
(NASA-CR-199703) COMPILER-ASSISTED N96-14300
MULTIPLE INSTRUCTION ROLLBACK
RECOVERY USING A READ BUFFER (IBM)
12 p Unclas

G3/60 0076346

NASA-CR-199703 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 9, SEPTEMBER 1995

Compiler-Assisted Multiple Instruction
Rollback Recovery Using a Read Buffer

Neal J. Alewine, Shyh-Kwei Chen, Member, IEEE,
W. Kent Fuchs, Fellow, IEEE, and Wen-mei W. Hwu, Member, IEEE f<

Abstract—Multiple instruction rollback (MIR) is a technique
that has been implemented in mainframe computers to provide
rapid recovery from transient processor failures. Hardware-
based MIR designs eliminate rollback data hazards by providing
data redundancy implemented in hardware. Compiler-based MIR
designs have also been developed which remove rollback data
hazards directly with data-flow transformations. This paper de-
scribes compiler-assisted techniques to achieve multiple instruc-
tion rollback recovery. We observe that some data hazards result-
ing from instruction rollback can be resolved efficiently by pro-
viding an operand read buffer while others are resolved more
efficiently with compiler transformations. The compiler-assisted
scheme presented consists of hardware that is less complex than
shadow files, history files, history buffers, or delayed write buff-
ers, while experimental evaluation indicates performance im-
provement over compiler-based schemes.

Index Terms—Fault-tolerance, error recovery, instruction re-
try, compilers.

I. INTRODUCTION

I NSTRUCTION retry is a technique for rapid recovery from
transient faults in a computer system. Multiple instruction

rollback recovery is particularly appropriate when error detec-
tion latencies or when error reporting latencies are greater than
a single instruction cycle. When transient processor errors oc-
cur, multiple instruction rollback (also referred to as multiple
instruction retry or simply instruction retry) can be an effective
alternative to system-level checkpointing and rollback recov-
ery [1], 12], [3], [4], [5], [6]. Multiple instruction retry within a
sliding window of a few instructions [2], [3], [4], [5], or re-
execution of a few cycles [7], can be implemented in parallel
with error detection methods for recovery from transient proc-
essor errors.

A. Hardware-Based Instruction Rollback

Hardware implemented instruction retry schemes belong to
one of two groups:

1) full checkpointing and
2) incremental checkpointing.

Full checkpointing maintains "snapshots" of the required sys-
tem state space at regular, or predetermined intervals. Upon

Manuscript received June 28, 1993; revised Aug. 22, 1994.
N.J. Alewine is with IBM Corporation, Boca Raton, Fla.
S.-K. Chen is with IBM T.J. Watson Research Center, Yorktown Heights,

NY 10598.
W.K. Fuchs, and W.-m.W. Hwu are with the Center for Reliable and High-

Performance Computing, Coordinated Science Laboratory, 1308 W. Main St.,
University of Illinois, Urbana, IL 61801.

IEEECS Log Number C95090.

error detection, the system can be rolled back to the appropri-
ate checkpointed system state. Incremental checkpointing
maintains changes to the system state in a "sliding window".
Upon error detection the system state is restored by undoing,
or "backing-out" the system state changes to an instruction
previous to the one in which the error occurred.

The issues associated with instruction retry are similar to the
issues encountered with exception handling in an out-of-order
instruction execution architecture [8]. If an instruction is to
write to a register and N is the maximum error detection la-
tency (or exception latency), two copies of the data must be
maintained for N cycles. Hardware schemes such as reorder
buffers, history buffers, future files [9], and micro-rollback [2]
differ in where the updated and old values reside, circuit
complexity, processor cycle times, and rollback efficiency.

Table I gives a description of various hardware-based meth-
ods to restore the general purpose register file contents during
single or multiple instruction rollback. In the VAX 8600 and
VAX 9000, errors are detected prior to the completion of a
faulty instruction. For most VAX instructions, updates to the
system state occur at the end of the instruction. If the error is
detected prior to updating the system state, the instruction can be
rolled back and reexecuted. If the system state has changed prior
to detection of the error, a flag is set to indicate that instruction
rollback cannot be accomplished. Redundant data storage is not
required for the VAX 8600 and VAX 9000.

The IBM 4341, IBM 3081, IBM patent 4,912,707, IBM
patent 4,044,337, and history file all require shadow file
structures to maintain redundant data. This data is used to re-
store the system state during rollback recovery. Shadow file
structures can add significant circuit overhead, although the
level sensitive scan design [14] of the IBM 4341 and IBM
3081 provides this feature without additional cost over that
incurred to obtain testability.1 The VAX 8600 and VAX 9000
schemes avoid shadow files, however, they require an error
detection latency of only one instruction.

The micro-rollback scheme also a'voids shadow files by us-
ing a delayed write buffer to prevent old data from being
overwritten until the error detection latency has expired; ensur-
ing that the new data is fault-free. In a delayed write scheme,
the most recent write values are contained in the delayed write
buffer, and complex bypass and prioritization circuitry is re-
quired to forward this data on subsequent reads. The perform-
ance impact introduced by (he bypass circuitry is a function of
the register file size and the maximum rollback distance [2].

I. The 126 scan rings of the IBM 3081 contains 35,000 bits of data.

0018-9340/95S04.00Q 1995 IEEE

ALEWINE ET AL.: COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK RECOVERY USING A READ BUFFER 1097

TABLE I
HARDWARE-BASED SINGLE AND MULTIPLE INSTRUCTION

ROLLBACK SCHEMES

Rollback Scheme

IBM 4341(1]
IBM 3081 [2]
VAX 8600 [3]
IBM patent 4,912,707 [41
IBM patent 4,044,337 [5]
micro-rollback [6]
history buffer [7]
history file (7]
VAX 9000 [8)
IBM E/S 9000 [9]

Checkpoint
Type

full
full
full
full

incremental
incremental
incremental
incremental

full
incremental

Rollback
Distance

single instr.
10-20 instr.
single instr.

variable
single instr.

variable
variable
variable

single instr.
variable

Location of Data
Primary

register file
register file
register file
register file
register file
write buffer
register file
register file
register file
virtual file

Redundant

shadow file
shadow file
not required
shadow file
shadow files
register file

history buffer
shadow file
not required
physical file

The history buffer scheme maintains redundant data in a
separate push-down array and therefore does not require by-
pass circuitry [9]. The history buffer does however require an
extra register file port which complicates the file design and
can impact performance by increasing file access times.

In an effort to increase the register file size while maintain-
ing downward code compatibility relative to the 16 architec-
tural registers, the IBM E/S 9000 introduced a virtual register
management (VRM) system [15]. The VRM circuitry dynami-
cally maps the 16 architectural registers into 32 physical regis-
ters. When the data in a physical register becomes obsolete,
the physical register is released for reassignment as a new vir-
tual register. Although the VRM system was primarily in-
tended to reduce register pressure and therefore improve sys-
tem performance, it has been extended to provide data redun-
dancy to assist in rollback recovery. In the VRM extension,
remapping of a physical register to a new virtual register is
postponed until the error detection latency has been exceeded
for the data contained in the physical register.

