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ABSTRACT

The article begins by examining the fundamentals of
traditional deterministic design philosophy. The initial section
outlines the concepts of failure criteria and limit state functions,
two traditional notions that are embedded in deterministic design
philosophy. This is followed by a discussion regarding safety
factors (a possible limit state function) and the common utilization
of statistical concepts in deterministic engineering design
approaches. Next, the fundamental aspects of a probabilistic
failure analysis are explored, and it is shown that deterministic
design concepts mentioned in the initial portion of the article are
embedded in probabilisic design methods. For compeonents
fabricated from ceramic matcrials (and other similarly brittle
materials) the probabilistic design approach yields the widely used
Weibull analysis after suitable assumptions are incorporated. The
authors point out that Weibull analysis provides the rare instance
where closed form solutions arc available for a probabilistic
failure analysis. Since numerical methods are usually required to
evaluate component rcliabilities, a section on Monte Carlo
methods is included to introduce the concept. The article
conciudes with a presentation of the technical aspects that support
the numerical method known as fast probability integration (FPI).
This includes a discussion of the Hasofer-Lind and Rackwitz-
Fiessler approximations.

INTRODUCTION
Most parameters that are incorporated into engineering

analyses have to & greater, or lesser extent, some level of

uncertainty. In order to achicve a general accounting of the

entire spectrurmn of values that design parameters exhibit
(especially for those cases where one or more of the design
parameters cxhibits substantial scatter) a design engineer should
utilize probabilistic methods. However, a reliability approach to
engineering design demands that an engineer must tolerate a finite
risk of unacceptable performance. This risk of unacceptable
performance is identified as a component’s probability of failure.
The primary concem of the engineer is minimizing this risk in an
economical manner. To accomplish this requires analytical tools
that quantify uncertainty in a rational fashion. The tools for
dealing with uncertainty in a rational fashion have been developed
in a field of mathematics known as probability theary. Since
entire texts are dedicated to this ficld, only those concepts that
are applicable to the design of engincered components are
presented here.

In order to meet the numerical needs that accompany a
probabilistic analysis several rescarch teams sponsored by NASA
Lewis Research Center (L.eRC) have focused on the development
and application of reliability design algorithms. Two of these
groups have produced program deliverables that include reliability
models and computer software.  Specifically, one program
focuses on the engineering analysis of components fabricated
from ceramic materials. A number of reliability models
developed for ceramic materials (sce Duffy et al., 1992, for an
overview) have been incorporated into public domain computer
algorithms such as the CARES (Ceramics Analysis and Reliability
Evaluation of Structures), T/CARES (Toughened Ceramics
Analysis and Reliability Evaluation of Structures) and C/CARES
(Composite Ceramics Analysis and Reliability Bvaluation of
Structures). These computer algorithms are coupled to an
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assortment of commercially available general purpose finite
clement programs. The algorithms yield quasi-static component
reliability. In addition the CARES family of software includes
parameter estimation modules that allow the design engineer to
evaluate the strength distribution parameters from failure data.
It is assumed that for this type of reliability analysis the failure
strength of the material can be characterized by either a two- or
three-parameter Weibull distribution.

The second program that has developed probabilistic
tools for design enginecrs is the Probabilistic Structural Analysis
Mecthods (PSAM) program. This endeavor takes on 2 more
global perspective and deals with the stochastic nature of design
parameters in a general fashion. In a manner similar to the
structural ceramics effort mentioned above, this program
integrates probabilistic algorithms with structural analysis
methods. The primary result is the NESSUS (Numercal
Evaluation of Stochastic Structures Under Stress) computer
software.

This article presents the underlying engineering
concepts that support the technical aspects of both the CARES
and PSAM programs. In addition, the authors outline the
commonality between the programs by demonstrating the shared
technical principles. Specific details regarding the CARES family
of software algorithms and the NESSUS software are
incorporated into the conference presentation that accompanies
this article.

FAILURE CRITERION & LIMIT STATE FUNCTION

The success of a structural analysis hinges on the
appropriate choice of design variables used to describe the overall
thermo-mechanical bchavior of a component. The design
variables can include, but are not limited to, strength parameters,
external loads, allowable deformations at predetermined locations
in the component, cycles-to-failure, and material stiffness
‘properties.  After the cngineer has determined what design
variables are pertinent to a given class of design problems, they
can be assembled in an N-dimensional vector. This vector of
design parameters can be identified as

Yo = Oy Yo - V) 1

Design variables can casily interact with one another, thus a
functional relationship is necded to describe any interaction. This
function is most commonly referred to as a failure criterion.
Common examples include strength based criterion such as the
maximum distortional energy eriterion and the Mohr-Coulomb
criterion; fatigue failure criterion are represented by Miner's tule;
and fracture criterion include the critical strain energy release
rate method and the stress intensity factor methods. Usually a
failure criterion represents the first step in defining a limit state,
If an operational state for a structural component falls within the
boundaries of a limit state, the performance of the structural
component is acceptable. An operational state for a component

that falls on the boundary of a limit state denotes failure. Forthe
failure criterion just cited a& delineation between scceptable
performance and failure is made at a point in the component..

