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ABSTRACT 
The article begins by examining the fundamentals of 

traditional deterministic design philosophy. The initial section 
outlinu the concepts of failure criteria and limit state functions, 
two traditional notions that an embedded in dctcrministic design 
philosophyy. This is followed by a discussion regarding safety 
factors (a possible limit state function) and the common utilization 
of starktical concepts in deterministic engineering design 
approaches. Next. the fundamental aspects of a probabilistic 
failure  alpi is arc explored, and it k shown that dettnninistic 
design concepts mentioned in the initial podon of the axticlc arc 
embedded in probabilistic design methods. For components 
fabricated from ceramic materials (and other similarly bxittle 
materials) the probabilistic design approach yields the widely used 
Weibull analysis after suitable assumptions arc incorporated. The 
authors point out that Weibull analysis provides the rare instance 
where closed form solutions arc available for a probabilistic 
failure analysis. Since numerical methods a n  usually rcquirrd to 
evaluate component rcliabilities, a section on Monte Carlo 
methods is included to introduce the concept. The article 
concludes with a presentation of the technical aspects that support 
the numerical methodknown as fast probability integration (FPI). 
This includes a discussion of the Hasofcr-Lind and Rackwitz- 
Ficssler approximations. 

INTRODUCTION 
Most paramders that a n  incorporated into engineering 

analyses have to a greater. or lesser extent, some level of 
uncertainty. In order to achieve a general accounting of the 

entire spectrum of values that design parameters exhiii 
(especially for those cases when one or more of the design 
parameters exhibits substantial scancr) a design engineer should 
utilize probabilistic mcthods. However, a reliability approach to 
engineering design demands that an engineer must tolerate a finite 
risk of unacceptable performance. This risk of unaccqtablc 
performance is idcntiKed as a component's probability of failure. 
The primary concern of the engineer is minimizing this risk in an 
economical manna. To accomplish this nquirU analytid tools 
that quantify uncertainty in a rational fashion. The tools for 
dealing with uncertainty in a rational fashion have becn developed 
in a field of mathematics known as probability thtory. Since 
entire texts arc dedicated to this fieId, only those concepts that 
arc applicable to the design of engineered components arc 
presented hen. 

a 

In order to m a t  the numerical needs that accompany a 
probabilistic analysis several research teams sponsored by NASA 
Lcwis Research Center (LeRC) have focused on the deveIopment 
and application of reliability design algorithms. Two of thue 
groups have produced program delivemblcs that include reliability 
models and computer software. Spccifieafly, one program 
focuses on the cnginccring analysis of components fabricated 
from c c d c  xnateriah. A number of reliability mod& 
developed for ccnrmic materials (sa D u e  d d, 1992, for an 
ovmkw)  have bccn incorporated into public d o h  c o q u k r  
algorithms such as the CARES (Ceramics Analysis and Reliability 
Evaluation of Structures), T/CARES floughencd Ccrrunicr 
Analysis and Reliability Evaluation of Structuru) and UCARES 
(Composite Ccxamics Analysis and Reliability Evaluation of 
Structures). These computer algorithms are coupled to an 
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assortment of commercially available general purpose finite 
element programs. The algorithms yield quasi-static component 
reliability. h addition the CARES family of sohare includu 
parameter estimation modules that allow the design engineer to 
evaluate the strength distribution panunctcrs from faiiun data. 
It is assumed that for thb typc of rrliability analysis the failurt 
~hrngth of the material can be characterized by either a two- or 
thrcc-parameter Webull dirtriiution. 

The second program that hru developed probabilistic 
tools for design engineas is the Probabilistic Structural Analysis 
Methods (PSAM) program. This endeavor takes on a more 
global perspective and deals with the stochastic nature of duign 
parameters in a general fashion. In a manner similar to the 
structural ceramics effort mentioned above, this program 
integrates probabilistic algorithms with structural analysis 
methods. The primary result b the NESSUS (Numerical 
Evaluation of Stochastic Structurca Under Stress) computer 
softwan. 

This article presents the underlying engineering 
concepts that support the technical aspect0 of both the CARES 
and =Ah4 programs. In addition, the authors outline the 
commonality bc&wcen the programs by demonsbting the shared 
technicalprinciples. Specific d& rcgardiig the CARES family 
of softwan algorithms and the NESSUS software arc 
incorporated into the conference presentation that accompanies 
this article. 

FAILURE CRITERION & LIMIT STATE FUNCTION 
The success of a structural analysis hinges on the 

appropriate choice of design variables used to describe the overall 
thcrmo-mechanical behavior of a component. The design 
variables can include, but an not limited to, strength parameters, 
external loads, allowable d e f o d o n s  at predctcnnined locations 
in the component, cyclesu-to-faiiurc, and material stiffness 

Aftcr the enginar  has determined what design 
variables arc pertinent to a given class of design problems. they 
can be assembled in an N-dimensional vector. This vector of 
design parameters can be identified as 

' p r u p d u .  

