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Abstract 

The BFS method for alloys is applied to the study of surface alloy formation. This 

method was previously used to examine the experimental STM observation of surface 

alloying of Au on Ni(UO) for low Au coverages by means of a numerical simulation. In 

this work, we extend the study to include other cases of surface alloying for immiscible 

as well as miscible metals. All binary combinations of Ni, Au, Cu and Al are considered 

and the simulation results are compared to experiment when data is available. The 

driving mechanisms of surface alloy formation are then discussed in terms of the BFS 

method and the available results. 
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I. Introduction 

A recent review article on alloy surfaces and surface alloys [1], indicates that crystallo

graphic studies are very limited - a few tens of binary systems and practically no ternary 

and higher systems - as are also theoretical predictions of general trends. The shortage is 

particularly noticeable for surface alloys. The recent finding of a single layer surface alloy of 

Au deposited on Ni(llO) [2] reaffirms the need for a better understanding of surface alloying 

and its consequences for related fields. Theoretical studies of this problem are also few and 

limited. Recently, with the advent of semiempirical methods, some interesting results con

tribute to a deeper insight of the surface structure of such systems. In this work we apply the 

BFS method for alloys [3] to the study of a group of systems to further verify the validity of 

the approach and to extract general rules to predict the behavior of more complex systems. 

The group of elements chosen - AI, Ni, eu and Au - have been tested with the BFS method 

in a variety of applications raising confidence in the parameterization used in this work. 

II. The BFS Method 

The simulations quoted in this work are heavily based on a previous study of Au on 

Ni(llO) [4], where we provided enough theoretical evidence to explain the surface alloying 

of these immiscible metals at low coverage, in agreement with experiment and an Effective 

Medium Theory examination of this phenomenon [2]. For the sake of brevity we refer the 

reader to previous papers on BFS and its application to alloy surface structure [4]. In 

particular, Ref. 4 provides details on the BFS method, the approach used in the simulation, 

its advantages and shortcomings. 
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The choice of elements studied was based on numerous successful applications of BFS, 

ranging from the defect structure of NiAI [5], segregation profiles of Cu-Ni alloys [6], the 

surface structure of Cu-Au and Ni-AI alloys [3], growth patterns of Au/Ni(HO) [4], and the 

analyisis of ternary and quaternary alloys of these elements [7]. 

The BFS method is based on the idea that the energy of formation of an alloy is the 

superposition of individual contributions Ei of non-equivalent atoms in the alloy [3]: 

(1) 

Ei has two components: a strain energy ES , computed with equivalent crystal theory (ECT) 

[3], that accounts for the actual geometrical distribution of the atoms surrounding atom i, 

computed as if all its neighbors were of the same atomic species, and a chemical energy 

EO - EOo (EOO is a reference energy), which takes into account the fact that some of the 

neighbors of atom i may be of a different chemical species. The ideas of ECT [3] are used 

to develop a procedure for the evaluation of the energy associated with this 'defect'. The 

coupling function 9i ensures the correct asymptotic behavior of the chemical energy, is defined 

as 9i = e-af, where ar is a solution of the BFS strain equation [3]. In the context of BFS, 

the terms 'strain' and 'chemical' represent quite different effects than the usually assigned 

meanings. For a better understanding of this work, we direct the reader to Ref. 3. Except 

for two parameters determined by fitting to experimental or theoretical alloy properties, the 

method relies on pure element properties. The parameters used in this work are listed in 

Ref. 7. 
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III. Results and discussion 

Instead of performing a Monte Carlo calculation to determine equilibrium configurations, 

we opted to study a large set of specific configurations, including some that are energetically 

unfavorable. By doing so, we expect to develop a better understanding of the ingredients 

responsible for a specific growth pattern. The simulation of growth of element A on a substrate 

B was performed on a slab of B atoms several layers deep with a (110) surface, by varying 

numbers of A atoms located in substitutional sites in the top or inner layers, or as adatoms on 

hollow sites. No atomic relaxations were allowed and no temperature effects were included. 

The results are given in terms of the energy of formation of a given configuration. as defined 

in Eq. (1). Let oH be the energy of formation per impurity atom (in eV latom) referenced 

to a pure B(110) surface: oH = (~H - ~Ho)INA' where ~H is the energy offormation of a 

given configuration, ~Ho is the corresponding value for a free B(llO) surface and NA is the 

number of impurity atoms. We now discuss the results of computer simulations (see Ref. 4 

for details) for AI B(IlO) (A, B = Ni, Cu, AI, Au) in light of existing experimental evidence. 

