
N96-14913

The Virtual Windtunnel: Visualizing Modern CFD Datasets
with a Virtual Environment

Steve Bryson, Computer Sciences Corporation
Applied Research Branch, Numerical Aerodynamic Simulation Systems Division

NASA Ames Research Center, Moffett Field, Ca. 94035-1000
bryson@nas.nasa.gov

Note: This paper has been accepted for presentation at VRAIS '93. Seattle Washington

Abstract

This paper describes work in progress on a virtual environment designed for the visualization
of pre-computed fluid flows. The overall problems involved in the visualization of fluid flow are
summarized, including computational, data management, and interface issues. Requirements for
a flow visualization are summarized. Many aspects of the implementation of the virtual windtun-
nel were uniquely determined by these requirements. The user interface is described in detail.

1. Introduction

The virtual windtunnel [1][2] is the application of virtual reality interface techniques to the
problem of the visualization of the results of computational fluid dynamics (CFD) computations.
These results are typically vector and scalar fields in three-dimensional space which change over
time. CFD datasets are typically extremely complex, involving time and space-varying structures
such as vortices, recirculation, and oscillation.

It was expected that the three-dimensional display and control offered by virtual environment
systems would greatly facilitate the investigation of fluid flow data sets, allowing the researcher to
explore the data directly. While these expectation have been met, the requirements of flow visual-
ization and the requirements of virtual environment systems were often at odds, forcing compro-
mises between the two sets of requirements. These compromises were critical for the success of
the virtual windtunnel and are discussed in this paper. The other topic is the design of the inter-
face which facilitates the visualization task.

The virtual windtunnel is a work in progress. During 1993 it is expected that the virtual wind-
tunnel will be released as a tool for use by a limited user community at NASA Ames. As it is not
currently in general use, we can offer only preliminary evaluations of its actual utility. Even in its
preliminary stages, however, it has been widely demonstrated and has received an enthusiastic
response from both the fluid research and the computer graphics communities.

2 Requirements for the Virtual Windtunnel

The virtual windtunnel is at the intersection of two highly demanding applications of com-
puter graphics: real-time interactive virtual environment systems and unsteady fluid flow visual-
ization. We shall discuss the requirements of these two fields separately.

2.1 Requirements for Unsteady Fluid Flow Visualization

The visualization of modern unsteady fluid flow data sets must confront the following issues:

• Data management: The daiaseis are often in the several gigabyte size range. This includes several limesteps

390



of vector and scalar data. The data sets addressed by the virtual windtunnel are defined on several stretched,
overlapping grids per timestcp. The grids are stretched 10 conform to the body of the aircraft around which the
air is flowing.

• Computation: The visualization techniques, such as those based on particle integration (streamlines, streak-
lines, and particle paths) (figure 1) and isosurfaces, require computations using the CFD data. The computa-
tions must be sufficiently accurate to reflect flow phenomena. These computations can be considerable, and
for some visualization techniques, i.e. particle paths, potentially requires unpredictable access to the entire data
set

• Graphics: The results of the visualization computations must be rendered with sufficient accuracy to represent
the flow phenomena. Some visualization techniques, i.e. streamlines, can be rendered as simple lines. Isosur-
faces, however, can contain several hundreds of thousands of polygons.

Complex flows may require several visualization displays to be operating simultaneously, fur-
ther compounding the computation and graphics problem.

• Cooperative visualization: The fluid flow community, like any scientific community, operates by cooperative
investigation of phenomena. Thus a flow visualization system should support shared, cooperative visualiza-
tion.

• User acceptance: Flow researchers will use a system when the difficulties and training investment are out-
weighed by the advantages of the visualization system. This means that as much functionality as possible
should be included, with no features that do not contribute to that functionality. Difficulty of use should be
kept to an absolute minimum.

The benchmark data set used for the virtual windtunnel system is that of a simulated harrier
aircraft in hover [3]. This data set has 106 timesteps, with 18 grids/timestep for a total of
2,833,700 points per timestep, or 56 megabytes per timestep, with a total size of 5.6 gigabytes.

