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Abstract

A two-equation k-co turbulence model has been devel-

oped and applied to a quasi-three-dimensional viscous

analysis code for blade-to-blade flows in turbomachinery.
The code includes the effects of rotation, radius change,

and variable stream sheet thickness. The flow equations

are given and the explicit Runge-Kutta solution scheme is
described. The k-co model equations are also given and

the upwind implicit approximate-factorization solution
scheme is described. Three cases were ca!cula_ted: transi-

tional flow over a flat plate, a transonic compressor rotor,
and a transonic turbine vane with heat transfer. Results

were compared to theory, experimental data, and to results

using the Baldwin-Lomax turbulence model. The two

models compared reasonably well with the data and sur-

prisingly well with each other. Although the k-co model
behaves well numerically and simulates effects of transi-

tion, freestream turbulence, and wall roughness, it was not

decisively better than the Baldwin-Lomax model for the
cases considered here.

Introduction

A large percentage of computational fluid dynamics

(CFD) analysis codes for turbomachinery use the Bald-

win-Lomax turbulence model [1]. This was evident in the

results of the blind test case for turbomachinery codes

sponsored by ASME/IGTI at the 39th International Gas

Turbine Conference held in The Hague in June of 1994.

The results have not yet been published. Of the 12 partic-

ipants, nine used the Baldwin-Lomax turbulence model,

one used an algebraic mixing length model, and two used
k-e models. One of the objectives of that test case was to

investigate the effects of turbulence models. However,
because of differences in grids, large variations between

the computed solutions, and lack of experimental mea-
surements in the boundary layers, it was not possible to

draw any conclusions regarding the effect of turbulence
models.
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The Baldwin-Lomax model is popular because it is

easy to implement (at least in 2-D) and works fairly well

for predicting overall turbomachinery performance. How-
ever, the model has both numerical and physical problems.

Numerical problems include awkward implementation in

3-D, difficulty in finding the length scale [2], and slow

convergence if the length scale jumps between grid points.
Physical problems include a crude transition model and

the neglect of freestream turbulence, surface roughness,

and mass injection effects which are often important in
turbines. These effects are sometimes added to the Bald-

win-Lomax model using techniques developed for bound-

ary layer codes [3, 4]. Physical problems also include

poor prediction of separation [5], which is important in

compressors, and underprediction of wake spreading [2].

A few researchers have used other turbulence models

for turbomachinery problems. Choi et. al. have used the q-

co model [6], Hah (who participated in the blind test case)
used a k-e model [7], and Kunz and Lakshminarayana

used an algebraic Reynolds stress k-e model [8]. Unfortu-

nately none of these researchers have used a Baldwin-
Lomax model in the same code for comparison. Ameri

and Arnone have compared the q-co, k-e, and Baldwin-

Lomax models for turbine heat transfer problems [9, 10].

Two papers have compared the k-o_ and Baldwin-
Lomax models for turbomachinery problems. Bassi, et. al.

examined a film-cooled turbine cascade [11], and Liu et.

al. examined a low pressure turbine cascade [12]. Both

papers compared the computed results primarily with

experimental pressure distributions.

In the present work the k-co model developed by Wil-

cox [13] was incorporated in the author's quasi-three-

dimensional (quasi-3-D) turbomachinery analysis code

[14]. The code includes the effects of rotation, radius

change, and stream surface thickness variation, and also
includes the Baldwin-Lomax turbulence model. The k-c0
model was chosen for several reasons. First, the effects of

freestream turbulence, surface roughness, and mass injec-

tion are easily included in the model [13]. Second, transi-
tion can be calculated using the low-Reynolds-number

version of the model [15]. Third, Menter has shown that

the k-co model does well for flows with adverse pressure

gradients [5,16]. Finally, the k-c0 model should behave

well numerically since it avoids the use of the distance to

the wall and complicated damping functions.
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Figure 1. Quasi-three-dimensional stream surface for a
compressor rotor.

This paper describes the quasi-3-D flow equations and

the explicit Runge-Kutta scheme used to solve them. The

paper also gives the k-t0 equations written in a quasi-3-D

form, gives the boundary conditions, and describes the

implicit upwind ADI scheme used to solve the turbulence

model equations. The model was tested on three cases and

compared to the Baldwin-Lomax model and to experimen-
tal data. The cases included a fiat plate boundary layer

with transition, a transonic compressor rotor, and a tran-
sonic turbine vane.

