The NASA STI Office ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Office plays a key part in helping NASA maintain this important role.

The NASA STI Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Office is also NASA's institutional mechanism for disseminating the results of its research and development activities.

Specialized services that help round out the Office's diverse offerings include creating custom thesauri, translating material to or from 34 foreign languages, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Office, you can:

• **Phone** the NASA Access Help Desk at (301) 621-0390

• **Fax** your question to the NASA Access Help Desk at (301) 621-0134

• **E-mail** your question via the Internet to help@sti.nasa.gov

• **Write** to:

 NASA Access Help Desk
 NASA Center for AeroSpace Information
 800 Elkridge Landing Road
 Linthicum Heights, MD 21090-2934
AERONAUTICAL ENGINEERING

A CONTINUING BIBLIOGRAPHY WITH INDEXES
The New NASA Video Catalog is Here

Internet Access Available
http://www.sti.nasa.gov/STI-homepage.html
Now!
(Select STI Program Publications)

Free!
To order your free copy, call the NASA Access Help Desk at (301) 621-0390, fax to (301) 621-0134, or e-mail to help@sti.nasa.gov

EXPLORE THE UNIVERSE

This publication was prepared by the NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390.
INTRODUCTION

This issue of *Aeronautical Engineering — A Continuing Bibliography with Indexes* (NASA SP-7037) lists 518 reports, journal articles, and other documents recently announced in the NASA STI Database.

Accession numbers cited in this issue include:

Scientific and Technical Aerospace Reports (STAR) (N-10000 Series)
N95-30358 — N95-32372

Open Literature (A-60000 Series)
A95-92371 — A95-95938

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The listing of the entries is arranged by the first nine *STAR* specific categories and the remaining *STAR* major categories. This arrangement offers the user the most advantageous breakdown for individual objectives. The citations include the original accession numbers from the respective announcement journals.

Seven indexes—subject, personal author, corporate source, foreign technology, contract number, report number, and accession number—are included.

A cumulative index for 1995 will be published in early 1996.

The NASA CASI price code table, addresses of organizations, and document availability information are located at the back of this issue.
SCAN Goes Electronic!

If you have NASA Mail or if you can access the Internet, you can get biweekly issues of SCAN delivered to your desktop absolutely free!

Electronic SCAN takes advantage of computer technology to alert you to the latest aerospace-related, worldwide scientific and technical information that has been published.

No more waiting while the paper copy is printed and mailed to you. You can review Electronic SCAN the same day it is released—up to 191 topics to browse at your leisure. When you locate a publication of interest, you can print the announcement. You can also go back to the Electronic SCAN home page and follow the ordering instructions to quickly receive the full document.

Start your free access to Electronic SCAN today. Over 1,000 announcements of new reports, books, conference proceedings, journal articles ... and more—delivered to your computer every two weeks.

For access to E-SCAN via the NASA STI home page:
- http://www.sti.nasa.gov
- ftp.sti.nasa.gov
- gopher.sti.nasa.gov
- listserv@sti.nasa.gov

To subscribe via e-mail, enter scan@sti.nasa.gov on the address line. Leave the subject and message areas blank and send. You will receive an automatic reply with instructions in minutes.

For additional information, e-mail a message to help@sti.nasa.gov

Phone: (301) 621-0390 Fax: (301) 621-0134

Write: NASA Access Help Desk
NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Aeronautics</td>
<td>583</td>
</tr>
<tr>
<td>02</td>
<td>Aerodynamics</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Air Transportation and Safety</td>
<td>595</td>
</tr>
<tr>
<td></td>
<td>Includes passenger and cargo air transport operations; and aircraft accidents.</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Aircraft Communications and Navigation</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control.</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Aircraft Design, Testing and Performance</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td>Includes aircraft simulation technology.</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Aircraft Instrumentation</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>Includes cockpit and cabin display devices; and flight instruments.</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Aircraft Propulsion and Power</td>
<td>612</td>
</tr>
<tr>
<td></td>
<td>Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and onboard auxiliary power plants for aircraft.</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Aircraft Stability and Control</td>
<td>618</td>
</tr>
<tr>
<td></td>
<td>Includes aircraft handling qualities; piloting; flight controls; and autopilots.</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Research and Support Facilities (Air)</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Astronautics</td>
<td>627</td>
</tr>
<tr>
<td></td>
<td>Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space transportation; space communications, spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Chemistry and Materials</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td>Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; propellants and fuels; and materials processing.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Engineering</td>
<td>632</td>
</tr>
<tr>
<td></td>
<td>Includes engineering (general); communications and radar; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.</td>
<td></td>
</tr>
</tbody>
</table>
Category 13 Geosciences
 Includes geosciences (general); earth resources and remote sensing; energy
 production and conversion; environment pollution; geophysics; meteorology and
 climatology; and oceanography.

Category 14 Life Sciences
 Includes life sciences (general); aerospace medicine; behavioral sciences; man/
 system technology and life support; and space biology.

Category 15 Mathematical and Computer Sciences
 Includes mathematical and computer sciences (general); computer operations and
 hardware; computer programming and software; computer systems; cybernetics;
 numerical analysis; statistics and probability; systems analysis; and theoretical
 mathematics.

Category 16 Physics
 Includes physics (general); acoustics; atomic and molecular physics; nuclear and
 high-energy; optics; plasma physics; solid-state physics; and thermodynamics and
 statistical physics.

Category 17 Social Sciences
 Includes social sciences (general); administration and management; documentation
 and information science; economics and cost analysis; law, political science,
 and space policy; and urban technology and transportation.

Category 18 Space Sciences
 Includes space sciences (general); astronomy; astrophysics; lunar and planetary
 exploration; solar physics; and space radiation.

Category 19 General
 N.A.

Subject Index ... A-1
Personal Author Index ... B-1
Corporate Source Index .. C-1
Foreign Technology Index .. D-1
Contract Number Index ... E-1
Report Number Index ... F-1
Accession Number Index ... G-1
Appendix ... APP-1
The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.

An experimental investigation of rotor/wing aerodynamic interactions in hover is described. The investigation consisted of both a large-scale and a small-scale test. A 0.658-scale V-22 rotor and wing was used in the large-scale test. Wing downwash, wing surface pressure, rotor performance, and rotor downwash data from the large-scale test are presented. A small-scale experiment was conducted to determine how changes in the rotor/wing geometry affected the aerodynamic interactions. These geometry variations included the distance between the rotor and wing, wing incidence angle, wing flap angle, rotor rotation direction, and configurations both with the rotor axis at the tip of the wing (tilt rotor configuration) and with the rotor axis at the center of the wing (compound helicopter configuration).
AERONAUTICAL ENGINEERING

A Continuing Bibliography (Suppl. 323)

November 1995

01

AERONAUTICS (GENERAL)

A95-93617
DEVELOPMENT OF AN INTELLIGENT TOOL-CONDITION MONITORING SYSTEM FOR FMS
Cutting tool management is a significant aspect of Flexible Manufacturing Systems (FMS). However, the number of tools and their relative complexity means that the tasks involved in meeting this objective are not trivial, particularly in the context of metal cutting FMS for the aerospace industry. The current work relates to the development of an intelligent laser-based system for monitoring the condition of cutting tools either in the context of a computer-controlled centralized tool-room or as a localized facility at a Computer Numerically Controlled (CNC) machining station. The condition-monitoring methodology is described and its integration within the framework of a BRITE/EURAM trans-national academic and industrial collaborative program discussed.

A95-93618
NON-CONTACT CALIBRATION OF A CNC RIVETING MACHINE
The non-contact calibration of a five-Axis Computer Numerically Controlled (CNC) riveting machine is described. The calibration was carried out in order to assess the accuracy and repeatability of the machine when used to drill and rivet aircraft panels. The equipment used was a Kern-Theodolite ECDS measuring system. The analysis of the calibration indicated that the repeatability of the machine was well within specification, and that look-up tables compensating for small machine inaccuracies can be developed. In consequence, it is entirely feasible to build an on-line part-programming system for the CNC riveting machine. This should enable aircraft panels to be drilled and riveted with sufficient confidence and to use the machine part program repeatedly for identical panels.

A95-93619
TOOLING - A SOURCE OF PRODUCTIVITY
By embracing computer technologies to help design and manufacture cutting tools with performance capabilities to match the needs of aerospace companies, Sandvik Coromant is playing an important role and helping the industry to raise productivity. The following is an overview of these technologies and how they have affected productivity.

A95-93682
INTEGRATED TEST SYSTEM SINGLE POINT CONTROL OF AIRCRAFT CHECKOUT
STEVE MYERS (ISSN 0148-7191) 1993 6 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993 (SAE PAPER 931417; HTN-95-21251) Copyright
Integration, checkout and test of a multi-discipline complex system like the B-2 involves concurrent operation of many scattered interactive resources. Potential unplanned conflicts involving high energy equipment can threaten the safety of operators and equipment. Tests can be run serially to avoid conflicts, however, this adds considerable time to the process and cannot support rate production. Manual operation of the equipment can be coordinated, to a limited extent, using communication devices such as intercoms, but that is slow, imprecise, labor intensive and subject to operator error. A systems approach was needed to effectively integrate and control the test resources to sustain the throughput and provide the safety necessary for production operation. An Integrated Test System was developed to link the resources, provide single point access and control, and automate the process.

A95-94036
LEAN MANUFACTURING FOR LEAN TIMES
JAMES D. LANG F-15 Integrated Product Definition and PAUL B. HUGGE Aerospace America (ISSN 0740-722X) vol. 33, no. 5 May 1995 7p (BTN-95-EXS05302730538) Copyright
In times of reduced budget pressure of global competition, the U.S. aerospace industry are advised to adopt the concept of lean manufacturing. Lean manufacturing implies thorough understanding of both customer requirements and companies' manufacturing processes to enable companies to make major strides in productivity, quality and cost containment. Although a lot of techniques and tools have been associated with the concept of lean design and manufacturing, they prove to be futile unless they are integrated with thorough understanding of the manufacturing processes, redefinition of the currently adopted processes and multidisciplinary teams assigned to implement changes.

A95-94056
EVALUATION OF A MULTIGRID-BASED NAVIER-STOKES SOLVER FOR AEROTHERMODYNAMIC COMPUTATIONS
A multigrid acceleration technique developed for solving the three-dimensional Navier-Stokes equations is used for computing high-Mach-number flows over configurations of practical interest. An explicit multistage Runge-Kutta time-stepping scheme is used as the basic algorithm.

583
Solutions are presented for a spherically blunted cone at Mach 10 and a modified Shuttle orbiter at Mach 6. The computed surface heat-transfer distributions are shown to compare well with the experimental data. Effect of grid refinement on computed heat-transfer distributions is also examined to assess the numerical accuracy of the computed solutions. The rapid convergence rate associated with multigrid schemes in previous applications at transonic speeds is observed at the higher-Mach-number flows investigated here.

Author (El)

N95-31598# Federal Aviation Administration, Washington, DC. Office of Aviation Policy and Plans.

FAA AVIATION FORECASTS: FISCAL YEAR 1995-2006

This report contains the Fiscal Years 1995-2006 Federal Aviation Administration (FAA) forecasts of aviation activity at FAA facilities. These include airports with FAA control towers, air route traffic control centers, and flight service stations. Detailed forecasts were made for the major users of the National Aviation System: air carriers, air taxi/commuters, military, and general aviation. The forecasts have been prepared to meet the budget and planning needs of the constituent units of the FAA and to provide information that can be used by state and local authorities, the aviation industry, and the general public. The outlook for the 12-year forecast period is for moderate economic growth, stable real fuel prices, modest inflation, and continued moderate to strong growth in the demand for aviation services. Based on these assumptions, aviation activity is forecast to increase by 19.7 percent at FAA towered airports (382 airports) and 26.0 percent at air route traffic control centers. The general aviation active fleet is forecast to decline by 0.8 percent during the forecast period but increased utilization (hours flown by aircraft) results in a 12.0 percent increase in general aviation hours flown during same period. Scheduled domestic revenue passenger miles (RPMs) are forecast to increase 60.5 percent, scheduled international RPMs are forecast to increase by 97.2 percent, and regional/commuter RPMs are forecast to increase by 154.1 percent.

Author (El)

N95-32164# Lawrence Livermore National Lab., Livermore, CA.

Infrared computed tomography (IRCT) is a promising, non-contact, nondestructive evaluation tool used to inspect the mechanical integrity of large structures. We describe on-site, proof-of-principle demonstrations of IRCT to inspect defective metallic and composite structures. The IRCT system captures time sequences of heat-stimulated, dual-band infrared (DBIR) thermal maps for flash-heated and naturally-heated targets. Our VIEW algorithms produce co-registered thermal, thermal inertia, and thermal-limegram maps from which we quantify the percent metal-loss corrosion damage for airframe structures and the defect sites, depths, and host-material physical properties for composite structures. The IRCT method clarifies the type of defect, e.g., corrosion, fabrication, foreign-material insert, delamination, unbond, void, and quantifies the amount of damage from the defect, e.g., the percent metal-loss from corrosion in metal structures, the depth, thickness, and areal extent of heat damage in multi-layered composite materials. Potential long-term benefits of IRCT technology are in-service monitoring of incipient corrosion damage, to avoid catastrophic failure and production-monitoring of cure states for composite materials.

Author (El)

REPORT TO THE CHAIRMAN, LEGISLATION AND NATIONAL SECURITY SUBCOMMITTEE, COMMITTEE ON GOVERNMENT OPERATIONS, HOUSE OF REPRESENTATIVES. C-17 AIRCRAFT PROGRAM: IMPROVEMENTS IN INITIAL PROVISIONING PROCESS
MODELLING 2D SEPARATION FROM A HIGH LIFT AEROFOIL WITH A NON-LINEAR EDDY-VISCOSITY MODEL AND SECOND-MOMENT CLOSURE

F. S. LIEN Institute of Science and Technology, Manchester, UK and M. A. LESCHZINER Institute of Science and Technology, Manchester, UK Aeronautical Journal (ISSN 0001-9240) vol. 99, no. 984 April 1995 p. 145-149 Research sponsored by British Aerospace (CAL), Defence Research Agency, Commission of the European Communities (HTN-95-C0006) Copyright

A computational study is presented, which examines the performance of variants of second-moment closure and non-linear eddy-viscosity models when used to predict attached and separated flows over a high lift aerofoil for a range of incidence angles. The capabilities of both model types, especially in respect of resolving the onset of suction-side separation at high incidence, are contrasted with those of a low Reynolds number K-epsilon model based on the linear Boussinesq stress-strain relationship. The second-moment model contains a conventional linear approximation of the pressure strain rate; a cubic variant has been investigated in an earlier study and found to offer no advantages. The quadratic eddy-viscosity model features coefficients which are sensitised to the strain and vorticity invariants. While both models, in the form originally proposed, are superior to the linear eddy-viscosity variant, neither performs well in respect of resolving separation, unless modified so as to return the requisite low level of shear stress in the boundary layer approaching separation. Once separation is resolved with sufficient realism, the near wake aft of the trailing edge is also well represented. All models return poor representations of the far wake which is characterized by low levels of turbulence production to dissipation ratio.