B. Compiler-Based Instruction Rollback

Compiler-based approaches to multiple instruction rollback
recovery have also been developed [3], [4]. Compiler-based
MIR uses data-flow manipulations to remove data hazards that
result from multiple instruction rollback. Rollback data haz-
ards (or just hazards) are identified by antidependencies2 of
length < N, where N represents the maximum rollback dis-
tance. Antidependencies are removed at three levels:

1) pseudo-code level, or the code level prior to variables
being assigned to physical registers,

2) machine-code level, or the code level in which variables
are assigned to physical registers, and

3) post-pass level, that represents assembler-level code
emitted by the compiler.

Compiler-based multiple instruction rollback reduces the re-
quirement for data redundancy logic present in hardware-based
instruction rollback approaches.

C. Compiler-Assisted Instruction Rollback

Compiler-based multiple instruction rollback resolves all
data hazards using compiler transformations. This paper de-
scribes a compiler-assisted instruction rollback scheme that

2. For a complete presentation of data-flow properties and manipulation
methods, sec Aho et al. I Id).

uses dedicated data redundancy hardware to resolve one type
of rollback data hazard while relying on compiler assistance to
resolve the remaining hazards. Experimental results indicate
that by exploiting the unique characteristics of differing hazard
types, the new compiler-assisted MIR design can achieve su-
perior performance to either a hardware-only or compiler-only
instruction rollback scheme.

n. ERROR MODEL AND HAZARD CLASSIFICATION
A. Rollback Data Hazard Model

The following four assumptions are used in the general er-
ror model:

1) the maximum error detection latency is N instructions,
2) memory and I/O have delayed write buffers and can roll-

back N cycles,
3) the states of the program counter and program status

word (PSW) are preserved by an external recording de-
vice or by shadow registers [2], and

4) the processor state can be restored by loading the correct
contents of the register file, program counter, and PSW.

Given the above assumptions, any error which does not
manifest itself as an illegal path in the control-flow graph
(CFG) of the program is allowed provided that the following
two conditions are satisfied:

1) register file contents do not spontaneously change, and
2) data can not be written to an incorrect register location.

There are four targeted transient error types:

1) processor errors such as those caused by an ALU failure,
2) incorrect values read from I/O, memory, the register file,

or external functional units such as the floating point unit,
3) correct/incorrect values read from incorrect locations

within the I/O, memory, or register file, and
4) incorrect branch decisions resulting from error types 1. 2,

or 3.

B. Hazard Classification

The executable code can be represented as a CFG G(V, E),
where V is the set of nodes denoting instructions and E is the
set of edges denoting control-flow. If there is a direct control-
flow from instruction i, denoted /,-, to //, where /, e V and
Ij e V, then there is an edge (//, /,) e E. Let */„,,„(/,, /,) denote
the smallest number of instructions along any path from /, to /,.

The hazard set Hrtgs of the error model is defined as the set
of pseudo registers (or machine registers) whose values are
inconsistent during different executions of an instruction se-
quence due to retry. Two properties3 are used to classify roll-
back data hazards given the error model of Section II.A.

PROPERTY 1. Hazard register x is an element of H,rgs iff there
exists a sequence of instructions 7|, /2, ..., 1N which form a
legal walk" in G such that x is live at I\, and .r is defined
during the walk.

3. A formal treatment of these properties, along with proofs, can he found
in [17].

4 A walk is a sequence of edge traversals in a graph where the edges yis-
ilcd can he repealed (I K] .

1098 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44. NO. 9, SEPTEMBER 1995

PROPERTY 2. Hazards can be classified as one of two types:
1) those that appear as antidependencies of length < N in
G(V, E), referred to as on-path hazards, and 2) those that
appear at branch boundaries, referred to as branch hazards.
These two hazard types may overlap.

An on-path or branch data hazard occurs when // defines
variable x, and after rollback, /,• uses the corrupted x value
prior to its redefinition. Fig. 1 shows an error occurring prior
to a branch instruction with error detection occurring after the
definition of variable x in /,. Rollback then occurs with the
program sequence beginning above the branch.

before. It is assumed that the read buffer is an integral part of
the register file and any error in the system does not corrupt
the transfer to the read buffer or its contents.

- rollback

error detected »-X '"

Fig. 1. On-path and branch hazards.

If the post-rollback path is the same as the original path, a
use of variable x will occur in /, prior to the re-definition of x
in /,-. This represents an on-path hazard and is denoted as
hn(i, j, x) in Fig. 1. If the post-rollback path is different from
the original path (e.g., the error caused an incorrect branch
decision during the original program sequence), a use of vari-
able x will occur in lk prior to a re-definition of x. This second
case represents a branch hazard and is denoted as hb(i, k, x) in
Fig. 1.

III. COMPILER-ASSISTED INSTRUCTION ROLLBACK

As shown in Section II, rollback data hazards are of two
types: 1) on-path hazards, and 2) branch hazards. Previous
work has shown that compiler-driven data-flow manipulations
can be used to resolve both on-path [3] and branch [4] hazards.
Compiler-assisted multiple instruction rollback described in
this section uses hardware to resolve on-path hazards and re-
lies on compiler assistance to resolve the remaining branch
hazards.

A. On-Path Hazard Resolution Using a Read Buffer

Fig. 2 shows a hardware scheme to resolve on-path hazards.
Each time a register is used, its value appears on the read port
and is saved in the read buffer. If a register rk is defined in /,
and it is an on-path hazard, then rk must have been read within
the last N cycles. In this case, the read buffer will contain the
old value and it is permissible to write the new value into the
register file. In the event of a rollback of /V instructions, the
contents of the read buffer are flushed in reverse order and
stored back to the register file. For an on-path ha/ard, the path
taken after the rollback will be the same as the path taken prior
to rollback and each read of rk will produce the same value as

Fig. 2. Read buffer.

In contrast to a write history buffer which forces a read of rk

prior to writing rt, the read buffer monitors the register file
ports and stores only the values read as part of the normal pro-
gram flow and, therefore, should not significantly impact the
register file performance or processor cycle time. The read
buffer is twice the width of a register with a depth of N. This is
twice the size of a delayed write buffer, but eliminates the re-
quirement for complex bypassing and prioritization logic.

A.I. Covering On-Path Hazards

In addition to resolving all on-path hazards, the read buffer
will resolve some branch hazards. Fig. 3 shows an on-path haz-
ard and a branch hazard both with definitions of x in /,• and uses
of x, after rollback, in instructions // and /*, respectively. Note
that if path / is initially taken, the read buffer will contain the old
value of x and rollback would be successful. However if path m
is taken, the read buffer will not contain the old value of x and
rollback would be unsuccessful. If only pailis such as / exist, the
presence of the on-path hazard assures successful rollback or
"covers" the branch hazard. In this case, resolution of the branch
hazard using compiler techniques is not necessary.

• rollback

path m

detected

Fig. 3. Covering on-path hazard.