Design variables can easily interact with one another, thus a 
functional relationship is nceded to describe any interaction. This 
function is most commonly referred to 80 a failure critcrion. 
Common examples include strength based criterion such m the 
maximum distortional energy criterion and the Mohr-Coulomb 
criterion; fbtiguc faiIurc criterion arc represented by Mmer'r rule; 
and fracture critcrion include the critical strain energy release 
rate mcthod and the stress intensity factor methods. Usluuy 8 
faiiure criterion represents the first step in defining a limit state. 
If an operational state for a structural component f a  within the 
boundaries of a limit state, the performance of the rtnrcSural 
component b acceptable. An 0 p ~ r a t i 0 ~ 1  state for a component 

that falk on the boundary of a limit state denotes Wure. For thc 
f d u n  criterion just citcd 
performance and failun U made at a point in the componnrt.. 

delinuttion between ICC 

A failure criterion and a limit state function can be 
cxprused by the general formulation 

8 80.)  

Note that g dehna a surface in an Ndmensional design d I e  
space. Once again this function must stipuhte how each design 
variable interacts in producing failure. Hen valucs of g>O 
indicate a safe structure, whereas values of g 5 0  comspond to 
a failed structure. The failure criterion (or a Iimit state function) 
can be defined by eithcr a complete loss of load Carrying 
capacity, or alternatively by a loss in serviceability. The 
conceptual dutinction between a limit state function and I hilure 
criterion I based on rde .  It was indicated above that a failure 
criterion focuses on a point. Limit state functions focus on the 
component or structure. OAcn timu there is no diffcmcc 
between the two since failure at a point constitutes failure of the 
component. In c o n a t .  consider a structural componcnt when 
plastic yield is a possible failure mode. If yielding (failure) at a 
point is descriied by a yield function. then this function 
represents the failure criterion for this particular mode of hihe. 
Ycf a structural component may not fail if yielding has occurred 
only at a point. In fact the component may continue to funaion 
safely until a sufficient number of pIastic hingu have formed and 
the structure collapsa. The formation of I sufficient number of 
plastic hingu L descnied mathematically by a limit state 
function. The reader is dirrctcd to the extensive literature that 
followed Druckcr's initial work (1952) in cstablirhing bounds on 
limit state functions for this type of failure analysis. However, 
the point is that for a plasticity analysis the failure criterion &e., 
the yield critcrion) is different from the h i t  s t w  functio~. 

As a prelude to the dtcusrion thsr follow ktct 
concerning Weibull analysis, a structural component fabricated 
fmm a ceramic mterial is treated as a weakest-link system. If 
one link in the chain fails, the entire chain fish. lhir assumption 
gives rise to a particular modeling approach in calcukting 
component reliability. it ah0 infers that failurn at 8 point 
constitutes component failun. In this sense the failure criterion 
and the limit state function will be one in the same. 

SAFETY FACTORS 8 DETERMIMmC FAILURE 
ANALYSIS 

To begin contrasting the diffcraxce bhreen 
deterministic and probabilistic failure d y s u  the discussku h 
thb section is focused on a specific failure mode. Le., the 
exhaustion of strength capacity. A structural component can fd 
when it encounters an extreme bad. or when a c o m b i n  of 
loads reaches a critical collective magnitude, and the ability to 
withstand the applied load ia exhausted. W& the design 
algorithms presented in this article the engineer a n  easily 
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quantify the magnitude of the e m m e  Ioad event h d i n g  to 
uency at which thh extreme event 

occurs. In addition, the strength (or capacify) of the material and 
any variation in this design parameter can be quantified. A brief 
discussion regding safety factors (as well BS safety m a r a s )  
follows. This discussion undmcora the need to account for 
variability of design parameters in a coherent manner. Thcse 
quantities arc typically utilized in deterministic designs. and are 
easily incorporated into probabilistic designs. 

, and account for the 

In the field of structural mechanics it is customary to 
define safety factors (and sometimes safcty margins) in order to 
ascertah how "close" a component is to failing. If L represents 
the load on a component, and R represents the rrsistance (or 
capacity) of the marcrial, then the safety factor is defined as 

6) R S. F. = - 
L 

Alternatively, the safety margin can be utilized, and thk measure 
is dehed  as 

S.M. = R - L (4) 

Failure occurs when the safety factor falls below one, or when 
the safety margin MIS below zcm. These two expressions 
rcprcsent the rimplat and most fundamental definition of a Iimit 
state. In the following section where the principles of 
probabilistic failure analysis I I ~C  outlined. these two expressions 
are utilized to explain basic concepts. Howevcr, to employ either 
safety factors or safety margins the design engineer must quantiry 
paramccers R and L. Data must be collected and a singlc 'most- 
likely' value must be assigned for each parameter. If the typical 
structural engineer has been exposed to statistical methods, these 
concepts were encountered in quantifying material properties 
from experimental data. Thus the design engineer is familiar 
with the concept of a central location parameter for experimental 
data defined by the sample m a ,  i.e., 

A second parameter, the sample variance, scrim au a measure of 
data dispersion. It is defined as 

(6) 

In the expressions for the sample mean and variancep, 
rcprucnts the f" observation in an cxpcriment with N 
observations. Other sample descriptors exist (e.g.. skewness and 

identify a single "most-likely" value for I desi 
variance is most often utiLizDd in a simple 
indicate how well the experiment is being 
small  variance indicates good experimental technique. Howcver, 
this attitude tends to m i n i  the fact that some design 
parameters inherently bchave in a random hhion. Variation in 
Cxperimental data can easily be a fundamentd propcay of a 
particular design parameter, not a commentary on cxpcrimcntd 
technique. 

