
NASA Contractor Report 198412
NASA-CR-198412
19960008042

Software Safety Progress in NASA

Charles F. Radley
Raytheon Engineers and Constructors
Brook Park, Ohio

October 1995

Prepared for
Lewis Research Center
Under Contract NAS3-26764

National Aeronautics and
Space Administration

I I11III1I 1I11 IIII 11111 II1II 11111 II11I I1II I11I
NF01028

OFr. 1 "1995 I
LANGLEY RESEARCH CENTER

~ l ..

r ,
...,

Abstract:

1IIIIIIIIIIIIIIIIi~lmfllj~II~~[~1111111111111111
3 1176014235189

Software Safety Progress in NASA

Charles F. Radley
Raytheon Engineers and Constructors

2001 Aerospace Parkway
Brook Park, Ohio 44142

Tel (216) 977-1492
Internet: charles.radley@lerc.nasa.gov

Fax: (216) 977-1495.

November 1995 is the scheduled publication date for the NASA Guidebook for Analysis
and Development of Safety Critical Software. Development of the guidebook has
substantially focused the thinking of the NASA Software Assurance community with
respect to high risklhigh value software applications. The guidebook has been developed
as a practical "how to" guide, to assist in the implementation of the recent NASA
Software Safety Standard NSS-1740.13 which was released as "Interim" version in June
1994, scheduled for formal adoption late 1995.

The Guidebook is in four main parts:

Section 2) System safety context
Section 3) Software Safety planning
Section 4) Development of Safety Critical Software
Section 5) Analysis of Safety critical software.

In addition there is an extensive glossary, appendices and list of references.

Each section is subdivided into a section for each of the following software lifecycle
phases: concept, requirements, architectural design, detailed design, and implementation.

Two complementary philosophies were adopted, a) elimination/reduction of faults/errors,
and b) fault tolerant techniques.

Both techniques are essential, because it is impossible to eliminate all faults and errors, so
some degree of fault tolerance will always be required. However, fault tolerance and
redundancy is expensive to implement, so elimination and reduction of faults should be
attempted to avoid unnecessary redundancy.

The earlier a fault is corrected in the lifecycle, the lower the cost. Faults identified late are
expensive to correct. So emphasis is given to correctness of requirements prior to their
implementation in design The most rigorous method of developing requirements is
"Formal Methods" which are discussed in some depth in an Appendix. However, Formal

1

Methods are expensive to implement, so discussion is provided of less costly but less
rigorous techniques, and when it is appropriate to use them. Formal Methods requires a
substantial investment in training, and procurement of logical tools. It translates traditional
human language (e.g., English) specifications into "High Order Logic" (HOL) lemmas
The HOL representation reveals defects such as ambiguity, contradictions, double
meanings, circular definitions and missing requirements.

Fault tolerance requires hardware redundancy, either parallel paths for "Must-work
Functions" (MWFs) or series inhibits for "Must-Not-Work Functions" (MNWFs). To
avoid common cause faults, the redundant paths or inhibits must be independent, using
dissimilar redundancy. For software to be independent, N-version programming should be
used, but this is expensive Different types of N-version programming protect against
different types of faults

Analysis techniques include Hazards Analysis, Fault Trees, Petri Nets, Dynamic
Flowgraphs, and Resources Guidance is provided on software design techniques and
practices.

Software safety costs money, and its value is poorly understood by financial managers.
The Guidebook provides guidelines for assessing how much of a program's resources
should be devoted to Software Safety as a function of the risk of system failure. These
guidelines are intended to assist decision makers to make an informed risk versus cost
assessment. Subsequently it will assist software developers and safety analysts to achieve
and verify the most appropriate degree of software safety.

Table 1. Guidebook Table of Contents

1. INTRODUCTION 7
1.1 Scope..... 7
1.2 Purpose 8
1.3 Acknowledgments 8
2 SYSTEM SAFETY PROGRAM ... 8
2.1 Preliminary Hazards Analysis (PHA).. 9
2 l.1 PHA Approach. 9
2.l.1.1 Identifying Hazards:................ 10
2.1.1.2 Risk Assessment.............. 10
2.l.2 Preliminary Hazards Analysis Process 12
2.1.3 Tools and Methods for PHA ... 14
2 2 Safety Requirements Flowdown..17
2 2.1 Relating Software to Hazards 17
2.3 Software Subsystem Hazards Analysis19
3. SOFTWARE SAFETY PLANNING ... 21
3.1 Software Development Lifecycle Approach........... 21
3.2 Scoping the Effort - Value vs Cost.................. 25