A failure criterion and & limit state function can be
expressed by the general formulation

g =80,) @

Note that g defines a surface in an N-dimensional design varisble
space. Once again this function must stipulate how each design
variable interacts in producing failure. Here values of g>0
indicate a safe structure, whercas values of g <0 correspond to
a failed structure. The failure criterion (or a limit state function)
can be defined by ecither a complete loss of load carrying
capacity, or altcrnatively by a loss in serviceability. The
conceptual distinction between a limit state function and a failure
criterion is based on scale. It was indicated above that a failure
criterion focuses on a point. Limit state functions focus on the
component or structure. Often times there is no difference
between the two since failure at a point constitutes failure of the
component. In contrast, consider a structural component where
plastic yield is a possible failure mode. 1If yielding (failure) at a
point is described by a yicld function, then this function
represents the failure criterion for this particular mode of failure.
Yet a structural component may not fail if yielding has occurred
only at a point. In fact the component may continue to function
safely until a sufficient number of plastic hinges have formed and
the structure collapses. The formation of a sufficient number of
plastic hinges is described mathematically by a lmit state
function. The reader is directed to the extensive Literature that
followed Drucker’s initial work (1952) in establishing bounds on
limit state functions for this type of failure analysis. However,
the point is that for a plasticity analysis the failure criterion G.e.,
the yield criterion) is different from the limit state function.

As a prclude to the discussion that follows later
concerning Weibull analysis, a structural component fabricated
from a ceramic material is treated as 2 weakest-link system. If
one link in the chain fails, the entire chain fails. This assumption
gives risc to a particular modeling approach in calculating
component reliability. It also infers that failure at a point
constitutes component failure. In this sense the failure criterion
and the limit state function will be one in the same.

SAFETY FACTORS & DETERMINISTIC FAILURE
ANALYSIS

To begin contrasting the difference between
deterministic and probabilistic failurc analyses the discussion in
this section is focused on a specific failure mode, i.e., the
exhaustion of strength capacity. A structural component can fail
when it encounters an extreme load, or when a combination of
loads reaches a critical collective magnitude, and the ability to
withstand the applied load is exhausted. With the design
algorithms presented in this article the engineer can casily



quantify the magnitude of the extreme load event leading to
failure, and account for the frequency at which this extreme event

occurs. In addition, the sirength (or capacity) of the material and -

any variation in this design parameter can be quantified. A brief
discussion regarding safety factors (as well as safety margins)
follows. This discussion underscores the need to account for
variability of design parameters in a coherent manner. These
quantities arc typically utilized in deterministic designs, and are
easily incorporated into probabilistic designs.

In the field of structural mechanics it is customary to
define safety factors (and sometimes safety margins) in order to
ascertain how "close”™ a component is to failing. If L represents
the load on a component, and R represents the resistance (or
capacity) of the material, then the safety factor is defined as

sF =X ()]
3

Alternatively, the safety margin can be utilized, and this measure
is defined as

SSM.=R-1 4)

Failure occurs when the safety factor falls below one, or when
the safety margin falls below zero. These two expressions
represent the simplest and most fundamental definition of a limit
state. In the following section where the principles of
probabilistic failure analysis are outlined, these two expressions
are utllized to explain basic concepts. However, to employ either
safety factors or safety margins the design engineer must quantify
parameters R and L. Data must be collected and & single "most-
likely® value must be assigned for each parameter. If the typical
structural engineer has been exposed to statistical methods, these
concepts were encountered in quantifying material properties
from experimental data. Thus the design engineer is familiar
with the concept of a central location parameter for experimental
data defined by the sample mean, i.c.,

(1) v ®
(3 L =

A second parameter, the sample variance, serves as a measure of
data dispersion. It is defined as

R Ce PICRT S

=1

In the expressions for the sample mean and variance.x,
represents the i® observation in an experiment with N
observations. Other sample descriptors exist (e.g., skewness and

kurtosis); however, the mean and the variance sre more widely
recognized and understood. Usually the sample mean is used to

* identify a single “most-likely” value for a design parameter. The'

variance is most often utilized in & simple minded fashion to
indicate how well the experiment is being performed, i.e., &
small variance indicates good experimental technique. However,
this attitude tends to minimize the fact that some design
parameters inherently behave in & random fashion. Variation in
experimental data can easily be a fundamental property of 2
particular design parameter, not 2 commentary on experimental
technique.