2.2 Virtual Environment Interface Requirements

Virtual environment systems rely on an illusion of immersion in an interactive three-dimen-
sional world. This illusion is typically attained through a head-coupled wide-field stereoscopic
display combined with a three-dimensional tracker and dataglove. To sustain the illusion and
allow useful interaction, the virtual scene must be rendered faster than about 8-10 frames per sec-
ond. The requirement of good three-dimensional interactivity and control further demands that
the time from when a user initiates an action such as movement of the hand to the time when that
movement is reflected in the display should be less than 0.1 seconds. Longer times significantly
impact user performance in tracking and pick and place tasks [4][5]. Thus if the user interaction
controls a visualization task, as is the case in the virtual windtunnel, all computation and display
involved in that visualization must take place within 0.1 seconds.

3 Implementation

Simultaneously meeting the requirements of large size data management, extensive computa-
tion, and extensive graphics within the virtual environment time constraints in the virtual wind-
tunnel required careful choice of software architecture, hardware, algorithms, and interface
design. This section will summarize the design choices that were made to meet these require-
ments.

3.1 Design Choices

The requirements listed in the last section were each met in different ways:

391



• Data management: The requirement that the data be accessed in apriori unpredictable ways within 0.1 sec-
onds forces the data to be resident in physical memory. No mass storage devices have sufficient bandwidth to
access even a single timestep within this time constraint. Example: a single timestep of only the velocity vec-
tor field data for the harrier data set described in section 2.1 is 36 megabytes in size, requiring a bandwidth of
360 megabytes per second. When the available physical memory is not sufficient to hold the entire data set, a
subset of the data must be chosen. This subset may be generated by either subsampling in time or specification
of a small volume of space.

• Computation: Panicle integration visualization techniques such as streamlines and particle paths are per-
formed by an adaptive second-order Runge-Kuna integration algorithm. The adaptive step size is chosen so
that the panicle integration takes n steps in a grid cell. The choice of n is controlled in real-time by the user.
The integration is performed in grid coordinates, where the coordinates represent actual indices into the data
array. In this way time-consuming lookups of the current location for each point of integration using the phys-
ical position grid is avoided. The points which are the result of the integration are converted into physical
coordinates for rendering via the position grid. When performing the integration, panicles may move from
one grid to another, invalidating the current computational coordinates (which are defined only for the current
grid). Finding the computational coordinates for the new grid requires a table search to convert the current
physical coordinates to the new computational coordinates. This extra computation effectively prohibits the
valorization of the panicle integration, severely impacting performance on vector processors. This choice of
integration method is capable of integrating several thousand panicles within the 0.1 second time constraint,
allowing the user to observe the paths change in real lime as the sources of the integrations are moved about
The marching cubes algorithm for the computation of isosurfaces is adaptively implemented, with the user
able to control the step size in computational coordinates.

• Graphics: The virtual scene in the virtual windiunnel contains the following: representation of an object, typi-
cally an aircraft, around which the simulated air is flowing; various visualization graphics; virtual tools such as
menus and sliders; reference markers such as the hand cursor and a floor/horizon reference. Isosurface and
object rendering may contain many more polygons than can be rendered within the lime constraint, requiring
subsampling, compromising quality of image for speed. The user has real-lime control over the amouni of
subsampling. The graphical representation of the paths thai arise from particle integration can be simple lines.
These lines become a performance bottleneck when the number of integrated points approaches 10,000. The
virtual tools can be turned on and off at will, avoiding scene clutter. The hand is represented by a simple three-
dimensional crosshair. An articulated hand model is not used to avoid performance overhead and to avoid
scene clutter.

3.2 Hardware

There were two hardware configurations implemented for the virtual windtunnel: stand-alone
and distributed. Each configuration used the same virtual reality interface hardware. The choice
of hardware architecture is primarily driven by the data management requirements. It is expected
that as the physical memory and computational power of workstations increases, the stand-alone
architecture will become the most useful architecture.

