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ABSTRACT

The strip resonator technique is a popular way to measure the magnetic penetration depth AT) in
superconducting thin films. The temperature dependence provides fundamental information about the superconducting
energy gap and hence insight into the pairing mechanism. There has been much controversy regarding the actual form
of the temperature dependency, with some researchers reporting a weak-coupled BCS-like behavior and others favoring
a Gorter-Casimir type fit. This paper shows that the disagreement can be at least partially attributed to a temperature
sensitive term traceable to stray susceptance coupled into the resonator. The effect is inherent to the technique but a

simple procedure to compensate for it can be used and is presented here.

INTRODUCTION

The resonant frequency of a high-Q microwave transmission line is inversely proportional to the square root
of the sum of kinetic and magnetic inductance per unit length. The kinetic inductance (L,(T)), associated with the inertial
mass of the charge carriers, is strongly dependent on the penetration depth. Hence, the shift in resonant frequency with
temperature can, in principle, yield a sensitive measure of A(T). However, extracting the zero temperature penetration
depth (A(0)) generally requires the assumption of a particular theoretical model to which the data is curve fit. The
situation is exasperated by the complex interdependency among variables such as film thickness (t), circuit geometry
including strip width (W) and substrate thickness (h), critical temperature (Tc), and A(0). The penetration depth is also
sensitive to the quality of the film, especially near its surface, as well as the transition width A(T), which is an indicator
of phase purity. Some studies have focussed only on extremely low impedance lines [1] or strictly low temperature (i.e.
T < Tc/2) M(T) dependence [2]. For most practical microwave applications, line impedances will be in the neighborhood
of 50 Q, and film thickness will be of the same order as the penetration depth. Experimental investigations using strip
transmission lines near Tc have invariably revealed a strong deviation from theory [3-5] when t = A. This short paper
shows that the disagreement can be attributed, at least in part, to the susceptance coupled into the resonator from the
gap discontinuity as well as the feed line of electrical length Bl. The coupled susceptance is modified ny the temperature
dependent characteristic impedance of the resonator. When the effect is taken into account, the natural resonant
frequency of the resonator is shown to increase as T approaches Tc, and the A(T) profile changes accordingly. The

situation when the strip characteristic impedance is not matched to the generator is included.



DERIVATION OF THE PERTURBATION OF THE NATURAL RESONANT FREQUENCY DUE TO LOADING
A lumped equivalent circuit model representing the excited resonator is shown in figure 1. A transmission line

gap is more often depicted as a capacitive pi network [6 ]. But it is mathematically convenient to model it as shown here,
and the transformation is straightforward. It is well known that the measured resonant frequency (w,) of an inductively
or capacitively coupled resonator is pulled from the actual resonant frequency (w,) of the isolated circuit because of the
reactance or susceptance associated with the coupling mechanism. A good estimate of the unperturbed resonant
frequency can be obtained by considering the coupled susceptance in the calculation of w,. The total susceptance of the
loaded resonator is

X =j (wC- 1/(wL) - n’B) (1)
where B is the susceptance of the network left of the transformer. Since w’LC = 1 at resonance and Q= Rw,C, it follows
that

W=, (1 +n’RB/(22Q,)) )

and finally, using the approximation R=27Z Q /II from [7],

o=, (1 +n*BZ/II) 3)

Equation 2 essentially agrees with the graphical derivation of Kajfez [8 ] with the approximation (1 + £)! = (1 - £) where
E<<1.
In the case of a superconductor Z, in (3) is implicitly taken as a function of temperature because of the kinetic

inductance. For a low-loss line

Z, = Z(0){ (L, (T) + LYe(0)/I(L,(0) + L)e(T)]}* C))

where ¢(T) is the temperature dependent effective permittivity, L is the magnetic or geometrical inductance, and Z(0)
is the characteristic impedance of the transmission line at T = 0. Equation 4 is markedly different than the equation
derived in [9] which expressed Z, as being proportional to the ratio A(T)/A(0). That expression was derived specifically
for kinetic inductance delay lines, where h << W, and t << A. In the situation considered here, L, is not >> L_. Wheeler's
incremental inductance rule, commonly used to characterize planar quasi-TEM transmission lines, only applies to
shallow field penetration. Here, the inductance was derived from the imaginary part of the impedance calculated from
the phenomenological loss equivalence method [10]. This method has been shown to provide accurate results for both
attenuation and phase velocity for quasi-TEM, normal and superconductor, transmission lines.