2

3 2.1 Full Scale Development Effort...25
3.22 Partial Development Effort.. 26
3.2 3 Categorizing Safety-Critical Software Sub-systems......... 26
3.3 Scoping of Software Subystem Safety Effort .. 28
3.3 1 Full Software Safety Effort.... 29
3 3 2 Moderate Software Safety Effort.31
3.3 3 Minimum Software Safety Effort .. 31
3.4 Software Safety Assurance Techniques for Software Development Phases 32
4 SAFETY CRITICAL SOFTWARE DEVELOPMENT40
4 1 Software Concept and Initiation Phase..40
42 Software Requirements Phase...42
4.2 1 Development of Software Safety Requirements.............................. 43
4 2 2 Generic Software Safety Requirements44
4.22 1 Fault TolerancelIndependence..45
4.222 Hazardous Commands .. 46
4223 Coding Standards47
42.24 Timing, Sizing and Throughput Considerations................. 47
42.3 Formal Methods - Specification Development..............48
4 3 Architectural Design Phase 50
4.3.1.1 N-Version Programming ... 52
4 3 1.2 Recovery blocks 52
4.3 1 3 Resourcefulness 53
4.3 1 4 Abbott-Neuman Components. 53
4.3 1 5 Self Checks. 54
44 Detailed Design Phase ... 56
4.4 1 Formal specification Development .. 57
45 Software Implementation.... 58
4.5 1 Coding Checklists.. 58
45.2 Coding Standards.. 59
4 6 Software Integration and Test.59
4 6 1 Testing Techniques 59
4.62 Software Safety Testing. 60
46.3 Test Witnessing: 61
4.7 Software Acceptance and Delivery Phase... 62
5. SOFTWARE SAFETY AN"AL YSIS 63
5.1 Analysis of the Software Requirements for Potential Hazards 63
5 1.1 Software Safety Requirements Flowdown Analysis.............. 64
5 1 1 1 Checklists and cross references.. 64
5.12 Requirements Criticality Analysis .. 65
5.1.2 1 Critical Software Characteristics67
5.1.3 Formal Specification Analysis 69
5 1 3.1 Hierarchy analysis..... 69
5 1.3.2 Control-flow analysis 70
5 1 3.3 Information-flowanalysis.. 70
5 1 3 4 Functional simulation models 70

3

5.1.4 Formal Inspections of Specifications. 71
5.1.5 Timing, Throughput And Sizing Analysis73
5.1 6 Conclusion. 74
5.2 ARClllTECTURAL DESIGN ANALySIS ... 75
5.2.1 Update Criticality Analysis .. 76
522 Conduct Hazard Risk Assessment ... 76
5.2.3 Analyze Architectural Design .. 77
5.2.3.1 Design Reviews 77
5.2.3.2 Animation/Simulation .. 77
5.2.4 Interdependence Analysis ... 78
5.25 Independence Analysis ... 78
5.3 Detailed Design Analysis 79
5 3.1 Design Logic Analysis 79
5.3 2 Software Fault Tree Analysis (SFTA) 80
5.3.2 1 Software Fault Tree Analysis Description .. 80
5.3.2.2 Goal of Software Fault Tree Analysis........81
5.3.23 Use of Software Fault Tree Analysis ... 82
5.324 Benefits Of Software Fault Tree Analysis. 84
53.3 Petri-Nets......88
5.3.3.1 Introduction to Petri-Nets... 88
5 3.3.2 Inverse Petri-Nets 89
533.3 Petri-Net Examples.. 90
53.4 Dynamic Flowgraph Analysis .. 98
53.5 Markov Modeling... 99
5.3.6 Design Data Analysis.. 100
5.3.7 Design Interface Analysis.... 100
5.3.8 Measurement of Complexity 101
5.3.9 Design Constraint Analysis.. 102
5.3.10 Safe Subsets of Programming languages 103
53.10.1 Insecurities Common to All Languages 103
5 3.10 2 Method of Assessment 104
53.10.3 C Language .. 106
5 3.10.4 Pascal Language 106
53.10.5 Ada Language .. 106
5 3.10 6 Insecurities in the Ada Language 108
53.10.7 Subset Ada.. 111
5.3.10.8 Conclusions 112
5.3.11 Formal Methods and Safety-Critical Considerations 112
5.3.12 Requirements State Machines ... 115
5.3.12.1 Characteristics of State Machines....................115
5.3.122 Properties of Safe State Machines ... 118
5.3.123 Input/Output Variables 119
5.3.12.4 State Attributes ... 119
5.3.12.5 Trigger Predicates..121
53 126 Output Predicates..122