The stand-alone system was implemented on a single workstation, which performed the com-
putation, managed data, handled the I/O devices, and rendered the virtual scene in stereo to the
display (see figure 2). The primary workstation used is a Silicon Graphics 380 4D/VGX worksta-
tion with 8 33 MHz R3000 processors for a total computational performance of 37 megaflops and
256 megabytes of physical memory. This system has a graphics performance rated at 800,000
polygons/second. The software architecture separates the computation, rendering, and I/O collec-
tion into parallel processes using shared memory. In this way no one task slows another. This is
important as the graphics must update to reflect the new position of the user's head even though
new computations may not have completed. Also, collection of hand and head position can occur
as fast as possible. Currently the glove data is collected at 38 Hz, while the head position is col-
lected at 45 Hz.

392



graphics process

computation process

glove data collection process

head data collection process

Figure 2: Parallel processes in the stand-alone architecture.

The distributed system uses a Convex C3240 computer with four vector processors and one
gigabyte of physical memory for computations. Silicon Graphics VOX family workstations are
used for rendering the virtual scene and handling the virtual environment interface hardware. The
distributed architecture supports shared interaction, supporting two workstations with virtual
environment interfaces (see figure 3). The design of the distributed architecture is greatly facili-
tated by the use of the Distributed Library by Michael Gerald-Yamasaki [6]. The communications
between the Convex and the workstations is over the UltraNet, a gigabit network. Due to limita-
tions with the UltraNet interface card in the workstations, the UltraNet is capable of 13 mega-
bytes/second into the workstations. The primary motivation for the distributed architecture is the
access to the gigabyte of memory. The software architecture is shown in figure 4.

C Remote Supercomputer
(Computation and Data)

^—\j
workstation

(graphics and I/O
workstation

(graphics and I/O

Figure 3: Distributed shared architecture of virtual windtunnel

network I/O and graphics process

glove data collection process

head data collection process

UltraNet
computation process

SGI Workstation
Figure 4: Software architecture in distributed version of virtual windtunnel

Convex C3240

The choice of virtual environment display is forced by the requirement that the displayed
image be of as high a resolution as possible. The resolution of LCD-based head-mounted displays
was considered unacceptable for the purposes of flow visualization. The Fake Space Labs BOOM
IIC, a boom-mounted head-coupled stereoscopic display (based on a system described in [7]) with

393



1000x1000 pixel resolution under the wide field optics was chosen because of its superior display.
The BOOM IIC also has superior head-tracking capability via optical encoders at the joints of the
supporting boom structure. The ease of use of the boom is also a major advantage over head-
mounted systems, greatly facilitating user acceptance. The user interaction is via the standard
VPLDataglove Model II, which uses a Polhemus Isotrak three-dimensional tracker for hand posi-
tion and orientation, and fiber optic technology to measure the bend of finger joints. The virtual
environment interface is shown in figure 5.

3.3 Interface

All operations in the virtual windtunnel are performed with the Dataglove interface. There are
two classes of operations: direct manipulation of objects in the environment, and indirect control
via virtual menus and sliders (figure 6). All operations are performed with the glove using only
two gestures: grab (fist) and point.

Sources of particle integration are grouped into lines known as rakes. There can be several
rakes in the environment, each of which may contain sources for one or all of the particle integra-
tion types described in section 2. The rake is moved via direct manipulation. Grabbing the center
of the rake with the Dataglove causes the rake to move rigidly with the user's hand. Grabbing
either end causes the end grabbed to be moved while the other end remains stationary. A sphere is
drawn when the virtual hand is sufficiently close to a rake to grab pan of it, providing feedback to
the user (figure 7). This interface allows a rake to be positioned arbitrarily with arbitrary orienta-
tion. This method of controlling the orientation of the rakes was chosen over the use of the hand
orientation due to the limited range of motion of the human wrist.

Various aspects of the environment are controlled via virtual menus[8]. Making a point ges-
ture in empty space in the virtual environment causes a multi-level hierarchical menu to pop up in
three-dimensional space within the user's field of view. The menu remains as long as the point
gesture is held by the user. While the menu is up, the user's hand orientation information is used
to point at various menu items. Releasing the point gesture while pointing at a menu item causes
that menu item to be executed.