Author (Hemer)

AUTONOMOUS HELICOPTER HOVER POSITIONING BY OPTICAL TRACKING

G. BOUWER DLR Institut fur Flugmechanik, Braunschweig, Germany, C.-H. OERTEL DLR Institut fur Flugmechanik, Braunschweig, Germany, and W. VON GRUNHAGEN DLR Institut fur Flugmechanik, Braunschweig, Germany Aeronautical Journal (ISSN 0001-9240) vol. 99, no. 984 April 1995 p. 145-149 (HTN-95-C0006) Copyright

The design of control systems for helicopters in hover and at low speed is a requirement for the extension of mission profiles and new mission demands. A special task for various applications is the position hold under wind and gust conditions above a ground fixed or moving target, like a shipboard reference, or a small vessel or lifeboat in rescue missions. For the solution of this problem a controller concept was developed and the feasibility was proven and successfully demonstrated in flight tests. The integrated system of optical position sensor and control computer enables the helicopter to hover automatically above a defined target in constant altitude and with constant heading. Flight tests above a moving car under wind and gust conditions underline the future potential of the overall system to be used under operational conditions.

Author (revised by Hemer)

A THREE-DIMENSIONAL MOVING MESH METHOD FOR THE CALCULATION OF UNSTABLE TRANSONIC FLOWS

A. L. GAITONDE University of Bristol, Bristol, UK and S. P. FIDDES University of Bristol, Bristol, UK (ISSN 0001-9240) vol. 99, no. 984 April 1995 p. 150-160 Research sponsored by British Aerospace (Airbus) Limited and Lloyds of London Tercentenary Foundation

02 AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

MODELLING REQUIREMENTS IN FLIGHT SIMULATION

A. G. BARNES Aeronautical Journal (ISSN 0001-9240) vol. 98, no. 980 December 1994 p. 395-404 (HTN-95-C0004) Copyright

The models used in flight simulation have changed dramatically in the past thirty years. The extent of modelling has been dictated entirely by computing equipment limitations. Now, other factors, such as the control of software and other documentation, are beginning to intrude. There have always been more concerns about the data used in the model, and about the computer implementation, than about the model itself. The paper highlights the many choices open to the modeler, in selecting a level of modeling appropriate to the application of the simulator. Modeling a complex entity such as an aircraft and its environment requires severe compromises. Two parameters which allow these compromises to be seen are the bandwidth of components of the model, and the extent of the cross-coupling between components.

Author (revised by Hemer)
A39-93396 National Aeronautics and Space Administration, Wash., DC.
SCRAMJET THRUST MEASUREMENT IN A SHOCK TUNNEL
A. PAUL University of Queensland, Brisbane, Australia, R. J. STALKER
University of Queensland, Brisbane, Australia, and D. J. MEE University of Queensland, Brisbane, Australia Aeronautical Journal (ISSN 0001-9240) vol. 99, no. 984 April 1995 p. 161-163 Research sponsored by Australian Research Council and NASA
Contract(s)/Grant(s): (NAGW-674)
(H-TN-95-C0008) Copyright

This note reports tests in a shock tunnel in which a fully integrated scramjet configuration produced net thrust. The experiments not only showed that impulsive facilities can be used for assessing thrust performance, but also were a demonstration of the application of a new technique to the measurement of thrust on scramjet configurations in shock tunnels. These two developments are of significance because scramjets are expected to operate at speeds well in excess of 2 km/s, and shock tunnels offer a means of generating high Mach number flows at such speeds.

Author (Hemer)

A39-93647 A PERSPECTIVE OF Rarer Gas Flow Problems Relevant to High Altitude Flight
(SAE PAPER 931366; HTN-95-21216) Copyright

High altitude, high speed flight will push vehicles into regions wherein the density of the surrounding medium is so low that vehicle aerodynamics cannot be described on the basis of a continuum equations of fluid motion. Typical flight trajectories and the characteristic flow regions they traverse are illustrated, and the prediction techniques based on molecular flow physics are outlined. Some analytical, experimental, and flight test results which clearly illustrate the importance of low density effects on the flight performance of vehicles - particularly lift, drag, and moment - are discussed. The data presented bring out some fundamental physical principles of molecular interactions in the definitions of aerodynamic behavior, and some of the underlying physical mechanisms are discussed. Molecular-to-molecule interaction is one of the processes which determine flow field characteristics. Molecule-to-surface interaction becomes important at some Knudsen numbers and at high Mach numbers, real gas effects caused by the high temperatures also becomes important. These are also illustrated. Among the various theoretical and computational approaches which are vigorously pursued today, Monte Carlo methods and the Burnett equations are extensively applied. The bases of these methods are outlined and some of their results are discussed in the paper.

Author (Hemer)

A39-93648 X-29 HIGH AOA FLIGHT TEST RESULTS: AN OVERVIEW
W. SMITH Wright-Patterson Air Force Base, OH, US (ISSN 0148-7191) 1993 12 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993 (SAE PAPER 931367; HTN-95-21217) Copyright

An extensive high angle-of-attack (AOA) flight testing program has been performed with the X-29-2 (AF 82-0049) forward swept wing research aircraft. The high AOA envelope expansion phase cleared the aircraft to fly in a broad flight regime and produced important data on the high AOA clearance process and data analysis. Lessons learned during the high AOA maneuvering are impacting programs such as the X-31, HARV, and F-22. Insight on the critical forebody flow-field of the X-29 at high AOA was gained using on-surface flow visualization during the aerocruise phase. The X-29 Flow Control (VFC) experiment conducted on the X-29 successfully proved the viability of a pneumatic blowing device manipulating forebody vortices to act as an aircraft controller, an historical first. Finally throughout the aircraft #2 flight test program, important data concerning the aircraft's air data system, digital flight control system, vertical tail, engine, and subsystems operating in a high AOA environment were gathered.

Author (Hemer)

A39-93649 PRIMARY AND SECONDARY VORTEX STRUCTURES OVER AIRFOILS AT HIGH ANGLES OF ATTACK
FATHI FINAISH University of Missouri-Rolla, MO, US and JACOPO FRIGERIO University of Missouri-Rolla, MO, US (ISSN 0148-7191) 1993 6 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993 (SAE PAPER 931368; HTN-95-21218) Copyright

An experimental study is conducted to investigate the vortex development over high angles of attack flat plate airfoils in an accelerated-decelerated flow. To perform the required experiments, a new experimental system was developed and incorporated into an open return subsonic wind tunnel. The system was employed to visualize the details of vortex structures and processes over and downstream of the airfoils for an angle of attack range between 30 deg and 90 deg. While flow acceleration encouraged flow separation and vortex convection, flow deceleration delayed the convection of the primary vortex structures as well as the reverse flow reattachment and shedding. The details provided in the article may help in developing control possibilities of vortical flow over vehicles or structures subjected to accelerating-decelerating motions. Further, the study presents guidelines to develop unsteady flow experimental arrangements suitable for incorporation into steady flow subsonic wind tunnels.

Author (Hemer)

A39-93660 A DESIGN TRADE STUDY USING CFD MODELING OF REACTION JETS FOR AERODYNAMIC CONTROL
CLINTON HOUSH (ISSN 0148-7191) 1993 6 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993 (SAE PAPER 931364; HTN-95-21229) Copyright

The use of external jets issuing normal to the surface of a body for aerodynamic control has received attention in the past due to experimental observations of favorable interactions between the free stream flow and the jet wake which, in effect, augment the force produced by the jet. The purpose of this study was to perform preliminary trades to determine the effect of variables such as reaction jet location, free stream Mach number, reaction jet stagnation pressure, and reaction jet exit Mach number on augmentation factors for a representative lifting body cruise missile configuration. A computational fluid dynamic analysis, solving the Euler equations, was used to perform the trades listed above. It is shown that the reaction jet augmentation factors are greater, hence the reaction jet is more effective, at higher free stream dynamic pressures in the subsonic regime. It is also shown that the augmentation factors are essentially independent of reaction jet stagnation pressure for choked nozzles with jet to free stream stagnation pressure ratios between 1.24 and 3.0. Additionally it is shown that increasing the jet exit Mach number decreases the...
reaction jet augmentation factor. Finally, the strong influence of reaction jet placement and body geometry on augmentation factors is discussed and the need for this level of analysis is justified.

A95-93662
HYBRID LAMINAR FLOW OVER WINGS ENHANCED BY CONTINUOUS BOUNDARY LAYER SUCTION

The numerical analysis of continuous boundary-layer suction on a flat plate at zero angle of attack is the focus of this study. A uniform flow is prescribed upstream of the plate. The governing equations, the Navier-Stokes and continuity equations are presented by the vorticity-stream function formulation. A transformation is made from the physical to the computational domain and the resulting equations are solved numerically by the ADI and SOR methods, respectively. Reynolds numbers from 10(exp 3) to 10(exp 4) are considered. A second-order upwinding scheme is employed to numerically stabilize the solution. A comparison is made between flows with and without suction. Preliminary results are presented for the solution behavior as a function of such parameters as Reynolds number, grid resolution and numerical representation of the boundary conditions.

A95-93736
ON CONTROLLING THE TIP VORTEX FLOW OF A LIFTING WING

First, a brief summary of review of the so called wingtip vortex wake flow, its formulation, consequence and complexity is introduced. Then, the various means to reduce or alleviate this tip vortex are presented which includes leading edge and wingtip modifications; solid end-plate; winglets; delta-wing-fences; multiple fins; jet-sheet; discrete jets blowing. Finally, some of our unpublished works at University of Tennessee Space Institute (USTI) on fins, various jet(s) from the tip and leeside surface of the wing are presented and its effectiveness discussed.

A95-93747* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.
THE APPLIATION OF POTENTIAL CFD METHODS TO HELICOPTER HOVER FLOWS

Fixed-wing code development is now aimed primarily at the solution of problems dominated by separation—based on the assumptions that the ability to solve such problems implies the ability to solve all other problems and that present inviscid methods are already adequate for most other problems. Neither of the above assumptions are correct for rotary wing problems. This is because of the unique and overriding importance of wake modeling to rotor problems and also due to the well-known numerical diffusion problems which conventional Eulerian Computational fluid dynamics (CFD) method encounter when called on to convect strong vortical regions for long distances. The need for accurate wake analyses is probably the most fundamental difference between rotary and fixed-wing aerodynamics. In addition, rotary wing complexity requires a much more intimate relationship between test and analysis than is common in fixed-wing work. With these issues in mind, this paper will review some of our recent experience in using a unique-Eulerian-Lagrangian Computational fluid dynamics (CFD) method for the solution of a critical rotor-wake problem—the prediction of hover performance.

A95-93748
A THREE-DIMENSIONAL NAVIER-STOKES / FULL-POTENTIAL COUPLED ANALYSIS FOR ROTOR BLADES

An efficient technique for the prediction of three-dimensional steady and unsteady viscous flows past arbitrary configurations is described. The flowfield is partitioned into an inner zone adjacent to the solid surface and an outer zone away from the solid surface. The solution procedure uses a three-dimensional compressible Navier-Stokes solver in the inner vortical region, and a three-dimensional unsteady full potential flow solver in the outer irrotational region. These two solvers are tightly coupled and simultaneously integrated in time. Computational results are compared with experimental and other Computational fluid dynamics (CFD) data. The present coupled analysis reduces the CUP requirements about 50% when compared to standard Navier-Stokes analysis.

A95-93749
NUMERICAL SOLUTIONS OF THREE DIMENSIONAL VISCOUS FLOWS

A numerical approach based on the velocity-vorticity formulation and a velocity integral representation is presented for three-dimensional viscous flow problems. Several new techniques unique to three-dimensional viscous flows are developed and implemented. Steady and unsteady flow solutions around rectangular wings are presented and discussed.

A95-93750* National Aeronautics and Space Administration, Washington, DC.
NUMERICAL STUDY OF MULTI-ELEMENT AIRFOIL AERODYNAMICS

Unsteady flowfields around oscillating Boeing VR7 airfoil with and without a leading-edge slot were numerically investigated by a novel zonal method using a conformal mapping technique. Numerical aero-dynamic hysteresis loops show that the leading-edge slot prevents the airfoil dynamic stall at reduced frequency of 0.15, Reynolds number of 1 million, and the oscillation range of 5 deg to 25 deg.

A95-93751
A KUTTA CONDITION CONSCIOUS PERTURBATION STREAM FUNCTION BOUNDARY ELEMENT ALGORITHM FOR 2-D POTENTIAL AERODYNAMICS
G. S. IANNELLI Univ. of Tennessee, TN, US, C. GRILLO Univ. of Pal-
A ONE-DIMENSIONAL INVISCID NONEQUILIBRIUM FLOW SOLVER

A new one-dimensional inviscid flow solver has been developed that has the capability of providing flow-field properties for high-temperature flows in which nonequilibrium chemistry effects are important. Changing chemistry models is a simple task because the code was implemented in a modular fashion to take advantage of an existing set of nonequilibrium chemical, thermodynamic, and transport property routines. The new code uses a simple algorithm that is easy to understand and use. Excellent agreement was obtained in comparisons of results from the new flow solver with solutions obtained from existing state-of-the-art solvers for high-temperature air.

Author (Hemer)

A95-93758* National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA.

ANALYTIC SOLUTION OF THE THICKNESS PROBLEM OF A RECTANGULAR WING IN STEADY SUBSONIC FLOW

An analytical solution of the thickness problem of a rectangular wing with parabolic airfoil section in three-dimensional flow is presented. The free-air solution is obtained by integrating the equation of the axial perturbation velocity. The Prandtl-Glauert rule can be used to derive the subsonic solution. Parts of the free-air solution are verified by taking the limit of the axial perturbation velocity on the model surface as the wing span goes to infinity. Pressure coefficients are studied for a selected wing geometry in the flow field. The solution of the thickness problem of a rectangular wing in a rectangular wind tunnel is derived using the free-air solution and the method of images.