4

5 3.12 7 Degraded Mode Operation " .. 123
5.3 12 8 Feedback Loop Analysis,. 123
5.3 12.9 Transition Characteristics.... " '" 124
5.3.12.10 Conclusions " 125
5.3 13 Formal Inspections126
5 4 CODE AN'AL YSIS 127
5.4.1 Code Logic Analysis '" ... 128
5.4 2 Fault trees..... 128
5 4.3 Petri nets. '"128
5.4.4 Code Data Analysis " '" 128
5.4.5 Code Interface Analysis 129
5.4 6 Measurement of Complexity ... 129
5.4 7 Design Constraint Analysis. '" 129
5 4.8 Code Inspection Checklists (including coding standards) ... '"130
5 4.9 Formal Methods 130
5.4.10 Unused Code Analysis 130
5.5 TEST AN'ALYSIS .. 131
5.5 1 Test Coverage 131
5 5 2 Test Results Analysis131
5.5.3 Independent Verification and Validation. '" '" 132
5 6 SOFTWARE OPERATIONS & MAINTENAN'CE....132
6. REFERENCES 133

Appendix-I: Restrictions on the Use of the Ada Language

Appendix-2' Formal Methods and Safety-Critical Considerations

Appendix-3: Acronyms and Glossary

Table of Tables

TABLE 2-1 HAZARD PRIORITIZATION - SYSTEM RISK INDEX. 11
TABLE 2-2 HAZARD CAUSES AN'D CONTROLS - EXAMPLES 19
TABLE 3-1 NASA SOFTWARE LIFECYCLE PHASES - REVIEWS

AN'D DOCUMENTS 22
TABLE 3-2 SOFTWARE SUB-SYSTEM CATEGORIES " 30
TABLE 3-3 REQUIRED SOFTWARE SAFETY EFFORT 31
TABLE 3-4 SOFTWARE REQUIREMENTS PHASE............. 34
TABLE 3-5 SOFTWARE ARCIDTECTURAL DESIGN PHASE 35
TABLE 3-6 SOFTWARE DETAILED DESIGN PHASE 35
TABLE 3-7 SOFTWARE IMPLEMENTATION PHASE36
TABLE 3-8 SOFTWARE TESTING PHASE 37
TABLE 3-9 DYNAMIC TESTING ... 38
TABLE 3-10 SOFTWARE MODULE TESTING .. 39
TABLE 4-1 FAULT TOLERAN'T PROBLEMS AN'D SOLUTIONS. 55

5

TABLE 5-1 SUBSYSTEM CRITICALITY MATRIX 68
TABLE 5-2 SUBSYSTEM CRITICALITY ANALYSIS REPORT FORM 72

TABLE OF FIGURES

FIGURE 2-1 PAYLOAD HAZARD REPORT FORM .. 15
FIGURE 2-2 PAYLOAD HAZARD REPORT CONTINUATION SHEET 16
FIGURE 5-3 SFTA GRAPmCAL REPRESENTATION SYMBOLS.. 85
FIGURE 5-4 EXAMPLE OF mGH LEVEL FAULT TREE. 86
FIGURE 5-5 EXAMPLE CODE FAULT TREE... 87
FIGURE 5-6 A PETRI-NET GRAPH 92
FIGURE 5-7 A PETRI-NET GRAPH WITH THE NEXT STATE SHOWN 93
FIGURE 5-8(A) REACHABILITY GRAPH.. 94
FIGURE 5-9 INVERSE PETRI NET 95
FIGURE 5-10 EXAMPLE OF STATE TRANSITION DIAGRAM.. 117
FIGURE 5-11 EXAMPLE RSM AND SIGNALS 120

1. INTRODUCTION

It is impossible to provide a complete synopsis of the 200 page guidebook in a single
conference paper Instead, we have selected a few key technical elements which are the
most significant recommendations for software developers and safety analysts

1.1 Scope

The NASA Guidebook for Safety Critical Software - Analysis and Development, was
prepared by the NASA Lewis Research Center, Office of Safety and Mission Assurance,
under a Research Topic (RTOP) task for the National Aeronautics and Space
Administration. The NASA Software Safety Standard NSS 1740 1 prepared by NASA
HQ addresses the "who, what, when and why" of Software Safety Analyses. This
Software Safety Analysis Guidebook addresses the "how to" The focus of this document
is on analysis and development of safety critical software The guidebook can also be
used for analysis and development of firmware which is software residing in non-volatile
memory, e g., ROM or EPROM

There are many different techniques described in the literature. Here they are brought
together, evaluated, and compared The guidebook addresses the value added versus cost
of each technique with respect to the overall software safety goals.