Often the engineer is not required to determine values
for design parameters directly from experiments. Values for
resistance parameters can be obtained from handbooks or existing
corporate data bases. Either source of information may
concurrently list values for the standard deviation (defined as the
square root of the sample variance) but this information is too
often ignored in & deterministic failure analysis where the sample
mean is used to represent the "most-likely” value of the design
parameter. Increasing the mean value of the load parameter by
a multiple (usually three) of standard deviations, and decreasing
the mean value of resistance parameter by the same multiple of
standard deviations is one way of including information regarding
data dispersion in a safety factor design . This method, referred
to as the three-sigma approach, yiclds the following definition for
the factor of safety

X, - 3SR
X, +3(SO°

S.F = 1]

Clearly this definition of the safety factor admits information
concerning the data dispersion for both the load and resistance
parameters.

However, if cither of the design parameters exhibits 2
significant scatter, as cvidenced by a relatively large sample
standard deviation, then the design engineer must compensate in
some manner to maintain a prescribed safety factor for
component. Thus, in an cffort to maintain a given level for the
safety factor, analyses predicated on equation (7) may casily lead
to uneconomical designs. Utilizing probabilistic methods can
readily compensate for parameter variation, enabling an engineer
to further pursue a design that would be otherwise rejected based
on traditional methods. In addition, for materials that exhibit size
cffects where the average strength decreases with specimen size
(e.g., ceramic materials) the three-sigma approach leads o &
fundamental problem in identifying what value to usc for the
resistance random variable.

FUNDAMENTALS OF PROBABILISTIC FAILURE
ANALYSIS

Utilization of equation (7) represents an attempt to
include more information regarding the true characteristics of



design parameters. Momentarily focusing on the resistance
parameter, equation (7) implies that the resistance design
parameter is inherently multi-valued. If this multi-valued
resistance parameter assumes different values at random during
strength-to-failure experiments, then the parameter should be
treated as & random variable.
parameter as well. Specifically note that if the load and
resistance design parameters are treated as random variables, then
equation (7) does not include any information on the underlying
distribution (e.g., normal, log-normal, Weibull, exponential, etc.)
that characterizes the design parameter. As the discussion
unfolds in this section the reader will see that reliability methods
attempt to overcome this inadequacy.

Consider a component fabricated from a material with
a resistance described by the random variable R. A single load,
represeated by the random variable L, is applied to the
component, Both random wvariables are represented
mathematically by distinctly different probability deasity functions
(c.g., normal, log-normal, exponential, Weibull, Rayleigh, etc.).
The load and resistance random variables can be described by the
same type of probability density function as long as the
distribution parameters are different.

However, in this discussion the distributions for the
random variables are left unspecified. This is intentional in order
to simplify and emphasize several issues. Making use of the
concept of a safety factor, the probability of failure for a
component where a single load is applied is given by the
expression

P,'= Probability (R/L < 1) @

Alternatively, the probability of failure can be defined using the
safety margin. Here

P, = Probability(R - L < 0) &)

For cither definition, P, is the product of two finite probabilities
summed over all possible outcomes. Each probability is
associated with an event and a random variable. The first event
is defined by the random variable L taking on a value in the

range
(x-g)gl,g(z+£)
2 2

The probability associated with this event is the area under the
probability density function for the load random variable over this
interval, i.e.,

(41))

This holds for the load design

=)}

P, = f(x) dx a1

The second event is associated with the probability that
the random variable R is less than or equal to . This is the
area under the probability density function for the resistance
random variable over the range from minus infinity (or an
appropriate lower limit defined by the range of the resistance
random variable) to x. This second probability is given by the
cumulative distribution function evaluated at x, i.c.,

P, = Fy(x) 12)

With the probability of failure defined as the product of these two
probabilitics, summed over all possible values of x, then

P= [ F(®) £, & a3

To interpret this integral expression, consider Figure 1.
This figure contains a graph of an arbitrary probability density
function (f,) for the resistance random variable superimposed on
the graph of an arbitrary probability density function (f}) for the
load random variable. Note that R and L must have the same
dimensions to plot these two quantitics on the same graph. A
common misconception is that P, is the arca of overlap
encompassed by the two probability density functions. Scrutiny
of equation (13) leads to the appropriate conclusion that the
probability of failure is the area under the composite function

Nz (2) = Fe(x) £ (x) a4

Due to the complexities introduced by specifying Fp(x) and
f(x) 2 closed form solution rarely exists for equation (13).
One exception is the application of equation (13) to ceramic
materials, which is discussed in the next section.