Author (Hemer)

A95-94065* AERODYNAMIC INTERFERENCE FOR SUPERSONIC LOW-ASPECT-RATIO MISSILES
H. F. NELSON Univ of Missouri - Rolla, Rolla, MO, United States and BRENT W. BOSS Journal of Spacecraft and Rockets (ISSN 0022-4650) vol. 32, no. 2 March-April 1995 p. 270-278 refs (BTN-95-EIX9552694469) Copyright

Interference factors K(sub W(B)), K(sub B(W)), and K(sub phi) are used in preliminary design in the equivalent-angle-of-attack method. An Euler code is used to numerically evaluate K(sub W(B)), K(sub B(W)), and K(sub phi) for low-aspect-ratio, cruciform wing-bodies with clipped delta fins for Mach numbers from 3 to 4 and angles of attack up to 20 deg. The ratio of fin span to body radius (S/R) range from 1.3 to 2, so that aspect ratios vary from 0.05 to 4 and taper ratios vary from 0 to 0.975. Euler results compare well with experimental data. At low angle of attack K(sub W(B)) is of the order of 1.5 for low-aspect-ratio fins. K(sub W(B)) decreases as the angle of attack increases and can be less than 1 at large angles of attack. Shock and expansion waves from the fin interact with the body and strongly influence K(sub B(W)). The aft body length beyond the fin trailing edge also contributes to K(sub B(W)). As the aspect ratio decreases from 4 to 0.05, K(sub B(W)) increases to a maximum value and then (1) decreases for small angles of attack and (2) remains fairly constant for large angles of attack. K(sub phi) is calculated for sideslip angles of +/- 3 deg. Euler predictions of K(sub phi) are larger than slender-body predictions, because of vortex effects. K(sub phi) is also influenced by shock and expansion waves from adjacent fins. At small angles of attack K(sub phi) is larger for negative sideslip than it is for positive sideslip. At large angles of attack K(sub phi) becomes independent of the sign of sideslip angle.

Author (El)

A95-94454* NUMERICAL INVESTIGATION OF HIGH INCIDENCE FLOW OVER A DOUBLE-DELTA WING

The vortical flowfield over a double-delta wing configuration, consisting of a sharp leading-edge 76-deg sweep strake and a 40-deg sweep wing section is investigated numerically. The governing equations are solved with a partially upwind, finite difference, two-factor algorithm. The leeward-side vortex system resulting from the strake and wing vortices is investigated for a subsonic freestream speed of M(sub infinity) = 0.22, high Reynolds number turbulent flow at various angles of incidence. At low angles of attack the strake and wing vortices remain separate over the wing section, whereas for flows at higher angles of attack the two vortices merge and vortex breakdown develops. Vortex breakdown appears initially in the trailing-edge region of the wing section. As the angle of attack increases, bursting occurs further upstream closer to the strake section. The effect of numerical grid density is investigated, and the solutions are compared with available experimental data. The computed surface pressures are in good agreement with the experimental measurements for the lower angles of attack, but the agreement deteriorates as the angle of attack increases.

Author (El)

A95-94455* National Aeronautics and Space Administration, Langley Research Center, Hampton, VA.

QUANTIFIABLE VORTEX FEATURES OF F-106B AIRCRAFT AT SUBSONIC SPEEDS
JOHN E. LAMAR National Aeronautics and Space Administration Langley Research Cent, Hampton, VA, United States, JAY BRANDON, and THOMAS D. JOHNSON, JR. Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 484-470 refs (BTN-95-EIX0619552748161) Copyright

Quantifiable vortex features and separated-flow origins have been determined on an F-106B aircraft at 1-g subsonic speeds using the vapor-screen technique coupled with image enhancement, photogrammetry, and computer graphics. In particular, the spatial location of vortex cores, their tracks over the wing, and the approximate reattachment locations have been determined as a function of angle of attack and Reynolds number. Increasing the Reynolds number generally delays or suppresses large-scale separation and promotes the formation of multiple vortices, whereas increasing the angle of attack generally promotes the formation of a single vortex system. The multiple vortices observed may likely be...
attributed to small surface distortions in the wing leading-edge region. Comparisons of off-surface determined vortex core location and reattachment point approximation from the vapor-screen technique are made with those from the on-surface techniques of static pressure and oil flow and show generally good agreement. A comparison between quantified vortex features from flight and wind tunnel showed reasonably good agreement over the forward part of the wing for angles of attack from 16 to 20 deg.

Author (El)

A95-94456

AERODYNAMIC APPLICATIONS OF UNDEREXPANDED HYPERSONIC VISCOUS JETS

V. V. RIABOV Worcester Polytechnic Inst, Worcester, MA, United States Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 471-479 refs

(BTN-95-EIX0619952748162) Copyright

The transonic and hypersonic regions of underexpanded viscous jets, their diffusion and rotational-translational nonequilibrium processes are analyzed, and the jet theory is applied to hypersonic aerodynamic research. Using the method of deformable coordinates, the asymptotic solutions are found for jet parameters in transonic and hypersonic regions. Rotational-translational relaxation is analyzed by the numerical solutions of the Navier-Stokes equations in terms of classical and quantum concepts. The aerodynamic characteristics of wedges and plates are investigated. Fundamental laws for the characteristics and similarity parameters are discussed.

Author (El)

A95-94459

SPECTRAL MAPPING OF QUASIPERIODIC STRUCTURES IN A VORTEX FLOW

JAMES P. HUBNER Georgia Inst of Technology, Atlanta, GA, United States and NARAYANAN M. KOMERATH Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 493-500 refs

(BTN-95-EIX0619952748165) Copyright

Steady vortex flows over highly swept wings develop quasiperiodic velocity fluctuations. The nature of such fluctuations was explored extensively using a 59.3 deg cropped delta wing at 25 deg incidence in a low-speed wind tunnel. Additional single point tests were conducted over a range of incidences (16-32 deg) and Reynolds numbers (1.2 x 10 exp 5) to 5.5 x 10 exp 5) based on the root chord. Cross-spectral analysis of velocity fluctuations, sensed by two hot-wire sensors, was used to track these phenomena to the region of their origin as well as study the evolution and growth of the fluctuations. Results show the existence of narrow, dominant frequency bands containing the majority of the fluctuation energy. At 25 deg the quasiperiodicity originates near the 30% span region and the intensity amplifies downstream as the corresponding peak frequency decreases. Further downstream the frequency levels off while the intensity peaks, then decreases. Coherence trajectory mapping displays a helical path around the core of the vortex system. At a fixed location relative to the model, the product of the Strouhal number and the nominal wake scale was relatively constant with respect to freestream speed.

Author (El)

A95-94460

ANALYSIS OF SOME INTERFERENCE EFFECTS IN A TRANSONIC WIND TUNNEL

GIOVANNI LOMBARDI Univ of Pisa, Pisa, Italy and MAURO MORELLI Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 501-509 refs

(BTN-95-EIX0619952748166) Copyright

The effects of the walls of a test section on a model in transonic flow were investigated by using the AGARD Calibration Model B. Tests were carried out in a closed-circuit pressurized tunnel, with a confined square test section of 1.5 m width, with tapered slots giving a 5% porosity. Two models with different dimensions were used, with 0.85 and 0.056% blockage ratios. Longitudinal aerodynamic characteristics were analyzed by means of measurements performed at varying angles of attack (up to 24 deg) and Mach numbers from 0.3 to 1.2. In some flow conditions wall interference effects were probably present. However, the forces and moments dependent on the pressure distribution were likely to be related to the same factors, and therefore, the above effects tended to disappear when longitudinal stability and lift-dependent drag were analyzed as a function of lift characteristics. The drag rise Mach number evaluation seems to be fully free from blockage effects. The dimensions of the tested larger model can be considered to be the largest reasonable ones for industrial applications, but, probably, not sufficiently small when high accuracy is required.

Author (El)

A95-94461* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

COMPARISON OF THE PREDICTIVE CAPABILITIES OF SEVERAL TURBULENCE MODELS

CHRISTOPHER L. RUMSEY National Aeronautics and Space Administration Langley Research Center, Hampton, VA, United States and VEER N. VATSA Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 510-514 refs

(BTN-95-EIX0619952748167) Copyright

Four turbulence models are evaluated for transonic separated flows using two well-established solvers, one upwind and one central difference. The equilibrium model of Baldwin-Lomax predicts separated-flow shock locations too far aft. The effects of several modifications to the half-equation model of Johnson-King are explored in detail, and different versions of the model are compared. Good results for two- and three-dimensional flows can be obtained using two different versions of this model. The one-equation models of Baldwin-Barth and Spalart-Allmaras perform well for airflow tests, but can predict the shock too far forward at the outboard stations of a separated wing. The effects of numerical truncation error are assessed using grid-refinement studies in combination with varying the numerical dissipation levels in both codes.

Author (El)

A95-94463

CORRELATION OF UNSTEADY PRESSURE AND INFLOW VELOCITY FIELDS OF A PITCHING ROTOR BLADE

MIHIR K. LAL Georgia Inst of Technology, Atlanta, GA, United States, S. G. LIOU, G. A. PIERCE, and N. M. KOMERATH Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 520-528 refs

(BTN-95-EIX0619952748168) Copyright

Predictions from four different analytical methods are compared with measurements of unsteady inflow velocity and surface pressure distributions on a pitching rotor blade in hover. The test case is a stiff two-bladed testing rotor constructed from full-scale tail rotor blades, subjected to n/r e/s simple harmonic pitch oscillations under incompressible flow conditions. The chordwise distributions of unsteady pressure at three radial locations on the blade are compared with Theodorsen's and Lowey's two-dimensional incompressible unsteady aerodynamic theories and with Kalaid's pulsating doublet distribution method. Inflow velocity is predicted successfully using Peters' modal theory for steady as well as dynamic pitch conditions. The effect of dynamic inflow on rotor unsteady surface pressure is studied. At inboard radial locations, Lowey's two-dimensional theory for even harmonics of forcing frequency and Theodorsen's two-dimensional theory for odd harmonics provide efficient and reliable predictions of unsteady blade surface pressure. At outboard radial locations, panel or modal methods have to be used to predict amplitude and phase of unsteady pressure. Tip effects, mean pitch angle effects, and effects of rotation have been demonstrated.

Author (El)

A95-94464* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

IN-FLIGHT PRESSURE MEASUREMENTS ON A SUBSONIC TRANSPORT HIGH-LIFT WING SECTION

LONG P. YIP National Aeronautics and Space Administration Langley Research Center, Hampton, VA, United States, PAUL M. H. W. VUGEN,
COOLING OF AEROSPACE PLANE USING LIQUID HYDROGEN AND METHANE

This work studies the active cooling for aerospace plane, using liquid hydrogen and liquid methane. The ascending optimized trajectory to minimize the heat load in the hypersonic part is used to perform the study. The study includes the cooling for the stagnation point, the leading edges for wings and engine and other parts of the aerospace plane that are close to the leading edges. Laminar flow for the stagnation point and both laminar and turbulent flow for the leading-edge heating have been considered. The amount of heat rate (total, radiative, and convective) and the mass of liquid coolant needed for cooling are calculated. A design of minimum inlet-outlet areas for the amount of liquid needed for cooling is made with the consideration of the coolant's physical constraints in liquid and gaseous states. The study shows that the ratio of masses of coolant to the initial total mass (initial total mass of the vehicle including fuel and coolant masses) are in the limit of the reachable range, which requires about 20% or less of initial total mass for cooling in the worst case. Comparison of liquid hydrogen and liquid methane shows that liquid hydrogen is a clearly superior candidate for coolant and it saves 10% of the initial total mass as compared to methane. The study shows that there are no fundamental barriers for the cooling system of the vehicle in terms of its coolant mass and area size for coolant passage.

NAVIER-STOKES APPLICATIONS TO HIGH-LIFT AIRFOIL ANALYSIS

WALTER O. VALAREZO McDonnell Douglas Aerospace, Long Beach, CA, United States and DIMITRI J. MAVRIPLIS Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 618-624 refs

This article presents applications of a compressible Reynolds-averaged Navier-Stokes method to the calculation of flows about a transport-type multi-element airfoil. The unstructured-mesh method used utilizes multigrid techniques for computational efficiency and includes a selection of turbulence models. The airfoil used to benchmark the computational capability is a three-element airfoil configured for landing for which extensive experimental data have been acquired both on and off the airfoil surface at high Reynolds numbers. Comparisons of computational results vs experimental data shown here include traditional airfoil performance calculations due to configuration changes. Also discussed are detailed comparisons of computational results and experimental data obtained in the flap well region to assess the applicability of existing turbulence models to the flap slot flow. Performance comparisons are conducted for configurations tested at chord Reynolds numbers of 5 x 10^6 and 9 x 10^6 and the flap well study is based on data obtained on a similar airfoil at a chord Reynolds number of 5 x 10^6 (exp 5).

ANALYSIS OF LOW REYNOLDS NUMBER AIRFOIL FLOWS

J. A. EKATERINARIS Naval Postgraduate Sch, Monterey, CA, United States, M. S. CHANDRASEKHARA, and M. F. PLATZER Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 625-630 refs

Compressible steady and unsteady flowfields over a NACA 0012 airfoil at transitional Reynolds numbers are investigated. Comparisons with recently obtained experimental data are used to evaluate the ability of a numerical solution based on the compressible thin layer Navier-Stokes approximation, augmented with a transition model, to simulate transitional flow features. The discretization is obtained with an upwind-biased, factorized, iterative scheme. Transition onset is estimated using an empirical criterion based on the computed mean flow boundary-layer quantities. The transition length is computed from an empirical formula. The incorporated transition model enables the prediction of the experimentally observed leading-edge separation bubbles. Results for steady airfoil flows at fixed angles of attack and for oscillating airfoils are presented.
GARDI, and L PAPARONE Journal of Aircraft (ISSN 0021-8669) vol. C, DE NICOLA Univ of Naples, Naples, Italy, R. TOGNACCINI, P. VISINE EULER FLOW MODEL

A95-94481

estimation of supersonic leading-edge thrust by a euler flow model

(BTN-95-EIX0619952748194) Copyright

The applicability of the Euler equations based flow servers to the aerodynamic design and analysis of supersonic transport aircraft configurations at cruise conditions is addressed. Previously, Carlson and Mann showed that the strongly nonlinear phenomenon of the leading-edge thrust is a key problem when it comes to the design of supersonic wings. In the present work, results obtained using a multiblock structured Euler flow simulation system demonstrated the capability of the Euler flow model to predict the leading-edge thrust for sharpened wings at a good level of accuracy.

