

20.00

11.00

Min. Velocity

[deg/sec]

-1.15

-1.15

-1.72

-9.74

-13.18

-4.58

The acceleration plots, displayed in Figure 3.9, show that the lower body joints

experience slight acceleration, although usually on a smaller scale than the arm joints. All

of the joint accelerations fluctuate around a zero mean. Most of them also exhibit a sharp

acceleration spike at the beginning of the simulation run, as mentioned above, caused by

the discontinuity in velocity at the beginning of the manipulation task. These spikes cause

oscillations, but they appear to dissipate by the time the simulation is into the second half

of its run time due to the damping in the lower body joints. The joint torque curves for

the arm joints are much smoother (almost sinusoidal) than the lower body joints due to

the smoothing effect of the linearized least squares solver applied to these joints during

the inverse kinematics phase and because these joints are not controlled by springs and

dampers. The maximum and minimum acceleration values are summarized in Table 3.10.
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Table 3.10 Maximum and minimum accelerations for joints during simulation No. 2 - Compliant Lower
Body.

Joint

Ankle

Knee

Hip

Shoulder

Elbow

Wrist

Time of

Max. [sec]

18.90

0.50

0.20

18.80

6.20

0.20

Max. Acceleration

[deg/sec2]

2.29

1.72

10.89

12.03

10.31

4.58

Time of

Min. [sec]

2.70

0.20

0.60

6.20

0.20

18.90

Min. Acceleration

[deg/sec2]

-1.72

-4.58

-2.29

-6.88

-18.33

-5.16

3.3.2 Inverse Dynamics (No. 2 - Compliant Lower Body)
Joint torque values for the second simulation are shown in Figure 3.10 and the

maximum and minimum values are summarized in Table 3.11. A dramatic reduction in

torque magnitude is demonstrated for all the joints as compared to the first simulation.

Clearly, the speed with which the endpoint trajectory is followed has a large effect on the

required joint torques. On average, the magnitudes of the torque values are about one

eighth to one tenth of the magnitudes of the torques obtained in the first simulation. The

angular velocity at which the circular path is traced out was reduced by one half and the

circle radius was reduced by one half so the torque factor of one eighth is approximately

predicted by the simple relation

/ = m(02r (3.2)

where
/ = centrifugal force
m = mass of manipulated payload (Spartan)
O) = angular velocity of circular trajectory
r= radius of circle

Since the moment arms over which the centrifugal force (applied at the hand) acts, in

relation to the various segments of the system, do not vary to a great extent, the resulting

joint torques are approximately proportional to the magnitude of the centrifugal force

during both simulations and are thus also approximately scaled by the factor of one

eighth.
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Figure 3.10 Joint torque plots for simulation no. 2 (compliant lower body).
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Table 3.11 Maximum and minimum torques for joints during simulation No. 2 - Compliant Lower Body.

Joint

Ankle

Knee

Hip

Shoulder

Elbow

Wrist

Time of
Max. [sec]

8.00

7.80

7.30

4.80

5.50

5.80

Max. Torque
[N-m]

6.14

4.68

5.01

5.04

4.45

3.26

Time of

Min. [sec]

17.30

17.10

16.50

' 15.00

16.00

15.80

Min. Torque
[N-m]

-4.95

-4.19

-5.13

-5.14

-4.50

-3.26

As seen in Figure 3.10 the large reduction in joint torques places this manipulation task
within the range of human strength values for the various joints. This fact, combined with
the observation that the range of motion of the joints are not significantly exceeded,
predicts that the mass manipulation task evaluated in the second simulation can quite
comfortably be performed by an astronaut, in contrast to the first simulation's mass

handling task, which was well beyond the range of human capability.
Even though the overall joint torques have been greatly reduced, it can be seen that

the largest positive torque value occurs in the ankle joint, just as in the case of the first
simulation, although slightly larger negative torques occur in the hip and shoulder than in

the ankle during this compliant lower body simulation.