CERAMIC MATERIALS AND SYSTEM RELIABILITY

Even though variations in loads and strength can be
readily accommodated by the concepts presented in the previous
section, for components fabricated from ceramic materials it is
the variation in material strength that dominates the design. Lack
of ductility combined with flaws, defects, or inclusions that have
various sizes and oricntations leads to scatter in failure strength.
Thus the strength associated with these ceramic materials reflects
an intrinsic fracture toughness and a homogencous distribution of
flaws present in the materials. The analytical concepts presented
in this section will accommodate this singular focus on strength
variation.

Experimental data indicates that the continuous random



: - Resisance
Load Distributon

(.

Diszibuton

Y e e e W e

Figure 1 An arbitrary load - resistance interference graph

variable representing uniaxial tensile strength (a resistance design
parameter) of monolithic ceramics is asymmetrical about the
mean and will assume only positive values. These characteristics
rule out the use of the normal distribution (as well as others) and
point to the use of the Weibull distribution or a similarly skewed
distribution. The threc-parameter Weibull probability density
function for & continuous randorn strength variable, denoted as
I, is given by the expression

o 5} (7] e (]

for 6 > y, and

fz(”) =0 (16)

for o < y. In equation (15) @ is the Weibull modulus (or the
shape parameter), 8 is the Weibull scale parameter, and v is 2
threshold parameter. If the value of the random variable is below
the threshold parameter, the probability deasity function is zero.
Often the value of the threshold parameter is taken to be zero.
In component design this represents a conservative assumption,
and yields the more widely used two-parameter Weibull
formulation.

If the resistance design parameter is characterized by
the Weibull distribution and the load design parameter is assumed
deterministic, then the following probability density function

[ =8(x-1x) a

is utilized in equation (13) for the load random variable. Here$
is the Dirac delta function defined as

- X=X,

“""-)"{o xex, as)

Note that the Dirac deita function satisfies the classical definition
of & probability density functions. This function represents the
scenario where the standard deviation of a distribution approaches
zero in the limit, and the random variable takes on a central value
(identificd here as x,). Insertion of equation (17) into equation
(13) yields the following expression for the probability of failure:

Py= [P 8(x -x) & a9

However, with the Dirac delta function embedded in the integral



expression, the probability of failure simplifies to
P, = Fyx,) Q0

Thus the probability of failure is governed by the curnulative
distribution function that characterizes the resistance random
variable. This expression (with modification) is & fundamental
concept assaciated with Weibull analysis. '

Equation (20) yiclds the probability of failure (after an
appropriate distribution has been specified for the random
variable R) for a simple component with a single deterministic
load which is identified as x,. However, a unique property of
ceramic materials is an apparent decreasing trend in strength with
an increase in the size of the component. This is the 3o called
size effect. As an example, consider that the simple component
represents a uniaxial tensile specimen. Now suppose that twa
groups of these simple components exist. Each group is identical
with the exception that the size of the specimens in the first group
is uniformly smaller than the specimens in the second group. For
ceramic materials the sample mean from the first group would be
consistently and distinctly larger in a manner that can not be
accounted for by randomness. Thus equation (20) must be
transformed in some fashion to admit a size dependence. This is
accomplished through the use of system reliability concepts. It
should be understood that the expression given in equation (20)
represents the probability of failure for a uniform ser of boundary
conditions. If the boundary conditions are modified in any
fashion, or the geometry of the component changes, equation (20)
is no longer valid. To account for size effects and deal with the
probability of failure for a component in a general manner, the
component should be treated as a system, and the focus must be
directed on the probability of failure of the system.

Typically, for a structural component with a varying
stress field, the component is discretized, and the stress field is
characterized using finite element methods. Since component
failure may initiate in any of the discrete elements, it is easy to
consider the discretized component from a systems viewpaint. A
discretized component is a series system if it fails when one of
the discrete clements fail. This concept gives rise to weakest-link
reliability theories. A discretized component is a parallel system
when failure of a single clement does not necessarily cause the
component to fail, since the remaining elements may sustain the
load through redistribution. Parallel systems lead to what has
been referred to in the literature as "bundle theories.” These two
types of systems represent the extremes of failure behavior and
suggest more complex systems such as "r out of n" systems.
Here a component (system) of n elements functions if at least r
clements have not failed. However, the failure behavior of
monolithic ceramic materials is brittle and catastrophic. This
type of behavior fits within the description of a series system,
thus ceramic materials are modeled as a weakest-link reliability
system.