Quasi-3-D Navier-Stokes Equations
The Navier-Stokes equations have been developed in

an (m, 0) coordinate system as shown in figure 1. Here

m is the arc length along the surface,

dm 2 = dz 2+dr 2 (1)

and the 0-coordinate is fixed to the blade row and rotates

with angular velocity O.

The radius r and the thickness h of the stream surface

are assumed to be known functions of m. The equations

have been mapped to a body-fitted coordinate system, sim-

plified using the thin layer approximation, and nondimen-

sionalized by arbitrary reference quantities Po' Co' and

I.to . The Reynolds number Re and Prandtl number Pr are

defined in terms of these reference quantities. The final

equations are given in [14] and are summarized below.

Otq+_E+Orl_F-Re-ls), , = K (2)

where

q = J-l[p, pu, pvr, e] T

K = J-1IO, K2, 0 , OlT

S = J-I[o, s2, $3,$41 T

(3)

0. ]
j-1 puU + _mP

E = (pvU+_oP)r I

( e + p) U + _orfIpJ

pV

F = j-I puV+ rim p

(pvV + _oP) r

( e + p) V+ rlorfI l

1 (u z + vZ) ]e = p [CvT+

is the total energy per unit volume,

1 v2)lp = (7-1)[e-_(u2+

is the pressure,

hat l dh
r._m= ldr_.[_, and w = -
r rdm" h hdm

are derivatives of the streamtube geometry, and

(4)

(5)

(6)

(7)

(8)

K2 (pv2 _ -1 "_rm (p Re-t633]_ (9)= +p-l,(e CY22)r+ -

The viscous fluxes are given by

S 2 = rlmC_ll +rloCrl2

S3 = (1]m(_12 + "1"100"22) r (10)

I.t 2
S4= (T-- i)'Pr( TIm+ r12] _rla2 + uS2 + vS3

a2 = Vp/p is the speed of sound squared. Using Stokes"

2
hypothesis, _. = -gll, the shear stress terms are given by

fill = 211OmU+ _,V . _"

211 (OoV + urm) + _.V .0"22 = r

0"33 --- 21.tu_ + XV. _' (11)

o_2= _tIO,.v-vr+ !oou)

2 .___] + _ov ]_,V. ' = -_12[OmU + U(_ + hm

U and V are relative contravariant velocities
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u = _mu + _e"
(12)

V = _tau + TloW

where w is the relative tangential velocity, w = v - rO.

The 0-metrics are scaled by 1/r and the Jacobian is

scaled by rh. The metric terms are found using central

differences and

,r,.-1n L-o m /rJ (13)

J = [rh (m_0rl - mrl0 _) ] -1

The effective viscosity is

= gL + gT (14)

where the molecular (laminar) viscosity I.tL is evaluated

using a power law function of the temperature, and the tur-

bulent viscosity [J'T is evaluated using either the Baldwin-

Lomax model [1] or Wilcox's k-co model [13, 15]. Minor
modifications to the coefficients and blending functions

used in the Baldwin-Lomax model are described in [2].

Boundary Conditions

At the inlet the total pressure, total temperature, and

tangential velocity component are specified and the
upstream-running Riemann invariant based on the axial

velocity is extrapolated from the interior. At the exit, three
of the four conserved variables are exwapolated and the 0-

averaged pressure is specified using the method described

by Giles in ref [17]. Periodic boundaries between the

blades are solved like interior points using a dummy grid
line outside the domain.

Multistage Runge-Kutta Scheme

The flow equations are discretized using finite differ-

ences and solved using an explicit Runge-Kutta scheme.

A spatially-varying time step and implicit residual

smoothing axe used to enhance convergence. Details of
the solution scheme used here are given in (18) and are

described briefly below.

The discrete equations are solved using the explicit

multistage Runge-Kutta scheme developed by Jameson,

Schmidt, and Turkel [19]. A four-stage scheme is used.

For efficiency, physical and artificial dissipation terms are

computed only at the first stage. The Baldwin-Lomax

model is updated every five time steps. The k-(o model is

usually updated every two time steps with twice the At of

the flow solution.

The spatially-varying time step is calculated as the
harmonic mean of inviscid and viscous components in

each grid directional.