Oftcn the engineer is not required to detennine valucr 
for design parameten directly from cxpcrirnents. Values for 
resistance parametem can be obtained fmm handbooks or existing 
corporate data bases. Either source of information may 
concurrently lift values for the standard deviation (defined as the 
square root of the sample variance) but this information is too 
0th ignored in a deterministic failure analysis w h m  the sample 
mean is used to represent the 'most-likely' value of the design 
parameter. Increasing the mean value of the load parruncfcr by 
a multiple (usually k) of standard deviations, and decreasing 
the mean value of resistance parameter by the same multiple of 
standard deviations k one way of including information rcgardiig 
data dispersion in a safety factor design. This method, referred 
to as the thnc-sigma approach, yields the following dcfiniticn for 
the factor of safety 

Fx - 3 (sa)* 
r, + 3 (SJ* 

S. F. = 0 

Clearly this dcfuition of  the safety factor admits information 
concerning the data dispersion for both the Ioad and resistance 
paRUilcterS. 

However, if either of the design parameters exhiii I 
significant scatter, as evidenced by a relatively large sample 
standard deviation, then the design engineer must compcnsa;tc in 
some manner to maintain a prescribed safety hcmr for a 
component. Thus, in an effort to maintain a given lcvcl for the 
saw factor. analyses predicated on equation (7) may easily lead 
to uneconomical designs. Utilizing probabilistic methods can 
readily compensate for parameter variation, enabling an engineer 
to further pursue a design that would be otherwise rejected based 
on baditional methods. In addition, for materials that exhibit size 
effects where the average strength decreases with Spccimtn size 
(e.g., ceramic matcriaIs) the thttGsigma appmach I e d ~  to 8 
fundamental p m b h  in identifying what value to use for the 
resistance random variable. 

FUNDAMENTALS OF PROBABILISTIC FAILURE 
ANALYSIS 

Utilization of quation (7) represents M attempt to 
include more information regarding the true chara&tiu of 
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this multi-valued 
d i e ren t  values at random during 

the parameter should be 
treated as a random variable. holds for the load design 
parameter as well. Spifically note that if the bad and 
nsistance design paramctm arc treated as random variables, then 
equation (7) docs not include MY infonnation on the underlying 
distribution (e.g., normal, log-normal. Wcibull, exponential, etc.) 
that characterizes the design paramctcr. As the dmcussion 
unfolds in this section the reader wiU sce that reliability methods 
attempt to overcome this inadequacy. 

Consider a component fabricated fmm a material with 
a resistance described by the random variable R . A ainglc load, 
represented by the random variable A, is applied to the 
component. Both random variables an represented 
mathematically by dutinctly dinrerat probability density functions 
(e.g., n o d ,  log-nod, exponential, WeibuII, Raylcigh, etc.). 
The load and ruistance random variables can be described by the 
same typc of probability density function as long as the 
distriiution parameters arc different. 

However, in this dscussion the distributions for the 
random variables arc left unspcciiied. This is intentional in order 
to simplify and emphasize several issues. Making use of the 
concept of a safety factor, the probability of failure for a 
component where a single load is applied is given by the 
expression 

Alternatively, the probability of fkiiure can be defined using the 
safety margin. H e n  

For either definition, P, is the product of two finite probabilities 
summed over all possible outcomes. Each probability h 
associated with an event and a random variable. The first event 
is defined by the random variable L taking on a value in the 
range 

The probability associated with this event is the ana under the 
probability density function for the load random variable over this 
interval. Le., 

The second event is associated with the probability &at 
the random variable R is lcss than or equal to X .  llhis k the 
area under the probability density function for the resistance 
random variable over the range fmm minus infinity (or M 

appropriate lower limit dehed by the range of the resistance 
random variable) to Z. Thiu second probabfity is given by the 
cumulative ds-iution function evaluated at I, is., 

With the probability of E l u n  defied as the product of h a c  two 
probabilities, summed over all possible v d u a  of X, then 

To interpret this integral expression, consider Figure 1. 
This figure contains a graph of an arbitrary probability density 
function (f,) for the resistance random variable superimposed on 
the graph of an arbitrary probability density function (f,) for the 
load random variable. Note that R and L must have the m e  
dimensions to plot thcsc two quantitiu on the same graph. A 
common misconception is that P, is the area of ovcrlap 
encompassed by the two probability density functions. Scrutiny 
of equation (13) leads to the appropriate conclusion that the 
probability of failure is the area under the composite function 

Due to the complexities introduced by specifying F l ( x )  and 
f , ( x )  a closed fonn solution rarely exists for equation (13). 
One exception is the application of equation (13) to cuamic 
materials, which k discussed in the next section. 