Now the focus is directed to the probability of failure

of a discrete element and how this fajlure relates to the overall
probability of failure of the component. If the failure of an
individual element is considered & statistical event, and if these
events are independent, then the probability of failure of 2 .
discretized component that acts as a series system is given by

N
B = xegx#‘ F) en

where N is the number of discrete finite clements for 2 given
component. Here the probability of failure of the i* discrete
clement (P)) is given by the expression

P = ¥ AV, @2

where ¥ denotes volume and ¥ is a failure function per unit
volume of material. This introduces the requisite size scaling that
is associated with ceramic materials. Adopting an argument used
by Weibull (1939) where the norm of the A¥’s tends to zero in
the limit as &V goes to infinity, then the component probability of
failure is given by the following expression

Bet-e(-[va) @)
4

What remains is the specification of the failure function ¥. The
most basic formulation for ¥ is given by the principle of
independent action (PIA). For this reliability model

G

where ¢y, o, and oy are principle stresses. Equation (23) is the
essence of Weibull analysis. The issue of cther possible forms
for ¥ has been discussed in detail in articles by Duffy and Amold
(1990), Duffy and Manderscheid (1990), Thomas and Wetherhold
(1991), and Duffy et al. (1593).

As 2 final note, equations (20) and (23) can be equated
once a distribution function is specified for the resistance random
variable. As wazs indicated earlier, the distribution of choice is
the Weibull distribution. There is a fundamental reason for this
choice that goes beyond the fact that the Weibull distribution
usually provides a8 good fit to the data. Often times the log-
normal distribution provides an adequate fit to failure data
representing ceramic materials. However, the log-normal
distribution precludes any accounting of size effects. The reader
is directed to work by Hu (1995) for a detailed discussion on this
matter. As it turns out, once a conscious choice is made to
utilize the Weibull distribution, equations (20) and (23) provides
& convenient formulation for parameter estimation. The details



for accomplishing this are provided in Duffy (1995).

The next issue the design engineer is confronted with
concerns the numerical evaluation of equation (13) when a closed
form solution is not readily available. The remainder of this
article is dedicated to this important issue. However, before
proceeding on to the next section the reader is reminded that
probabilistic concepts were introduced by adopting a very simple
failure criterion. In the sections that follow the failure criterion
is left unspecificd and the details of the numerical techniques are
highlighted.

MONTE CARLO METHODS

In this section the authors expand the scope of the
discussion beyond simple failure criterion represented by safety
factors and safety margins. This discussion begins with the
observation that most structural components arc designed based
on the results obtained from a finite element analysis. This
analysis can incorporatc a mechanical analysis, a thermal
analysis, or both. In all cases the design engineer seeks to
predict, and most times minimize, the stress field throughout the
component in an ecconomical fashion. The stress ficld is
approximated by the stress state obtained from ecach discrete
element. Once again the focus of the design algerithms presented
here is on individual (discrete) elements. In general the
reliability of an individual finite element is computed from the
expression

R = Probability[g(y,) > 0] 29

when a failure criterion is used to define point failure. Note that
the failure criterion is left unspecified thus equation (25) is a
general, fundamental relationship. The discussion that follows
outlines specific details that must be embedded in this
relationship.

To evaluate equation (25) the design space must be
defined. In addition, the relevant joint probability denmsity
function that represents the design variables must be established.
As was indicated carlier if there are N random variables
associated with a limit state function, then the design space is an
N-dimensional space (a hyperspace) that represents the entire
domzin of possible values of the design variables. In order to
transform a limit state function into a reliability model a joint
probability density function must be utilized. This function

establishes the relative frequency of occurrence for a specific

combination of values (realizations) of the design random
variables. Keep in mind that the Limit state function is used to
determine which area of the design space (a region that represents
all possible outcomes of the design random variables) will result
in a successful event. Thus according to equation (25) the safe
domain of the design space should satisfy g(y,)>0. Obviously,
the portion of the design space that satisfies gy, ) <0 is the
Jailure domain for the finite element. Thus the reliability of a
finite element is the integration of the joint probability density

function over the safe design space defined by the failure
criterion. This integration takes the form

R = [ 1004y, @6)
s,

where f{ y, ) is the joint density function of the random variables,
and 3, is the safe domain of the design space. This concept is
simplified to a two-dimensional design variable space depicted in
Figure 2.