Determining £(T) is not so straightforward but it can be estimated from [3] where resonant frequency versus

temperature data was provided for a metallic conductor on LaAlO,. Ae(T) was taken as -550 ppm/K which is an order
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of magnitude more severe than results disclosed in [4]. Still, the effect is subtle and the correction factor of (3) is
dominated by L, for resonators studied herein.

The susceptance B can be evaluated as follows, for the general case when Z, is not equal to Z,. It is easy to
show that C, = C, + C,, C,= C,[(C,/C,)*+ 3C,/C, + 2], and n’ = C/(C, + C)), where C, and C, are the elements of the
equivalent capacitive-pi representation from {11]. A series network can be made equivalent to a parallel network, and
vice versa, at one frequency. Since we are interested in the behavior of the circuit of figure 1 over a very narrow
frequency range, the immittance looking towards the generator from the transformer was closely approximated by
performing such a transformation. Let K, = Z *Z, [1 + tal’ BDV/[Z > + Z *tan*(BD)], K, = Z,(Z,? - Z,* Ytan(BY/
2, +Z%an 2BD)], K 3= (0C K, - 1)/(wC), and finally K ,= K;[1 + (K, /K ;)*]. Then B = wC;- K ,”, and was found
to be only a weak function of temperature up to T = 0.99 Tc for a wide range of microstrip geometries. It should be
noted that the strip transmission line gap parameters are assumed to be static. It will merely be mentioned that following
the above approach and solving for the conductance, one can show that the Q of the resonator will depend on the

feedline characteristics.

SAMPLE CALCULATION
In order to illustrate the impact of the correction factor on a practical resonator, an example is presented here.
Considering the ring resonator presented in [5], with Bl = 1.3 radians, Zg = 50 Q, t = 800 nm, h = 500 pm, W = 160 pm,
Tc = 105 K, and taking Z (0) = 53 Q, A(0) = 1200 nm, the normalized correction factor obtained from (3) is shown in
figure 2. C, and C; were estimated to be 0.034 pF and 0.012 pF, respectively. Applying this term to the experimental

data in figure 11 of [5], the corrected normalized resonant frequency data is shown in figure 3.

CONCLUSIONS
A corrective term has been presented which slightly modifies the shape of the resonant frequency versus
temperature curve of strip resonators, used to evaluate the London penetration depth. The term is temperature sensitive
primarily because of the kinetic inductance associated with the superconducting resonator, and is not expected to be as
significant when t is thick compared to A. But, some earlier resonator based measurements may have overestimated A(0)
because of this effect. This may help explain some of the disagreement in measurements of A determined by other
methods. An implication of the approach presented herein is that the observed resonant frequency will depend on the

characteristics of the feed line.
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Figure 1.—Lumped equivalent circuit mode! of a strip
transmission line resonator near resonance, coupled to
a feedline of arbitrary impedance across a narrow gap,
which is in tum connected to a source.
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Figure 2.—Sample calculation of the normalized correction
factor (£(T)/£(0)) as a function of reduced temperature
(T/Tc). Data comresponds to a TI-Ba-Ca-Cu-O thin film
(0.8 um) ring resonator (Z,(0) =~ 53 Q) on 500 um thick
LaAlO3. The zero temperature London penetration depth
was taken as 1200 nm.

1.000 —
0.995

0.990

0.985 (— O Raw experimental data
O Corrected data

0.980 —

0.975 ' ‘ l I
0.75 0.80 0.85 0.90 0.95 1.00

Reduced temperature, T/T¢

Figure 3.—lllustration of the effect of the correction factor on
normalized resonant frequency versus reduced temperature
data. The effect tends to steepen and raise the knee of the
curve and suggests a smaller value for the zero temperature
London penetration depth than might otherwise be predicted.
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