ALEWINE ET AL.: COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK RECOVERY USING A READ BUFFER 1099

A.2. Post-Pass Transformation

Given the efficiency of the read buffer in resolving on-path
hazards, a post-pass transformation on assembler-level code
becomes possible as an alternative to nop insertion transfor-
mations [3]. The post-pass transformation creates on-path haz-
ards when necessary to assure that all branch hazards are re-
solved by the read buffer. Given one such branch hazard which
defines physical register rk at instruction /,-, the transformation
inserts an MOV rh rk instruction immediately before /,. This
guarantees that all paths leading to /, are like path / in Fig. 3.

B. Branch Hazard Resolution

Branch hazards are resolved at three levels: 1) pseudo-level,
2) machine-level, and 3) post-pass level [4]. Pseudo-level haz-
ards are removed by variable renaming, for example, renaming
variable x to y in instruction // of Fig. 1. Machine-level branch
hazards occur when register assignments result in branch haz-
ards that were not present at the pseudo-level. Machine-level
hazards are resolved by adding hazard constraints to live range
constraints prior to register assignment. Branch hazards which
remain after pseudo-level and machine-level transformations
are resolved at the post-pass level with read insertions as de-
scribed in Section III.A.2.

The primary pseudo-level renaming transformation for the
removal of branch hazards, involves node splitting [4]. This
section presents a one-pass node splitting algorithm which
results in marginally reduced code growths and dramatically
reduced compile-times relative to previous node splitting
algorithms.

Figs, 4a and 4b show a typical data dependence (requiring
node splitting) and the node splitting technique, respectively.
In Fig. 4a, renaming x in /,• to y will ultimately require the re-
naming of the use register x in /, to y since multiple definitions
of x reach /*. To break this dependence, the following node
splitting criterion is used: If multiple definitions of x reach Ik

and x is in the live_in set of /*, /* will be split into two identical
nodes. This "unzipping" is shown in Fig. 4b. Loop protection
assures that no loop header is split [3].

(b)

B.I. Iterative Node Splitting

Node splitting breaks equivalence relationships which
would prevent pseudo register renaming [3], [16]. When two
definitions of a hazard variable reach a node in which the haz-
ard variable is live, the node is split. Node splitting to resolve
one hazard variable often resolves other unrelated hazard vari-
ables. This implies that the hazard set should be recalculated
after splitting is performed for each hazard variable. Previous
node splitting algorithms use this iterative algorithm to avoid
unnecessary node splitting [3].

Fig. 5 demonstrates the effect of the iterative node splitting
algorithm on an example subgraph. Node splitting relative to
hazard variable x ensures that the definition of x in node n, and
the definition of x in node «2 do not both reach the same use of
x in node ns. Node splitting relative to >• ensures that the defi-
nition of y in node «3 raid the definition of y in node n4 do not
both reach the same use of y in node n6.

UnsplU fubgrapb Split relative to variable x

Fig. 4. Node splitting.

Fig. 5. Iterative node splitting relative to hazard variables x and y.

Fig. 5 also shows an optimal subgraph which resolves both
hazards with less splitting than produced by the iterative al-
gorithm, indicating that excessive node splitting is possible
with the iterative algorithm.

B.2. Node Splitting Using Graph Coloring

To reduce splitting, a node splitting algorithm is developed
using the concept of conflicting parents [17]. Ensuring that
node n does not have conflicting parents enables resolution of
the hazard using variable renaming. The node splitting strategy
for a particular node is to group the parents of that node such
that elements within a group do not conflict. Each group be-
comes parent nodes for a duplicate of the original node. For
example, if node n has six parent nodes and these nodes can be
organized into three nonconflicting groups, then only three
total copies of n are required.

1100 IEEE TRANSACTIONS ON COMPUTERS. VOL. 44, NO. 9, SEPTEMBER 1995

Fig. 6 illustrates the use of conflicting parents and graph
coloring in node splitting for the QSORT application de-
scribed in Table III of Section IV.A. Node splitting is per-
formed on pseudo-level code, which for this example is repre-
sented by Lcode from the IMPACT C compiler [19]. Fig. 6
shows node 48 from the QSORT application. Node 48 has six
parent nodes prior to splitting. These nodes can be arranged in
a parent conflict graph, where each arc of the graph represents
two nodes that conflict. Establishing groups can be achieved
by finding the minimum coloring of the parent conflict graph,
i.e., coloring the nodes such that no two nodes connected by an
arc have the same color. For the example shown in Fig. 6,
three colors are sufficient to color the parent conflict graph,
resulting in the splitting of node 48 into nodes 48, 48' and 48".
The graph coloring heuristic used for our one-pass node split-
ting algorithm is a modified version of an algorithm used for
register allocation [16].

Node 48,48', and 48" after splitting

Fig. 6. Node splitting using graph coloring for QSORT.

B.3. One-Pass Node Splitting Algorithm

Both live_in(n) and reaching_out(n) [16] analyses are re-
quired to identify conflicting parent nodes. A one-pass node
splitting algorithm becomes possible by precalculating livejn
and the hazard node set, and then, beginning'with the root node,
splitting in a topological traversal of the CFG. A topological
traversal ensures that when processing node n, all ancestors of n
have been processed and no descendants of n have been proc-
essed. This latter case ensures that the presplit calculation of
live_in(n) can be used for parent conflict identification when
processing a given node. Unlike live_in(n), reaching_out(n) is
affected by the splitting of ancestor nodes. Since reach-
ing-Put(n) is based solely on node n and its ancestors, reach-
ing_out(n) can be calculated as node splitting proceeds. If a haz-
ard node is split, each duplicate of the node must be added to the
hazard node set. Since the root node does not have conflicting
parents, a topological traversal of the CFG using the graph color-
ing node splitting technique ensures that no node in the resulting
graph has conflicting parents.

Table II.illustrates the improvement of the one-pass node
splitting algorithm over the iterative algorithm for the COM-
PRESS application described in Table III of Section IV.A. The
COMPRESS application was compiled on a SPARCserver 490

using the IMPACT C compiler [19] with a rollback distance of
10. Node count values represent pseudo instructions (Lcode)
created by the IMPACT C compiler before and after splitting.
Seven of the 14 COMPRESS functions which required split-
ting are listed. Algorithm run times represent the overall
compile times given each of the two node splitting algorithms.

Table n shows a marginal overall code growth reduction for
the one-pass algorithm. Although one function demonstrated a
significant code growth reduction (6.7% compared to 75.6%),
the function is small and has minimal effect on the overall code
size. The improvement in compile-time of the one-pass algo-
rithm is more dramatic, resulting in a speedup factor of 30.2.

TABLE II
NODE SPLITTING COMPARISONS FOR COMPRESS

Orig.
Node Cnt.

547
461
144
181
75
21
45

Iterative
AlR.

601
499
147
209
80
28
79

%
Increase

9.9
8.2
2.1
15.5
6.7
33.3
75.6

One-pass
AlR.

566
496
147
207
80
27
48

%
Increase

3.5
7.6
2.1
14.4
6.7

28.6
6.7

Iterative Algorithm run time = 614.0 seconds
One-pass Algorithm run time = 20.3 seconds
Speedup = 30.2

C. Performance Enhancement Through Profiling

C. 1. Post-Pass Transformation Versus Loop Protection

Some hazards remain after compilation and must be re-
moved using a post-pass transformation. Previous post-pass
transformations used nop insertions to increase all antide-
pendency distances to > N [3]. Since nop insertion can be
costly to performance, previous compiler transformations re-
moved all resolvable hazards, leaving only unresolvable haz-
ards to be removed by the post-pass transformation.

rollback

' ^—' K- I I
;

error detected —"X-
•

Fig. 7. Post-pass hazard removal using road insertion.