Where no experimental results are available, the BFS predictions are compared with other 

faces. A summary of the results is presented in Table 1. 

AI-Ni. The most comprehensive work on this system is that of Lu et al. [8] who found 

that slow vacuum deposition of Al onto unheated Ni(lOO) produces partially-ordered one

and two-layer thin epitaxial Al films. Slow deposition onto a hot Ni(lOO) substrate produce 

well-crystalized epitaxial films of Ni3AI(100). The alloy is not confined to just the surface 

layer, hence it is not a surface alloy. Deposition of Ni on AI(lOO) does not result in an 

ordered alloy. 
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The results of the BFS simulation - for AI/Ni(llO) and Nil AI(llO) - largely follow a sim

ilar pattern to that found experimentally for the (100) faces. For very low Al coverages on 

Ni(llO), the lowest energy states correspond to the insertion of Al atoms in the surface plane, 

tending to align patches of Ni3AI (110) surfaces as coverage increases up to 0.4 ML. Around 

and above 0.5 ML, the Al atoms form islands in the overlayer with little or no evidence for 

intermixing, continuing up to 1 ML coverage where a single Al adlayer is energetically favor

able. This zero temperature simulation for the Ni(llO) surface is similar to the experimental 

slow deposition onto unheated Ni(lOO). For Ni/ AI(llO), the BFS results indicate no surface 

alloying for any coverage, in agreement with experiment. 

AI-Cu. Barnes et al. [9] examined the growth ofCu films on AI(ll1) and (100), focusing 

on temperature dependent growth mechanisms. At 120 K growth was epitaxial with defects 

on AI(ll1) and disordered on AI(100), presumably due to higher roughness on the (100) 

surface. At 375 K, there is some, but not definitive evidence of intermixing at low coverages 

on both surfaces with the possibility of an ordered alloy on the (111) surface. At higher 

coverages (2 ML) the Cu film is epitaxial on the (111) surface and disordered on the rougher 

(100) surface. These results suggest that the growth on the rougher (110) surface should 

be more akin to the (100) results. Unfortunately, we found no experimental results for AI 

deposition on Cu surfaces. 

Our results are in agreement with the low temperature deposition results where no mixing 

is found. Moreover, for AI/Cu(llO) and Cui Al (llO) are in every respect identical to those 

found for the AI-Ni system: no surface alloy formation for Cui AI(llO) and the likelihood 

of a single layer Cu-AI alloy corresponding to a CU3A1(UO) surface. For concentrations of 

Cu close and above 75 % at. Cu, an ordered phase exists (at low temperatures) with a 
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fcc structure isotypic with Cu. Compared with typical Ni-Al energies for the same type of 

configurations, AI-Cu r~sults indicate the possibility that disordering is preferred over the 

bulk termination pattern observed in AI-Ni. 

Au-Cu. Palmberg and Rhodin [10] report the first case where a surface alloy form by 

diffusion was claimed. Later works by qualitative LEED [11] confirmed these results, finding 

also probable surface alloys for Au deposited on Cu(110) and Cu(lll). Several photoelectron 

diffraction experiments (12] indicate that beyond a single layer surface alloy, measurable 

amounts of Au exist in the second and third layers, as well as the possibility of growth of 

epitactic CU3Au through several layers. 

Hansen et al, using photoelectron diffraction and photoelectron spectroscopy, report 

the formation of a surface alloy (for low coverages, up to 0.5 ML) for Au/Cu(lOO) and its 

transformation or segregation into a eu overlayer (1 ML) at room temperature [11]. Wang 

et al. [13] reported that the two top layers of this system form two layers of CU3Au(100). 

For Au/Cu(llO), the only experimental evidence available was provided by Fujinaga et al. 

(11], which found a similar ordered phase on the surface corresponding to the (110) surface 

of the bulk CU3Au alloy. 