1.2 Purpose

The purpose of the guidebook is to provide an aid to the various organizations involved in
the development and assurance of safety critical software.

6

1.3 Acknowledgments

The material presented in the guidebook has been based on a variety of sources These
sources are too numerous to list here.

A special acknowledgment is owed to the NASAlCaltech Jet Propulsion Laboratory of
Pasadena, California, whose draft "Software Systems Safety Handbook" has been used
verbatim or slightly modified in several sections of the guidebook.

We also thank the American Society of Safety Engineers for permission to reproduce
portions of the paper. Gowen, Lon D. and Collofello, James S "Design Phase
Considerations for Safety-Critical Software Systems". PROFESSIONAL SAFETY, April
1995.

2. System Safety Program

A system safety program is a prerequisite to performing analysis or development of safety
critical software

It is often claimed that "software cannot cause hazards", however this is only true where
the software resides on a non-hazardous platform and does not interface with any
hazardous hardware

2 1 Preliminary Hazards Analysis (PHA)

The PHA is the first of a series of system level hazards analyses, whose scope and
methodology is described in the NASA NHB 1700 series documents, and NSTS 13830
Implementation Procedure for NASA Payload System Safety Requirements.

3 Software Safety Planning

This section discusses the level of effort for both software development support tasks, and
software analysis tasks to be performed by software development personnel, and software
safety personnel respectively. On the development side, the software safety engineer flows
safety requirements to the software developers and monitors their implementation On the
analysis side, the software safety engineer analyses software products and artifacts to
identify new hazards and new hazard causes to be controlled. The analysis and
development tasks follow the software development
lifecycle.

The level of effort required is related to the system risk index, based on severity and
probability of occurrence of hazards.

7

Table 3-4 Software Requirements Phase through Table 3-10 Software Module Testing
are modifications of tables that appear in the International Electrotechnical Committee
(lEC) draft standard IEC 1508, "Software For Computers In The Application Of
Industrial Safety-Related Systems". Their set of tables is the best known (but unpublished)
planning guide in existence for software safety.

LifeCycle
Phase

Concept
Initiation

Software
Requirements

Tasks and
Priorities

Table 3-4 Software Requirements Phase

Table 3-4 Software Requirements Phase

How to: How to·
Development Analysis
Tasks Tasks

Section 4 1 Section 5.1

Section 4 2 Section 5 1

Software Table 3-5 Software Architectural Design Section 43 Section 5.2
Architectural Design

Software Table 3-6 Software Detailed Design Phase Section 4 4 Section 5 3
Detailed Design

Software Table 3-7 Software Implementation Phase Section 4 5 Section 5 4
Implementation

Software
Test

Table 3-8 Software Testing Phase
Table 3-9 Dynamic Testing
Table 3-10 Software Module Testing

4 Safety Critical Software Development

Section 4.6 Section 55

Software safety activities which should be incorporated into the software development
phases of a project.

4.1 Software Concept and Initiation Phase

For most NASA projects this lifecycle phase involves system level requirements and
design development.

4.2 Software Requirements Phase

The cost of correcting software faults and errors escalates dramatically as the development
life cycle progresses. Thus it is important to correct errors and implement correct software

8

requirements from the very beginning However it is generally impossible to eliminate all
errors Hence two goals or philosophies are continuously required·

1) Development of complete and correct requirements and correct code

2) Development of fault-tolerant designs, which will detect and compensate for
software faults "on the fly".

Both these thought processes must begin during initial requirements development.

4.2.1 Development of Software Safety Requirements

Software safety requirements are obtained from several sources, and are of two types,
generic and specific The generic category of software safety requirements are derived
from sets of requirements which are commonly used in different programs and
environments to solve common software safety problems Specific software safety
requirements are system unique functional capabilities or constraints which are identified
in three ways:

1) Through top down analysis of system design requirements

2) From the PHA

3) Through bottom up analysis of design data

4 2 2 Generic Software Safety Requirements

Sources of generic software safety requirements

NSTS 19943 Command Requirements and Guidelines for NSTS Customers

STANAG 4404 (Draft) NATO Standardization Agreement (STANAG) Safety Design
Requirements and Guidelines for Munition Related Safety Critical Computing Systems

EWRR (Eastern and Western Range Regulation) 127-1, Section 3.164 Safety Critical
Computing System Software Design Requirements.