CERAMIC b€ATERIALS AND SYSTEM RELIABILITY 
Even though variations in loads and s t r m g t b  CM be  

readily accommodated by the conccpts presented in the previous 
section. for components fabricated h m  ceramic materials it is 
the variation in material strength that dominatu the design. Lack 
of ductility combined with flaws, defects, or inclusions that have 
various s k u  and orientations leads to scatter in f d u n  strength. 
Thus the strength associated with t huc  ceramic materiaIs nflcctr 
an intrinsic hc tu rc  toughness and a homogeneous distribution of 
ilaws present in the material. The analyticd concepts presented 
in this section will accommodate this singular focus on atrcngth 
variation. 

Experimental data indicates that the continuou random 



Fgure 1 h arbitrary load - resistance interference graph 

variable representing uniaxial tensile strength (a resistance design 
parameter) of monolithic ceramics is asymmetrical about the 
mean and wilI assume ody positive v d u a .  These characteristics 
rule out the use of the n o d  distribution (as well as others) and 
point to the use of the Weibull dismbution or a similarly skewed 
distrbution. The thrce-paramctci Weibull probability density 
function for a continuous random strength variable, denoted as 
Z , k givm by the expression 

for e > y. and 

for a s y. la equation (15) a is the WciiulI modulus (or the 
shapcpnnunaer), B ir the Weibull scale panunder, and y is a 
thrahold parameter. If the vdue of the random variable is below 
the threshold puameter, the pmbabbilicy density fundon k zno. 
O h  the value of the threshold parameter is taken to be zero. 
h component design thh qrestnts 8 conservative assumption. 
and yields the more widely used hvo-parameter Weibull 
formulation. 

If the resistance design panuneter is charactcriztd by 
the Weibull distribution and the load design parameter is asrumtd 
detcnninistic, then the fobwing probability density function 

k utilizcd in - d o n  (13) for the load random variable. Hen 8 
k the Dirac delta function defined as 

Note that the D m c  delta function satisfies the c k u i d  definition 
of a probability density functions, This function represents the 
d o  w h m  the standard deviation of a distribution appmacha 
zcro in the linir. and the random variable takes on a centralvalue 
(identihi here as x,). Insertion of quation (17) into q d o n  
(13) yk!& the following expression for the p robabm of Mure: 

However, with the Dirac delta function embedded in the integnl 
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expression, the probability of failure simplifies to 

Thus the probability of failure is governed by the cumulative 
distriiution function that characterizcs the resistance Landom 
variable. This expression (with modification) iZ 8 ikdamcntd 
concept associated with Weibull analysis. 

Equation (20) yields the probability of failure (afier un 
appropriate distribution has been specified for the random 
variable R) for a simple component with a single deterministic 
load which is identified 85 z,. However, a unique property of 
ceramic materials is an apparent dccrcaring trend in strength Wirh 
an increase in the size of the component. This is the so d e d  
size effect. As an example, consider that the simple component 
represents a uniaxial tensile specimen. Now suppose that two 
groups of these simple components exist. Each p u p  is identical 
with the exception that the size of the specimens in the first group 
is uniformly smaller than the specimens in the second group. For 
ceramic materials the sample mean from the first group would be 
consistently and distinctly larger in a manner that can not be 
accounted for by randomness. Thus equation (20) must be 
transformed in some fashion to admit a size dependence. Thii is 
accompIishcd through the use of system reliability concepts. It 
should be understood that the expression given in equation (20) 
represents the probabilicy of failure for u unifnn set of boundary 
condirion. If the boundary conditions are modified in any 
fashion, or the geometry of the component changes, equation (20) 
is no longer valid. To account for size effects and des1 with the 
probability of failure for a component in a general manner, the 
component should be mated as a system. and the focus must be 
directed on the probability o f  failure of the system. 

Typically, for a structural component with a varying 
stress field, the component is discrctized, and the strcss field is 
characterized using b i t e  eIement methods. Since component 
fdure  may initiate in any of the discrete elements, it is easy to 
consider the dircrrtizcd component fmm a systems v;cwpOint. A 
discrecized component is a serics system if it fails when one of 
the disc- elements fail. This concept givcs rise to weakest-link 
reliability theories. A discretized component is a p d e l  systcsn 
when failure of a single element does not necessarily cause the 
component to fail, since the rcrnainimg elements may sustain the 
load through redishiburion. Parallel systems lead to what has 
been referred to in the IiteratuE as “bundle theories.‘ These two 
types of systems represent the extremes of failure behavior and 
suggest more compIex systems such as ‘r out of n“ system. 
H e n  a component (system) of n elements functions if at least r 
elements have not failed. However, the failure behavior of 
monolithic ceramic materials is brittle and catastrophic. % 
type of behavior fits withim the description of II series system, 
thus ceramic matcriah a n  modeled as II wcakest-link reliability 
system. 