A95-94444

computation of vortex breakdown on a rolling delta wing

RAYMOND E. GORDNIER U.S. Air Force Wright Lab, Wright-Patterson Air Force Base, OH, United States Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 686-688 refs

(BTN-95-EIX0619952748195) Copyright

This discussion focuses on the dynamically induced vortex breakdown of the upward-moving edge vortex during a portion of the roll maneuver. The occurrence of breakdown is first tackled. Then, the factors that contribute to vortex breakdown are presented.

A95-95440

navier-stokes computations around a realistic fighter configuration

A general approach to the generation of efficient Navier-Stokes grids around complex geometries is presented. The method starts from an Euler grid and the specification of its topology. An O-O grid is generated in a sublayer around the configuration covering the estimated boundary layer and its vicinity. The sublayer grid is thereafter merged with the original Euler grid. The result is a Navier-Stokes grid with a new topology. An application of the method on the new Swedish fighter JAS demonstrates the viability of the method. Flow computations around the fighter configuration are performed with the EURANUS-code, a general purpose multiblock/multigrid code for solving Euler and Navier-Stokes equations. Euler and laminar Navier-Stokes equations are solved for transonic cases. A computation of the C(sub p)-contours for the Euler and Navier-Stokes solutions at a low angle of attack shows, as expected, good agreement. This example serves as a first verification of the method's ability to generate efficient Navier-Stokes grids around complex configurations.

Author (Hemer)

A95-95451

multigrid/multiblock method for transonic potential flow around wing/body/nacelle configurations including a slipstream

A potential flow code has been developed for simulation of transonic flow around wing/body/nacelle configurations and for predictions of propeller/airframe interference. The propeller is modeled as an actuator disk and the effect of the slipstream is approximately considered.
AERODYNAMICS

wing/body/nacelle flow solver has been developed from the MATRICS wing/body code. The computational space is divided into two blocks, with one inboard and one outboard of the nacelle. The resulting algorithm developed for the two blocks is fully implicit not only in all three coordinate directions but also between the two blocks. It is uniformly stable for all regions in the field. The method uses almost the same Central Processing Unit (CPU) time as the one block solver for wing/body configurations. Hence, it is a very robust algorithm and the method is cost effective. Applications will be shown for three cases simulating propeller driven airplanes in subsonic climb and transonic cruise. Comparisons are made with data from windtunnel tests and from Euler code calculations. In general the agreement is very good with a tendency of the potential flow code to slightly overpredict the effect of the propeller slipstream on the wing pressure distributions.

Author (Hemer)

N95-30448 University of Southern California, Los Angeles, CA.

FLOW MODELS FOR THE DESIGN OF A HYPERSONIC IODINE VAPOR WIND TUNNEL NOZZLE WITH CHEMICAL AND VIBRATIONAL NONEQUILIBRIUM EFFECTS Ph.D. Thesis MARTY KEITH BRADLEY 1994

Avail: Issuing Activity (Univ. of Southern California, Doheny Library, Micrographics Dept., Los Angeles, CA 90089-0182)

A hypersonic iodine wind tunnel facility (H.I.T.) is being built at the University of Southern California (U.S.C.) to study hypersonic nonequilibrium flow. A detailed model for iodine nozzle flow with vibrational as well as chemical nonequilibrium has been developed to assess the impact of vibrational nonequilibrium in the wind tunnel nozzle. Each discrete vibrational level is treated as a separate species and reaction rate expressions are developed for vibration-vibration (V-V), vibration-translation (V-T), and dissociation reactions using various reaction rate models. Vibrational equilibrium, harmonic oscillator, SSSH, and modified SSSH thermodynamic and reaction rate models have been developed for iodine. One-dimensional and two-dimensional finite-rate chemistry nozzle calculations have been made using the LPF (Liquid Performance Program) nozzle analysis code. In the SSSH and modified SSSH models, V-T transitions were found to be dominant when compared to V-V transitions, and population inversions were created downstream in the nozzle in vibrational levels above about ten for the harmonic oscillator, SSH, and modified SSH models. Results from these calculations have been compared to data from an iodine freejet test. The sensitivity of the wind tunnel nozzle exit flow profile to the various nonequilibrium flow models has also been determined. Based on these results and considering the effects of vibrational nonequilibrium and boundary layer state, a nozzle contour has been designed that will produce near-uniform flow properties for the first H.I.T. nozzle, despite any uncertainties present in the chemistry, vibration, or boundary layer flow models.

Dissert. Abstr.

N95-30611* United Technologies Research Center, East Hartford, CT.

DEVELOPMENT OF A LINEARIZED UNSTEADY EULER ANALYSIS FOR TURBOMACHINERY BLADE ROWS Final Contractor Report JOSEPH M. VERDON, MATTHEW D. MONTGOMERY, and KENNETH A. KOUSEN Jun. 1995 107 p Contract(s)/Grant(s): (NAS3-25425; RTOP 505-62-10) (NASA-CR-4677; E-9575; NAS 1.26:4677; R95-970293) Avail: CASI HC A06/MF A02

A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.

Author

AXIAL LOADS ON YAWED ROTORS G. J. W. VANBUSSEL Nov. 1993 28 p (PB95-214193; IW-93073R) Avail: CASI HC A03/MF A01

Under the assumption of incompressible, inviscid and irrotational flow, it can be shown that the pressure perturbation in the complete flow field is given by a Laplace equation and acts as an acceleration potential function. The rotor blades are represented in the model as discrete surfaces on which a pressure discontinuity is present. Spanwise and chordwise pressure distributions are present, which are composed of analytical asymptotic solutions for the Laplace equation. This model is implemented in the PREDICHT and PREDICDYN computer code series for steady and dynamic inflow cases respectively. Dynamic inflow concerns with large scale unsteady rotor aerodynamics, such as coherent wind gusts, collective blade pitch and rotor speed variations. PREDICDYN is at present extended for the investigation of yawed flow. Axial induction velocities and axial load distributions are determined with this method and compared with yawed flow momentum theory extensions.

NTIS

N95-30704* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

Presented at the 31st Joint Propulsion Conference and Exhibit, San Diego, CA, 10-12 Jul. 1995; sponsored by AIAA, ASME, SAE, and ASEE

Contract(s)/Grant(s): (NAS3-27186; RTOP 537-02-00) (NASA-TM-106971; E-9732; NAS 1.15:106971; AIAA PAPER 95-2614) Avail: CASI HC A03/MF A01

The NPARC code, a Reynolds-averaged full Navier-Stokes code, was validated for nozzle afterbody (boattail) flow fields at transonic speeds. The flow fields about three geometries were studied: an axisymmetric nozzle with attached flow, an axisymmetric nozzle with separated flow: and a two-dimensional (rectangular) nozzle with separated flow. Three turbulence models, Baldwin-Lomax, Baldwin-Barth, and Chien k-epsilon, were used to determine the effect of turbulence model selection on the flow field solution. Static pressure distributions on the nozzle surfaces and pitot pressure measurements in the exhaust plume were examined. Results from the NPARC code compared very well with experimental data for all cases. For attached flow fields, the effect of the turbulence models showed no discernable differences. The Baldwin-Barth model yielded better results than either the Chien k-epsilon or the Baldwin-Lomax model for separated flow fields.

NTIS

N95-30712* National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.

A proposed wing-body reusable launch vehicle was tested in the NASA Marshall Space Flight Center's 14 x 14-inch trisonic wind tunnel during the winter of 1994. This test resulted in the vehicle's subsonic and transonic, Mach 0.3 to 1.96, longitudinal and lateral aerodynamic characteristics. The effects of control surface deflections on the basic vehicle's
In this paper, a multigrid convergence acceleration technique for the 2D Euler equations applied to high-lift systems is presented. The technique is applied to a simulation of the transonic wing-body configuration shown in Fig. 1. The simulation is performed using a finite difference code. The results show good agreement with experiments for both subsonic and transonic flows.

NTIS

"AERODYNAMICS"
02 AERODYNAMICS

some preliminary vapor screen flow visualization data taken at \(M = 0.6 \)
and 0.9. This part of the report presents a description of the model, test setup, data acquisition, and data processing. DTIC

N95-30929# Naval Surface Warfare Center, Silver Spring, MD.
HYPERVELOCITY WIND TUNNEL NUMBER 9, HIGH MACH NUMBER DEVELOPMENT PROGRAM Final Report
MELISSA A. LEDERER 5 Dec. 1994 85 p
(AD-A295934; NSWCDD/TR-94/96) Avail: CASI HC A05/MF A01

This report describes the results of the high Mach Number Development program performed at the White Oak, Maryland site of the Dahlgren Division, Naval Surface Warfare Center. The goal of this program was to expand the capabilities of the Hypervelocity Wind Tunnel Number 9 (Tunnel 9) to include operation at Mach 18. The constraints of this program involved using the existing Mach 14 setup with as little modification as necessary. There were two major areas of interest for this program, the heater and the nozzle. The required supply temperature for Mach 18 operation is above the current capabilities of the Tunnel 9 Mach 14 heater. Utilizing supercritical flow conditions lowered the required supply temperature to within the Mach 14 heater capability. The current Mach 14 nozzle was used and the throat section was replaced with a new hardware set designed to achieve the correct nozzle throat-to-exit area ratio to obtain the higher Mach number. Forty-one runs were carried out in Tunnel 9 in support of this program. The Mach number capability in Tunnel 9 has been extended to Mach 16.5. For this condition the flow has a 30-inch test core with Pitot pressure deviations of -1.1% to +1.3% and 3.5 seconds of good run time. A Mach 18 capability has also been investigated. Research efforts to achieve acceptable Mach 18 conditions are continuing. DTIC

N95-31715# National Aerospace Lab., Tokyo (Japan). Aeroengine Div. EFFECTS OF CAVITY BLEED AND ITS CONFIGURATION ON AERODYNAMIC CHARACTERISTICS OF SUPERSONIC INTERNAL FLOW
AKIRA MURAKAMI, SIGEMI SHINDO, FUMIO KOMIYAMA (Japanese Patent Office, Tokyo, Japan), and KIMIO SAKATA Sep. 1994 18 p In JAPANESE Original contains color illustrations (ISSN 0389-4010)
(NAL-TR-1247) Avail: CASI HC A03/MF A01

This paper presents experimental results of the effects of cavity bleed and its configuration on the supersonic internal flow field and the aerodynamic characteristics. The experiments were conducted in the supersonic heat transfer test facility of NAL using the partial model to simulate the supersonic internal compression passage of the mixed compression air-intake. The pressure recovery characteristics of five cavity configurations was obtained for the bleed mass flow rates. It was found that the cavity bleed was effective for the starting of the air-intake but the excessive cavity bleed aggravated the pressure recovery. The cavity configuration affected the characteristics of the pressure in the cavity bleed plenum for the bleed mass flow rates. Therefore, the optimum bleed mass flow rates for the maximum pressure recovery depended on the cavity configuration. Author

N95-31984# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.
AFTERBODY/NOSSELE PRESSURE DISTRIBUTIONS OF A TWIN- TAIL TWIN-ENGINE FIGHTER WITH AXISYMMETRIC NOZZLES AT MACH NUMBERS FROM 0.6 TO 1.2
DAVID J. WING May 1995 214 p
Contract(s)/Grant(s): (RTOP 505-59-30-04)
(NASA-TP-3509; L-17438; NAS 1.60:3509) Avail: CASI HC A10/MF A03

Distributions of static pressure coefficient over the afterbody and axisymmetric nozzles of a generic, twin-tail twin-engine fighter were obtained in the Langley 16-Foot Transonic Tunnel. The longitudinal position of the vertical and horizontal tails were varied for a total of six aft-end configurations. Static pressure coefficients were obtained at Mach numbers between 0.6 and 1.2, angles of attack between 0 deg and 8 deg, and nozzle pressure ratios ranging from jet-off to 6. The results of this investigation indicate that the influence of the vertical and horizontal tails extends beyond the vicinity of the tail-afterbody juncture. The pressure distribution affecting the aft-end drag is influenced more by the position of the vertical tails than by the position of the horizontal tails. Transonic tail-interference effects are seen at lower free-stream Mach numbers at positive angles of attack than at an angle of attack of 0 deg. Author

N95-32188# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.
NUMERICAL SOLUTION OF THE FULL POTENTIAL EQUATION USING A CHIMERA GRID APPROACH
TERRY L. HOLST Jul. 1995 33 p
Contract(s)/Grant(s): (RTOP 505-59-53)
(NASA-TM-110360; A-950082; NAS 1.15:110360) Avail: CASI HC A03/MF A01

A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation. Author

N95-32193# MCAT Inst., San Jose, CA.
CONTROL OF UNSTEADY SEPARATED FLOW ASSOCIATED WITH THE DYNAMIC STALL OF AIRFOILS Final Report
M. C. WILDER 31 Jan. 1995 41 p
Contract(s)/Grant(s): (NCC2-637)
(NASA-CR-198972; NAS 1.26:198972; MCAT-95-09) Avail: CASI HC A03/MF A01; 1 functional color page

An effort to understand and control the unsteady separated flow associated with the dynamic stall of airfoils was funded for three years through the NASA cooperative agreement program. As part of this effort a substantial data base was compiled detailing the effects various parameters have on the development of the dynamic stall flow field. Parameters studied include Mach number, pitch rate, and pitch history, as well as Reynolds number (through two different model chord lengths) and the condition of the boundary layer at the leading edge of the airfoil (through application of surface roughness). It was found for free stream Mach numbers as low as 0.4 that a region of supercritical flow forms on the leading edge of the suction surface of the airfoil at moderate angles of attack. The shocks which form in this supercritical region induce boundary-layer separation and advance the dynamic stall process. Under such conditions a supercritical airfoil profile is called for to produce a flow field having a weaker leading-edge pressure gradient and no leading-edge shocks. An airfoil having an adaptive-governor, or dynamically deformable leading edge (DDEL), is under development as a unique active flow-control device. The DDEL, formed of carbon-fiber composite and fiberglass, can be flexed between a NACA 0012 profile and a supercritical profile in a controllable fashion while the airfoil is executing an angle-of-attack pitch-up maneuver. The dynamic stall data were recorded using point deflection interferometry (PDI), a noninvasive measurement technique. A new high-speed cinematography system was developed for recording interferometric images. The system is capable of phase-locking with the
pumping airfoil motion for real-time documentation of the development of the dynamic stall flow field. Computer-aided image analysis algorithms were developed for fast and accurate reduction of the images, improving interpretation of the results.

03 AIR TRANSPORTATION AND SAFETY

Includes passenger and cargo air transport operations; and aircraft accidents.