Unfortunately, the integral in equation (26) does not
usually have a closed form solution. An exception to this was
presented in the section where the principles of Weibull analysis
are examined. Thus in general, numerical techniques must be
utilized to evaluate the reliability of a finite element. Two
numerical techniques arc discussed in this article that provide
approximate solutions of ecquation (26). They arc the
conventional Monte Carlo method, and the fast probability
integration (FPI) method. Other methods exist (the reader is
referred to Hu (1995) for an overview) but only these two
methods are preseated here due to limitations placed on the length
of this article. The reader is referred to Wu (1994) for & more
comprehensive development of the numerical techniques
associated with the FPI method. In addition, Hu’s thesis (1995)
presents details regarding a Monte Carlo method with an
extremely cfficient sampling approach.

The conventional Monte Carlo simulation is
conceptually simple, very general, and relatively straightforward
to implement. Thus it is commonly used to numerically estimate
the probability of failure when 2 closed form solution to equation
(26) is unavailable. In general the probability of failure of a
structural component can be expressed as

P = [ f00d, en
0, N

where §,is the failure domain that satisfies the expression
g0,) <0 (28)

Equation (27) is an alternative expression to equation (26) since
P,=1-R 9

Now define an indicator function [ such that
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Figure 2 Two-dimensional joint PDF with limit state

gy,) <0
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(30)

1
(-

This indicator function can be included in the integral defined by
equation (27) if the integration range is expanded to include the
range of the design space, i.c.,

Po= [ Ifv)dy,

8,08,

¢1

The integral on the right side of this expression defines the
expectation of the indicator functon, i.e.,

EM = [ 17504y, 62)

808,

Recall from statistics that the definition of the mean (u) of a
random variable is the expectation of the variable. Thus

10

b= [2f)dx G3)

Also recall that the mean associated with & random variable can
be estimated from a sample taken from the population that is
being characterized by the distribution function fix). The
estimated value of the mean is given by the simple expression

N
=

z|-

Where x; is the Ah observation in 2 random sample taken from
the population. In a similar fashion the probability of failure (P)
represents the expected value, of the indicator function. Thus
equation (31) can be expressed as

1
N

Here it is implied that a random sample of successes (I=1) and
Jailures (I=0) has been generated. Thus ] is the fh evaluation
of the limit state function where the random obscrvations have

N
Fy = lm Ell} 69

=



been generated from the cumulative distribution function Fy .

The simulation method defined by equation (35) is
“referred © as 8 conventional Monte Carlo simulation. The
objective is to generate a sufficiently large set of observations
(i.c., large N) in order to reproduce the statistical characteristics
of the underlying population that the observations are takea from.
The concept of the conventional Monte Carlo method is shown in
Figure 3, where the solid circles represent a success, ie., I=1
and g(y.)<0. The open circles are observations that do not pass
-the failure criterion. Here I=0 and g )>0. While this
approach may not be the most efficient numerical technique,
eventually it will converge to the correct solution, i.c., the
solution approaches P, in the limit as N approaches infinity.

THE FAST PROBABILITY INTEGRATION METHOD

This section presents the details of obtaining component
reliabilities from fast probability integration (FPI) methods.
These details are presented in terms of the simplified failure
criterion defined by safety factors or safety margins. This is
done to merely clarify technical concepts. At the end of the
section the details are provided that allows the application of this
method to arbitrary failure criterion.

Thus the probability of faillure for a structural
component can be expressed as

P, = Probability(R~ L 50) G6

where R is the resistance random variable and L is the load
random variable (both of which were stipulated as design
variables). Define the safety margin as

M=R-L Gn

The expectation of the safety margin is

By = B~ B 8)

where g, is the mean of M, u, is the mean of R and p, is the
mean of L. Similarly, the variance of the safety margin is given
by the expression

33, =82+ 8} -2cov[R L] 9)

where “cov” represents the covariance function, &’ is the
variance of R, and 3,7 is the variance of L. However, if R and
L are independent random variables, then

11

cov[R, L] = 0 “0)

and

8% = 83 + 8] “n

Making use of the definition of the safety margin, the
probability of failure can be expressed as

P, = Probability(-= < M 5 0) €2)

If R and L are normal random variables, then M (which is also
a Limit state function) becomes a linear combination of two
normally distributed random variables. Thus M is & normally
distributed random variable. Making use of the standard normal
CDF (%), the probability of failure is given by the expression

P=o (- Eﬁ) @
6‘

Substitution yiclds

P =0 L e I
@3+8p”

@)