3.4 Animation and Data Display
The animation and data display capabilities of the EVADS program are particularly

successful. Even though the program is in a rudimentary stage, it has already proven
invaluable in interpreting simulation results and in diagnosing problems, especially

during the early stages of a simulation.
To visualize the computer representation, consider the two computer screen images

shown in Figure 3.11 which were taken at the start of the first simulation. Two similar
images for the second simulation are shown in Figure 3.12. One can see at a glance
whether the initial configuration corresponds with that desired. If the simulation runs into
a snag, such as a singularity, then the configuration causing the singularity is easily
identified. In addition, the ability to correlate the animation figure with the data for a
given parameter at a specific point in time, along with the availability of the whole time
history of that parameter, is very useful in diagnosing the reasons for certain parameters

60



reaching or exceeding the limits of their nominal range (e.g., a joint angle compared to its

physiological range or a joint torque compared to a human strength curve).

The three primary portions of the EVADS display, the animation area, the data plot

area, and the parameter selection buttons are shown in Figures 3.11 and 3.12. Two screen

images are shown, each one displaying a different viewing angle. Through the use of the

pan, rotation, and zoom controls of EVADS, the user can obtain an unlimited number of

different viewing angles and scales quite easily. This proves to be particularly useful

when certain objects are obscured or when it is desirable to focus in on a specific detail of

the animated figure.

The differences between the initial configuration for the two simulations can be

noticed by comparing Figures 3.11 and 3.12. In Figure 3.11 the lower body is placed in a

neutral weightlessness posture and the hands start out from a point close to shoulder

level. In the initial configuration of the second simulation, shown in Figure 3.12, the

lower body joints (ankle, knee, and hip) start out in the same neutral body posture, but the

arm joint angles are significantly altered. The shoulder joint starts out at zero degrees

(i.e., straight down along the side of the trunk), the elbow joint starts at a ninety degree

angle, and the wrist joint starts out at zero degrees. All of these angles are measured with

respect to the centerline of the preceding body (the shoulder angle is offset by 180° with

respect to the trunk so that 0° is with the upper arm pointing down instead of up). Most

importantly, it is clear that in the second simulation the wrist joint begins the mass

handling task in a more comfortable position close to the center of its range of motion.
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4. Discussion and Conclusions

Results of this research effort have been very encouraging. It has been shown that

computational simulation of extravehicular activity can overcome many of the limitations

of physical simulators and at the same time reveal quantitative information on the

dynamic state of the astronaut's body, such as joint torques, that was previously

unavailable.

To a certain extent, the research effort described in this report was able to take

advantage of past work conducted in other areas of application of multibody dynamics

such as robotics or sport biomechanics. However, little or no multibody dynamics

analysis has been applied to EVA and so it has been a pioneering effort in many ways.

For this reason, the emphasis has been on creating a tool for dynamics analysis of EVA,

rather than focusing too heavily on the accuracy and detail of the human body models

employed. Nevertheless, an effort was made to ensure that the values obtained were

realistic and reasonably accurate. For instance, using simplified models of the human

body, the values for the hand calculated and computer calculated test torques are shown

to be remarkably consistent, deviating by less than 0.03%. Still, certain simplifications

should be acknowledged. Rudimentary pin joints replace the complexity of human body

joints and mass properties of body segments are calculated from elementary geometric

solids (cylinders, blocks, and spheres). In addition, some parameters, such as the lower

body spring and damping constants, are estimated based on research and intuition rather

than experimental data.