A95-92626
REACTION-TIME RESPONSE OF AIRCRAFT CRASH
H. ABBAS Aligarh Muslim Univ (AMU), Aligarh, India, D. K. PAUL, P. N. GODBOLE, and G. C. NAYAK Computers and Structures (ISSN 0045-7949) vol. 55, no. 5 June 3 1995 p. 609-817 refs
(BTN-95-EK9522721296) Copyright

The safety related structures of a nuclear power plant (NPP) are required to be designed for the impact of aircraft. The reaction-time response is usually obtained assuming the target to be rigid. The assumption is claimed to be conservative in the case of stiff structures. The effect of target yielding has been studied by considering an aircraft crash upon the outer containment of an NPP. It has been observed in this investigation that the assumption of a rigid target is conservative for some of the cases. It is usually assumed that variation in crushing strength has very little effect on the reaction from the target. However, the sensitivity analysis for reaction-time response indicates that both linear mass density and crushing strength are sensitive in affecting the reaction from the target, depending upon the characteristics of the aircraft and the striking velocity. The concept of confidence level has been investigated in relation to inclined targets also and confidence curves are obtained for aircraft.

A95-93390
THE WORLD OF REGIONAL AIRCRAFT - CHALLENGES AND OPPORTUNITIES
P. H. SUMMERFIELD Aeronautical Journal (ISSN 0001-9240) vol. 98, no. 980 December 1994 p. 367-387
(H-TN-95-C0002) Copyright

The regional air transport industry is slowly emerging from the ravages of a prolonged structural recession. Long term survival in an industry which has traditionally traded in one of the world’s most aggressive marketplaces, will impose enormous demands upon everyone involved. Those regional aircraft manufacturers and operators who are brave enough to take advantage of emerging technologies, adjust to new processes and develop highly-skilled and motivated people will be best equipped to meet the global demands of the marketplace in an ever-changing world. The actions and achievement of Avro International Aerospace, a division of British Aerospace, with its Regional Avroliner family of aircraft provides an example through which to identify the key components in this process.

A95-93554
LEE WAVES BENIGN AND MALIGNANT
A95-93441 Boston, MA American Meteorological Society 1993 p. 469
Copyright

The flow of an incompressible, stratified fluid over an obstacle will produce an oscillation in which buoyance is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as incompressible; and even the linear approximation—i.e., for small disturbances—the theory will explain a great many of the orographic phenomena observed in the atmosphere. These phenomena are called benign, as offering no hazard to aircraft or lee surfaces areas. However, nonlinear 'maladies' arise in three ways: (1) through the large (scaled) size of the mountain, and (2) from dynamically singular levels in the fluid field; and (3) by amplification of the disturbance arising out of the decrease of mean density with altitude. These effects produce a complicated array of phenomena—large departures of the streamlines from their equilibrium levels, high winds, wave-breaking, generation of small-scale disturbances, turbulence, etc.—that present hazards, possibly severe, to aircraft and to lee surface areas. The nonlinear disturbances also interact with the larger-scale flow in such a manner as to impact global weather forecasts and the climatological momentum balance. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-80 km altitude), whereas the process (3) becomes effective in their breakdown. Recent observations (from radar, shuttle data, and limb soundings) show disturbances in the middle atmosphere to be of length scales that require the coriolis force in their modeling. At these altitudes, the phenomena must be studied with a view to their potential impacts on high-performance aircraft, including the projected National Aerospace Plane (NASP).

A95-93598
EXTERNAL VIEWING AIRBORNE CCTV SYSTEM
(CONGRESS PAPER C429-25-172; HTN-95-21167) Copyright

Recent technology now makes it possible to place miniature closed circuit television cameras (CCTV) external to the aircraft. The paper describes the British Airways CCTV trial installation on a B747 aircraft of three externally-looking miniature video cameras plus associated viewing and recording equipment. The purpose of the trial is to evaluate system performance throughout the spectrum of environmental and climatic conditions encountered by an aircraft in airline operation. The trial may be extended to introduce a monitor into the cockpit, to introduce internal cameras and to explore the possibility of enhanced vision (infra red). The exercise will give British Airways the opportunity to evaluate a future fleet fit of a CCTV system and the CAA the opportunity to evaluate possible future applications.

A95-93599
DEVELOPMENT OF AN AIRCRAFT CABIN WATER SPRAY SYSTEM
(CONGRESS PAPER C428-25-030; HTN-95-21168) Copyright

Following the Manchester Airport Boeing 737 fire in August 1985, there has been considerable interest in water spray systems to delay the ingress of an external fire and its harmful effects into aircraft cabins. The effectiveness of systems comprising arrays of selected nozzles was assessed by means of a multistage program of research. The results of these studies were utilized in the design of a system offering minimum weight and optimum performance for full scale fire trials on a Boeing 707 fuselage, for which findings are presented. Aspects of design architecture are also discussed.

A95-93600
AIRCRAFT CABIN WATER SPRAY SYSTEMS - RESEARCH AND REGULATORY ISSUES
(CONGRESS PAPER C428-25-150; HTN-95-21169) Copyright

The Civil Aviation Authority has the responsibility, placed upon it by Parliament, of making professional judgements on safety matters. These
judgements are necessary for the Authority to set the standards for United Kingdom airlines, which are designed to maintain and where possible improve the safety of passengers. This is a responsibility necessitating careful evaluation of the issues and requiring decisions to be taken only after all relevant factors have been considered. Greater emphasis is being placed on improving passenger survivability in the rare event of an accident and steady progress had been made, particularly in the field of fire prevention and containment. This paper presents an overview of the results of recent research and discusses regulatory issues that are relevant if such systems are to be installed on passenger aircraft.

Author (reviewed by Hemer)

A95-83601
CIVIL AIRCRAFT PERFORMANCE - DEVELOPMENTS FOR IMPROVED SAFETY

Some regulatory changes and technological developments which relate to aircraft performance may influence aviation safety. Recent proposals of new standards and regulations will change causing airlines, with resulting economic effects. Some new technology will also affect aircraft performance. How should the regulators and the airline industry adjust to such changes? Author (Hemer)

A95-95083
ORGANIZATIONAL ERGONOMICS AND AVIATION SAFETY

This paper describes organizational factors which appear to be associated with recent aviation accidents. The primary focus is what can be done at aviation organizations to reduce the frequency of 'human error'. The U.S. Government asked the author to provide a confidential report on how the relative accident potential of airline and air-taxi organizations could be evaluated from human factors standpoint. The paper contains his views on that subject. Author (reviewed by Hemer)

A95-95192
PSYCHO-SOCIAL SAFETY PERCEPTIONS: HELICOPTERS AS A CASE STUDY

The paper presents helicopter safety issues from an objective, quantitative perspective. The actual risks to neighborhoods, businesses, and the population in areas where helicopters operate are quantified. Second, accident rates for various missions are examined so that citizens can intelligently differentiate between high and low risk types. Finally, the accident risk exposure near takeoff and landing facilities is analyzed to determine the risks to residential and commercial buildings, vehicles and people on ground. The quantitative accident data is in turn compared to the results of a detailed survey of citizens' attitudes toward the helicopter and its operation, and toward airports. The survey, based on a large sample of considerable variety, produced a list of 'concerns' including a number of community problem areas and psychosocial factors. This more detailed understanding of the specific concerns is used in conjunction with the accident data to suggest actions which would be helpful in projecting the level of safety required for future helicopter operations.

Author (Hemer)
Another thrust was undertaken in conjunction with the Aviation Safety Reporting System (ASRS). This involved publicizing the ASRS to EMS pilots and personnel, and calling each of the reporters back to gather additional information. This paper will discuss these efforts and how they may positively impact the safety of EMS operations. Author (Hemer)

Instability of the pilot/airframe combination has been a problem of manned flight. Rapid advances made in aviation following World War 2 greatly increased the incidence of PIO problems and the amount of research and development work aimed at understanding and mitigating these difficulties. Criteria and requirements were developed to be used in design to obtain satisfactory PIO qualities, but, in spite of all this work and the great flexibility in available modern control design technologies, PIO problems still often occur with new aircraft. It is clear that a universal solution of the PIO problem still evades the engineering community. The cost of these problems financially and in program delay is significant. This AGARD Flight Mechanics Workshop summary report contains presentations and discussions that aim toward the elimination and avoidance of PIO by increasing the knowledge of PIO's and the problems associated with them. For individual titles, see N95-31062 through N95-31072.

These problems relating to Pilot Induced Oscillations have manifested themselves since the earliest days of manned flight. The earliest recorded examples of PIO date back to the Wright brothers first aircraft. The earliest filmed record dates back to just prior to World War 2, with the XB-19 aircraft which suffered a pitch PIO just prior to touchdown. Four classes of PIO have been identified, into which all of the known incidents can be grouped. These are: (1) Essentially Single Axis, Extended Rigid Body Effective Vehicle Dynamics; (2) Essentially Single Axis, Extended Rigid Body with Significant Feel-System Manipulator Mechanical Control Elements; (3) Multiple Axis, Extended Rigid Body Effective Vehicle Dynamics; and (4) PIO's Involving Higher Frequency Modes. Derived from text

The term 'Pilot Induced Oscillation' is misleading in that it places an undue emphasis on the role of the pilot in the process. Clearly, the phenomenon cannot occur in the absence of the pilot, but the term PIO suggests that the pilot is in some way responsible for the occurrence. He is not. The phenomenon may be better described by the title 'Aircraft-Pilot Coupling', or A-PC. This may be considered to better describe what is actually occurring when the pilot is trying to perform his normal function, i.e., that of controlling the aircraft which he is flying. For a designer, the objective should be to ensure that there is no possibility of A-PC occurring. Associated with this, the goal should also be to achieve Level 1 handling qualities. The key is to understand the Process involved in design and test and to ensure that this is exercised to achieve the objective. This has to be sat alongside the management goals of better, faster and cheaper, in order that the manufacturer can remain competitive in the market. Derived from text

Comparison of the handling characteristics of a Porsche with those expected from a modern combat type aircraft indicate that we accept significantly poorer handling performance with the aircraft than we would with a high performance road vehicle. The work which led to the evolution of the Smith-Geddes criteria stems from work performed for the USAF in relation to the F-15 aircraft. The logic that arrived at the criteria stemmed from a belief that the existing handling qualities criteria were inadequate for assessing the Pilot Induced Oscillation (PIO) susceptibility of an aircraft, and that the only successful way to test for this was to use the methods of Handling Qualities During Tracking (HQDT). The work which was performed was offered for the update of MIL 1797, but was not incorporated. This presentation concentrated on the understanding of PIO and the process by which it originates, using a simple model to demonstrate the characteristics which are inherent. The presentation also provided an explanation of the Smith-Geddes criteria, without resorting to the detail of the theories which support the criteria. The major thrust relates to the application to the assessment of PIO susceptibility and includes a commentary on the state of the control law development, together with the associated flight test technology. Derived from text

Eighteen years after the Tornado PIO (Pilot Induced Oscillation) was successfully resolved, it seems inexplicable that similar PIO problems can still occur. For whatever reason, current formal methods are not working. The Vista F-16 is a powerful tool which should be put to use in establishing a universally acceptable set of criteria for the prevention of PIO by design. It should be done in the manner which maximizes the PIO quality of a sufficiently wide range of linear and non-linear dynamic qualities, both in pitch and in roll, to establish a customer-defined set of Level boundary limits on whatever parameters are found best to quantify PIO. Only by doing this will it be possible to resolve the claims of the many competing criteria and guarantee a PIO-free future for all. It is not particularly difficult to identify the means. Derived from text

N95-31067# McDonnell-Douglas Aerospace, Long Beach, CA. Transport Aircraft Unit. THE RELATION OF HANDLING QUALITIES RATINGS TO AIRCRAFT SAFETY JOHN HODGKINSON In Advisory Group for Aerospace Research and Development, Flight Vehicle Integration Panel Workshop on Pilot Induced Oscillations 3 p Feb. 1995 Copyright Avail: CASI HC A01/MA A02

The main theme of this presentation, is that of relating the handling qualities issues, and specifically the PIO, to aircraft safety. It is essential that the programme managers recognize that PIO is safety critical in that it is loss of control, and that when it is encountered, it is as dangerous as a structural failure of the airframe. Derived from text

597
Pilot-induced oscillation (PIO) is an unwanted and inadvertent closed-loop coupling between the pilot and one or more independent response variables of an aircraft. PIO typically results when the pilot attempts to perform a high gain tracking task using the usual cues of acceleration or attitude. Control system and aircraft characteristics within the bandwidth in which the pilot is active can contribute to a coupling between the pilot response and aircraft dynamics. The result is a neutrally damped or undamped out-of-control condition in which the pilot is often making intentional extreme and repetitive inputs in an effort to damp the motion but only serves to enhance it. Pilot-augmented oscillation (PAO) is an unintentional closed-loop coupling which does not involve a tracking task. Another aircraft variable which may lead to PIO or PAO is aeroelastic deformation of the vehicle structure. This elastic response can produce pilot cues or aircraft rigid body motion which can be enhanced when the pilot attempts to damp the oscillation and PIO results. Or, the elastic oscillations alone may lead to PAO. The potential for aeroelastic pilot-in-the-loop coupling is not widely recognized, and this can mean resources expended in ineffectual or nonoptimal solutions to the problem until the aeroelastic source is recognized. This paper will characterize the aeroelastic/pilot coupling phenomena without reproducing the fundamental research which has already been published on more general PIO. Examples of aeroelastic PIO and PAO will be provided to illustrate the various ways in which the phenomena can manifest itself, including recent experiences with the C-17A and the V-22. An examination of the potential for predicting this coupling will also be provided. Lastly, recommendations for flight test methodology to uncover and investigate aeroelastic pilot-in-the-loop coupling will be provided.

Author

03 AIR TRANSPORTATION AND SAFETY

N95-31069# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany). Inst. fuer Flugmechanik.