Now thc focus is directed to the probability of failure 

of a discrete element and how this failure reIatca to the ov 
probability of tailun of the component. If the kitun o 
individual element is cans ided  a statistid went, and if 

the probability of fhilure of a . 
as a $cries systcm ir given by 

Iy 

wherr: N is the number of discrete finitr: elements for a given 
component. H e n  the pmbability of failux of the id discrete 
element (P,) is given by the expression 

when Y denotes volume und is a f a u n  function per Unit 
volume of materiaI. This introduces the qu i s i t c  sizc scaling that 
is associated with ceramic materiaIs. Adopting an argument Usai 
by Weibull(1939) where the norm of the A5.s tends to zero in 
the Limit M N goes to infmity. then the component probability of 
failure is given by the following cxprcssion 

What remains is the rpcciiication of the failure function $- ThC 
most basic formulation for 3 is given by the priacipk: of 
independent action (PIA). For this reliability model 

when ut, uz md 4 arc principle stresses. Equation (23) is the 
essence of Weibull analysis. The issue of other possible hxms 
for 3 has b a n  discussed in detail in artich by D u e  rad Amold 
(1990). Dum and Mandencheid(1990). Thomas and Wcthcrfiold 
(1991). and D u m  et nl. (1993). 

II note, equations (20) and (23) can be cquatcd 
once a ditribution function b specified for the resistance random 
variable. As was indicated earlier. the distribution of choice k 
the Wciiull distribution. There k a finclamental reason tor thir 
choice that goes beyond the fact that the WeibulI diskib&n 
usually provides a good fit to the data. Oftcn h a  the log- 
n o d  dittribution providu an adequate fit to failure data 
representing ceramic materials. Howcver, the bg-nonnri 
distribution precludes any accounting of rize effects. The reader 
ir ditcctcd to work by Hu (1995) for a dctaiIcd ducuuion on this 
matter. As it turns out, once a consciolu choice ia made to 
utilize the Weibull distribution. qualions (20) and (23) p v i d a  
a convenient formulation for parameter ettimatioa. Thc detrik 
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for accomplishing this are provided in D u e  (1995). 

The nexe issue the design engineer is confronted with 
concerns the numerical evaluation of equation (13) when a closed 
form solution is not rcadily available. The remainder of this 
article is dedicated to this important issue. However, before 
proceeding on to the next sation the reader is reminded that 
probabilistic concepts were inhpduced by adopting a very simple 
Wun criterion. In the sections that follow the failure criterion 
is left unspccificd and the detaik of the numerical techniques arc 
highlighted. 

MONTE CARLO METHODS 
In this section the authors expand the scope of the 

discussion beyond simple failure criterion represented by safcty 
factors and safcty margins. This discussion begins with the 
observation that most structural canponenu are designed based 
on the results obtained fium a finite element analysis. Thh 
analysis can incorporate a mechanical analysis. a t h d  
analysis, or both. In all cases the design engineer seeks to 
predict, and most times minimize, the stress field throughout the 
component in an economical fashion. The stress field is 
appmximated by the stress state obtained from each discrete 
element. Once again the focus of the design algorithms presented 
here is on individual (discrete) elements. In general the 
rehbitiry of an individual finite element is computed h m  the 
expression 

R = Rohbi&y[g(y,) > 01 

when a failure criterion is used to define point failure. Note that 
the failure criterion is left unspecifiui thus equation (25) is a 
general, fundamental relationship. The discussion that follows 
outtines specific dctails that must be embedded in this 
relationship. 

To evaluate equation (u) the design space must be 
defined. In addition, the relevant joint probability denshy 
function that represents the design variables must be established. 
As was indicated earlier if there arc N m d o m  variablu 
usociatcd with a limit state function, then the design space is an 
N-dimensional space (a hyperspace) that represents the entire 
domain of possible values of the design variables. In order to 
transform a limit state function into a reliability model a joint 
probability density function must be utilized. This function 
establishes the relative liquency of occurrence for a specific 
combination of values (realizations) of the design random 
variables. Kcep in mind that the limit state function is used to 
d w e  which MB of the design space (a region that rcpruents 
dl possible outcomu of the design m d o m  variables) will result 
in a successful event. Thus according to equation (25) the si@ 
&main of the design space should satisfy ge-1 >O. Obviously. 
the portion of the design space that satisfies go, 1 S O  b the 
foiLur domain for the finite element. Thus the nIiabiIity of a 

dement k the integration of the joint probabiity density 

function over the saJe design space defined by the Kiurc 
criterion. This integmtion takes the form 

wherefly- ) is the joint density function of the random variabler, 
and 6, is the safe domain of the design space. This conccpt k 
simplified to a twadirnensional design variable space depicted in 
Figure 2. 