Artificial dissipation consisting of blended second and

fourth differences is added to prevent point decoupling

and to enhance stability. Eigenvalue scaling, as introduced

by MartineUi and Jameson [20] but modified by Kunz and

Lakshminarayana [8], is used to weight the artificial dissi-

pation in each direction. The scaling is based on a blend
of the one-dimensional time step limits at each point. The

artificial dissipation is also reduced linearly by grid index
near the wall and wake centerline to minimize the effects

on the boundary layer.

The explicit four-stage Runge-Kutta scheme has a

Courant stability limit of about 2.8. Implicit residual

smoothing introduced by Jameson and Baker in [21] can
be used to increase the time step, and hence the conver-

gence rate, by a factor of two to three. On high aspect

ratio grids the stability limit is dominated by the grid spac-

ing in the finest direction, and it is sufficient to use implicit
smoothing in that direction only. The stability analysis

given in [21] is used to calculate the smoothing parameter

required at each point, then the same Eigenvalue scaling
used for the artificial dissipation is used to reduce or elim-

inate the smoothing parameter in grid directions where it

is not needed. The use of Eigenvalue scaling for both the

artificial dissipation and implicit smoothing greatly
increases the robustness of the numerical scheme.

k-_ Turbulence Model

The k-c0 turbulence model was first postulated by

Kolmogorov in 1942 and later independently by Saffman

in 1970 (see Wilcox's book [13] for references.) It has

been under development by Wilcox for many years and is

described in detail in [13]. The model solves two turbu-

lence transport equations for the turbulent kinetic energy k

and the specific dissipation rate c0. The model has a basic

formulation for fully turbulent flows that satisfies the law

of the wall without knowledge of the distance to the wall

or complicated near-wall damping terms. There is also a

low-Reynolds-number formulation used for modeling
transition [15]. Boundary conditions can be specified to

simulate mass injection or surface roughness.

Most of Wilcox's development of the model used

boundary layer codes, but recently Menter has shown sev-

eral applications to Navier-Stokes codes [16]. Menter
found that the model exhibited strong dependence on

freestream values of co and proposed a somewhat ad hoc

fix. In this work many of Menter's suggestions for numer-

ical implementation of the model have been used, but his

fix for the problem of freestream dependence has not.

The quasi-3-D form of the k-equation has been

derived by writing the m- and 0-momentum equations in

non-conservative form, multiplying each by its fluctuating

3



velocity component, and Favre averaging. The usual tur-

bulence modeling approximations are made, i. e., the

Boussinesq model is used for the Reynolds stress terms,

pressure work, diffusion, and dilatation are all neglected,
and turbulent dissipation is taken to be proportional to

k x to. The production term is written in terms of the vor-

ticity magnitude using Menter's suggestion [16]. Source

terms that arise from the quasi-3-D equations are

neglected. The to-equation is derived from the k-equation

by dimensional considerations. Wilcox's constants are
used without modification. The final form of the model

equations is as follows:

_,q+U_q+ V_rlq-RCl JG = I (p-D) (15)
P P

where

q = [k, o)] T (16)

_tr = (x"pk (17)
to

The molecular plus turbulent diffusion terms G are

written using the thin-layer approximation giving

(18)

Menter's form of the production terms is used [16].

(19)

where

rr a= 8,nv- 8e u + v-- (20)
T

is the vorticity. The destruction terms are given by

p J

The baseline k-to model has five coefficients:

[3 = 3/40, [3" = 9/100, (r = 1/2, (r*= 1/2, ct = 5/9,

and the trivial constant o_° = 1.

The low-Reynolds-number model replaces three of

the constants with the following bilinear functions of the

turbulence Reynolds number Re T:

6*= (9/100)F_, ct= (5/9) (Fa/FIX) , and co*= Fix,

where

5/18 + (ReT/RI3 ,) 4
FI3 =

1 + (ReT/R p) 4

a 0 + ReT/Rto

Fct = 1 + ReT/R(o

c(_ + ReT/R k

Fix = I+ReT/R _

Re T = pk
_tL0)

(22)

with % = 1/10, % = 13/3 = 1/40,

and RI3 = 8, R_ = 27/10, R k = 6.