SAAB EXPERIENCE WITH PIO

Copyright Avail: CASI HC A02/MF A02

The past experience in Sweden with PIO has been reviewed, which had been so publicly witnessed with the second accident to the JAS-39 aircraft at the Stockholm Water Festival. Prior to commencing on the JAS-39 project, SAAB’s experience of the PIO phenomenon had commenced with the J-35 aircraft. This aircraft had high stick sensitivity combined with a linear gearing of the stick to eleven. Following the PIO, the solution devised was to add a nonlinear gearing and improve the stability augmentation of the system. For the next aircraft project, the AJ-37 Viggen, significant work was performed on the handling qualities and resistance to PIO, based upon new information received during the 1960’s from Ashkenas, McRuer, and A’Harrah. By 1963, Sweden had developed its own specification for flight control system design and for handling qualities. The latest versions of this AJ-37 aircraft have a digital flight control system. The AJ-37 Viggen has never experienced a problem with PIO in its service to date. The JAS-39 flight control system originated from demonstration work performed by SAAB on a FBW AJ-37 Viggen aircraft. This aircraft had been flown with instability levels of up to 4 percent chord at low Mach Number. This was the limit for this aircraft. Although this aircraft was reported to have experienced Level 2 or 3 handling, due to excessive time delays within the flight control system, it never experienced rate limiting or PIO. On this basis, it was deemed that there was sufficient knowledge and confidence to proceed with the JAS-39 aircraft project, and the JAS-39 specification was written around this experience, with a demanding handling qualities requirement. Derived from text

N95-31072# Chalk (Charles R.), Williamsville, NY.

CALSAN EXPERIENCE OF PIO AND THE EFFECTS OF RATE LIMITING

Copyright Avail: CASI HC A03/MF A02

The experience of PIO within the Calspan Corporation is considerable, following a long standing interest in the subject. During this experience, the major concern that has been uncovered is that of the attitude towards the pilot following a PIO incident. There is still a tendency in many areas of aviation to consider a PIO as a failure of the pilot, whereas it must be properly regarded as a failure of the control system and its design process. Over a period of some years, the Calspan Corporation has undertaken a series of experiments with the NT-33A and Lear Jet aircraft to examine the PIO and examine the potential for aeroelastic/pilot coupling phenomena. The notes which follow summarize the presentation given on some of the aspects which have been investigated both analytically and experimentally in flight tests.

Derived from text

N95-31428# Federal Aviation Administration, Cambridge, MA.

AVIATION CAPACITY ENHANCEMENT PLAN 1994

A comprehensive review of Federal Aviation Administration programs intended to improve the capacity of the National Air Transportation System. The Plan identifies the causes and extent of capacity and delay problems currently associated with air travel in the U.S. and outlines various planned and ongoing FAA projects with the potential to reduce the severity of the problems in the future. The major areas of discussion are: (1) Airport Development; (2) Airport Capacity; (3) Airspace Capacity; (4) New Instrument Approach Procedures; (5) Technology for Capacity Improvement; and (6) Marketplace Solutions. DTC

N95-31454# Naval Research Lab., Monterey, CA.

ENVIRONMENTAL SUPPORT OF NAVAL AVIATION Final Report

598
A two-pronged approach to providing environmental support to Navy aviation is described. One approach focuses on flight safety and efficiency, and the other focuses on support to the tactical mission planner. Products are discussed in terms of requirements and the technical issues associated with the development or implementation of the products. This insight should be useful not only to the operational, tactical, and environmental communities, but to the R&D community as well.

N95-31512# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

The goal of this research is to develop a tool for the Global Patient Movement Requirements Center (GPMRC) to efficiently forecast Aeromedical Evacuation (AE) aircraft and schedule patients in the lift-bed process. During a contingency, GPMRC is responsible for requesting required airlift, and providing lift-bed candidates to the Theater Patient Movement Requirements Center. The objective is to evacuate all waiting patients while minimizing the number of C-141 aircraft which must be dedicated to the AE mission. In the solution process, a short-term forecast of patient movement requirements is input, including number of patients, bed and aircraft availability, and hub preferences. A mixed integer linear program is formulated, and solved. Upon reaching optimality or a user-specified node limit, the user analyzes the solution and determines if the search will be continued. At process completion, a solution file is produced which contains a feasible schedule which minimizes the number of dedicated C-141s required. The programs developed to assist the solution process were tested with 16 data sets. While optimal solutions are not guaranteed to be found for every case, the process quickly produces good, feasible solutions and provides timely, valuable information to GPMRC so it can request airlift and provide lift-bed candidates to appropriate agencies.

N95-31569# Federal Aviation Administration, Atlantic City, NJ.

CHEMICAL OPTIONS TO HALONS FOR AIRCRAFT USE Final Report ROBERT E. TAPSCOTT Feb. 1995 62 p

This report presents a statistical compilation and review of general aviation accidents which occurred in 1993 in the United States, its territories and possessions and in international waters. The accidents reported are all those involving U.S. registered aircraft not conducting operations under 14 CFR 121, 14 CFR 127, or 14 CFR 135. This report is divided into five sections: All Accidents; Fatal Accidents; Serious Injury Accidents; Property Damage Accidents; and Midair Collision Accidents. Several tables present accident parameters for 1993 accidents only, and each section includes tabulations which present comparative statistics for 1993 and for the nine-year period 1984-1992.

N95-31667# Arnold Engineering Development Center, Arnold AFS, TN.

The AEDC Propulsion Development Test Cell C-2 has been modified to provide simulated altitude icing conditions. Spray droplet clouds with droplet mass median diameters simulating natural icing clouds are produced with calibrated water atomizing spray nozzles. The proper amount of liquid water ingested by an engine in flight through icing clouds is simulated by injection of the proper water content into the airstream that enters a test engine. The addition of the icing simulation spray system provides the opportunity to conduct simulated icing testing in the large engine test cell. The system is capable of providing icing testing of large engines, inlets, windshields, wings, and other full-scale test articles. The results of system activation testing have been summarized. The system can be used to initiate clouds and reach steady controlled spray operation within 10 sec. The system is capable of varying the liquid water content (LWC) over a five-to-one range within 10 sec. The simulation spray can be terminated within 5 sec. The uniformity of the distribution of the supercooled water at the test section has been determined. The transient response of the spray system and the ability to operate at extreme cold conditions for icing testing are improvements beyond previous AEDC icing simulation system capabilities.

N95-31687# Mitre Corp., McLean, VA. Center for Advanced Aviation System Development.

The goal of this research is to develop a tool for the Global Patient Movement Requirements Center (GPMRC) to efficiently forecast Aeromedical Evacuation (AE) aircraft and schedule patients in the lift-bed process. During a contingency, GPMRC is responsible for requesting required airlift, and providing lift-bed candidates to the Theater Patient Movement Requirements Center. The objective is to evacuate all waiting patients while minimizing the number of C-141 aircraft which must be dedicated to the AE mission. In the solution process, a short-term forecast of patient movement requirements is input, including number of patients, bed and aircraft availability, and hub preferences. A mixed integer linear program is formulated, and solved. Upon reaching optimality or a user-specified node limit, the user analyzes the solution and determines if the search will be continued. At process completion, a solution file is produced which contains a feasible schedule which minimizes the number of dedicated C-141s required. The programs developed to assist the solution process were tested with 16 data sets. While optimal solutions are not guaranteed to be found for every case, the process quickly produces good, feasible solutions and provides timely, valuable information to GPMRC so it can request airlift and provide lift-bed candidates to appropriate agencies.

N95-31712# National Transportation Safety Board, Washington, DC.

ANNUAL REVIEW OF AIRCRAFT ACCIDENT DATA: US GENERAL AVIATION CALENDAR YEAR 1993 12 May 1995 64 p

This report presents a statistical compilation and review of general aviation accidents which occurred in 1993 in the United States, its territories and possessions and in international waters. The accidents reported are all those involving U.S. registered aircraft not conducting operations under 14 CFR 121, 14 CFR 127, or 14 CFR 135. This report is divided into five sections: All Accidents; Fatal Accidents; Serious Injury Accidents; Property Damage Accidents; and Midair Collision Accidents. Several tables present accident parameters for 1993 accidents only, and each section includes tabulations which present comparative statistics for 1993 and for the nine-year period 1984-1992.

N95-31845# Federal Aviation Administration, Oklahoma City, OK. Civil Aeromedical Institute.

Simulated emergency egress from Type 3 over-wing exits was studied to support regulatory action by the FAA. Passageway width and seat encroachment distance adjacent to the Type-3 exit were the major variables of interest. Two subject groups of differing mean ages were employed in a repeated-measures evaluation of different passageway widths leading to the exit in the C91 aircraft cabin evacuation facility. Main effects of passageway width and seat encroachment distance on egress rates were determined using analysis of variance (ANOVA). Main effects were found for passageway width (p < 0.001), seat encroachment distance (p < 0.001), and subject group (p less than 0.001), and subject group (p less than 0.001), and subject group (p less
The observable is measured in a GPS receiver by accurately tracking the pseudorandom noise (PRN) code phase of the input GPS signal using a digital energy detector and a digital delay lock loop (DDLL). The following issues are presented: (1) mathematical modeling of the digital PRN code acquisition and tracking system, (2) the closed-form expression derivation for the detection and false-alarm probabilities of the acquisition process and for the variance of code phase tracking error, and (3) the linear and nonlinear performance analysis of the DDLL for optimizing the receiver structures and parameters with tradeoff between the tracking errors due to receiver dynamics and due to input noise.

Author (El)
04 AIRCRAFT COMMUNICATIONS AND NAVIGATION

N95-30815# National Aerospace Lab., Amsterdam (Netherlands).
DEVELOPMENT OF ADVANCED APPROACH AND DEPARTURE PROCEDURES. FAILURE SCENARIOS
L. J. J. ERKELENS and J. H. VANDRONKELAAR 15 Sep. 1994 18 p
(PB95-198123; NLR-TP-93348-U) Avail: CASI HC A03/MF A01
Under a joint contract awarded by the Federal Aviation Administration (FAA) and the Netherlands Department of Civil Aviation (RLD), a flight simulator program was carried out on National Aerospace Laboratory's (NLR's) Research Flight Simulator (RFS) with 19 airline crews to evaluate various test scenarios concerning curved approaches and departures. The test program was flown under full Microwave Landing System (MLS) guidance with a simulated Boeing 747-200 aircraft. The scenarios included procedures for both to New York Area (John F. Kennedy International and La Guardia Airports) and Amsterdam International Airport Schiphol. Four curved approaches and two MLS departures have been evaluated. Crew ability to detect insidious failures and to respond to them were investigated. Crew performance and perception data were also measured in case of a simulated failure of the flight management computer during execution of a curved approach. The workload during a one-engine inoperative flight was also evaluated.
NTIS

N95-31013# Federal Aviation Administration, Atlantic City, NJ.
JOSEPH M. RICHIE and DOUGLAS BAART Nov. 1994 145 p
(AD-A288696; DOT/FAA/CT-TN94/48; FAA-AOR-100-94-012) Avail: CASI HC A07/MF A02
This report contains the findings and analysis of the effects of the Western-Pacific Region (AWP) Preliminary Resectorization Plan of 1993 on local (AWP airports) and system-wide traffic delays. The National Airspace System Performance Analysis Capability (NASPAC) was used to perform this task, and calculates the local and system-wide delays with and without the AWP Resectorization Plan. Cost of delay was derived using the Cost of Delay Module based on these delays, on passenger cost, and on airline and aircraft specific cost. The results indicate that the proposed resectorization will reduce the operational delay in years 1995 and 2000 at most AWP airports and system-wide with the maximum benefit occurring in the year 2000. On the other hand, resectorization does not favor the passengers for the future years modeled. However, in year 2000, the increase in passenger delay is less than for year 1995.
DTIC

N95-31433# Minnesota Univ., Minneapolis, MN.
AVNER FRIEDMAN and KEITH KASTELLA 22 Feb. 1995 2 p
Contract(s)/Grant(s): (F49620-94-1-0275) Avail: CASI HC A01/MF A01
This grant from the Air Force Office of Scientific Research supported research in Sensor Management related to the IMA 1993-94 academic year program "EMERGING APPLICATIONS OF PROBABILITY". It provided partial support for residency of Keith Kastella, an industrial researcher at Unisys Government Systems, to pursue research on the use of discrimination gain optimization for sensor management in Air Traffic Control. Manufacturing, Robotics, Remote Sensing and Defense Applications. Grant AFFF9620-94-1-0275 supported the publication of a technical research report submitted by Dr. Kastella for inclusion in the IMA Preprint Series. This paper has been submitted to the IEEE Transactions on Systems, Man and Cybernetics.
DTIC

N95-31520# Massachusetts Inst. of Tech., Cambridge, MA.
AN EXPLORATORY SURVEY OF INFORMATION REQUIREMENTS FOR INSTRUMENT APPROACH CHARTS Final Report, Nov. 1990
R. J. HANSMAN, JR. and MARK MYKITYSHYN Mar. 1995 126 p
Contract(s)/Grant(s): (DTRA-S7-88-C-0078)

AIRCRAFT COMMUNICATIONS AND NAVIGATION

EVALUATING THE EFFECTS OF AIR TRAFFIC CONTROL AUTOMATION
CAROL A. MANNING FAA Civil Aeromedical Inst., Oklahoma City, OK, US
Copyright
The Federal Aviation Administration (FAA) will introduce increasingly sophisticated levels of automation into air traffic control facilities over the next 20 years. This paper will discuss the need to evaluate each stage of air traffic control (ATC) automation. Current plans for automating the air traffic control system, reasons for evaluating new programs, and proposals for evaluation will be discussed.
Author (Hemer)

QUALITATIVE ENVIRONMENTAL NAVIGATION: THEORY AND PRACTICE Ph.D. Thesis
IL-PYUNG PARK 1994 173 p
Avail: Univ. Microfilms Order No. DA9421385
In this thesis we propose and investigate a new model for robot navigation in large unstructured environments. Current models which depend on metric information contain inherent mechanical and sensory uncertainties. Instead we supply the navigator with qualitative information. Our model consists of two parts, the map-maker and the navigator. Given a source and a goal, the map-maker derives a navigational path based on the topological relationships between landmarks. A navigational path is generated as a combination of 'parkway' and 'trajectory' paths, both of which are abstractions of the real world into topological data structures. Traversing within a parkway enables the navigator to follow visible landmarks. Traversing on a trajectory enables the navigator to move reliably into a homogeneous space, based on shapes formed by visible landmarks that are robust to positional and orientational errors. Reliability measures of parkway and trajectory traversals are defined by appropriate error models that account for the sensory errors of the navigator, the motor errors of the navigator, and the population of neighboring objects. Error detection and error recovery methods are also encoded into the generated path. The optimal path is further abstracted into a 'custom map', which consists of a list of verbal directional instructions, the vocabulary of which is defined by our environmental description language. Based on the custom map generated by the map-maker, the navigating robot looks for events that are characterized by spatial properties of the environment. The map-maker and the navigator are implemented using two cameras, an IBM 7575 robot arm and PIPE (Pipelined Image Processing Engine). Various experiments show the effectiveness of navigation 'in the large' using the proposed methods.
Dissert. Abstr.