In Section III.A.2, an alternative post-pass transformation
was introduced in which nop insertion was replaced by read
insertions as the primary hazard removal technique. As illus-
trated in Fig. 7, up to two branch hazards can be removed by a
single read instruction. Figs. 12 and 14 of Section IV.B show
performance overhead comparisons between compiler-driven

ALEWINE ET AL.: COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK RECOVERY USING A READ BUFFER 1101

data-flow manipulations and the post-pass transformation for
the PUZZLE and TBL applications described in Table III of
Section IV.A. Comp/PP indicates that hazards are resolved by
the compiler where possible, while the remaining hazards are
resolved at the post-pass level. PP (post-pass) indicates that
compiler transformations have been disabled and that all haz-
ards are removed at the post-pass phase.

For the PUZZLE application, compiler transformations pro-
duce better performance than the post-pass transformation
alone. For the TBL application, using the post-pass transfor-
mation to remove all hazards produces slightly better perform-
ance than the combination of compiler and post-pass transfor-
mations. Hazard elimination via read insertion introduces a
guaranteed but small performance impact due to the longer
instruction path length. As demonstrated by ?he PUZZLE ap-
plication, pseudo register renaming can eliminate hazards
without impacting performance when loop protection is infre-
quent. The save/restore operations of loop protection can re-
sult in more performance impact than read insertion when loop
protection is frequent, as demonstrated by results for the TBL
application.

Fig. 8 illustrates the potential effect on performance given
the'following two types of hazard removal:

1) hazard removal using register renaming that results in
loop protection, and

2) hazard removal using read insertion.

If the protected loop of Fig. 8 is executed 20 times and the
hazard instruction is executed two times, loop protection
would require the execution of 40 additional instructions,
where read insertion would require the execution of only two
additional instructions. If the loop and hazard instruction exe-
cution frequencies were reversed, then read insertion would
produce more performance impact than loop protection. As
shown in Fig. 8, profiling data can be used to aid in loop pro-
tection decisions.

Loop Protection Read Insertion

save j r, = rf

,.. r dead I™..-

j x ^ header

^J 20.0 —

n
1 | • change

1 ' "lr'.'s\[• •»'/•

1 "-' ' J
pn

• rollback

I 1_t '

= r, 1

1 1

L '° = r' J•

error —~X
detected •

T
Fig. 8. Loop protection versus read insertion.

C.2. Profiling Effectiveness

Profile data was included in the pseudo-level transforma-
tions of Section III.B. The profile data is comprised of both
dynamic profile sampling and static prediction. The static
prediction is used as a supplement for areas of the application
code that are not executed during profile sampling. For static

profiling, a loop is assumed to iterate ten times. Inner loops,
therefore, iterate multiples of 10 times depending on the depth
of loop nesting. All loop header nodes and hazard nodes are
assigned weights based on the profile data.

Protection of loop / due to hazard node nh is required based on
the following condition: if n^weight > "$*(hdr_node(t)_weight\
then protect loop /. The constant 3 adjusts the weights to ac-
count for both direct and indirect loop protection costs. Direct
loop protection costs result from the save/restore instruction
pair shown in Fig. 8. Indirect loop protection costs result from:

1) an increased number of hazards which in turn required
more node splitting and more loop protection, and

2) increased register usage due to the save/restore instruc-
tions which can result in additional register spills.

Fig. 9 shows the run-time overhead for the TBL application
with rollback distances from 1 to 10. Prof/PP indicates that
profiling data was used in loop protection decisions.

Time OH: TBL
(*)

10-) pp:

8 -

6 -
4 -

2 -

0 -

-2-
_d -

Comp/PP: -*-
Prof/PP: ••»•••

i 4 .'

\ x/:"8S.-̂ :;:*:'"°(Mi^x^t~-»--*~Jt~JL^<

2 3 4 5 6 7 8 9 1 0
Rollback Distance

Fig. 9. TBL profile data used for loop protection decisions.

The results show that the use of profile data can improve
application performance by postponing some hazard resolu-
tions until the post-pass phase. Using profile data to aid in
loop protection decisions did not produce performance equal
to that for the post-pass transformation, for the TBL applica-
tion. As an extension to this work, profile data can be used to
aid in register allocation. As discussed in Section III.B, haz-
ards that are present after pseudo register renaming are re-
solved by adding hazard constraints to live range constraints
prior to register allocation. These additional constraints can
cause increased register spillage and impact performance.
Similar techniques to those developed for loop protection can
be used to enhance register allocation decisions.

IV. PERFORMANCE EVALUATION

A. Implementation and Application Programs

The hazard removal algorithms have been implemented in
the MIPS processor code generator of the IMPACT C com-
piler [19]. Transformations resolving pseudo register ha/.arcls
(loop protection, node splitting, and loop expansion) arc in-
voked just before register allocation. Transformations resolv-
ing machine register hazards arc invoked after the live range
constraints have been generated and before physical register
allocation. The nop insertion algorithm, or post-pass algo-
rithm, is called before the assembly code output routine.

Table HI lists the eleven application programs used in the

1102 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 9, SEPTEMBER 1995

evaluations. The applications were cross-compiled on a
SPARCserver 490 and then the compiled program was run on
a DECstation 3100. Static Size is the number of assembly in-
structions emitted by the code generator, not including the
library routines and other fixed overhead.

TABLE III
APPLICATION PROGRAMS

Program
QUEEN
we
OSORT

CMP
GREP

PUZZLE
COMPRESS

LEX
YACC
TBL
CCCP

Static Size

148
181
252
262
907
932
1826
6856
8099
8197
8775

Description

eight-queen program
UNIX utility
quick sort algorithm
UNIX utility
UNIX utility
simple game

UNIX utility
lexical analyzer
parser-generator

table formatting preprocessor
preprocessor for gnu C compiler

The results are summarized in Figs. 10 through 14. Each fig-
ure contains two plots: The first plot shows the percent of run-
time overhead (Time OH) of the referenced hazard resolution
scheme, and the second plot shows the percent of code growth
overhead (Size OH) relative to the base values in Table III.

Four hazard resolution techniques were evaluated. Compiler
1 resolves on-path hazards only, using the compiler-driven
data-flow manipulations. Compiler 2 extends the compiler
transformations to resolve both on-path and branch hazards.

PP (post-pass) disables the compiler transformations and
relies solely on the post-pass transformation presented in Sec-
tion III.A.2. Comp/PP uses compiler transformations to re-
solve branch hazards with the techniques described in Sec-
tion III.B, assumes a read buffer to resolve on-path hazards,
and uses the post-pass transformation to remove remaining
branch hazards. Comp/PP represents the compiler-assisted
multiple instruction rollback scheme.

