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ABSTRACT

The strip resonator technique is a popular way to measure the magnetic penetration depth _(T) in

superconductingthin films. The temperaturedependence provides fundamental informationabout the superconducting

energy gap and hence insight into the pairing mechanism. There has been much controversy regarding the actual form

of the temperaturedependency, with someresearchers reporting a weak-coupledBCS-like behavior and others favoring

a Gorter-Casimir type fit. This paper shows that the disagreement can be at least partially attributed to a temperature

sensitive term traceable to stray susceptance coupled into the resonator. The effect is inherent to the technique but a

simple procedure to compensate for it can be used and is presented here.

INTRODUCTION

The resonant frequency of a high°Q microwave transmission line is inversely proportional to the square root

of the sum of kinetic and magnetic inductanceper unit length.The kinetic inductance (I._(T)),associatedwith the inertial

mass of the charge carriers, is stronglydependent on the penetration depth. Hence, the shift in resonant frequency with

temperaturecan, inprinciple, yield a sensitive measure of _(T). However, extracting the zero temperature penetration

depth Q.(0)) generally requires the assumption of a particular theoretical model to which the data is curve fit. The

situationis exasperated by the complex interdependency among variables such as film thickness (t), circuit geometry

includingstrip width (W) and substrate thickness (h), critical temperature (Tc), and Z(0). The penetration depth is also

sensitiveto the quality of the film,especially near its surface, as well as the transition width A(T), which is an indicator

of phase purity. Some studieshave focussed onlyon extremely low impedancelines [1] or strictly low temperature (i.e.

T < Tc/2) Z(T)dependence [2]. Formost practicalmicrowave applications, line impedanceswill be in the neighborhood

of 50 f_,and film thickness will be of the same order as the penetration depth. Experimental investigations using strip

transmission lines near Tc have invariably revealed a strong deviation from theory [3-5] when t = _,.This short paper

shows that the disagreement can be attributed, at least in part, to the susceptance coupled into the resonator from the

gap discontinuity as well as the feed line of electrical length [31.The coupled susceptance is modifiedby the temperature

dependent characteristic impedance of the resonator. When the effect is taken into account, the natural resonant

frequency of the resonator is shown to increase as T approaches To, and the _.(T)profile changes accordingly. The

situation when the strip characteristic impedance is not matched to the generator is included.
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DERIVATION OF THE PERTURBATION OF THE NATURAL RESONANT FREQUENCY DUE TO LOADING

A lumped equivalent circuit model representing the excited resonator is shown in figure 1. A transmission line •

gap is more often depicted as a capacitive pi network [6]. But it is mathematicallyconvenient to model it as shown here,

and the transformation is straightforward. It is well known that the measuredresonant frequency (too')of an inductively

or capacitivelycoupled resonator is pulled from the actual resonant frequency (too)of the isolated circuit because of the

reactance or susceptance associated with the coupling mechanism. A good estimate of the unperturbed resonant

frequency canbe obtained by considering the coupled susceptance in the calculationof too-The total susceptance of the

loaded resonator is

X =j (toC- l/(toL) - nZB) (1)

where B is the susceptanceof the network left of the transformer. Since to2LC= 1at resonance and Qo= RtooC,it follows

that

too= too'(I + nZRB/(2Qo)) (2)

and finally, using the approximation R=2ZoQo/IIfrom [7],

600=too' (1 + n2BZo/II) (3)

Equation 2 essentiallyagrees with the graphical derivation of Kajfez [8 ] with the approximation (1 + _)-1= (1 - _) where

_<< 1.

In the case of a superconductor Zo in (3) is implicitly taken as a function of temperature because of the kinetic

inductance. For a low-loss line

Zo = Z(0){(l_a (T) + Lc)e(0)/[(l._(0) + Lc)e(T)]}_tz (4)

where e(T) is the temperaturedependent effective permittivity, L, is the magnetic or geometrical inductance, and Z(0)

is the characteristic impedance of the transmission line at T = 0. Equation 4 is markedly different than the equation

derived in [9] which expressedZoas being proportional to the ratio K(T)/_,(0).That expression was derived specifically

for kinetic inductancedelay lines, where h << W, and t << K.In the situation considered here, _ is not>> L_.Wheeler's

incremental inductance rule, commonly used to characterize planar quasi-TEM transmission lines, only applies to

shallow field penetration. Here, the inductance was derived from the imaginary part of the impedance calculated from

the phenomenological loss equivalencemethod [10].This method has been shown to provide accurate results for both

attenuation and phase velocity for quasi-TEM, normal and superconductor, transmission lines.