Boundary Conditions

At the inlet the turbulence intensity Tu and turbulent

viscosity IxT are specified. Then k and co are found from

k = 3Tu2U.2
2 an

O) --- C{*pk

l.t7-

(23)

where (x* = 1 for the baseline model or ix* = F_t for the

low-Reynolds-number model. Substituting equation (22)

for ix" into equation (17) for I.tT gives a quadratic for

Re T . The solution is

(24)

and co may be found from

to = __EL_ (25)
l.tLRe T

A turbulent length scale can be defined using (17) as

l.tT ct*P-_k = p,g_,----_-'--,: p,a_l (26)

The effects of varying the inlet values of to or l is dis-
cussed with the results.

On solid walls k = 0, and co is set using Wilcox's

roughness model.
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where

= _ R R _y wan
(27)

I( )2 tk ) < 25
s R = (28)

[ _ k_ >25J

and k_ is the equivalent sand grain roughness height in

turbulent wall units. For all results shown here k_ was set

to 5, giving a hydraulically smooth surface.

To avoid numerical difficulties near leading edges

where gtx becomes large, an upper limit was imposed on

to using a boundary condition suggested by Menter [16].

10 6v

COmax = _-_ x _ (29)

where Ay is the grid spacing at the wall.

k and co were extrapolated at the exit and treated as

periodic across trailing edge wake cut lines and between
blade rows.

ADI Solution Scheme

An alternating direction implicit (ADI) scheme was
used to solve the k-co equations. An implicit scheme was

chosen so that the equations could be updated less often

than the flow equations without stability problems, and
also because the k-o equations are dominated by complex

source terms which are evaluated only once in an ADI

scheme, but potentially at every stage of a Runge-Kutta
scheme.

Equation (15) may be written as

_tq = -[U_q+ V_q-Re-I_nG-_(P-D) 1 (30)

Using first-order backward Euler time differencing

and linearizing the right hand side about the previous time

step gives

1
{I+ At[UO_ + V_-Re-I_3lqG'-_(P'-D') ] } Aq

=-At[U_q+V_lq-Re-I_G-_(P-D) 1
(31)

where primes indicate Jacobians. The advective terms are

approximated using first-order upwind differences.

UO_q = U + (qi, j- qi- 1,j ) - U" (qi, j - qi + l,j )

1
= _ (U+-IU1)

(32)

The diffusive terms (18) can be written as

2

G = j L(_t+_sl.tT)0nto j = Lgn@ncoj

Since cr* = er = 1/2, gk = gco = g, and the Jacobian

G v' is simply

G'Aq = _-_Aq = L_A_ (34)

The diffusive terms are approximated by second-
order central differences.

1
bngbnk = _ [ (gi, j + l + gi, j) (ki,j + 1 - ki, j) (35)

+ (gi, j- 1+ gi, j) (ki,j- 1 - ki,j)]

The difference approximations (32) and (35) are diago-

nally dominant and have zero row sum, which according
to Baldwin and Barth [22], makes the implicit operator an

M-type matrix with a non-negative inverse.

Menter's linearization is used for the source terms

[16]. The production terms are treated explicitly, i.e.,

P" = 0. The destruction terms are linearized using

(36)
The term in the upper right comer 13"k is the only cou-

pling between the k and co equations. Here the term has
been neglected and the equations are solved uncoupled
from each other and from the flow equations.

Equation (31) is solved using an approximate factor-
ization.

[I + At(U_ + _)] EI + At(V_n-Re-I_nGv')IAq

] -D)]=-At[U3_q+V_nq-Re-X_Gv-_(P
(37)

The destruction terms D" are included with the

streamwise _ operator. Treating the destruction terms

implicitly improves the diagonal dominance but gives the

implicit operator a nonzero row sum.
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Figure 2. Theoretical and computed skin friction for a
flat plate boundary layer.

The Baldwin-Lomax and k-co models have both been

coded fairly efficiently. A turbulent flow solution updat-
ing the Baldwin-Lomax every time step model takes 1.53
times as long as a laminar solution. Past experience has
shown that it is sufficient to update the Baldwin-Lomax
model every five time steps, reducing the CPU time to
about 1.1 times that of a laminar solution. A solution

updating the k-o) equations takes 1.6 times as long as a
laminar solution. Some cases have been successfully

computed updating the k-to equations every five time steps

(with five times the At of the flow solution), making the

k-co model nearly as fast as the Baldwin-Lomax model.
Other cases failed to converge unless the k-co equations
were updated every other time step, and that strategy has
been used for all results reported here. The net result is
that a flow solution with the k-co model takes about 1.18

times as long as a solution with the Baldwin-Lomax
model.