Due to the excessive compile times of the previous Compiler
I and Compiler 2 algorithms for large applications, the evalua-
tions of these schemes were restricted to applications QUEEN,
WC, COMPRESS, CMP, PUZZLE, and QSORT. Both
Comp/PP and PP were evaluated for all 11 applications.

B. Performance Analysis

Compiler transformations used for the removal of data haz-
ards can impact performance in several ways. Loop protection
inserts save/restore operations at the head and tail of the loop,
increasing the path length and, therefore, the run time. Addi-
tional arcs in the dependency graph can cause more spill code
to be generated, increasing memory references and cache
misses. Nop insertion can be costly since up to N nops could
be inserted for each unresolved hazard. The insertion of MOV
rt, rt instructions to create covering on-path hazards in the
post-pass transformation also increases path lengths, although
typically less than with nop insertions. Finally, the increase in
code size, mainly due to loop expansion, may cause more
run-time cache misses. The performance numbers shown in

Time_OH: QUEEN

Compiler 1:**- * •. i.

Size OH: QUGEN

2 3 4 5 6 7 8 9
Rollback Distance

10 2 3 4 5 6 7 8
Rollback Distance

Fig. 10. Run-time and code size overhead for QUEEN.

Time OH: WC Size OH: WC

35-4 Compiler 1:-*-
,n Compiler 2:- o-
JU " PP: -•»•-
25 - Comp/PP: -*-

20-
15-
10-

o- t » »,II,A''|---'-"£:MUS
-5-—: , , , 1 1 1 r—

400-
350-
300-
250-
200-
150-

f^8 10°-
*— » 50-
T T 0-

Compi er 1: -»-
Compiler 2: - o -
PP: -»~
Comp/PP: -A—

^»^ ~^°
ja/^^^a^ar"^

*-~^^

| 1 ' 1 ' 1 - * • 1

1 2 3 4 5 6 7 8 9 1 0
Rollback Distance

Tune OH: COMPRESS
.(*)

0 1 2 3 4 5 6 7 8 9 1 0
Rollback Distance

Size OH: COMPRESS
.(*.'

Compiler 1: -«—
Compiler 2:-o-

1 2 3 4 5 6 7 8 9 1 0
Rollback Distance

1 2 3 4 5 6 7 8 9 1 0
Rollback Distance

Time OH: CMP Size OH: CMP
(*)

35 - Compiler 1: -*-
30- £jnpil«2:-o-

fV. -•«•—
25 - Comp/PP: -*-

OT-
IS -
10-

5 «^A-*-dtii=fct=«
•5 1 1 1 1 1 1 1 r

400-
350-
300-
i50-
200-
150-
100-

— i — r 0-

Compilcr I : -•-
Compiler 2: - o -
PP: ~»...
Comp/PP: ••*•••

'

jî a*-»**s^S

o_j-*-°̂ *^* "̂̂

A .̂...̂ -A...A 4 . . « , , , * „*..,.«

1 2 3 4 5 6 7 8 9 1 0
Rollback Distance

0 1 2 3 4 5 6 7 8 9 1 0
Rollback Distance

Fig. 11. Run-lime and code size overhead for WC, COMPRESS, and CMP.

Figs. 10 through 14 are for execution of the eleven application
programs on a DECstation 3100 after they have been compiled
with the transforms described.

C. Results: Compiler 2

As can be seen in Figs. 10 through 12, extending the com-
piler hazard resolution scheme to include branch hazards in-
troduces little incremental performance impact or code growth
overhead. Given a rollback distance of 10, resolving both on-
path and branch hazards using compiler transformations re-
sulted in a maximum performance impact of 35.4% and an
average performance impact of 15.4%. This compares with
maximum'and average impacts of 32.6% and 12.6%, respec-
tively, for compiler-driven on-path hazard resolution only. The
maximum code size overhead measured for the extended
compiler-based technique was 372% with an average overhead

ALEW1NE ET AL.: COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK RECOVERY USING A READ BUFFER 1103

Time OH: PUZZLE

35-
30-
25-
20-
15-
10-
5-
.0-
-5-

Compiler 1 : -•-
Compiler 2: -o-
PP: -it- -
Comp/PP: -A-

__j(. — K — x— ..»--'

2 3 4 5 6 7 8 9 1 0
Rollback Distance

Size OH: PUZZLE
(*)

400 -t
350-
300-
250-
200-
150-
100-
50-

Comptler 1: -•-
Compiler 2: - o -
PP: -•«••-
Comp/PP: -d—

^^>~*-̂ »-*-»^

1 2 3 4 5 6 7 8 9 1 0
Rollback Distance

Time_OH: QSORT

Compiler 1:

Size OH: QSORT

Compiler 1: -a-
Compiler2:-o-
PP:H .»-
Comp/PP: •*•-

1 2 3 4 5 6 7 8 9 1 0
Rollback Disunce

0 1 2 3 4 5 6 7 8 9 1 0
Rollback Distance

PP:
Comp/PP:

Time OH: GREP

10-

8-

6-

4 -

2

0

-2-

-4

PP: -*-
Comp/PP: • 4 -

A..i-

Size OH: GREP
(*)

35-

30-

25-

20-

15

10-

5

2 3 4 5 6 7 8 9 1 0
Rollback Distance

1 2 3 4 5 6 7 8 9 1 0
Rollback Distance

Fig. 12. Run-time and code size overhead for PUZZLE, QSORT, and GREP.

of 225%, for a rollback distance of 10. This compares with a
maximum and average overhead of 328% and 207%, respec-
tively, for the unextended compiler-based scheme.

These results indicate a small incremental run-time per-
formance overhead and a small code size overhead given
compiler-based branch hazard removal compared to compiler-
based on-path hazard removal alone. Three factors account for
these small incremental impacts. First, on-path hazards domi-
nate in frequency of occurrence. Second, resolving an on-path
hazard at instruction /,• through renaming can sometimes re-
solve a branch hazard at instruction /,. Third, resolving on-path
hazards with nop insertion may resolve a corresponding
branch hazard by increasing the distance between the hazard
node and its nearest predecessor branch node.

D. Results: PP

Figs. 10 through 14 show the run-time and code size over-
heads for each application studied using the read buffer to re-
solve on-path hazards and the post-pass transformation de-
scribed in Section III to cover all branch hazards. The results
are worst case in that many of the branch hazards could have
been resolved with no performance impact using the compiler
techniques; instead, they are resolved by the insertion of MOV
instructions which cause a guaranteed, although small, per-
formance impact. Given a rollback distance of 10, the post-
pass transformation produced a maximum performance impact
of 7.7% with an average performance impact of 2.4%, signifi-
cantly below the levels produced by the compiler-based

Time OH: LEX

10 j PP: -«-
j Comp/PP: - * -

6-

4-
2 .