The BFS results predict similar behavior for the Au/Cu(lOO) in the (110) case. At low 

coverages, Au atoms are immersed in the Cu surface plane, whereas the displaced Cu atoms 

show a tendency to form islands elsewhere on the substrate. Au atoms tend to substitute 

perpendicular to the close-packed direction, indicating a tendency for the formation of an 

ordered surface alloy. In excellent agreement with experiment, for 0.5 ML Au coverage, the 

lowest energy states correspond to the coexistence of patches of CU3Au (110) surfaces and 

pure Cu islands. While the location of Au atoms in the correct sites is common to all these 
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low energy states, the difference between them arises only from the relative shape and location 

of the pure Cu islands formed by the Cu atoms ejected from the surface plane. Hansen raises 

the issue of the location of the excess Cu, acknowledging that this is still an open question 

from the experimental point of view. If the Cu islands were eliminated in the calculation, 

the ground state character of the ordered phase becomes even more apparent, leading us 

to conclude that the AujCu(llO) follows a very similar evolution than that observed for 

AujCu(100). The similarity with Hansen's model for AujCu(100) extends to the case of 1 

ML Au coverage, where BFS predicts that the lower energy state is the pure Au overlayer, 

indicating that above a certain critical coverage of around 0.5 ML , the dealloying process 

starts when the additional Au and the one segregated from the ordered surface alloy form a 

uniform overlayer on the Cu substrate. 

A u-Ni. An STM study has been performed on systems formed depositing Au on Ni(llO) 

[2] demonstrating the formation of a surface alloy. A complete BFS study of this system was 

reported in Ref. 4. 

Cu-Ni. Epitaxial layers of Cu on Ni(100) and the sandwich Ni-Cu-Ni(100) system have 

been studied by photoelectron diffraction [14], finding that the 'buried' Cu layer tends to 

diffuse rapidly onto the top layer at temperatures significantly lower than those needed for 

the mobility of bulk vacancies. The opposite approach, depositing Ni on Cu(100), was in

vestigated by Alkemade et al. [15] suggesting partial incorporation of Ni atoms in the Cu 

layer during deposition. Their work leads to a model for the formation of stable CuNi surface 

alloys on a Cu(100) substrate at high temperatures, in which both Cu (by segregation or by 

surface diffusion from regions which are not yet covered) and Ni (from the gas phase) are 

continuously incorporated in the outermost one or two atomic layers. Our BFS' simulation 
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results are not directly compara.ble to the experimental situation reported by Alkemade et 

al. [15] in that no growth beyond one single overIayer is allowed, added to the fact that no 

temperature effects are included in the calculation. However, the BFS results for Ni/Cu(llO) 

do indicate a tendency towards the formation of a two layer Cu-Ni alloy in the outermost two 

layers as configurations where Cu and Ni atoms mix are energetically favored against those 

where Ni atoms form a thin film on the Cu(llO) substrate with no intermixing. A similar 

effect is observed in the Cu/Ni(110) case, for which no experimental data is available for com

parison. We would expect that entropic effects can only lower the free energy increasing the 

likelihood for the formation of a thin CuNi film on Cu(llO), as is also observed on the (100) 

case. Moreover, deposition of Cu on Ni(llO) shows a reversal in behavior to other systems 

(Au/Ni, Au/Cu, etc.) where the larger atom shows a tendency to substitute smaller substrate 

atoms in the surface plane. For low coverages, the lowest energy state always corresponds to 

eu atoms distributed in the overIayer, a trend that continues up to 1 ML coverage. However, 

configurations that display intermixing of eu and Ni atoms are very close in energy, enough 

to expect that entropic effects might alter that delicate balance. 

Au-AI. No experimental data is available for this system. The Au-AI system is the only 

one of the 12 reported in this work where heats off ormation are negative for both Au/ AI(llO) 

and AI/Au(llO) except for very low coverages. A1/Au(llO) is characterized by the fact that 

for all coverages, adatoms tend to group in the overlayer with no intermixing, whereas for 

Au/ AI(llO) a very distinct pattern, only found for this system, is seen: the formation of an 

AI-Au-AI sandwich consistent with the formation of an ordered alloy of equal concentration 

of Au and AI. Such a phase is found in the phase diagram, although no specific structure has 

been recognized for such alloy. 
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IV. Conclusions 