N95-30597# Norwegian Inst. for Air Research, Kjeller (Norway).
RESULTS FROM TESTS OF THE HONEYWELL INTEGRATED FLIGHT MANAGEMENT UNIT
B. JALVING 8 Jan. 1995 48 p
Contract(s)/Grant(s): (DTRS57-88-C-0078)
N95-31520J Massachusetts Inst. of Tech., Cambridge, MA.
AN EXPLORATORY SURVEY OF INFORMATION REQUIREMENTS FOR INSTRUMENT APPROACH CHARTS Final Report, Nov. 1990
R. J. HANSMAN, JR. and MARK MYKITYSHYN Mar. 1995 126 p
This report documents a user-centered survey and interview effort conducted to analyze the information content of current instrument approach plates (IAP). In the pilot opinion survey of approach chart information requirements, respondents indicated their preferences for approach information and at what phase of the approach they preferred to see this information. Both precision and non-precision IAP formats were examined. In addition to the survey, focused interviews were conducted with pilots who represent the full spectrum of operational IAP user communities from major domestic air carriers to general aviation.

DTIC N95-31521# Massachusetts Inst. of Tech., Lexington, MA.
INTEGRATED TERMINAL WEATHER SYSTEM (ITWS) DEMONSTRATION AND VALIDATION OPERATIONAL TEST AND EVALUATION DIANA L. KINGLE-WILSON 13 Apr. 1995 81 p Contract(s)/Grant(s): (DTFA01-91-D-20036) (AD-A293932; ATC-234) Avail: CASI HC A05/MF A01

During summer 1994, MIT Lincoln Laboratory conducted the Operational Test and Evaluation Demonstration and Validation (Dem Val) of the Federal Aviation Administration's Integrated Terminal Weather System (ITWS). The purpose of the demonstration was to obtain user feedback on products and to prove that the ITWS products and concept were sufficiently mature to proceed with procurement. Dem Val was conducted at the Memphis International Airport from 23 May through 22 July and at the Orlando International Airport from 11 July through 19 August. Products were delivered to users at the Memphis Airport Traffic Control Tower (ATCT) and TRACON (Terminal Radar Approach Control), at the Memphis Air Route Traffic Control Center (ARTCC), at the Orlando International ATCT and TRACON, and at the Jacksonville ARTCC. In addition, ITWS displays were available to the National Weather Service forecast offices at Memphis, TN, and Melbourne, FL; to Northwest Airlines in Minneapolis, MN; and to Delta Airlines in Orlando, FL. This report documents the technical performance of the product generation algorithms. Each algorithm is described briefly, including the product operational and display concepts. The techniques by which the technical performance is assessed and the results of the assessment are presented. The performance of the algorithms is measured against the Minimum Operational Performance Requirements (MOPR), which products must meet to be considered operationally useful by the ATC user community.

DTIC N95-31572# Federal Aviation Administration, Cambridge, MA.

Long range navigation (Loran) and global positioning system (GPS) receivers are widely used in aviation. The Loran and GPS receivers are similar in size and function but derive their navigation signals from different sources. The design of the controls, displays, and computer logic is usually similar for the two types of receivers from a single manufacturer, but differs substantially among manufacturers. Some or all of the designs may provide a suboptimal human-computer interface, which may result in simple time delays or in serious risks if the pilot cannot use the system effectively and efficiently. The design variations also make it difficult to certify receivers for different applications. As a result, the Volpe National Transportation Systems Center has sponsored a program of research to address issues in Loran and GPS receiver design. This report first reviews the literature on user experiences with Loran and GPS receivers and other types of similar, automated equipment. Second, the report reviews the major human factors references, texts, and individual journal articles that are relevant to the regulatory requirements for the receivers. Finally, specific human factors principles and guidelines are proposed for the design and certification of GPS and Loran receiver controls, displays, and control-display integration.

DTIC N95-31581# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.
ANALYSIS AND MODELING OF AN AIRPORT DEPARTURE PROCESS M.S. Thesis JOSEPH E. HEBERT Mar. 1995 137 p (AD-A293782; AFIT/GOA/ENS/95M-02) Avail: CASI HC A07/MF A02

This study analyzes departure delays at a major airport using probability models to represent this nonhomogeneous process. The models developed in this study expand on the Markovian models presently used by employing the method of stages to represent some of the model processes. This technique improves the user's ability to achieve a close fit for the service time probability distribution while maintaining the advantages of the Markovian model. The three types of models developed and compared all assume a Markovian system entry process. The first model uses an exponential distribution to model the service process. The second uses an Erlang distribution. The third models employ a unique server absence process to explicitly represent the periods of time when the server is unavailable to service departing aircraft. All three models generate results which correlate well with the delays actually observed. However, the Erlang model is preferred. Its results have lower variability than the exponential service time model. In addition, it generates solutions much faster than a typical application of the absence model. This model should be useful for improving capacity estimation and take-off delay prediction.

DTIC N95-32022# Federal Aviation Administration, Cambridge, MA.

This report describes a case study to show the benefits from maximum utilization of existing air traffic databases. The study demonstrates the utility of integrating available data through developing and demonstrating a methodology addressing the issue of airport performance. The study utilized data bases which addressed the factors of airport capacity and aircraft delay, and focused on the single airport of Philadelphia International. Since avoidable delays impose major costs to the nation's airlines, the study objective was to better understand the conditions under which delays occur and their causal factors. This will provide guidance for decisions on airport investments which are justified with well-defined benefits. The report presents quantitative measures of average delay, number of delayed flights, and total delay. As expected, there were more delayed flights and longer average delays under poor weather conditions than under better weather conditions. However, total delay under good weather conditions considerably outweighs the total delay experienced under poor weather conditions. The report also demonstrates a quantitative relationship between average delay and the demand/capacity ratio at the airport. This should prove to be especially useful in the investment analyses of airport improvements.

DTIC N95-32166# Tulsa Univ., OK. Dept. of Psychology.

This paper provides an overview of the scientific literature regarding Crew Resource Management (CRM). It responds to tasking from the Office of Air Traffic Program Management to conduct studies addressing the application of team training models such as CRM for air traffic operational and administrative tasks. The authors report that there is no single model for CRM per se. They formulate a model by integrating common dynamic elements found in many CRM programs. The literature reviewed points out that current CRM research: (a) is primarily focused on flight
deck CRM; (b) is insufficient to establish the superiority of CRM training over other team training alternatives; (c) has not identified the critical components of CRM team training; and (d) is limited in part by weaknesses in assessment methods and outcome criteria. The authors identify alternative assessment methods and performance criteria currently being explored by behavioral scientists. Finally, the authors discuss potential CRM techniques for enhancing Air Traffic Control Specialists operational tasks.

Author

FACT SHEET FOR CONGRESSIONAL COMMITTEES. AIR TRAFFIC CONTROL: STATUS OF FAA'S MODERNIZATION PROGRAM

15 Apr. 1994 80 p (GAO/RCED-94-167FS; B-247729) Avail: CASI HC A05/MF A01; GAO, PO Box 6015, Gaithersburg, MD 20877 HC

This fact sheet is the fifth annual review of the Federal Aviation Administration's (FAA) comprehensive effort to modernize the nation's air traffic control system by acquiring new equipment, such as radars, computers, and communications systems. The fact sheet provides information on the status of modernization, giving special emphasis to 12 of the largest projects: Advanced Automation System, Air Route Surveillance Radar-4, Airport Surface Detection Equipment-3, Airport Surveillance Radar-9, Automated Weather Observing System, Central Weather Processor, Flight Service Automation System, Microwave Landing System, Mode Select, Radar Microwave Link Replacement and Expansion, Terminal Doppler Weather Radar, and Voice Switching and Control System.

Derived from text

REPORT TO THE CHAIRMAN, SUBCOMMITTEE ON TRANSPORTATION AND RELATED AGENCIES, COMMITTEE ON APPROPRIATIONS, HOUSE OF REPRESENTATIVES. AIR TRAFFIC CONTROL: STATUS OF FAA'S PLANS TO CLOSE AND CONTRACT OUT LOW-ACTIVITY TOWERS

12 Sep. 1994 27 p (GAO/RCED-94-265; B-257854) Avail: CASI HC A03/MF A01; GAO, PO Box 6015, Gaithersburg, MD 20877 HC

The objectives are (1) to determine the reasonableness of FAA's plans to close level 1 (low-activity) air traffic control towers and contract out the operations of other level 1 towers, (2) to assess the reasonableness of the potential savings that could result from such actions, (3) to identify the factors that could impede FAA's plans to close and contract out towers, and (4) to identify steps that FAA can take to enhance its strategy for reassigning controllers from closed or contracted out level 1 towers. Of the 151 level 1 towers, 36 do not meet FAA's benefit-cost criteria for continued operations. FAA is planning to permanently close 23 of these towers within the next 3 years, saving as much as $5 million annually. Of the remaining 127 towers, 32 are currently contracted out. FAA estimates that it could save as much as $120 million (in constant 1994 dollars) if it contracts out the operation of the remaining level 1 towers by fiscal year 1997. FAA will not realize immediate savings primarily because of the short-term costs to relocate controllers to other facilities. Several factors may affect FAA's efforts to close or contract out level 1 towers quickly. First, according to FAA program management officials, the agency is receiving mixed signals from the Congress regarding level 1 towers. Second, FAA cannot contract out towers until the Department of Labor completes its wage determinations for each tower location. The FAA does not have a strategy for reassigning controllers from towers to be closed or contracted out to higher level facilities after fiscal year 1994. Also, since a number of controllers at level 1 towers have not been able to perform required duties at other facilities, FAA could incur significant costs to relocate controllers a second time if they do not succeed at higher-level facilities.

CASI

N95-93616 IMPROVING THE FIRE RESISTANCE OF AIRCRAFT STRUCTURES

Potential fire hazards associated with the operation of commercial aircraft are addressed. The basic problem areas are detailed and the ongoing research programs, to give a greater understanding to the fire problem and hence to establish solutions, are outlined. Aircraft fire safety covers all aspects of technology which will provide a safer environment for the traveling public and cover both fire prevention and fire control. It is a wide ranging topic which incorporates a large number of disciplines during design manufacture and operation. These cover structural design, systems design, material choice, maintenance activities, airworthiness and certification and so on.

Author (Hemer)

N95-93626 VARIABLE CAMBER GEOMETRY FOR TRANSPORT AIRCRAFT WINGS

Consideration of the geometry required to obtain variable camber for a transport aircraft wing has shown that trailing edges which rotate about centers well below the chordline are essential. To keep the profiles smooth and continuous requires panels which are flexible and can extend. If the wing is swept the junctions between the spanwise segments providing the variable camber are not parallel to the free stream

503
and can lead to difficulties if not designed to minimize this effect.

Author (Hemer)

A95-93627

LOAD ALLEVIATION FOR CIVIL TRANSPORT AIRCRAFT
D. M. JOHNSON 1991 3 p. AeroTech 92; The Aerospace & Airpor
Technology Exhibition & Congress, UK, 1992, (Seminar 35: Active
Control)
(CONGRESS PAPER C428-35-057; HTN-95-21196) Copyright

During aircraft maneuvers and when turbulence is encountered, the
forces acting on the aircraft wings may be greatly increased resulting in
high stresses in the wing structure. By deflecting control surfaces on the
wing, it is possible to redistribute the loads to reduce stresses and hence
allow reductions in structural strength and weight. This paper examines
the methods used to alleviate structural loads with particular reference to
the Gust Load Alleviation (GLA) development on the Airbus A320. This
example and others demonstrate how, with a fly-by-wire system, load
alleviation can be incorporated without excessive system modernization.

Author (Hemer)

A95-93650

AN EXPERIMENTAL INVESTIGATION OF FORWARD-SWEPT
WINGS AT LOW REYNOLDS NUMBERS
SCOTT A. RANDLE Wichita State University, US and L. SCOTT
MILLER Wichita State University, US (ISSN 0148-7191) 1993 10 p.
SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April
20-23, 1993
(SAE PAPER 931370; HTN-95-21219) Copyright

The aerodynamic properties of a forward-swept wing were tested at
low Reynolds numbers. The investigation was performed in a low-speed
wind tunnel using a reflection plane model. Tunnel balance, model pres-
ture taps, and flow visualization results were utilized to characterize the
wing behavior over a range of Reynolds numbers from 0.25 x 10(exp 6) -
0.75 x 10(exp 6). In addition, the experimental data is compared to results
using a recently developed computer program known as WIN3GD. This
modified Non-Planar Vortex Lattice Method can calculate total wing lift
and surface pressure distributions. The forward-swept wing has good
aerodynamic qualities; in addition, the flow, on the outboard sections of
the wing, remains attached beyond stall. The comparison of WIN3GD and
experimental surface pressure distributions is good. The investigation
results add to the experimental data base for forward-swept wings at low
Reynolds numbers, assist in the evaluation of analysis/design tools, and
can be used for low Reynolds number unmanned air vehicle applications.

Author (Hemer)

A95-93656

CONCEPTS FOR AIRCRAFT SUBSYSTEM INTEGRATION
ALAN H. BURKHARD and WILLIAM L. HASKINS (ISSN 0148-7191)
1993 9 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton,
OH, April 20-23, 1993
(SAE PAPER 931377; HTN-95-21225) Copyright

The Air Force has an initiative entitled, Subsystem Integration
Technology (SUIT) to develop and demonstrate integration technology as
applied to the traditional aircraft utility subsystems. The SUIT program has
the objective of developing and demonstrating design data and assess-
ment capability for a truly integrated subsystem suite. Novel concepts for
a utility suite have emerged from recently completed concept studies con-
ducted by several contract teams. These concept studies showed that
significant flight vehicle performance benefits appear to be possible via
the utility suite approach as a result of the use of common or shared
hardware and fluids to perform required functions, use of waste energy,
and better overall energy management. The utility suite approach
reduces weight by having less standby hardware, reduces the acquisition
and support cost via hardware commonality, provides for graceful degra-
dation, and better energy management.