0- . t . ..̂ ISr̂ lS*-**̂

_4 . — , , , , , , — t ! r

1 2 3 4 5 6 7 8 9 1 0
Rollback Distance

Time OH: YACC
(*)

10^ pp; -~-
g_ Comp/PP: •*-

6- /4- j\s^>^ /
0-

-2-

-4 - — i — i — i — i — i — i — i — i — i — r
1 2 3 4 5 6 7 8 9 1 0

Rollback Distance

Time OH: CCCP
(%)

10-1 PP: -»-
8 _ Comp/PP: -A-

6-

4 -
«

0- / "**-, - -A--*— A

.2- *

-4 - — i—t — I 1 1 1 1 [— i r
1 2 3 4 5 6 7 8 9 1 0

Rollback Distance

Size OH: LEX

35TpP: —
JQ Comp/PP: • * •

25-

20-

15-

10- .4.-4-i'-i"4""'

Q - T" '̂! 1 ['"I 1 •T~~~'!~

1 2 3 4 5 6 7 8 9
Rollback Distance

Size OH: YACC
f %)

35-1 PR -«-
30. CompffP: -A-

25-

20-

15 -

10- 4 i .- i--^-- '--*

1 2 3 4 5 6 7 8 9
Rollback Distance

Size OH: CCCP
(*)

35 -j pp: -x-
30. Comp/PP: -A-

25 -

20-

15- i.-i--*'

10- 4..i--4--4'"'

1 2 3 4 5 6 7 8 9
Rollback Distance

..&

10

..a
r-X

10

A

^-x

10

Fig. 13. Run-time and code size overhead for LEX, YACC, and CCCP.

TimeOH:TBL

10'T PP; _*-

, Comp/PP: -*-8

6-

4- * .*-. . .-»
\ „••' ». . - • -»• '

-2 -

-4 1 , 1 1 , 1 — i 1-
1 2 3 4 5 6 7 8 9 1 0

Rollback Distance

SizeOH:TBL

60-1
4--*-- J-.

50 - 4,-' - A - - A -

40 • / pp: -«-
.*' Comp/PP: - A -

30 - ..-'
.

20-

1 2 3 4 5 6 7 8 9
Rollback Distance

. A

10

Fig. 14. Run-time and code size overhead for TBL.

scheme. Code growth overhead measurements were corre-
spondingly lower with a maximum overhead of 13.0% and an
average overhead of 8.6%.

E. Results: Comp/PP

The compiler-assisted scheme achieved consistently low
performance overheads across all applications and slightly
better performance than with the post-pass transformation
only. Given a rollback distance of 10, the compiler-assisted
scheme produced a maximum performance impact of 6.6%
with an average performance impact of 2.0%, and a maximum
code growth overhead of 51.2% with and an average overhead
of 15.5%. The run time results of PUZZLE, YACC, and CCCP
indicate that compiler techniques are s t i l l useful in reducing
run-time performance penalties. These compiler techniques,
however, have (he disadvantage of requiring rccompilation and

1104 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 9, SEPTEMBER 1995

additional code growth. The primary advantage of the com-
piler-assisted and post-pass schemes are their utilization of the
read buffer to resolve the more frequent on-parh hazards.

V. READ BUFFER SIZE REDUCTION

A practical lower bound and average size requirement for
the read buffer are established in this section by modifying the
design to save only the data required for rollback. The study
measures the effect on the performance of ten application pro-
grams using six read buffer configurations with varying read
buffer sizes. Two alternative configurations are shown to be
the most efficient.

Rollback is accomplished with a read buffer by first flush-
ing the read buffer back to the general purpose register file in
the reverse order of which the values were saved. Provided
that the depth of the dual first-in-first-out (FIFO) read buffers
is N, redundant copies of the appropriate register values are
available to restore the register file given a rollback of < N.

The read buffer size requirement of 2N is the worst case.
The buffer maintains the last N register reads from the register
file, assuring data redundancy for all values required. The read
buffer may also save data that is not required during rollback.
Register reads that must be saved can be determined at com-
pile time. If this information is added to the instruction encod-
ing (e.g., as an extra bit field for source 1 and for source 2),
then the read buffer can be designed to save only those values
required. As long as the required values are maintained for N
cycles, a read buffer size of less than 2N is possible.

Fig. 15 illustrates a case in which all register reads do not
have to be placed in the read buffer. The register values
(denoted value(rx)) that require saving are marked with an "*."
Since only the required values are saved, the read buffer total
size can now potentially be less than N. In this case, however,
the instruction count must also be saved so that the value can
be maintained for at least N cycles. In the event that the read
buffer overflows, the oldest value in the buffer must be pushed
to memory and a record kept so that during rollback the value
can be retrieved from memory. Given a dual FIFO depth of A/,
memory would serve the function of the remaining N - M of
the two FIFOs.

Instruction
rollback 4 Sequence

X

Read Buffer

rollback 2

Fig. 15. Read buffer of size < 2N.

A. Read Buffer Designs and Evaluation Methodology

Six read buffer configurations were studied. Configura-
tion Al, shown in Fig. 16, has a separate FIFO for each source

bus. Configuration A2 allows access to either FIFO from either
source bus. Configuration Bl contains a single FIFO and as-
sumes that both source operands can be written into the single
FIFO within the same cycle. This latter split-cycle-save as-
sumption is consistent with a register file design that writes
during the first half of the cycle and reads during the second
half of the cycle [20]. Configuration B2 assumes no split-
cycle-save capability. Configuration C contains a single level
dual queue to absorb a simultaneous operand save and con-
figuration D extends this design to allow access to either queue
from either source bus.

Config. Al Config. A2 Config. BI

Config. B2 Config. C

Fig. 16. Read buffer configurations.

Config. D

The read buffer was simulated at the instruction level. The
s-code emitted by the IMPACT C compiler [19] was instru-
mented with procedure calls to a simulation program contain-
ing models for the six read buffer configurations. Branch haz-
ards were removed by the compiler for a rollback distance of
10. Parameters such as which operands require saving in the
read buffer were determined at the post-pass level and instru-
mentation code segments were adjusted to pass this informa-
tion to the simulation program. Table III lists the ten5 applica-
tion programs used in the evaluations. The applications1 were
cross-compiled on a SPARCserver 490 and run on a DECsta-
tion 3100 with read buffer sizes ranging from 0 to 20 (note that
20 represents the maximum read buffer size of 2/V).

B. Evaluation Results

B.I. Detailed Analysis: QUEEN

Fig. 17 shows changes in performance overhead (Cycles
OH) for various read buffer sizes and configurations running
the QUEEN application. Looking at Fig. 17, configuration Al,
it can be seen that significant performance impact is incurred
even with a modest reduction in read buffer size. Configura-
tion Al was consistently the least efficient of the six alterna-
tives across the ten applications studied.5 This is due to the fact
that the dual FIFO's are dedicated to a single source bus. In
many cases saving SI will cause an overflow because me SI
FIFO is full, even though there is room in the S2 FIFO. Con-
figuration Al does allow for simultaneous saves of SI and S2,
given sufficient room in each, but this feature does not com-
pensate for the latter inefficiency. Configuration A2 dcmon-

5. The TBL application was not included in the read buffer si/e evaluation.
6. An efficient configuration is one with a low performance overhead given

a small read buffer si/.c.

ALEWINE ET AL.: COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK RECOVERY USING A READ BUFFER 1105

strates the improvement gained by allowing either source bus
access to either FIFO. Configuration B1 was the most efficient
of the six configurations for the QUEEN application. In this
configuration a total read buffer size of 13 would produce zero
performance impact with a 35% reduction in read buffer size.