Results

Flat Plate Boundary Layer

A turbulent flat plate boundary layer test case was
used to verify the code. The flow had a Mach number of

0.3, a Reynolds number based on plate length of 107 , and

a freesu_arn turbulence of one percent. The grid had 127

points streamwise with 12 points upstream of the leading
edge, and was stretched exponentially to resolve the tran-
sition region. There were 41 points above the plate with a

wall spacing of y+ = 2 to 4.

Figure 2 compares the computed skin friction using
both the Baldwin-Lomax and k-o) models to a 1/5 power

35 " ""''="¢lrl" " ' ...... ! ........ I ........

30 _

A + .
25 ,,

10

5 f + k-(o model

•J zx Baldwin-Lomax model

10 0 101 10 2 10 3 04

y+

Figure 3. Theoretical and computed velocity profiles for
a fiat plate boundary layer.

20

u ÷

15

law correlation for laminar flow and a 1/7 power law cor-
relation for turbulent flow. The k-co results agree closely
with the turbulent correlation and the Baldwin-Lomax

results are slightly low.

The Baldwin-Lomax model was run with the transi-

tion model given in their original paper [1], that is, the tur-
bulent viscosity was calculated for each grid line but set to
zero for the whole line if the maximum was less than

cmutm = 14 times the laminar viscosity. The Baldwin-

Lomax model transitions at Re x = 3x105 , while the k-c0

model transitions at Re x = 5xl05. Both results are

within the experimentally observed range. The k-co

model transition point was found to be strongly dependent
on the freestream turbulence level, but fairly independent
of the freestream value of (o. However, the transition point
calculate for a turbine vane shown later was found to be

very sensitive to the freestream value of (o. The Baldwin-
Lomax transition point was strongly dependent on the
value of the cutoff parameter cmutm, suggesting that this
parameter could be calibrated to simulate freestream tur-
bulence effects.

Figure 3 compares computed velocity profiles located
at the end of the plate to Spalding's composite sublayer/
law-of-the-wall profile. Both results agree closely, but the
Baldwin-Lomax profile has a slighdy stronger wake com-

ponent.

Transonic Compressor Rotor

The transonic compressor rotor describedby Suder et
al. [3] was used to test the quasi-3-D effects in the model.

6
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The rotor was tested experimentally at NASA Lewis
Research Center using both laser anemometry and con-

ventional aero probes.

A section of the rotor at 70 percent span was ana-

lyzed. The radius was specified as a line 70 percent of the

way between the hub and shroud, and the stream surface

thickness was specified as the local distance between the
hub and shroud, normalized to one at the inlet. A meridi-

onal view of the streamtube is shown in figure 1. A C-type

grid was used with 319 points around the blade and 45

points away from the blade. The grid spacing gave y+ < 2

over most of the blade. The calculations were run 2000

iterations, which took about 3.25 minutes for the k-0)

model on the Cray C-90 called eagle at NASA Ames
Research Center.

Figure 4 compares contours of relative Mach number

computed with the k-t0 model (the Baldwin-Lomax model

gives identical contours) to contours measured experimen-

tally using laser anemometry. The inlet Mach number is

about 1.4. The flow passes through a weak upstream-run-

ning wave system, then through a strong normal passage
shock, and leaves the rotor at about Mach 0.8. The com-

puted Mach number behind the normal shock is somewhat
lower than the measured values. This is partly due to the

assumed stream surface but may also be partly due to the

inability of either turbulence model to capture the shock-

boundary layer interaction correctly.

One motivation for using a turbulent transport model

was that algebraic models frequendy fail to find the cor-

rect length scale and thus give nonsmooth values of _tr

[2]. Occasionally nonconvergence or instability problems

can be traced to poor numerical behavior of the turbulence

model. Figure 5 shows contours of i.tT computed using

the Baldwin-Lomax model (left) and the k-0) model

(right.)