Now define the reliability index 8 such that

7 2

@5
(33+3D%

P,= 0(-B) (46)

This is equivalent to the integral expression given in equation
(19), i.e.,

P = [f®RDdRAL “n
’

Thus equation (46) represents a "fast integration® of equation
(47), hence the origin of term “fast probability integration” (FPI)
for the approach that utilizes the reliability index. The expression



Figure 3 Conventional Monte Carlo methods

for the rcliability index was derived based on the special case
where the safety margin serves as the Limit state function. More
generally, other expressions for 8 can be derived by adopting
different limit state functions. However, in general, the straight-
forward relationship between the reliability index and the
probability of failure expressed above no longer holds. If the
limit state function is a non-linear function of the design variables
or the design variables are not normally distributed, then equation
(46) will not hold. Yet for either case there are approximations
that can be utilized which yield good results, provided the limit
state functions and the design variables are suitably restricted.

Before the discussion on how the relationship between
the probability of failure and the reliability index can be
approximated, a geometric interpretation of the reliability index
is given using the simple definition of the safety margin expressed
in equation (38). If R and L are normally distributed, they can
be transformed to standard normal variables. By definition the
transformed resistance variable is

48

and the transformed load variable is

12

. 9
L7
Thus the resistance variable can be expressed as
R=R3,+p, 2
and the load variable can be expressed as
(51)

L=L'8; +p,

In terms of the transformed random variables the safety margin
becomes

M=38,R -8,L'+(py- 1) 2)

Now the relisbility index can be interpreted as the shortest
distance from the origin in the transformed variable space to the
failure surface, which is defined by M. This is depicted in
Figure 4 where the failure surface associated with this particular
safety margin is shown in both the original and the transformed
design variable space. The point on the failure surface that is



Figure 4 a) Failure surface in the standard variable space. b) Failure surface and MPP in the transformed variable space

nearest to the origin is referred to as the most probable point
(MPP) in structural reliability literature. The reader can casily
verify that equation (45) can be derived from the geometry
presented in Figure 4. This last figure is important. If

¢ the limit state function can be linearized, and

- o the design variables can be transformed to standard
normal variables,

then 8 can be determined using anslytic geometry concepts.
Once B8 has been found, the probability of failure is calculated
directly using equation (46).

Finally, before discussing approximate methods
associated with linearizing the limit state function and
normalizing the design variables, a brief discussion is necessary
concerning the extension of equation (46) to N design variables.
The preceding discussion focused on two independent, normally
distributed, random variables. Equation (47) holds for N
independent, normally distributed random variables, if the limit
state function (g) is a linear function of the random variables.
Under these circumstances

p=te s3)

8,

13

where
g=1- éa,y, (L)
b = Elg) 9
and
87 = VAR[g) 56

Note that g, is the coefficient of the I'th term of the limit state
function and depends on the particular limit state function
utilized.

THE HASOFER-LIND APPROXIMATION

Hasofer and Lind (1974) proposed a technique
(identified here as the H-L method) that approximates the failure
surface for those cases where the limit state function is not a
linear combination of the design variables. The failure surface
(2 hyper-surface in the N-dimensional design variable space) is
approximated by a hyper-plane tangent to the failure surface at
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the MPP (sec Figure 4). This approximation is accomplished by
utilizing the first term of a Taylor series expansion of the limit
state function at the MPP. Thus

.4
e(z,) = 28(z0) + ¥ (%} (z -z) (57)

t=1 1)e

where z, is the vector of standard normal variables which are
related to the design variables in the following manner

O, - k1) 59
8 Y

z, =

Here z.” is the vector representing the location of the MPP, and
the asterisk associated with the partial derivative indicates the
vector and the associated derivatives are being evaluated at the
MPP.

Since the limit state function is approximated by the
first term of a Taylor series expansion, the H-L method is
referred to as a "first order” method. Keep in mind that the H-L
approximation will be exacr if the design variables are normally
distributed, and the true limit state function is linear. The reader
should question how good the approximation is if the actual limit
state function is not linear (a hyper-plane) in the transformed
standard normal variable space. The joint probability density
function tends to decay exponentially with a relative increase in
distance from the mean (i.e., the "peak” of the joint PDF in
Figure 2). For large values of 8 (i.c., low probability of failure)
the main contribution to the probability integral, i.c., equation
(28), usually comes from regions near the MPP, since the
relevant functional values of the joint PDF will assume their
largest values in the near vicinity of the MPP. Therefore,
provided that the actual limit state surface is well-behaved and
does not exhibit significant deviations from the tangent hyper-
plane approximation in the neighborhood of the MPP, a2
reasonably accurate estimate of the actual probability of failure
(P can still be obtzined from equation (46) by this first order
approximation.