Ccmf. Bi -e-
Conf. C -o-
Corf.D: •»-

4 8 12 16
Read Buffer Size

4 8 12 16
Read Buffer Size

Fig. 17. Cycle overhead for QUEEN.

It should be noted that configuration Bl assumes that simul-
taneous saves of SI and S2 can be handled within the same
cycle. If this latter assumption is invalid, Fig. 17, configuration
B2, shows that no less than 9.4% performance impact is
achieved regardless of the read buffer size. The "leveling off'
of B2 is due to the bottleneck at the single FIFO entry point
and not the depth of the FIFO. The flat part of the curve shows
the percent of instructions requiring simultaneous saves of SI
and S2 in the QUEEN application.

Fig. 17, configuration C, shows how a single level dual queue
placed between the source bus and the single FIFO can alleviate
some of the bottleneck effects. The dual queue can absorb a
single simultaneous save of SI and S2, distributing the saves
over multiple cycles. A nonzero minimum performance over-
head is still present due to cases in which the dual queue has not
emptied before the next simultaneous save occurs.

Fig. 17, configuration D, shows the results of an improved
queue structure that permits saves from either bus into either
queue. This configuration avoids stalls in some cases (e.g., S2
must be saved while the queue dedicated to S2 in configura-
tion C is full and the other queue is empty). Configuration D
also has a nonzero minimum performance overhead but gives
better performance than configuration C.

The simulation results for QUEEN show that configuration
Al is the least efficient and that given the ability to do split-
cycle-saves, configuration Bl is the most efficient. Without the
split-cycle-save capability, configuration D is the best of the
single FIFO designs resulting in a minimum performance over-
head of 4.5%, and configuration A2 is the best of the dual FIFO
designs resulting in a 1.7% performance overhead with a read
buffer size of 14. For configurations Bl, B2, C, and D, a total
read buffer size of 13 is sufficient to maximize performance.7

5.2. Evaluation of All Application Programs

Results for the other nine application programs are similar
to those for QUEEN [17]. The differences between the appli-
cation results are the points at which the curve "levels off

7. Two niusl be added lo each read buffer size value in C and D lo account
for the queues.

(i.e., the buffer size) and, in the case of configurations B2
through D, at what level the performance overhead stabilizes.
Table IV summarizes measurements obtained for the ten ap-
plications given the two most efficient configurations, A2 and
Bl. Configuration comparisons are made at read buffer size
values that produce low values of performance overhead.
Configuration A2 does not level off like configuration D and
does not rapidly approach zero like configuration Bl. For a
better comparison of configurations A2 and Bl, Table IV
gives the read buffer size value where the performance over-
head value drops below 3%. The read buffer size value is re-
ferred to as RB_size and the performance overhead value is
referred to as OH_level.

TABLE IV
READ BUFFER SIZE EVALUATION SUMMARY

Program

QUEEN
we
QSORT
CMP
GREP
PUZZLE
COMPRESS
LEX
YACC
CCCP

RB_size
A2
14
10
16
12
10
10
12
12
16
12

Bl
12
8
15
11
10
9
12
12
15
12

OHJevel (%)
A2

1.66
0.00
2.28
0.00
0.18
2.87
2.87
2.73
1.07
2.34

Bl

1.36
2.54
0.94
0.00
0.18
0.32
1.12
1.55
0.00
1.74

It can be seen from Table IV that the read buffer size re-
quirement is roughly the same, per application, regardless of
the split-cycle-save assumption (i.e., comparing configurations
A2 and Bl). The size requirement is application dependent—
from 8 for WC to 15 for QSORT and YACC. The measure-
ments show that a considerable reduction in read buffer size is
achievable. Given the split-cycle-save assumption and configu-
ration Bl, a minimum of 25%, a maximum of 60%, and an
average of 42% reduction was achieved. For configuration A2
and no split-cycle-save assumption, a minimum of 20%, a
maximum of 50%, and an average reduction of 38% was
achieved. The measurements indicate that care should be taken
relative to the ultimate selection of read buffer size. Given the
steepness of the Bl curve around the RB_size value, small
decreases in size can produce large performance overheads.

In summary, a dual FIFO with source bus access to each
buffer (configuration A2) and the single FIFO with the split-
cycle-save capability (configuration Bl) consistently out-
performed the other four configurations. There were moderate
variances between the buffer sizes required for minimum per-
formance impact between the ten applications studied and the
performance stabilization value assuming no split-cycle-save
capability. Up to a 55% read buffer six.e reduction was
achieved with an average reduction of 39.5% given the most
efficient read buffer configuration for the applications. Al-
though significant read buffer six.e reductions are possible
without adversely affecting performance, it should be noted
that such an approach requires an additional data-path to the
memory unit and more complex recovery logic.

1106 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 9, SEPTEMBER 1995

VI. CONCLUDING REMARKS

This paper presented a compiler-assisted multiple instruc-
tion rollback scheme that combines compiler-driven data-flow
manipulations with dedicated data redundancy hardware to
remove data hazards resulting from multiple instruction roll-
back. Experimental evaluation of the compiler-assisted scheme
with a maximum rollback distance of ten showed performance
impacts of no more than 6.6% and an average of 2.0%, over
the eleven application programs studied. The performance
evaluation indicates performance penalties that are lower than
for previous compiler-only approaches and hardware com-
plexity that is less than previous hardware-only approaches.
Six read buffer configurations were studied to determine the
minimum size requirement for general applications. It was
found that a significant read buffer size reduction is achiev-
able, but the additional control logic to handle read buffer
overflows may limit the overall hardware savings. Current
research includes application of compiler-assisted multiple
instruction rollback recovery to super-scalar, VLIW, and paral-
lel processing architectures. Extensions of compiler-assisted
multiple instruction recovery to speculative execution repair
are also under development.

ACKNOWLEDGMENTS

The authors wish to thank C.-C. Jim Li for his help with the
compiler aspects of this paper, and Scott Mahlke and William
Chen for their invaluable assistance with the IMPACT com-
piler. We also express our thanks to Janak Patel for his. contri-
butions to this research.

This research was supported in part by the National Aero-
nautics and Space Administration (NASA) under grant NASA
NAG 1-613, in cooperation with the Illinois Computer Labora-
tory for Aerospace Systems and Software (ICLASS), and in
part by the U.S. Department of the Navy and managed by the
Office of the Chief of Naval Research under Contract N00014-
91-J-1283.

REFERENCES
[1] M.S. Pittler, D.M. Powers, and D.L. Schnabel, "System development

and technology aspects of the IBM 3081 processor complex," IBM J.
Research and Development, vol. 26, pp. 2-11, Jan. 1982.

[2] Y. Tamir and M. Tremblay, "High-performance fault-tolerant VLSI
systems using micro rollback," IEEE Trans. Computers, vol. 39, pp.
548-554, Apr. 1990.

[3] C.-C.J. Li. S.-K. Chen, W.K. Fuchs, and W.-M.W. Hwu, "Compiler-
baseded multiple instruction retry," IEEE Trans. Computers, vol. 44,
pp. 35-46, Jan. 1995.