Figure 4 also shows that the computed results seri-

ously underpredict the wake spreading. This is shown

quantitatively in figures 6 and 7. Figure 6 compares com-

puted and measured near-wake profiles about 0.28 chords
downstream of the trailing edge while figure 7 compares

far-wake profiles about 2 chords downstream. The two
turbulence models give surprisingly similar results, espe-

cially considering the erratic behavior of the Baldwin-

Lomax model seen in figure 5.

The computed wakes are both narrower and deeper

than the measured wakes. Wilcox has shown in [13] that

his model gives the best prediction for planar wake

spreading as coin_0. This limit corresponds to

!_T _ **, which seems unreasonable for an inlet value.

Varying win by five orders of magnitude had very little

effect on the computed wake spreading. The freestream

turbulence was set to three percent, and doubling it had lit-

de effect on the wake spreading.

Transonic Turbine Cascade

A transonic turbine vane tested by Arts, et al. [23] was

computed as a third test case. The vane was tested experi-

mentally in the Isentropic Light Piston Compression Tube

Facility at the yon Karman Institute. The facility has inde-

pendent control over the exit Reynolds number Re23 s , the

exit Mach number, M2j s , and the inlet turbulence inten-
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furb'me vane.

sity Tu. Surface pressures were measured with static taps,

and wake total pressure profiles were measured with a

high-speed traversing probe. The vanes were initially at
300 K and the freestream temperature was 415 K.

Unsteady blade surface temperatures were measured dur-

ing a run using platinum thin film gauges, then convened

to heat fluxes using a one-dimensional semi-infinite-body
model.

For the computations a C-type grid was used with 383

points around the vane and 49 points away from the vane.

The grid spacing gave y+ < 1.5 over most of the vane.

Blade shapes and computed Mach contours for

.VI2,is = 0.9 are shown in figure 8. The flow accelerates

from a Mach number of about 0.15 at the inlet to about 0.9

at the exit.

Surface heat transfer was converged to plotting accu-

racy in 3000 iterations in fully turbulent regions. Laminar

parts of the flow took longer to converge, so all calcula-
tions were run 5000 iterations. Solution times were about

eight minutes per case on the Cray C-90 computer. A typi-

cal residual history is shown in figure 9. The k-to calcula-

tions converged monotonically, but with the Baldwin-
Lomax model the maximum residual oscillated near the

round trailing edge.

o
lo , , , ,

max.

lO

Baldwin-Lornax

•._ 'lTnS

lo-8
k-__

I I I I

0 1000 2000 3000 4000 5000
Iterations

Figure 9. Residual histories for the VKI turbine vane
computations.

Computed distributions of isentropic surface Mach

number are compared to experimental data for M2,is =

0.875 and 1.02 in figure 10. The Baldwin-Lomax and k-o)

models give identical results and are not shown separately.

The subsonic results agree very well with the experimental

data. The transonic results slightly underpredict the Mach

number on the rear (uncovered) part of the suction surface.

All subsequent results are for the subsonic case.

Computed wake profiles located 43 percent of axial

chord downslream of the trailing edge are compared to the

experimental data (digitized manually from [23]) in figure

11. Again the computed wakes are narrower and deeper
than the measured wakes, but here the k-a_ results are

slightly better than the Baldwin-Lomax results.

Figures 12 - 15 show the effects of various parameters

on surface heat transfer coefficient H [W/(m2K )]. In

each figure the abscissa is the arc length S [mm] along the

vane surface. Figure 12 compares computations using the
baseline k-0_ model, the low-Reynolds-number k-co model,

and the Baldwin Lomax model to experimental data for

= 1xl06 and Tu = 4 percent. Triangles show theRe2, is

experimental data. The baseline k<0 solution is fully tur-

bulent on the suction surface giving high values of H. The

pressure surface has a highly favorable pressure gradient

and acts laminar over part of the chord, transitioning near

S = -20. The low-Reynolds-number k-o> solution remains

laminar on the pressure surface and transitions near the

measured transition point on the suction surface; however,

the transition point was forced by choice of ].tT.in, as dis-

cussed later. The Baldwin-Lomax solution agrees closely

with the low-Reynolds-number k-0) solution. As dis-

cussed with figure 14, the laminar parts of the flow have
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augmented heat transfer due to freestream turbulence that
none of the models predict.