The philosophy adopted in creating simulations has been to start with the simplest

possible model that yields non-trivial results. Once this model is working, it is expanded

incrementally to incorporate more complexity and additional degrees of freedom and in

the process yield more realistic and more accurate results. For instance, to simulate the

Spartan mass handling EVA a simple seven segment model of an astronaut manipulating

a massive payload has been created. It is assumed that the astronaut's feet are rigidly

attached to an object fixed in inertia! space. In an actual EVA, the astronaut's feet would

most likely be clamped in a Portable Foot Restraint (PFR) attached to the Space Shuttle

Orbiter via its robot arm (the Remote Manipulator System, or RMS). In reality, the PFR

and RMS are not perfectly rigid and the although the Shuttle Orbiter's mass is very large

it will still experience very small accelerations due to the astronaut's motions. Since the

dynamic effects of the Orbiter, RMS, and PFR are secondary they have been ignored in
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these simulations. The flexibility of the PFR and RMS, and the finite mass of the Orbiter,

should be investigated in further research.

Two simulations are carried out, both of which are based on an actual EVA involving

mass handling exercises using a Spartan 204 free flying spacecraft. While the second

simulation improves on the first, there are certain elements that are common to both. For

instance, the manipulation task is specified only in terms of the Cartesian coordinates of

the endpoint (hand) of the system, although the kinematics of the system may be subject

to certain constraints that direct the way in which the body achieves the motion task, e.g.,

fixing a joint angle or applying springs and dampers to joints. During the first phase,

inverse kinematics, the simulation code "learns" the joint coordinate values of position,

velocity and acceleration as the hand c.m. follows the prescribed circular trajectory by

storing these values in a two dimensional state-time array. The hand maintains a fixed

orientation with respect to "ground", ensuring that the Spartan payload remains at a

constant attitude and executes only translational motions. In the second phase, inverse

dynamics, the joint kinematics are recalled and used to prescribe the motion of the body

and the required joint torques are calculated. The differences between the two simulations

are described in the next two sections.

4.1 First Simulation • Fixed Lower Body
In the first simulation it is specified that the ankle, knee, and hip joints must maintain

a constant angle for the duration of the run. For this reason, the angular velocity and

acceleration of these joints are zero, although non-zero torques are required to hold the

joints at the specified angles. The torque in each joint varies with time due to the

changing configuration of the arm segments and payload, the motion state, and the

torques applied in other joints.

The trajectory followed by the c.m. of the hand is a circle of radius 0.15 m,

circumscribed at an angular velocity of 0.628 rad/sec (one revolution in 10 sec). The

starting point of the hand c.m. is 0.300 m from the chest and aligned with the shoulder.

An undesirable consequence of this starting position and of the size of the circle is that

the wrist joint severely exceeds its range of motion when the hand is positioned close to

the chest.

In order to maintain the required speed while manipulating a massive object like

Spartan (1,201 kg) along the circular trajectory, the body is expected to exert joint

torques well beyond the range of human capability. Enhancements to avoid the wrist

angle and joint torque problems are addressed in the second simulation.
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4.2 Second Simulation - Compliant Lower Body
The main objectives of the second simulation are to keep the wrist joint angular

excursions within the limits of the wrist range of motion; to reduce the joint torque levels

such that they are below the maximum torque levels achievable by a human; and to

improve the overall realism of the simulation.

To avoid the range of motion violations exhibited by the wrist joint in the first

simulation, the initial configuration of the system is altered for the arm joints. In this

case, the shoulder starts at an angle of 0°, the elbow at 90°, and the wrist at 0° (Recall

Figure 3.12). This starting configuration works very well in keeping the wrist angles

within the limits, although it does cause a very slight violation of the shoulder joint's

lower angular limit near the end of the 20 second simulation.

It was seen that to manipulate the heavy payload along a circular trajectory at the

speed required in the first simulation (one revolution in 10 seconds) the astronaut would

have to produce joint torques well beyond physiological limits due to the high

accelerations of the joints. During the second simulation, a more realistic task is

attempted in which the hand's circular trajectory is executed at half the angular velocity

used in the first simulation and with half the radius. Fortunately, this task requires torque

levels well within the limits of human capability.