Determiningc(T) is not so straightforward but it can be estimated from [3] where resonant frequency versus

temperaturedata was provided for a metallic conductor on LaAIO3. Ae(T) was taken as -550 ppm/K which is an order
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of magnitude more severe than results disclosed in [4]. Still, the effect is subtle and the correction factor of (3) is

dominated by Lkfor resonators studied herein.

, The susceptance B can be evaluated as follows, for the general case when Zois not equal to Zg.It is easy to

show that Cs= Cg + Cp,Cf= Cp[(Cv/Cg)2+ 3Cv/Cg+ 2], and n2= CJ(C s+ Cf),where C_and Cp are the elements of the

, equivalentcapacitive-pi representation from [11]. A series network can be made equivalent to a parallel network, and

vice versa, at one frequency. Since we are interested in the behavior of the circuit of figure 1 over a very narrow

frequency range, the immittance looking towards the generator from the transformer was closely approximated by

performing such a transformation. Let Kl = Z o2Zg[1 + tan2(131)]/[Z°2+ Z g2tan2([31)],K 2 = Zo(Zo2 _Z_2)tan(131)/

[Z o: -I-Zg2tan2(131)],K 3= (c_CsK2- 1)/(coC_),and finally K4= K3[1 + (Kl/K 3)2]. Then B = coCf- K 4"1,and was found

to be only a weak function of temperature up to T = 0.99 Tc for a wide range of microstrip geometries. It should be

noted that the strip transmissionline gap parametersare assumed to be static. It will merely be mentioned that following

the above approach and solving for the conductance, one can show that the Q of the resonator will depend on the

feedline characteristics.

SAMPLE CALCULATION

In order to illustratethe impact of the correction factor on a practical resonator, an example is presented here.

Considering the ring resonator presented in [5],with 131= 1.3radians, Zg = 50 2, t = 800 nm, h = 500 Jam,W = 160larn,

Tc = 105 K, and taking Zo(0)= 53 if2,3t(0)= 1200 nm, the normalized correction factor obtained from (3) is shown in

figure 2. Csand Cf were estimated to be 0.034 pF and 0.012 pF, respectively. Applying this term to the experimental

data in figure 11 of [5], the corrected normalized resonant frequency data is shown in figure 3.

CONCLUSIONS

A corrective term has been presented which slightly modifies the shape of the resonant frequency versus

temperaturecurve of strip resonators, used to evaluate the London penetration depth. The term is temperature sensitive

primarilybecause of the kineticinductance associated with the superconducting resonator, and is not expected to be as

significantwhen t is thick compared to _..But,some earlierresonator basedmeasurements may have overestimated_(0)

because of this effect. This may help explain some of the disa_eement in measurements of 3tdetermined by other

methods. An implication of the approach presented herein is that the observed resonant frequency will depend on the

characteristics of the feed line.
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Figure1.--Lumped equivalentcircuitmodelof a strip
transmissionlineresonatornearresonance,coupledto
a feedlineof arbitraryimpedanceacrossa narrowgap,
whichis inturnconnectedto a source.

1.005 -- "

1.004 --
o=

i
8 1.002

_ 1.001
O

z 1.o00 I I
0.75 0.80 0.85 0.90 0.95 1.00

Reducedtemperature,TFi"c

Figure2.--Sample calculationof the normalizedcorrection
factor(I_(T)/I_(0))as a functionof reducedtemperature
(T/Tc).Data correspondsto aTI-Ba-Ca-Cu-Othinfilm
(0.8I_m)ringresonator(Zo(0)_ 53 _) on 500 I_mthick
I_aAIO3.Thezero temperatureLondonpenetrationdepth
was takenas 1200nm.
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_ Figure3.--Illustrationof the effectof the correctionfactor on
normalizedresonantfrequencyversusreducedtemperature
data. The effecttendsto steepenandraisethe kneeof the
curveandsuggestsa smallervalueforthe zero temperature
Londonpenetrationdepththan mightotherwisebe predicted.
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