[4] N.J. Alewine, S.-K. Chen, C.-C.J. Li, W.K. Fuchs, and W.-m.W. Hwu,
"Branch recovery with compiler-assisted multiple instruction retry,"
Proc. 22nd Int'l Symp. Fault-Tolerant Computing, pp. 66-73, July
1992.

[5] L. Spainhower, J. Isenberg, R. Chillarege, and J. Bcrding, "Design for
fault-tolerance in system ES/9000 model 9000," Proc. 22nd Int'l Symp.
Fault-Tolerant Computing, pp. 38-47, July 1992.

[6] P.M. Kogge, K.T. Truong, D.A. Richard, and R.L. Schocnikc.
"Checkpoint retry mechanism," U.S. Patent No. 4912707, Mar. 1990.
Assignee: International Business Machines Corporation, Armonk, N.Y.

(7) Y. Tamir, M. Liang, T. Lai, and M. Tremblay, "The UCLA mirror proc-
essor: A building block for self-checking self-repairing computing
nodes," Proc. 21st Int'l Symp. Fault-Tolerant Computing, pp. 178-185,
June 1991.

[8] N.J. Alewine, W.K. Fuchs, and W.-m.W. Hwu, "Application of com-
piler-assisted rollback recovery to speculative execution repair," Hard-
ware and Software Architectures for Fault Tolerance. New York:
Springer-Verlag, 1994.

[9] J.E. Smith and A.R. Pleszkun, "Implementing precise interrupts in
pipelined processors," IEEE Trans. Computers, vol. 37, pp. 562-573,
May 1988.

[10] M.L Ciacelli, "Fault handling on the IBM 4341 processor," Proc. llth
Int'l Symp. Fault-Tolerant Computing, pp. 9-12, June 1981.

[11] W.F. Brucker and R.E. Josephson, "Designing reliability into the VAX
8600 system," Digital Tech. J. Digital Equipment Corp., vol. 1, no. I,
pp. 71-77, Aug. 1985.

[12] G.L. Hicks, D. Howe Jr., and A. Zurla Jr., "Instruction retry mechanism
for a data processing system," U.S. Patent No. 4044337, Aug. 1977.
Assignee: International Business Machines Corp., Armonk, N.Y.

[13] D.B. Kite, T. Possum, and D. Manley, "Design strategy for the VAX
9000 systems," Digital Tech. J. Digital Equipment Corp., vol. 2, no. 4,
pp. 13-24, Fall 1990.

[14] E.B. Eichelberger and T.W. Williams, "A logic design structure for LSI
testability," Proc. 14th Design Automation Conf., pp. 462-468, 1977.

[15] J.S. Liptay, "The ES/9000 high end processor design," IBM J. Research
and Development, vol. 36, no. 3, May 1992.

[16] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Tech-
niques, and Tools. Reading, Mass.: Addison-Wesley, 1986.

[17] N.J. Alewine, "Compiler-assisted multiple instruction rollback recovery
using a read buffer," PhD thesis, Tech. Rep. CRHC-93-06, Univ. of Illi-
nois at Urbana-Champaign, 1993.

[18] J.A. Bondy and U. Murty, Graph Theory with Applications. London:
Macmillan Press Ltd., 1979.

[19] P. Chang, W. Chen, N. Warter, and W.-m.W. Hwu, "IMPACT: An
architecture framework for multiple-instruction-issue processors,"/Voc.
18th Ann. Symp. Computer Architecture, pp. 266-275, May 1991.

[20] J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantita-
tive Approach. San Mateo, Calif.: Morgan Kaufmann, 1990.

Neal J. Alewine received his BS and MS degrees
from Florida Atlantic University in 1980 and 1988,
respectively. He received his PhD in electrical engi-
neering at the University of Illinois in 1993.

Dr. Alewine is a senior engineer with the Inter-
national Business Machines Corp. in Boca Raton.
Florida. He is currently the technical staff to a busi-
nrss area manager responsible for a family of
coprocessor products used in personal computers
ai.d work stations. Since joining IBM in 1980 he has
held several positions including designer, first and

second level management, project leader, and program management. He has
received IBM outstanding technical achievement and invention achievement
awards and was selected as a University Scholar at Florida Atlantic University
in 1979. Dr. Alewine's interests include advanced computer architecture,
systems design, optimizing compiler design, and fault-tolerant computing.

Shyh-Kwci Chen (S'86-M'94) received the BS
degree from (he National Taiwan University, Taipei,
Taiwan, in 1983, the MS degree from the University
of Minnesota, Minneapolis, in 1987, and the PhD
from the University of Illinois Urbana-Champaign,
all in computer science. He is now with IBM T.J.
Watson Research Center, Yorktown Heights. New
York. His research interests include parallel process-
ing, fault-tolerant computing, compilers, and parallel
debuggers.

ALEW1NE ET AL.: COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK RECOVERY USING A READ BUFFER 1107

W. Kent Fuchs (S'83-M'85-SM'90) received the
BSE degree in electrical engineering from Duke
University in 1977. In 1984 he received the MDiv
degree from Trinity Evangelical Divinity School in
Deerfield, Illinois, and in 1985 he received the PhD
in electrical engineering from the University of
Illinois.

Dr. Fuchs is currently a professor in the Depart-
ment of Electrical and Computer Engineering and
the Coordinated Science Laboratory, University of
Illinois. He is the recipient of many awards includ-

ing the Senior Xerox Faculty Award for Excellence in Research 1993, College
of Engineering, University of Illinois, selection as a University Scholar, Uni-
versity of Illinois 1991, appointment as Fellow in the Center for Advanced
Studies, University of Illinois 1990, the Xerox Faculty Award for Excellence
in Research 1987, University of Illinois, the Digital Equipment Corporation
Incentives for Excellence Faculty Award 1986-1988, and the Best Paper
Award, IEEE/ACM Design Automation Conference (DAC) 1986, simulation
and test category.

Dr. Fuchs was the guest editor of the May 1992 special issue of IEEE
Transactions on Computers on fault-tolerant computing, and guest coeditor
of the April 1992 special issue of Computer on wafer-scale integration archi-
tectures and algorithms. He has been a member of the editorial board for
IEEE Transactions on Computers and IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems.

Wen-mei W. Hwu (S'81-M'87) received his PhD
degree in computer science from the University of
California, Berkeley, in 1987.

Dr. Hwu is an associate professor in the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Illinois at Urbana-Champaign. His re-
search interest is in the area of architecture, imple-
mentation, and compilation for high-performance
computer systems. He is the director of the
IMPACT project, which has delivered new compiler
and computer architecture technologies to the com-

puter industry since 1987. The IMPACT project has been sponsored by NSF,
ONR, and NASA as well as major corporations such as Hewlett-Packard,
Intel, SUN, NCR, AMD, and Matsushita. In recognition of his contributions
to the areas of compiler optimization and computer architecture, the Intel
Corporation named him the Intel Associate Professor at the College of Engi-
neering, University of Illinois, in 1992. He received the National Eta Kappa
Nu Outstanding Young Electrical Engineer Award for 1993 and the 1994
Senior Xerox Award for Faculty Research.