Figure 13 shows the effects of I.tT,in or the corre-

sponding length scale lin on H for the same flow condi-

tions. The inlet turbulent viscosity was varied by about 3

orders of magnitude to produce solutions that ranged from
fully laminar to almost fully turbulent. Only a small range

of values of _T,in gave transition near the measured loca-

tion. Corresponding turbulence length scales are shown
on the figure. The length scale that gives the best transi-

tion location, lin = 3.5×10 -2 , is about 1/1600 times the

pitch or about 7 times the grid spacing at the wall. All
subsequent calculations were run with this length scale.

Although this strong dependence on IXT,inis disconcerting

since appropriate values are not known in advance, Wilcox
points out that transition in real flows is not simply a func-
tion of Tu, but is also frequency dependent [15]. He also
suggests that two coefficients in the low-Reynolds-number
model could be adjusted to better match other flows,

although this has not been attempted here.

The effects of freestream turbulence intensity Tu are
shown in figure 14. The effect on suction surface transi-
tion location is modeled reasonably well by the low-Rey-
nolds-number k-co model. The experimental data shows a
strong augmentation of heat transfer at the leading edge
and on the pressure surface as Tu is increased. Although
the low-Reynolds-number k-co model depends directly on
Tu, in laminar regions the model gives values of turbulent
viscosity that are much too small to affect the heat transfer.
Boyle has added algebraic correlations to the Baldwin-
Lomax model to simulate freestream turbulence effects

[4]. These correlations could be added to the k-co code,

but they do involve the distance from the wail.

The effects of Reynolds number Re2j s are shown in

figure 15 for Tu = 4 percent. The data shows a large

increase in heat transfer with Re2j S. The k-c0results show

qualitative agreement, but the magnitude of the heat trans-
fer is underpredicted due to the failure of the model to pre-
dict freestream turbulence effects. Effects on suction

surface transition location are overpredicted, and predicted
transition is too abrupt. The data shows transition on the
pressure surface at the highest Reynolds number that is not

predicted, although a small change in I.t.r,tn does cause

pressure surface transition, as shown in figure 13.

Concluding Remarks
Wilcox's k-o) turbulence model has been added to a

quasi-3-D Navier-Stokes analysis code for turbomachin-
ery. The code includes the effects of rotation, radius
change, and stream sheet convergence, and also included

the Baldwin-Lomax turbulence model. The quasi-3-D
flow equations and boundary conditions were described.
An explicit multistage Runge-Kutta scheme with spa-
tially-varying time step and implicit residual smoothing
was used to solve the flow equations. The quasi-3-D form
of the k-c0 model equations and boundary conditions were
also described. An upwind implicit ADI scheme was used
to update the turbulence model equations uncoupled from
the flow equations. The numerical scheme was quite
robust, but about 18 percent slower than the Baldwin-
Lomax model.

Calculations were made for three test cases: a flat

plate boundary layer with transition, a transonic compres-
sor rotor with significant quasi-3-D effects, and a transonic
turbine vane. The fiat plate calculations agreed very well
with theory for both turbulence models. Transition predic-
tions were reasonable for both models and suggested that
the Baldwin-Lomax transition model could be calibrated

to simulate free stream turbulence effects. The compres-
sor rotor calculations showed very close agreement
between the two turbulence models, but both models

failed to capture the measured wake spreading. The tur-
bine calculations showed very good agreement with mea-
sured surface pressures for both turbulence models.
Predicted wake profiles were thinner and deeper than mea-
sured profiles, although the k-to model gave marginally
better results. The Baldwin-Lomax model, the baseline k-

comodel, and the low-Reynolds-number k-t0 model were
compared for heat transfer calculations. The Baldwin-
Lomax model did reasonably well considering the simple
transition model used. The low-Reynolds-low-Reynolds-
numnumber k-co model showed a high sensitivity to inlet

values of 0_,expressed as an inlet turbulent viscosity or
length scale which are not generally known. The k-co
model was able to capture the effects of inlet turbulence
intensity on transition but not on augmentation of heat
transfer in laminar regions. It may be possible to model
this effect with a simple algebraic model. Effects of Rey-
nolds number were predicted qualitatively.

The k-o model exhibited some attractive numerical

properties, but for the cases considered here, predictions
were not decisively better than those made with the Bald-
win-Lomax model. Other test cases may identify areas
where the k-co model is significantly better than the Bald-
win-Lomax model. Future work will extend the k-co
model to three dimensions where algebraic models are

poorly defined and difficult to implement.
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