The realism is also improved by implementing compliance in the lower body through

springs and dampers in the ankle, knee, and hip joints. The animation clearly shows how

the astronaut's body initially swings away from the payload in reaction to the forces he

exerts as he pushes the payload forward, and then swings toward the payload while

pulling the payload backward close to the midway point of the trajectory. It is

encouraging that the realism of the simulation was enhanced to such a large extent by the

addition of passive springs and dampers in the lower body joints, especially considering

that the spring and damping coefficients were estimated. It appears, though, that the

spring and damping coefficients were chosen too low based on the appearance of

underdamped oscillations in the system together with the fact that a human is capable of

producing about four times the torque levels seen in the leg joints. To model the greater

stiffness in the lower body joints in the future, higher values for the spring and damping

constants should be chosen. However, more data is needed on lower body torque

capability before this can be accomplished. Alternatively, a more systematic approach

based on control theory applied to human motion, such as optimal control methods,

should lead to interesting results.
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4.3 Development of Visualization Software

4.3.1 Background
In the current simulation environment, SD/FAST generates pages and pages of

numerical data that represent crucial information relating to human joint angles, torques,

and limits. Rather than run the data through several analysis packages, it is extremely

useful to present the results of the simulation in an intuitive format. With this in mind,

the two key characteristics for data visualization of EVA simulations are:

(1) Visualization of the actual task being performed, in real time.

(2) Simultaneous display of essential parameter data from the simulation routines.

Given these two requirements and the availability of a high-powered graphics

workstation, it was decided that the best approach would be to develop a 3-dimensional

animation of the EVA task, and use adjacent two-dimensional plots for the SD/FAST

simulation data.

4.3.2 The EVADS Program
To implement the above ideas, a data visualization program called the EVA Dynamic

Simulation (EVADS) was developed on a Silicon Graphics (SGI) Indigo Extreme

workstation. The program loads simulation data from text data files, which are generated

by the SD/FAST simulation routines; these data files are simply time-histories of

simulation parameters, such as joint angles, joint limits, and joint torques. The joint

angle data are then used to generate a 3-D image representing the EVA astronaut in the

proper position for a specific instant of time during the simulation. Similarly, position

data indicates the position of any additional objects in the scene. This 3-D scene can be

manipulated by using the mouse as a virtual trackball, rotating and/or translating the

scene to achieve the desired perspective.

The lower portion of the screen is devoted to a two-dimensional display of parameter

data, implemented as a scrolling plot of the parameter value versus time. The particular

parameter to be displayed is selected by choosing an appropriately labeled button from a

list at the right of the screen and clicking the mouse on it. During the simulation, the data

plot scrolls across the screen to follow the task in progress as represented in the 3-D

window. Several options are available for highlighting the current value of the

parameter, determined by command-line arguments to the program.

The simulation data is then "played back" in real time, so that a second of the

simulation lasts precisely one second in real-world time. This produces an animation of

the EVA task which corresponds physically to the actual task being performed. When

not running the simulation in this "real-time" mode, the user can scroll back and forth
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through the simulation to highlight interesting features on the data plot. Simultaneous 3-

D animation enables quick correlation between the plotted parameter values and a

particular phase of the EVA task (for example, correlation of maximum ankle torque with

a specific motion made by the astronaut).

The importance of visual aspects in the ability to improve on successive simulations

is clearly demonstrated through the use of the animation and data plotting functions of the

EVADS user interface. It is seen that the qualitative information conveyed by the

animation can be just as important as the quantitative information conveyed by the plots.

Combining these two elements provides the analyst with a very powerful tool for

assessing the dynamic effects of EVA operations.

A number of enhancements to the EVADS program are currently being developed.

These include: the ability to display more than one curve on a parameter plot and, in

particular, to display physiological limits of a parameter along with that parameter (e.g.,

joint torque limits); the option of displaying multiple plots at the same time so that

different parameters can be compared; tracing the trajectory followed by a certain point

(e.g., the center of mass of the hand); and improvements to the manner in which button

menus are utilized. In addition, a longer range goal is to separate the various portions of

EVADS (animation, data plots, button menus) so that each of these can be contained in a

window of its own. This would greatly improve the flexibility of the display format.