AFISC SSH 1-1 System Safety Handbook - Software System Safety, Headquarters Air
Force Inspection and Safety Center.

EIA Bulletin SEB6-A System Safety Engineering in Software Development (Electrical
Industries Association)

NASA Marshall Space Flight Center (MSFC) Software Safety standard

9

Underwriters Laboratory - UL 1998 Standard for Safety - Safety-Related Software,
January 4th, 1994

4.2 2.1 Fault Tolerance/Independence

Most NASA space systems employ failure tolerance to achieve an acceptable degree of
safety. This is primarily achieved via hardware, but software is also important, because
improper software design can defeat the hardware failure tolerance.

"Must-Work Functions" (MWFs) achieve failure tolerance through independent parallel
redundancy. For parallel redundancy to be truly independent there must be dissimilar
software in each parallel path Software can be considered "dissimilar" if N-Version
programming is used. N-version programming is discussed below in Section 43.1.1 N
Version Programming.

"Must-Not-Work Functions" (MNWFs) achieve failure tolerance through independent
multiple series inhibits For series inhibits to be considered independent they must be
generally controlled by different processors containing dissimilar software.

4 2 2 2 Hazardous Commands

4 2 2 3 Coding Standards

One class of generic software requirements are coding standards, these are in practice
"safe" subsets of programming languages. These are needed because most compilers can
be unpredictable in how they work For example, dynamic memory allocation, the defaults
chosen by the compiler might be unsafe See 4 5 Software Implementation.

4.22.4 Timing, Sizing and Throughput Considerations

System design should properly consider real-world parameters and constraints, including
human operator response times, and control system response times, and flow these down
to software appropriately. Adequate margins of capacity should be provided for all these
critical resources.

Automatic sating is often required if the time to criticality is shorter than the realistic
human operator response time, or if there is no human in the loop

Control system design should be based on the established body of control theory, such as
dynamic control system design, and multivariable design in the s-domain for analog
continuous processes Sampled analog processes should make use of Z-transforms to
develop difference equations to implement the control laws This will also make most
efficient use of real-time computing resources

10

Quantization: Digitized systems should select wordlengths long enough to reduce the
effects of quantization noise to ensure stability of the system.

42.3 Formal Methods - Specification Development

Formal Methods is a process which translates all requirements into a quasi-mathematical
language of logical expressions. This forces a singular interpretation of all the
requirements, and makes it easier to find missing, incomplete or conflictinglinconsistent
requirements. This ensures that the specification analysis is thorough, accurate, and
consistent Ad hoc specification analysis is unlikely to screen all the requirements errors,
except for relatively simple systems However, Formal Methods are expensive to
implement and require a substantial investment in training in order to be effective, so they
are not appropriate for low risk systems or where the developers and analysts have no
prior experience. The first step in the process of Formal Methods is to develop
Requirements State Machines or State Transition Diagrams.

A broad range of subtasks comprises Formal Methods. Those subtasks performed during
software requirements development phase include the following:

Finite state machine/State Transition charts

Transaction Analysis

Proofs of Correctness

An introduction to Formal Methods is provided as Appendix-2 of the guidebook Detailed
descriptions of Formal methods and state machines are given in the NASA Formal
Methods Guidebook. "

4 3 Architectural Design Phase

The main safety objective of architectural design phase is to define the strategy for
achieving the required level of fault tolerance in the different parts of the system. The
degree of fault tolerance required can be inversely related to the degree of fault reduction
used, e.g, Formal Methods. However, even the most rigorous level of fault reduction will
not prevent all faults, and some degree of fault tolerance is generally required.

Independence / Failure Tolerance

NASA currently uses mostly hardware failure tolerance to control hazards The degree of
hardware or system failure tolerance required varies with the severity of the hazard as
follows.
Catastrophic Hazards. two- failure tolerance required
Critical Hazards single failure tolerance required.

11

These criteria are based on extensive experience of spacecraft flight operations which led
to an accepted understanding of failure probabilities, and these levels of failure tolerance
are accepted as necessary and sufficient to achieve an acceptable (low) level of risk

However, because of the unpredictable number of latent errors which might exists in
software, software failure tolerance cannot be relied upon or verified in the same way
Different hazard control approaches must be used for software versus hardware

To prevent fault propagation from uncontrolled software, SSCSCs must be fully
independent of non-safety critical components

One approach is to establish "Fault Containment Regions" (FCRs) to prevent propagation
of software faults. This attempts to prevent fault propagation such as· from non-critical
software to SCCSCs; from one redundant software unit to another, or from one SCCSC
to another Techniques known as "firewalling" should be used to provide sufficient
isolation ofFCRs to prevent hazardous fault propagation.