Since 8 represents the shortest distance from the origin
to the failure surface in standard normal variable space, and the
location of the MPP is not known a priori, a search algorithm
must be employed. An optimizaticn method making use of
Lagrange multipliers is utilized here. The following steps
represent the details of this search algorithm:

(1) Assume initial values for the normal design variables
¥, and transform these values to standard normal
values z,° using equation (58).

(2) Transform the limit state function g(y, ) to g(z, ) using

equation (57). This requires the evaluation of the
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partial derivatives at the corresponding values of %

(3) Evaluate the Lagrange multipliers
(4)  Assemble the vector z” using
§=-ap ©
where 8 is unknown at this point.
(5) Substitute z,” into the following expression
8(z) =0 (3Y]
and solve for 8. Note that this last expression is a2
scalar valued function. Hence one equation is solved
for one unknown (B).
(6) With 8 known, update values of z;” and repeat steps (3)

to (5) until a suitable convergence criterion is met.
This convergence criterion can be easily related to the
change in 8 from one iteration to the next.

The geometric interpretation of the algorithm above is
shown in Figure 5. Note that the rate of convergence for the H-
L algorithm will depend on the following

&  the nature of the true limit state function,

e the starting point,

e the characteristics of the random variables, and
e the correlation between the random variables.

These issues have been discussed thoroughly in the open literature
and will not be revisited here.

THE RACKWITZ-FIESSLER APPROXIMATION

'If the random variables that are utilized in the Iimit state
function are not normally distributed, a second approximation
must be employed. Based on & concept suggested by Paloheimo
and Hanaus (1974), Rackwitz and Fiessler (1978) proposed »
modification of the FPI method to account for design variables
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Figure § Schematic of the Hasofer-Lind approximation where a non-linear failure surface is approximated by 2
linear tangent hyper-plane

with non-normal distributions. The technique (referred to here
as the R-F method) converts non-normal random variables into
standard normal variables by first equating the CDFs of the
standard normal and non-normal distributions, i.c.,

- Fr O (63)

Here F, y, Topresents the non-normal cumulative distribution
function (e.g., the two-parameter Weibull distribution) and & is
the standard normal cumulative distribution function. In addition
the PDFs of the standard normal and non-normal distributions are
equated leading to the expression

N L
— | ——| = £,00 69
a,{' .s,f

Here f, represents the non-normal probability deasity fuaction
and ¢ is ' the standard normal probability density function. These
Iast two expressions must be evaluated at every approximated
MPP. The character N signifies the normal distribution in both
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expressions. Thus, the equivalent norma.l mean (1.&r ) and
equivalent normal standard deviation (6r ) of non-normal
variables can be derived from equauons (62) and (63).
Specifically

pt =y - 8,7 @ FL 001 @)
and
@-F
15,00
SUMMARY

An overview is given of engineering concepts and
computational algorithms which have been developed enabling
probabilistic design approaches to structural analysis.
Probabilistic design approaches arc shown to have evolved as a
natural extension of traditional deterministic design approaches.

The well established Weibull analysis approach,
commonly utilized for the design of components fabricated of



brittle materials such a3 ceramics, is shown to be a special case
of the more general probabilistic design problem formulation.
Substantial developments have occurred to extend the Weibull
analysis approach to more complex failure mechanisms and for
the approximate numerical solution of more realistic component
design problems using finite element analysis techniques. These
cfforts have produced comprehensive design tools, such as is
embodiced in the CARES family of software developed at NASA
Lewis Research Center,

In the more gencral case, much of the development
effort has focused on efficient numerical algorithms to achieve
accurate approximate solutions of probabilistic design problems
involving complex and nonlinear failure or limit state functions
and design parameters described by non-normal distributions.
Several specific algorithmas are described which are extensions of
the fast probability integration approaches originally developed by
Hasofer and Lind, and Rackwitz and Feissler, as well as
extensions of Monte Carlo simulation approaches allowing for
more selective sampling. Again, these efforts have produced
comprehensive design tools, such as is embodied in the NESSUS
family of software developed at Southwest Research Institute
under the sponsorship of NASA Lewis Research Center.

The various methods presented provide & quantitative
basis to account for design uncertainties inherent to physical
systems. The ultimate benefit of probabilistic design approaches
is a more rational basis for making design decisions that balance
companent or system cfficiency with reliability or safety. This
benefit is especially important in the design of high-performance
and/or life-critical systems.
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