Ultimately, the desire is to integrate SD/FAST, the dynamic simulation code, and

EVADS into one program so that the user can specify the description of the dynamic

system, the initial configuration, the trajectory or force application task, the animation,

and the data plots, all by means of the convenient user interface offered by EVADS.

Viewing the animation and plots of a dynamic system while the simulation code is

executing offers the great advantage of the ability to diagnose errors that occur in the

midst of the simulation and that sometimes even cause an interruption of the simulation.

4.3.3 Recent Developments
The EVADS software is currently being ported to an X-Windows based environment,

to provide a more familiar and accessible user interface. The new interface is constructed

from MotifTXToolkit widgets, to achieve the familiar look and feel of most workstation-

based programs under a window manager. Additionally, the core graphics routines are

being rewritten, moving from the standard Silicon Graphics GL to the new Openlnventor

environment, also by Silicon Graphics. The Openlnventor API is designed for the

development of C++, object-based 3D scenes with a highly intuitive object structure.

This will facilitate the rapid generation of 3D objects for the animation of new
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simulations, and allow users to import objects generated by commercial programs such as

AutoCad and ProEngineer.

4.3.4 Future Work
Several new commercial software packages have been introduced to perform many of

the tasks for which EVADS was written; these programs will be evaluated in terms of

their usefulness to the current project. If one of these packages proves to be extremely

useful, then the data visualization effort will be moved to the commercial system. It is

possible that a combination of the existing EVADS program and the commercial software

may provide the easiest path for transition between the two. Additionally, three-

dimensional representations of the SD/FAST data will be tested, superimposing data on

the 3D astronaut model to provide even better visual correlation between the task and

calculated task parameters.

4.4 Conclusions
While the simulation code and EVADS graphical interface are clearly still in the

developmental stage, it is felt that the main objectives of this stage of the research effort

were accomplished. In particular, the primary goal of demonstrating the utility of

computational simulation of multibody dynamic systems for EVA research and training

was achieved. The specific objectives of this research effort, as listed in chapter 1, were

met in the following ways.

1) A convenient means of modeling the dynamic system was demonstrated

by means of the seven segment model of the astronaut and the attached

payload. This model was described in a system description text file which

was used as input to SD/FAST.

2) The system model was transformed into equations of motion by means

of the SD/FAST program which represented these equations in an implicit

computational form using C code.

3) Computer code written in C language was used to drive the desired

simulations by utilizing the functions representing the equations of

motion. It was shown that this simulation code is adaptable to a variety of

conditions by starting the two simulations from different initial

configurations and by making the lower body rigid in the first simulation

and compliant in the second simulation.
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4) The astronaut motion to be performed was specified in terms of task

(endpoint) coordinates alone by means of two virtual sliding joints defined

in the X and Y directions of the global coordinate system. The kinematics,

in terms of joint coordinates, of the astronaut's body during the

manipulation task were successfully calculated using only the endpoint

trajectory time history as input.

5) An inverse dynamics computation was successfully performed in each

simulation to determine the joint torques using the calculated joint

kinematic data (angular position, velocity, and acceleration) as input.

6) A graphics program displaying animation and data plots was

successfully created. This program, called EVADS, uses simulation data

as input and creates animation that is synchronized with the calculated

data plots at the active time point in the plot display area. The user has the

ability to select which parameter is displayed, to run the animation in real

time, and to step back and forth through the simulation time history.

7) The results of inverse kinematics and inverse dynamics portions of the

simulations were interpreted both quantitatively and qualitatively.

Consideration of the results produced conclusions about the feasibility and

efficiency of the simulated EVA operation and led to practical suggestions

about how the actual EVA task might be altered to improve effectiveness.

Furthermore, these results gave clues as to how the simulation itself might

be improved.