Methods of achieving independence are discussed in more detail in Reference [1] "The
Computer Control of Hazardous Payloads", NASNJSCIFDSD, 24 July 1991. FCRs are
defined in reference [2]2 SSP 50038 Computer Based Control System Safety
Requirements - International Space Station Alpha

[11] Gowen, Lon D. and Collofello, James S. "Design Phase Considerations for Safety
Critical Software Systems". PROFESSIONAL SAFETY, April 1995.

Gowen and Colldfield Reference [11] recommend four techniques for achieving fault
tolerance. Their paper is summarized below with permission, because it contains an
excellent survey of the state of the art in these key areas.

Their five recommended techniques are·

N-Version programming
Recovery blocks
Resourcefulness
Abbott-Neuman Components.
Self-Checks

In addition, a summary of fault-tolerant solutions is given in Table 5.3.1 taken from
reference [11].

4.3.1 1 N-Version Programming

This technique uses mUltiple software versions to tolerate runtime faults

12

N-Version programming is time consuming and expensive, as is maintaining multiple
versions In addition, the different versions are not necessarily independent in their failures
because different programmers tend to make similar errors, especially when errors are due
to a flaw in the requirement's definition (Knight and Leveson [13], Brilliant, Knight and
Leveson [14,15]) Under such conditions, the majority vote may be wrong, thus causing a
hazard.

Despite its negative aspects, N-Version programming is useful for fault tolerance.

4.3.1.2 Recovery blocks

Like N-version programming, this technique uses multiple software versions to find and
recover from faults In contrast, recovery blocks use an (internal) acceptance test on each
version's output until output passes a test. The (internal) acceptance test uses reverse
engineering to determine whether output is acceptable.

4.3 1.3 Resourcefulness

Resourcefulness concentrates on achieving system goals and requires systems that are
functionally rich [21] Such a system can obtain its goals through multiple means For
example, an airplane can descend by using its flaps to increase drag or decreasing its speed
to reduce lift Resourcefulness is a system's ability to achieve goals via various known
means so that the system can handle failures by trying different sub-goals

43.14 Abbott-Neuman Components

This technique combines various ideas: Abbott's software-component concept, Neumann's
design criteria and software self-checks (Abbott [21], Neumann [22], Anderson [20], and
Lee [TBD]) Abbott suggested that software focus can be the component level (i.e,
module, package, task, etc.). which is where complexity originates. To increase a
component's fault tolerance, Abbott applied Neumann's design criteria, which states that
each component must be self-protecting and self checking A self protecting component
does not allow other components to crash it, rather it returns an error indication to the
calling component A self-checking component detects its own errors and attempts to
recover from them.

4 3 1 5 Self Checks

Self-checks are not a fault-tolerant technique, but a classification of dynamic fault
detection categories, which various fault-tolerant techniques use. For example, N-version
programming uses a replicative self-check, while recovery blocks use replication and either
a reversal or reasonableness self-check.

Structural self-check is one that requires more explanation, it uses redundant data and
checks to ensure that components manipulate complex data structures correctly.

13

(This concludes the summary of [11] Gowen, Lon D. and Collofello, James S "Design
Phase Considerations for Safety-Critical Software Systems". PROFESSIONAL SAFETY,
Apri11995.)

4.4 Detailed Design Phase

The following tasks during the detailed design phases should support software safety
activities.

1. Program Set Architecture.

2. Internal Program Set Interfaces.

3. Shared Data.

4. Functional Allocation

5. Error Detection and Recovery.

6. Inherited or Reused Software and COTS.

7. Design Feasibility, Performance, and Margins.

8. Integration

9. Interface Design.

10. Formal Methods - Formal specification Development (see 423)

4.5 Software Implementation

It is during software coding that software controls of safety hazards are actually
implemented. Programmers must recognize not only the explicit safety-related design
elements but should also be cognizant of the types of errors which can be introduced into
non-safety-critical code which can compromise safety controls

4.6 Software Integration and Test

The safety testing effort should be limited to those software requirements classed as
safety-critical items. Safety testing can be performed as an independent series of tests or as
an integral part of the developer's test effort.