There is an interest in being able to find a property which will predict the formation of 

surface alloys [16]. Recently, we and others [2,4] have proposed that the effective coordination 

may be such a property (Le. an atom A immersed in a substrate B has the same energy 

that it would have in an environment with an effective number of A nearest neighbors (rnA) 

at equilibrium nearest-neighbor distances). Conversely, an atom A would need to have neff 

B atoms at such distance in order to simulate the A-bulk environment. These concepts, 

based on the idea that a given element is in its lowest energy state at the coordination 

and lattice parameter of its ground state crystalline structure, only account for BFS strain 

energy effects but can be clearly taken as an indication of the driving mechanisms for surface 

alloy formation. The solution of the perturbation equations inherent in BFS [3] provide a 

direct evaluation of this quantity [4]. For a (110) face, the effective coordination rnA is given 

by rnA = n$(aB/aA)'PAe-aA (C B -CA)/...j2 and neff = n$N/rnA, where n. is the number of 

nearest-neighbors of an atom in a surface site (n$ = 7 for fcc (110) surfaces), N is the bulk 

coordination (N = 12 for fcc elements), aA and aB are the equilibrium values of the lattice 

parameter of pure A and B crystals and a and pare BFS parameters. This concept can 

be extended to layers below the surface. In Table 2 we show the values for these properties 

for insertion of an A adatom on a B(110) substrate, concluding that incorporation of the A 

into the surface is favored when the effective coordination for that atom approaches the bulk 

elemental coordination ( 12 for fcc elements). Of all the systems that form surface alloys, 

those with effective coordination for the second layer smaller than bulk coordination appear to 

form two-layers alloys: Ni/Cu (which is found to form a thin CuNi film on a Cu substrate) 
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and Au/AI (which forms a AI-Au-AI sandwich). Another interesting fact is that the ratio 

between neJ J and rnA shows a surprising degree of correlation with the type of intermixing 

that takes place: low values of this quantity (below 0.5) correspond to no alloy formation, 

values close to 0.5 (Cu-Ni, AI-Au) show a weak tendency for mixing and high values correlate 

with the formation of predominantly ordered alloys. To provide a more accurate description, 

the effective coordination concept should be extended to include chemical effects which would 

help explain the patterns formed at higher coverages. Necessarily, these concepts are valid 

to the extent that the BFS results properly reproduce what is seen experimentally. This 

analysis will be the subject of a forthcoming publication. In this paper we have shown that 

semiempirical methods can be, once tested against experimental data, a very useful tool for 

the atomistic description of surface alloys formation. In excellent agreement with experiment, 

these BFS calculations provide a useful initial step for the study of the energetics of these 

systems at the same time that they allow for a straightforward interpretation of the driving 

mechanisms. 
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11 



A B aA aB PA QA rnA neJJ Surf. alloy? 
Cu Ni 3.615 3.524 6 2.935 7.26 11.57 No 
Ni Cu 3.524 3.615 6 3.105 6.72 12.50 Yes 
Cu Au 3.615 4.078 6 2.935 5.52 15.22 No 
Au Cu 4.078 3.615 10 4.339 8.68 9.67 Yes 
Cu Al 3.615 4.050 6 2.935 5.61 14.97 No 
Al Cu 4.050 3.615 4 2.105 8.49 9.89 Yes 
Ni Al 3.524 4.050 6 3.015 5.25 15.98 No 
Al Ni 4.050 3.524 4 2.105 8.78 9.56 Yes 
Ni Au 3.524 4.078 6 3.015 5.16 16.28 No 
Au Ni 4.078 3.524 10 4.339 8.90 9.44 Yes 
Al Au 4.050 4.078 4 2.105 6.90 12.17 No 
Au Al 4.078 4.050 10 4.339 7.12 11.80 Yes 

Table 2: Surface (rnA) and bulk (neff) effective coordination for an element A in a B(110) 
surface lattice site (see text).The last column indicates if there is experimental evidence for 
intermixing. 

[6] B. Good, G. Bozzolo and J. Ferrante, Phys. Rev. B 48 (1993) 18284; G. Bozzolo, 

B. Good and J. Ferrante, Surf. Sci. 289 (1993) 169. 

[7] G. Bozzolo and J. Ferrante, J. Computer-Aided Mater. Des. (in press). 

[8] S. H. Lu, D. Tian, Z. Q. Wang, Y. S. Li, F. Jona and P. M. Marcus, Solid State 

Commun. 67 (1988) 325. 