8) Significant improvements in realism and accuracy were accomplished

by means of the refinements incorporated in successive simulations. The

second simulation successfully solved the problems of wrist joint range of

motion violation and unattainable joint torques while the overall realism of

body motions was enhanced.

While both of the simulations performed represent highly simplified models of EVA

tasks, it is encouraging that significant and revealing results are already obtained by

applying the principles of multibody dynamics. Not only does computational simulation

provide useful quantitative and qualitative predictions of the dynamic effects involved in
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a planned EVA, but it can also facilitate the creation of practical concepts for improving

the efficiency and comfort of an EVA task. A good example of this arises by observing

that the largest joint torques in both simulations occurred in the ankle. Clearly, the

mechanical disadvantage that the ankle joint incurs, in terms of both the overall

configuration of the body and payload and in terms of its own construction (somewhat of

an Achilles' Heel syndrome), is bound to be a source of weakness and inefficiency in any

EVA task involving the manipulation of large masses or the exertion of large forces via

the hands. The problem could be alleviated by means of a brace mechanism which

provides a stiff load path between a cuff around the lower leg (just below the knee) and

the Portable Foot Restraint (PFR) or some other foot restraint. The brace would have a

telescoping action and pivots at the points of attachment on the lower leg and PFR to

allow freedom of movement when unlocked. Turning a simple locking handle, within

reach of the astronaut's hand, would rigidize the brace prior to the performance of a

manipulation task. The anticipated location and conceptual design of this device is shown

in Figure 4.1.
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Figure 4.1 Lower leg brace device for reducing ankle torques during EVA mass manipulation tasks.

Although the work of creating the basic EVA dynamic simulation tool has progressed

a great deal, there remain many future research activities to pursue; some of which are

presented hi the next section.

4.5 Recommended Future Research
The most obvious enhancements to the capabilities of the EVA dynamics simulation

tool and some research questions to be addressed are summarized below. Greater

accuracy of numerical results can be obtained by incorporating more precise data on the

mass properties (segment mass, moments of inertia, and products of inertia) of human

body segments. This data should be calculated as a function of the overall mass and
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dimensions of the human subject being modeled. In addition, more realistic spring and

damping constants should be obtained. It would also be helpful to include joint velocity

limit curves and joint torque limits not already included.

One of the most important and novel contributions to the multibody system model of

the human, in the case of EVA applications, would be the inclusion of the mechanical

effects of the spacesuit on astronaut motions. It is anticipated that these effects can be

largely modeled by the inclusion of torsional springs in the model's joints and by adding

the space suit mass properties to the existing human body segment mass properties. The

spacesuit model springs, which would act in parallel with other springs representing the

passive and active torques of the human body itself, will likely require nonlinear equation

forms to represent them. Furthermore, fabric suits usually exhibit a hysteresis pattern for

joint torques that could be modeled. A qualitative sketch of a typical spacesuit joint

torque curve is shown in Figure 4.2. There is great difficulty in finding published data on

spacesuit joint torques. New experiments to measure spacesuit performance directly and

establish data sets or regression equations for predicting joint torque based on position,

direction of motion, and perhaps velocity may be necessary.

a*s o
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Figure 4.2 Typical spacesuit joint torque curve showing hysteresis effect.

The simulations described in this report are restricted to planar motion. It would be

very interesting to provide the astronaut model with additional degrees of freedom (e.g.,

wrist flexion/extension and shoulder adduction/abduction) to enable three-dimensional
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motions. The goal of a mass handling task, for instance, would be extended to following a

three-dimensional trajectory. One should bear in mind, however, that adding degrees of

freedom adds more variables to be evaluated or controlled and the added complexity may

make it more difficult to interpret results or control the motion.

Another interesting topic to be investigated is the modeling of the dynamics of the

Portable Foot Restraint (PFR), the Remote Manipulator System (RMS), and the Shuttle

Orbiter as they relate to EVA tasks. Apparently there is already interest in this issue from

NASA EVA training personnel and astronauts. As a first approximation, the Orbiter

could be modeled as a single rigid body, the RMS as a three-link multibody system and

the PFR as a single link attached to the RMS via a revolute joint with stiff springs.