14

4.6 1 Testing Techniques

Testing should be performed in a controlled environment in which execution is controlled
and monitored or in a demonstration environment where the software is exercised without
interference.

4 7 Software Acceptance and Delivery Phase

Once the software has completed its acceptance testing it can be released either as a stand
alone item, or as part of a larger system acceptance.

Accompanying release of the software should be an Acceptance Data Package (ADP)
This package as a minimum should contain a user manual.

5. Software Safety Analysis

During the software Iifecycle, the software safety organization performs various analysis
tasks, employing a variety of techniques. This section describes techniques which have
been useful in NASA activities and some from elsewhere Some discussion on the cost and
value of each technique is provided.

As software controls become more defined software hazard analyses will identify
individual program sets, modules, units, etc which are safety-critical

5 1 Analysis of the Software Requirements for Potential Hazards

The requirements analysis activity clarifies and codifies safety requirements for the
software and makes them consistent and complete

5 1.1 Software Safety Requirements Flowdown Analysis

5.1 2 Requirements Criticality Analysis

5.1 3 Formal Specification Analysis

Specification analysis evaluates the completeness, correctness, consistency, and testability
of software requirements. Techniques used to perform specification analysis are:

hierarchy analysis,
control-flow analysis,
information-flow analysis, and
functional simulation

15

For the latter three techniques a large, well established body of literature exists describing
in detail these methods, and many others, and background for each Instead of
reproducing those lengthy texts the reader is directed to these excellent references'

Beizer, Boris, "Software Testing Techniques", Van Nostrand Reinhold, 1990. - (Note:
Despite its title, the book mostly addresses analysis techniques).
Beizer, Boris, "Software System Testing and Quality Assurance", Van Nostrand Reinhold,
1987. (Also includes many analysis techniques).
Yourdon Inc., "Yourdon Systems Method - model driven systems development", Yourdon
Press, N J., 1993.
DeMarco, Tom, "Software State of the Art. selected papers', Dorset House, NY, 1990.

5.1 4 Formal Inspections of Specifications

Formal inspections and formal analysis are different. Formal inspections are otherwise
known as Fagan Inspections, named after John Fagan of mM who devised the method
NASA has published a standard and guidebook for implementing the Formal Inspection
(PI) Process, Software Formal Inspections Standard (NASA-Sm-2202-93) and
Software Formal Inspections Guidebook (NASA-GB-A302) . FIs can and should be
performed within every major step in the software development process However, they
have the most value during the earlier requirements development phases, and decreasingly
less value in later design and coding phases.

5.2 ARCHITECTURAL DESIGN ANALYSIS

The software architectural design process develops the high level design that will
implement the software requirements

After allocation of the software safety requirements to the software design, Safety Critical
Computer Software Components (SCCSCs) are identified

Analyses described for Architectural Design Phase are as follows

Update Criticality Analysis
Conduct Hazard Risk Assessment
Analyze Architectural Design
Interdependence Analysis
Independence Analysis

5.3 Detailed Design Analysis

During Detailed Design phase more detailed software artifacts are available, permitting
rigorous analyses to be performed. Detailed Design Analyses can make use of artifacts
such as the following' detailed design specifications, Pseudo-Code, emulators and

16

Program Description Language products (PDL). Preliminary code produced by code
generators within case tools should be evaluated.

Many analysis techniques to be used on the final code can be "dry run" on these design
products. In fact, it is recommended that all analyses planned on the final code should
undergo their first iteration on the code-like products of the detailed design. This will
catch many errors before they reach the final code where they are more expensive to
correct. The following techniques can be used during this design phase.

Design Logic analysis
Software Fault Tree Analysis
Petri Nets
Dynamic Flowgraph Analysis
Markov Modeling
Design Data Analysis
Design Interface analysis
Measurement of Complexity
Design Constraint Analysis
Safe Subsets of Programming Languages
Formal Methods
Requirements State Machines
Formal Inspections

5.4 CODE ANALYSIS

Code analysis verifies that the coded program correctly implements the verified design and
does not violate safety requirements In addition at this phase of the development effort,
many unknown questions can be answered for the first time. For example, the number of
lines of code, memory resources and CPU loads can be seen and measured, where
previously they were only predicted, often with a low confidence level Sometimes
significant redesign is required based on the parameters of the actual code

Code permits real measurements of size, complexity and resource usage.

Some of the techniques used in the performance of code analysis mirror those used in
design analysis However, the results of the analysis techniques might be significantly
different than during earlier development phases, because the final code may differ
substantially from what was expected or predicted.