Unfortunately, the integral in equation (26) does not 
usually have a closed form solution. An exception to this w(u 
presented in the section when the principles of Weibull analysis 
arc examined. Thu in general, numerical techniques must be 
utihcd to evaluate the reliability of a finite element. Two 
numerical &chniquu arc discussed in this article that provide 
approximate solutioru of equation (26). They arc the 
conventional Monte Carlo method, and the fast pmbabiliry 
integration (FPI) method. Other methods exist (the reader k 
referred to Hu (1995) for an overview) but only these two 
mehods arc presented here due to limitations placed on the Icngth 
of this axticle. The reader is referred to Wu (1994) for a more 
comprehensive development of the numerical techniques 
associated with the FPI mcthod. In addition, Hu's thesis (1995) 
presents details regarding a Monte Carlo method with an 
extremely efficient sampling approach. 

The conventional Monte Carlo simulation is 
conceptually simple, very general, and relatively straightfonvatd 
to implement. Thus it is commonly used to numericalIy cstimate 
the probability of failure when a closed form solution to quation 
(26) is unavailable. In general the probability of failure of a 
structllral component can be expmscd as 

where 8, is the failure domain that satisfies the expression 

Q8) 

Equation (27) is an altsmative expression to equation (26) since 

P , = l - R  

Now deiine an indicator function I such that 
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Limil state boundav fH 

Figure 2 Two-dimensional joint PDF with limir state 

Q3) 

This indicator function can be included in &e integral defined by 
equation (27) if the integration range h expanded to include the 
range of the design space, Le., 

Ako recall thst the mean usociat6d with a mdom vuisbb CM 
be estimated fiom a sample taken b m  the ppulstion tht b 
being chanacriud by the disfzibudon function flr). The 
estimated value of the mean k given by the simple expression 

The integral on the right side of this expression defines the 
expectation of the indicator function, Le., When xJ k the& obrrmtion in a random -le taken from 

the population. In a l i d a r  %hion the pmbabiIity of fasure (PJ 
rcpnscn~ the expcctcd value, of the S i r  function. Tbru 
equation (31) can be cxprrucd u; E trl - I IfQJdY,  8 2 )  

h*+ 

R d  &om statistics that the definition of the mean &) of a 
random variable k the expectation of the variable. Thus 

H a c  it is implied that a random sample of successes (111) and 
f a h u  (I-0) hu ban gcnentcd. Thus 5 ia thejth ev.Iuttlon 
of the limit state function when the random observations have 
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been generated from the cumuiative dlkiiution firnction 

The simulation method defined by quation (35) is 
- r e f 4  to as I conventiod Monte Carlo simulation. The and 
objective k to generate a sufficiently krge sa of obscrVations 
(is.. iarge N )  in order to q m d u c e  the statistical characteristics 
of the underlying population that the obsmations arc taken from. 
The concept of the conventional Monte Carlo method is shown in 
Figure 3, when the solid circlu represent 8 SIICELW, Le., I 4  
and g&J S O .  The opcn circka arc observations that do not p a  
the failure criterion. Here Z=O and g&J>O. While this 
approach may not be the most cfikient numerical technique, 
cventuaLly it will converge to the c o ~ l t c t  solution, i.c., the 
solution approacha P, in the limit as N approachu infinity. 

6, 2 2 %  = 6, + 6' (41) 

Making rue of the definition of the d e t y  margin, the 
probability of failure can be expressed m 

P f =  ROW% - S M S 0) (42) 

THE FAST PROBABILITY INTEGRATION METHOD 
This scction presents the details of obtaining component 

reliabifitics from fast probability integmtion (FPI) methods. 
These detaik 1vt present& in tcnns of the simplitid fdu re  
criterion defined by safety factors or safety margins. This b 
done to merely clarify technical concepts. At the end of the 
section the details arc provided that allows the application of this 
method ta arbitrary failure criterion. 

Thus the probability of f d u n  for a sbuctud  
component can be expressed as 

where R is the rrsistance random variabb and L is the load 
random variable (both of which w e n  sripuiatcd as design 
variables). Define thc safety margin as 

M = R - L  67) 

The expectation of the safety margin is 

PM = P, - P L  68) 

when p,, k the mean of M, pa is the mean of R and pL is the 
mean of L. Similarly, the variance of the safety margin is given 
by the expnssion 

where *COV represents the covarisncc function, 8.' is the 
variance of R, and 82 is the variance of L. HOWCVC~, if R a d  
L arc indepcndcnt random variables, then 

If R and L art n o d  random variabla, then M (which k rt0 
a limit itate function) bccomu a linear combination of two 
normally distributed random variables. Thus M is a u o d y  
distributed random variable. Making use of the standard n o d  
CDF (*), the probability of failure is given by the expression 