Rake parameters such as the number of panicle integration sources are indirectly controlled
via virtual sliders. These sliders exist in the three-dimensional environment and output values
determined by the user making a point gesture in the active region of the slider. The sliders can be
moved by making a grab gesture in the region of the slider. Sliders are toggled on and off via the
virtual menus.

Navigation within the environment uses a paradigm in which the user stays in one place and
moves the environment about. This is accomplished by making a grab gesture in empty space and
moving the entire environment with the motion of the user's hand. When combined with a vari-
able scale controlled via a virtual slider, this interface allows rapid and high-precision maneuver-
ing in the environment. The virtual tools such as menus and sliders are not effected by this
motion. The scale and grab paradigm is significantly easier to control than the point and fly navi-
gation paradigm.

To summarize, these are the following actions of the gestures in the virtual windtunnel:

context \ gesture

empty space

virtual slider

fist

move data

move slider

point

pop up menu

change slider value

394



context \ gesture

rake grab point

fist

move rake

point

no action

The extensive use of hand gestures read by the glove in the virtual windtunnel requires a
robust and reliable gesture recognition algorithm. This is accomplished using only the middle
joints of the four fingers. The values measured at the knuckle joints and the thumb are ignored.
First the raw values output by the Dataglove are calibrated to actual finger bend angles. Then the
angles read by the glove are compared with a lookup table, to identify if the gesture is either a fist
or a point. Recognizing only three gestures (fist, point, no gesture) allows forgiving and tolerant
gesture recognition. With this gesture recognition algorithm, new users require a few minutes
training and practice to make the gesture reliably. The glove can be calibrated from within the
environment, using only two gestures. The calibration process is controlled via buttons on the
BOOM HC display.

4 Conclusions

The virtual windtunnel system has successfully implemented a flow visualization application
in a virtual environment. While many refinements will be required to turn the virtual windtunnel
into a useful tool, the basic issues have been addressed and solved.

Acknowledgments

The virtual windtunnel has had many participants. Creon Levit and the author designed the
initial concept and prototype. The distributed architecture was developed by Michael Gerald-
Yamasaki and the author. Al Globus and Jeff Hultquist contributed computational code, and Rick
Jacoby and Diglio Simoni contributed interface code.

References

[1] Bryson, S. and Levit, C.," The Virtual Wind Tunnel: An Environment for the Exploration of Three Dimen-
sional Unsteady Flows", Proceedings of Visualization '91 San Diego, Ca, Oct. 1991, also Computer Graph-
ics and Applications July 1992

[2J Bryson. S. and Gerald-Yamasaki, M., "The Distributed Virtual Wind Tunnel", Proceedings of Supercompui-
ing "92 Minneapolis, Minn, Nov. 1992

[3] Smith, M., Chawla, K... and Van Dalsem, W., "Numerical Simulation of a Complete STOVL Aircraft in
Ground Effect", paper A1AA-91-3293, American Institute of Aeronautics 9th Aerodynamics Conference,
Baltimore Md. 1991

[4] Bryson, S., "Impact of Lag and Frame Rate on Various Tracking Tasks", Proceedings ofSPJE Conference on
Stereoscopic Displays and Applications, San Jose, Ca., Feb. 1993

[5] Sheridan, T. and Ferriell, W, Man-Machine Systems, MIT Press, Cambridge, Ma. 1974
[6] Yamasaki, M., Distibuted Library, NAS Applied Research Technical Report RNR-90-008, April 1990
[7] MacDowall, I., Bolas, M., Pieper, S., Fisher, S. and Humphries, J., Implementation and Integration of a

Counterbalanced CRT-based Stereoscopic Display for Interactive Viewpoint Control in Virtual Environment
Applications. Proceedings of the 1990 SPIE Conference on Stereoscopic Displays and Applications, Santa
Clara, Ca. 1990

[8] Jacoby, R. H., Using Virtual Menus in a Virtual Environment. Proceedings of the Symposium on Electronic
Imaging Science & Technology, International Society for Optical Engineering/Society for Imaging Science
& Technology, Volume 1668.

395