1 DESIGN LOGIC ANALYSIS
2 Software Fault Tree Analysis (SFT A)
3 Petri-Nets
4 Design Data Analysis
5 Design Interface Analysis
6 Measurement of Complexity

17

7 Design Constraint Analysis
8 Safe Subsets of Programming languages
9 Fonnal Methods and Safety-Critical Considerations
10 Requirements State Machines

Each of the analyses in this section should be undergoing their second iteration, since they
should have all been applied previously to the code-like products (PDL) of the detailed
design.

5.5 TEST ANALYSIS

Two sets of analyses should be perfonned during the testing phase.

1) analyses before the fact to assure validity of tests and, 2) analyses of the test results

5.6 SOFTWARE OPERATIONS & MAINTENANCE

Maintenance of software differs completely from hardware maintenance Unlike hardware,
software does not degrade or wear out over time, so the reasons for software maintenance
are different.

The main purposes for software maintenance are as follows:

to correct known defects
to correct defects discovered during operation
to add or remove features and capabilities (as requested by customer, user or
operator)
to compensate or adapt for hardware changes, wear out or failures

The most common safety problem during this phase is lack of configuration control,
resulting in undocumented and poorly understood code. "Patching" is a common improper
method used to "fix" software "on the fly". Software with multiple undocumented patches
has resulted in major problems where it has become completely impossible to understand
how the software really functions, and how it responds to its inputs.

18

REPORT DOCUMENTATION PAGE
Form Approved

OMS No 0704-0188
Public reponing burden for thlll coIledlon of Information Is estimated to average t hour per response, Including the time for revlew1n~ Instructions, Searching eXISting data sources,
gathering and malntalnl~ the data needed, and corrpletlng and reviewing the collectIon 01 Information Send comments regarding t Is burden elllimate or any other upecI 01 this
coIlec:tlon 01 Information, ncludlng Sugll,,8Itlons for reducing this burden, to Washington Headquaners Services, Directorate for Information Operations and Reports, t215 Jefferson
Davis Highway, Suhe 1204, Arlington, A 22202-4302, and to the Office of Management and Budget, Papeowork Redudlon Projed (0704-0t88), Washington, DC 20503

1_ AGENCY USE ONLY (LssveblanKj r' REPORT DATE
1

3 REPORT TYPE AND DATES COVERED
October 1995 Fmal Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Software Safety Progress m NASA

WU-601-60-60
6. AUTHOR(S) C-NAS3-26764

Charles F. Radley

7_ PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Raytheon Engineers and Constructors
2001 Aerospace Parkway E-9899
Brook Park. OhIO 44142

9_ SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

National AeronautIcs and Space Admmlstrauon
LeWIS Research Center NASA CR-198412
Cleveland. OhIO 44135-3191

11_ SUPPLEMENTARY NOTES
Prepared for the Safety Through Quahty Conference cosponsored by NASA, BCS, and RTAL, Cape Canaveral, Flonda, October 23-25,
1995 and the Workshop on Safety and RelIabilIty m Emergmg Control Technologies, sponsored by the InlematlOnal FederatIOn of
AutomatIc Control, Dayton Beach, Flonda, November 1-3, 1995. Project Manager, Martha Wetherholt, Assurance Engmeermg Office,
NASA leWIS Research Center, organlzallon code 0520, (216) 433-2416

1280 DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified -UnlImited
Subject Categooes 01, 03,12,17,18,31,38,61,62, and 66

ThIs pubhcabon IS avaIlable from the NASA Center for Aerospace Infonnabon, (301) 621"'{)390

13. ABSTRACT (Maximum 200 words)

NASA has developed gUidelInes for development and analySIS of safety-coucal software. These gUldehnes have been
documented in a GUidebook for Safety Coucal Software-Development and AnalYSIS The gUldehnes represent a
practical "how to" approach, to assist software developers and safety analysts 10 cost effecuve methods for software
safety. They proVide gUidance 10 the Implementation of the recent NASA Software Safety Standard NSS-1740.13 which
was released as "Inteom" versIOn 10 June 1994, scheduled for formal adopuon late 1995. This paper IS a survey of the
methods in general use, resulung 10 the NASA gUldehnes for safety cotlcal software development and analYSIS

14. SUBJECT TERMS

Software; Safety; Assurance; AnalYSIS; Verification, Systems; Development; Coucal

17_ SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

15 NUMBER OF PAGES
20

16. PRICE CODE
A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescrbed by ANSI SId Z39-18
298-102

End of Document