P, = 0 (-?) 
Substitution yields 

Now deiinc the reliability index B such that 

Tlair is equivalent to the integral exprrstion given in equation 
(19), ie., 

Thus equation (46) rcprrscnt~ a "krt intcgrrtion' of equation 
(43, hence the ongin of tcrm ' h t  probability intepratiOn' @PI) 
for the approach that uriliw the reliability index. The expzusion 
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F'iiure 3 Conventional Monte Car10 methods 

for the reliabGty index was derived based on the special case 
where the safety margin SCNCS as the Iimit statc function. More 
generally, other expressions for B can be derived by adophg 
different limit state functions. Howcver, in general, the straight- 
forward relationship between the rehbility index ~d the 
probability of failure expressed above no longer holds. If the 
limit state function is a non-linear function of the design variablu 
or the design variables arc not normally dstriiuttd, then equation 
(46) will not hold. Yet for either w e  then lue approximations 
that can be utilized which yield good results, provided the limit 
state functions and the design variables arc suitably restricted. 

&fore the discussion on how the relationship between 
the probability of failure and the reliability index can be 
approximated, a geometric interpretation of the reliability index 
is g iva  using the simple dehition of the safcty mar& exprrssed 
in quation (38). If R and L an n o d y  distriiuted, they c ~ n  
be transformed to standard normal variables. By definition the 
transformed ruistance variabk is 

and the transformed load variable is 

(49) 

Thus the resistance variable can be exprustd as 

R = R'i, + p, (51) 

and the load variable can be expressed as 

L = Pil + pL 

In tern of the transformed random variables the safdy margin 
becomes 

Now the reliability index can be i n t c r p d  u the shortest 
distance from the ongin in the kansformcd vuiable space: tc~ the 
tailurr: suri%ce, which b defined by M. This 5 depiaca in 

safety margin k shown in both the origbd and the transbmcd 
design variable space. "%e point on the &lure surfsct that 5 

Figure 4 where the m u n  surface associated with thir particular 

12 



- 
Safe R 

Region 

-P 

Fgure 4 a) Failurc surface in the standard variable space. b) Failure surface and MPP in the transformed variable spacc 

nearest to the origin k r c f d  to as the most probable point 
(MPP) in structud reliability Iikxatun. The reader can casily 
verify that equation (45) can be derived &om the geometry 
presented in Figure 4. This last figure b important. If 

* the limit stak. function can be hearizcd, and 

the design variables can be transformed to standard 
nomal variables, 

then B can be determined using analytic geometry concepts. 
Once B has been found, the probability of failun is calculated 
d i y  using equation (46). 

Fmally. before ducussing approximate methods 
associated with linearizing the limit state function and 
normalizing the design variabks, a brief discussion is necessary 
conceming the extension of quation (46) to N design variables. 
The prcccdimg dBcussion focused on LWO independent, normany 
diutributed, random variables. Equation (47) holds for N 
bdcpendcnt, normally distriiutcd random variables, if the limit 
rtate function (g) k a linear function of the m d o m  variables. 
Under thue circumstances 

If 

bf = VARk] 

Note that cr, k the coefficient of the fth term of the lima state 
function and dcpcnds on the particular limit ltate function 
Utitizcd. 

THE HASOFER-LIND APPROXIMATION 
Hasofcr and Lind (1974) proposed a technique 

(iicnfied h m  u the H-L method) that approXimatn the W u n  
r u d c e  for thow casu where the limit atate function ir not a 
linerv combination of the design variables. The f.ilurrc aurficc 
(a hypcr-surface in the N-dimensional design varitabt: apace) is 
approxknatcd by a hyper-plane tangent to the fiilun a& at 
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the MPP (sce Figure 4). This approximation is accomplished by 
utilizing the fmt term of a Taylor series expansion of the limit 
state function at the MPP. Thus (3) Evaluatethe 

parrial derivatives at the conrspondmg vduea of 

where 2 is the vector of standard n o m 1  variables which arc 
related to the design variables in the following manner 

H e n  2' is the vector representing *e location of the MPP, and 
the asterisk associated with the parcia1 derivative indicates the 
vwtor and the associated derivatives are being evaluated at the 
MPP. 

Since the limit state function is approximated by the 
fmt term of a Taylor series expansion, the H-L method k 
referred to as a "fmt order" method. Kecp in mind that the H-L 
approximation will be exact if the design variables are normally 
distributed, and the true limit state function is linear. The =der 
should question how good the approximation is if the actual limit 
state function k not linear (a hyper-plane) in the transfonned 
standard normal variable space. The joint probability density 
function tends to decay exponentially with a relative increase in 
dstance from the mean (is.. the 'pcak' of the joint PDF in 
Figure 2). For large values of B (Le.. low probability of failure) 
the main contribution to the probability integral, Le., equation 
(28). usually comes fmm regions n a r  the MPP. since the 
relevant functional values of the joint PDF will assume their 
largest values in the near vicinity of the MPP. Therefore, 
provided that the actual limit state surface is well-behaved and 
docs not exhibit significant deviations fmm the tangent hyper- 
plane approximation in the neighborhood of the MPP. a 
rasonably accurate estimate of the actual probability of failurc 
(P' can still be obtained from equation (46) by this first order 
approximation. 