An issue which needs to be studied further is that of multiple dynamic state solutions

to systems with redundant degrees of freedom. In this research effort, solutions have been

found by performing a linearized least squares operation. In the future, however, it may

be more realistic to find solutions based on some sort of optimization, for instance

minimum energy required.

The EVA tasks performed in the two simulations described in this report are specified

directly by means of computer code. It would be of great use to alter the simulation code

so that tasks (e.g., trajectory following, endpoint force exertion, etc.) can be specified

through the graphical user interface environment provided by EVADS. This objective

falls under the general goal of integrating the simulation code and EVADS program. It

would also be worthwhile to develop algorithms that provide spline fits to keypoint

trajectory or force data to avoid the user having to specify the EVA task in excessive

detail.

An interesting extension of the simulation abilities would be to apply physiological

analysis to the data obtained from the dynamical analysis. Kinematic and torque data

could theoretically be used to calculate estimates of power, workload, and body

temperature (for suit thermal regulation issues). Furthermore, employing physiological

formulas might make it possible to estimate metabolic parameters such as 02 uptake,

CO2 production, heart rate, cardiac output, and so on.

Up to now the control strategies applied in these EVA simulations have been quite

rudimentary. An effort should be made to model human control strategies, such as

optimal control or the McRuer crossover model (McRuer, Graham et al. 1965), and to

include white noise and time delays in the human system.

Finally, but perhaps most importantly, there is a need to perform experimental

verification of the simulation results. To mimic weightlessness, experiments could be

performed in a neutral buoyancy facility or on a "zero-g" aircraft. Parabolic flight is less
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likely to be used for these experiments due to the short duration of continuous

weightlessness available (20-25 sec), particularly if the test subject is encumbered by a

space suit. Whatever the facility, test subjects will perform mass manipulation of an

object along a prescribed trajectory (probably aided by visual cues) while wearing a

spacesuit. Tests should be conducted with the subject unsuited as well. The kinematics of

the subject's motions (i.e., body segment positions, velocities, and accelerations) will be

recorded by some means, for instance a video scan system picking up markers on the

subject's spacesuit or body. Alternatively, there may be a possibility of employing a

mechanical body motion measurement device, such as those manufactured by the EXOS

company in Massachusetts. Unfortunately, there is no practical way of directly measuring

the torque in the subject's joints (surgically implanted strain gages attached directly to

tendons have been used on animals, but this is not a favored option for human subjects).

Instead, the torques can be calculated from the kinematics data using inverse dynamics.

Even though the torques themselves cannot be obtained by experiment directly, it is

believed that kinematic data will sufficiently characterize the differences and similarities

between the theoretical simulation results and the experimental results.

4.6 Summary Paragraph
This preliminary research effort has shown that the application of computational

multibody dynamic simulations to extravehicular activity holds great promise as a

valuable tool for analysts, trainers, and astronauts. For the first time, it is possible to

obtain accurate numerical predictions of quantities such as joint angles and joint torques

that are experienced in motion tasks, such as mass manipulation, tool handling, or

translation and orientation of an astronaut's body, carried out during extravehicular

activity. Having access to this quantitative information, combined with the qualitative

information displayed in three-dimensional rendered graphics animation, enables the user

to access important factors such as range of motion, exertion, and efficiency and comfort

levels. In addition, it has been shown that computational simulation avoids many of the

limitations of physical simulators, such as lack of degrees of freedom or friction, and is

restricted only by the degree to which the user is willing or able to mathematically

describe the physical principles and control laws involved. Furthermore, the convenience,

low cost, and quick turnaround time of computational simulations greatly facilitates the

process of exploring different scenarios for an EVA task and determining the optimum

way in which to perform the desired procedure.
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