[9] C. J. Barnes, H. Salokative, A. Asonen and M. Pessa, Surf. Sci. 184 (1987) 163. 

[10] P. W. Palmberg and T. N. Rhodin, J. Chern. Phys. 49 (1967) 134. 

[11] Y. Fujinaga, Surf. Sci. 86 (1979) 581; C. W. Graham, Surf. Sci. 184 (1987) 137; 

J. C. Hansen, M. K. Wagner and J. G. Tobin, Solid State Commun. 72 (1989) 319; B. J. 

Knapp, J. C. Hansen, J. A. Benson and J. G. Tobin, Surf. Sci. 188 (1987) L675. 

[12] D. Naumovic, J. Osterwalder, A. K. Aebi and L. Schlapbach, Surf. Sci. 287/288 

(1993) 950; D. Naumovic, A. Stuck, T. Greber, J. Osterwalder and L. Schlapbach, Surf. Sci. 

277 (1992) 235; ibid., Surf. Sci. bf 269/270 (1992) 719. 

12 



[131 Z. Q. Wang, Y. S. Li, C. K. Lok, J. Quinn, F. Jona and P. M. Marcus, Solid State 

Commun. 62 {1987} 181. 

[14] W. F. Egelhoff Jr., J. Vac. Sci. Technol. A 7 (1989) 2060; W. F. Egelhoff Jr. and 

D. A. Steigerwald, J. Vac. Sci. Technol. A 7 (1989) 2167. 

[15] P. F. A. Alkemade, W. C. Turkenburg and W. F. Van Der Weg, Nucl. Instrum. 

Methods B 15 {1986} 126. 

[16] E. I. Altman and R. J. Colton, Surf. Sci. Lett. 304 {1994} L400. 

13 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for Ihis colledion of information is estimated to average 1 hour per response. including the time for reviewing instructions. searching existing data sources, 
gathering and maintaining 1he data needed, and corf1)leting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of Information, including suggestions for reducing Ihis burden, 10 Washinglon Headquarters Services, Directorate for Information Operations and Reports, 1215 JeHerson 
Davis Highway, Sutte 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Projed (0704·0188), Washinglon. DC 20503. 

1. AGENCY USE ONLY (Leave blank) 12. REPORTDATE 13. REPORT TYPE AND DATES COVERED 

October 1995 Technical Memorandum 
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS 

Semiempirical Analysis of Surface Alloy Formation 

6. AUTHOR(S) WU-505-9~53 

Guillermo Bozzolo, John Ferrante, and Rodrigo Ibanez-Meier 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

National Aeronautics and Space Administration 
Lewis Research Center E-9982 
Cleveland, Ohio 44135-3191 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING 
AGENCY REPORT NUMBER 

National Aeronautics and Space Administration 
Washington, D.C. 20546-0001 NASA TM-I07098 

11. SUPPLEMENTARY NOTES 
Guillermo Bozzolo, Analex Corporation, 3001 Aerospace Parkway, Brook Park, Ohio 44142-1003 (work funded by 
NASA Contract NAS3-25776); John Ferrante, NASA Lewis Research Center; Rodrigo Ibanez-Meier, WSA Inc., Palo 
Alto, California 94301. Responsible person, John Ferrante, organization code 0130, (216) 433-6069. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 

Unclassified -Unlimited 
Subject Category 26 

This publication is available from the NASA Center for Aerospace Information, (301) 621-0390. 

13. ABSTRACT (Maximum 200 words) 

The BFS method for alloys is applied to the study of surface alloy formation. This method was previously used to 
examine the experimental STM observation of surface alloying of Au on Ni(llO) for low Au coverages by means of a 
numerical simulation. In this work, we extend the study to include other cases of surface alloying for immiscible as well 
as miscible metals. All binary combinations of Ni, Au, Cu and Al are considered and the simulation results are compared 
to experiment when data is available. The driving mechanisms of surface alloy formation are then discussed in terms of 
the BFS method and the available results. 

14. SUBJECT TERMS 

Surfaces; Alloys 

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 
OF REPORT OF THIS PAGE 

Unclassified Unclassified 

NSN 7540-01-280-5500 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

15 
16. PRICE CODE 

A03 
20. LIMITATION OF ABSTRACT 

Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 