Since B represent3 the shortest distance from the origin 
to the failure surface in standard normal variable space. and the 
location of the MPP is not known a priori. a search algorithm 
must be employed. An opNization method making use of 
Lagrange multipliers is utilized hen.  The following steps 
represent the details of this search algorithm: 

(1) Assume initial values for the normal design variables 
y;, and transform these values to standard n o d  
values 4' wing quation (58). 

(2) Transform the limit state function go, 1 to glz, 1 using 
equation (57). Thb requires the evaluation of the 

(4) Assemble the vector q' wing 

where B k unknown at this point. 

(5) Substitute qm into the following expression 

and solve for B.  Note that this last expression k a 
scalar valued function. Hmcc one e q d n  is solved 
for one unknown Os). 

With 8 known, update values of qm and nptat 0)  
to (5) until a ruitablc convergence criterion k mct. 
This convergence criterion can be easily rclattd to the 
change in 8 from one iteration to the next. 

(6) 

The geometric interpretation of the algorithm above is 
shown in Figure 5. Note that the rate of convergence for thc H- 
L algorirhm will depend on the following 

0 the mtu11: of the true limit state function. 

thestartingpoint, 

the characteristics of the random variables, and 

the cornlation between the random vsriablcs. 

Thuc issues have been d i ~ ~ u s s d  thoroughly in the open Litenrturc 
and will not be revisited here. 

THE RACKWXTZFIESSLER APPROXIMATION 
If the randornvariablclthat arcutilized in the W state 

function arc not normally distributed, a w o a d  sppmxiaution 
must be employed. Bated on a concept suggested by Plfohcitno 
and Hannus (1974). RachKia and Ficssltr (1978) proposed 1 
mdicat ion  of the FPI method to account for design variabla 
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Fiure 5 Schematic of the Hasofer-Lind approximation where a non-linear failure surface is approximated by 1. 
Linear tangent hyper-phc 

with non-normal distributions. The technique (referred to h m  
as the R-F method) converts n o n - n o d  random variables into 
standard normal variables by Grst equating the CDFs of the 
standard normal and non-normal distriiutions, i.e., 

H a c  Fr, represents the non-normal cumulative distribution 
function (e.g., the two-parameter WeibulI distribution) and 4, L 
the standard n o d  cumulative distribution function. In addition 
the PDFs of the standard n o d  and non-normal distributions arc 
equated leading to the expression 

Hcre fr, represents the n o n - n o d  probability density hnction 
and 4 is the standard normal pmbability density function. These 
last two expressions must be evaluated at every approximated 
MPP. The character 8 signifia the normal dsmiution in both 

expressions. Thus, the equivalent normal mean (pq') and 
equivalent n o d  standard deviation (ar: ) of n o n - n o d  
variables can be derived &om q d n s  (62) and (63). 
Specifically 

and 

SUMMARY 
An ov& is g i v a  of engineering conccptr md 

computational algorithms which have been developed enabling 
pmbabilistic duign approaches to &uctural analysh. 
Probabilistic duign approaches uc shown to have evolved u a 
naturd extension of traddod detcnninistio desigv appmachca. 

The wcll established WeibUn d y s b  rppmach, 
commonly utilizcd for the design of components fabricated of 
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brietle materials such as ceramics. is shown to be a special case 
of the more general probabilistic design problem formulation. 
Substantial developmentr have occumd to extend the WeibuU 
analysis approach to more complex f d u r e  mechanisms and for 
the approximate numerical solution of more &tic component 
design problems using ekment analysis techniques. These 
efforts have pmduccd compdensivc design tooh, such LI ir 
embodied in the CARES kmity of ~oitwan: developed at NASA 
Lewis Ruuvch Center. 

In the more g a d  case, much of the development 
effort has focused on efficient numerical algorithms to achieve 
accuratc approximate solutions of probabilistic design problems 
involving complex and nonlinear failure or  h i t  state functions 
and design parameten descnied by non-normal dismiutions. 
Several specific algorithms arc descriied which arc extensions of 
the fhst probability integration approaches originally developed by 
Hasofer and Lind, and Rackwitz m d  Fcissler. as well u 
extensions of Monte Carlo simukrtion approaches allowing for 
more scltctivc sampling. Again, t h u c  efforts have produced 
comprehensive daign tools, such IU is embodied in the NESSUS 
family of software developed at Southwest Research Institute 
under the sponsorship of NASA Lewis Research Center. 

The various methods presented provide B quantitative 
basis to account for design uncertainties inherent to physical 
systems. Thc uleimate bene& of probabilistic design approaches 
is a mon: rational basis for making daign  decisions thar baIance 
component or system efficiency with =liability or safety. This 
bene& is cspccially important in the design of high-performance 
andor lifc-cxitical systems. 
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