Author (Hemer)

A95-93657

SUITE: THE INTEGRATION OF AIRCRAFT SUBSYSTEMS
DAVID E. BANDING, JOSE F. ALDANA, and DONALD W.
SCHLUNDT (ISSN 0148-7191) 1993 13 p. SAE, Aerospace Atlantic
Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931381; HTN-95-21226) Copyright

During Phase 1 of the Air Force Study Contract SUIT (Subsystem
Integration Technology), Rockwell identified the significant aircraft
improvements attainable through the collaborative design, integration, and
control of the utility subsystems. A systematic integration design method-
ology was implemented during Phase 1 to identify and then integrate
custom subsystem functions and common parameters. From this study
approach, a new integrated utility subsystem suite was generated that
included important key technology advantages, six critical functions, and
six major subsystems. The following functional integration technologies
make up the core integrated baseline suite: (1) integrated closed environ-
mental control. (2) integrated hydraulic power, (3) shared electrical power
vehicle power management, (4) integrated secondary power, (5) inte-
gated fuel and thermal management, and (6) integrated utility subsystem
control. This paper gives an overview of the integration methodology uti-
ized to assess the subsystem design process and describes the integra-
tion technologies that were defined during SUIT Phase 1.

Author (Hemer)

A95-93558

A SUBSYSTEM INTEGRATION TECHNOLOGY CONCEPT
H. (NICK) CARTER, III, DAN S. MATUSICH, and CARL F. WEISS
(ISSN 0148-7191) 1993 6 p. SAE, Aerospace Atlantic Conference &
Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931382; HTN-95-21227) Copyright

McDonnell Douglas Aerospace teamed with Pratt & Whitney and
AlliedSignal Aerospace Company for the Subsystem Integration Technol-
ogy (SUIT) program to examine the opportunities for improvement in sub-
system integration and to identify a new integration concept. This concept
integrates all aircraft and engine power and cooling systems into a Ther-
mal and Energy Management Module (T/EMM); combines gas separation
and usage systems; integrates fuel pumping systems; and integrates util-
ity subsystem controls. The T/EMM is the heart of the concept. It is pow-
ered by engine bleed air, rejects heat to engine bypass air, powers air-
frame and engine subsystems, and provides airframe cooling. The T/
EMM can operate autonomously in emergencies or for ground opera-
tions. Performance analyses confirmed the feasibility of the T/EMM con-
cept and demonstrated a 40% reduction in the number of components
and a 1,000 lbs reduction in subsystem weight. The weight savings com-
binet with increased energy efficiency reduce vehicle take-off gross
weight by 10%. These reductions in equipment and vehicle size translate
into significant acquisition and support cost savings.

Author (Hemer)

A95-93670

AIRCRAFT LANDING GEAR DYNAMICS PRESENT AND FUTURE
WILLIAM E. KRABACHER Wright-Patterson AFB, OH, US
(ISSN 0148-7191) 1993 4 p. SAE, Aerospace Atlantic Conference &
Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931400; HTN-95-21239) Copyright

This paper reviews the current state-of-the-art in aircraft landing
gear dynamics and presents recommendations for new areas of research
in this field. The paper begins by reviewing some of the shortcomings the
author has experienced in conducting shimmy investigations on various
aircraft. Included in this review are the problems associated with obtaining
both landing gear structural parameters and the aircraft tire parameters.
Some discussion is also made of the problems with current landing gear
dynamics mathematical models. On the basis of all of these problems,
recommendations are then made for future research. The main content of
these recommendations are to develop three documents that will com-
pletely define a general landing gear dynamics mathematical/computer
model that will be able to analyze the problems of gear walk, shimmy,
dynamic response to rough runways, antiskid brake induced oscillations, tire-out-of-round, and wheel imbalance. The overall aim of the paper is to develop a unified, consistent approach to the design of landing gear systems. Author (Hemer)

A9S-93672
MODELLING AND ANALYSIS OF A DUAL-WHEEL NOSEGEAR: SHIMMY INSTABILITY AND IMPACT MOTIONS
G. X. LI (ISSN 0148-7191) 1993 15 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931402; HTN-95-21241) Copyright

This paper studies landing gear stability and shimmy behavior of cantilevered dual-independent-wheels nosegear through modeling, analysis and numerical simulation. The landing gear model includes key features of nonlinearities such as freeplay and nonlinear damping in the steering system, dry friction between the piston and cylinder, as well as spring hardening effects of the bending and torsional stiffness. The shock strut is treated as a flexible beam described by a lateral displacement and a rotational angle. The trail arm and axle are considered as rigid bodies. Interaction between the tire and the runway surface is considered as a single point at any instant, and thus the cornering force is treated as linearly proportional to the tire slip angle and its time derivative. For fixed system parameters, the gear may become unstable and subsequently develop shimmy as the aircraft taxiing velocity is increased beyond the critical point. Thereafter, due to the existence of torsional freeplay, the amplitude of the resulting oscillatory motion will keep growing until the collar starts impacting with the steering damper. The stability properties of the system are also conducted in a parameter space by varying a few key parameters individually. Time curves are used to verify the analytical results and to illustrate the nature of motion at different parameter values. Author (Hemer)

A95-93673* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

AN ELECTROREHOLOGICALLY CONTROLLED SEMI-ACTIVE LANDING GEAR
Contract(s)/Grant(s): (NAG1-1410) Copyright

This study is to explore the application of electrorheology (ER) to the real-time control of damping forces that are transmitted through the nose landing gear for an F-106B aircraft. The main part of the landing gear is a strut that consists of a pneumatic spring and an ER controlled damper that is situated on the strut centerline and applies a force directly opposing the vertical displacement of the nose wheel. The damping element rotates in response to strut displacement, employing a co-axial arrangement of stator and rotor plates connected to the opposing electrodes in the control circuit. The vertical displacement is convoluted into rotation of the damper through a screw-nut mechanism. The ER fluid between the electrodes is thus engaged in shear along circumferential lines of action. This design results in a fast response time and a high ratio of strut forces achieved under ER vs. zero-field control. Compact size and simplicity in fabrication are also attained. The analysis shows that when using an ER fluid of a yield stress of 7kPa, the energy absorption efficiency of the landing gear can reach almost 100% at various sink rates. Author (Hemer)

A95-93731
EFFECT OF INITIAL CONDITIONS ON THE RESPONSE OF NONLINEAR DYNAMICAL SYSTEMS WITH THE APPLICATION TO HELICOPTER ROTOR DYNAMICS

Response of a simple flap-lag-helicopter rotor blade model has been analyzed using marching in time and imposed periodicity algorithms. Generally, a discrepancy between the solutions obtained using these two types of algorithms has been observed. Also, the marching-in-time methods indicated a period of 4 pi for lead-lag response. These observations were confirmed by the results of a simple, mass-damper-spring system response analysis. Author (Hemer)
The authors' proposal to convert military thrust vectoring flight control (TVFC) technologies into civil transport applications, translates combat-ability capabilities into unprecedented flight-safety standards. Dealing with the latter, this article compares future vectored-aircraft safety potentials and classes with current unsafe flight standards dictated by conventional flight control (CFC). A few simplified analytical results are presented to illustrate new classes and fundamentals of catastrophic failure prevention when TVFC replaces partial or complete loss of CFC in future civil and fighter aircraft.

Author (El)

OPTIMAL TRAJECTORIES FOR AN UNMANNED AIR-VEHICLE IN THE HORIZONTAL PLANE

J. S. SHANG U.S. Air Force Wright Lab, Wright-Patterson Air Force Base, OH, United States Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 611-617 refs

A general inverse design procedure has been developed to use optimization techniques and generic surface descriptions for the purpose of aerodynamic shape design. A variety of flow regimes are examined from 2D inviscid, subsonic cases to 3D turbulent, supersonic problems. Surface descriptions have been generalized through the use of B-splines to model a variety of curves and shapes with a minimum of parameters. The process uses a computational fluid dynamics program, GASP (the General Aerodynamic Simulation Program), and several iterative and optimization techniques to examine bodies of interest. A 2D inviscid, subsonic airfoil test case demonstrates the ability of the procedure to solve problems governed by elliptic equations. A 3D, viscous, compressible flow over a forebody/canopy model of a supersonic fighter and its comparison to test data establishes the ability of the method to solve practical problems of interest. Several other test cases are performed, including an axisymmetric power law body and a 3D elliptic cone. Unconstrained multiparameter optimizations have been quite successful in matching target pressure coefficients and reproducing target body shapes. Dissert. Abstr.

Author (El)

AVAIL: Univ. Microfilms Order No. DA9425587

A general inverse design procedure has been developed to use optimization techniques and generic surface descriptions for the purpose of aerodynamic shape design. A variety of flow regimes are examined from 2D inviscid, subsonic cases to 3D turbulent, supersonic problems. Surface descriptions have been generalized through the use of B-splines to model a variety of curves and shapes with a minimum of parameters. The process uses a computational fluid dynamics program, GASP (the General Aerodynamic Simulation Program), and several iterative and optimization techniques to examine bodies of interest. A 2D inviscid, subsonic airfoil test case demonstrates the ability of the procedure to solve problems governed by elliptic equations. A 3D, viscous, compressible flow over a forebody/canopy model of a supersonic fighter and its comparison to test data establishes the ability of the method to solve practical problems of interest. Several other test cases are performed, including an axisymmetric power law body and a 3D elliptic cone. Unconstrained multiparameter optimizations have been quite successful in matching target pressure coefficients and reproducing target body shapes. Dissert. Abstr.

Author (El)
A WIND TUNNEL INVESTIGATION OF THE EFFECTS OF MICRO-VORTEX GENERATORS AND GURNEY FLAPS ON THE HIGH-LIFT CHARACTERISTICS OF A BUSINESS JET WING M.S. Thesis

MICHELLE THERESE MARTUCCIO Aug. 1994 129 p
(NASA-TM-110626; NASA 1.15:110626) Avail: CASI HC A07/MF A02

A study of a full-scale, semi-span business jet wing has been conducted to investigate the potential of two types of high-lift devices for improving aircraft high-lift performance. The research effort involved low-speed wind-tunnel tests of micro-vortex generators and Gurney flaps applied to the flap system of the business jet wing and included force and moment measurements, surface pressure surveys and flow visualization on the wing and flap. Results showed that the micro-vortex generators tested had no beneficial effects on the longitudinal force characteristics in this particular application, while the Gurney flaps were an effective means of increasing lift. However, the Gurney flaps also caused an increase in drag in most circumstances. Author

N95-30827# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

ROBERT MCKILLIP, JR. Apr. 1995 61 p
Contract(s)/Grant(s): (PB95-198040; NLR-TP-93418-U) Avail: CASI HC A07/MF A02

This paper reports research done by USAF to adequately predict the susceptibility to pilot induced oscillation (PIO) and AGARD's response to the research. It discusses different criteria and characteristics that help to analyze PIO: the concept of phase delay, triggers, the effects of rate limiting, response characteristics and appropriate analysis techniques, and feel system influence. From the evidence presented by USAF, AGARD concludes that there is sufficient evidence that a PIO could be predicted, as could the effects of the bobweight. However, the impact of the actuation behavior may have had a dominant effect on the overall behavior of the aircraft. Author

N95-31065# Hoh Aeronautics, Inc., Lomita, CA.

UNIFIED CRITERIA FOR ACT AIRCRAFT LONGITUDINAL DYNAMICS

Copyright Avail: CASI HC A02/MF A02

This paper reports research done by USAF to adequately predict the susceptibility to pilot induced oscillation (PIO) and AGARD's response to the research. It discusses different criteria and characteristics that help to analyze PIO: the concept of phase delay, triggers, the effects of rate limiting, response characteristics and appropriate analysis techniques, and feel system influence. From the evidence presented by USAF, AGARD concludes that there is sufficient evidence that a PIO could be predicted, as could the effects of the bobweight. However, the impact of the actuation behavior may have had a dominant effect on the overall behavior of the aircraft. Author

N95-31416# Department of Defense, Fort Meade, MD.

UNMANNED AERIAL VEHICLES. 1994 MASTER PLAN

31 May 1994 132 p Original contains color illustrations
Avail: CASI HC A07/MF A02

This 1994 Unmanned Aerial Vehicle (UAV) Master Plan is the sixth submission to Congress, providing the acquisition and technology strategies, management, and program plans for nonlethal UAVs. The UAV Joint Project Office is the single Department of Defense organization charged with management responsibility for UAVs; the United States Navy was designated as the Executive Service for nonlethal UAV programs. This plan is comprised of the following sections: executive summary; management: supporting the user; programs; commonality and interoperability; technology; analysis and simulation; integrated logistics support (ILS); training, and human systems integration (HSI); test and evaluation; international programs; resources; needs rationale; UAV characteristics; dual use of UAVs; and points of contact. Author

N95-30927# Naval Postgraduate School, Monterey, CA.

PROBABILISTIC RELIABILITY MODELING OF FATIGUE ON THE H-46 TIE BAR M.S. Thesis

JOHN C. O'CONNOR Sep. 1994 84 p
(AD-A289926) Avail: CASI HC A05/MF A01

The H-46 helicopter has experienced early in-service failures in its tie bar. The tie bar is a multi-component system that is a critical part of the linkage, which attaches the rotor blade to the rotating hub of the helicopter. This research developed methodology to predict the life of the tie bar under nominal operational flight loads. A probability model is indispensable because a revised design has yet to accumulate field data, and laboratory testing can never be sufficiently extensive for non-parametric reliability prediction. An algorithm was developed for three and four component systems that will generate the probability of system failure based on the probability of failure in its components. Finite element analysis was conducted on the tie bar to determine stress on each component for all possible damage configurations of the tie bar. A given set of flight loads was resolved into boundary conditions for the stress analysis. A methodology was developed to determine the probability of failure of each component using an idealized load history, based on the expected stress-life (S-N) relation of the component at the stress levels experienced by the component. The result is a prediction method that can fortify laboratory results to predict the probability of failure of a system given the system load history. This model will be verified using the early in-service failure statistics of the current design and can be used to assess revised designs. The model will provide a prediction of the failure distributions, (the bell-shaped distribution) as a fabrication of flight hours, or one, two, three, and four elements of failures within the lives of the tie bars. Author

VALIDATION OF THE HELICOPTER ROTOR CODE HERO

J. BOSSCHERS 11 Oct. 1993 23 p
(PB95-198040; NLR-TP-93418-U) Avail: CASI HC A03/MF A01

Some improvements are shown for the helicopter rotor code HERO. The code is based on a blade element method using relative simple inflow models and is presently being improved with respect to aerodynamic modeling. Experimental results are used to validate the performance characteristics and the inflow modeling. Calculations with the unsteady aerodynamics model of Leishman & Beddoes are shown. A preliminary empirical formula is presented to take rotational effects into account. The formula is implemented in a semi-empirical dynamic stall program, and a dynamic stall loop showing the influence of rotation is presented. NTIS

N95-30923# Continuum Dynamics, Inc., Princeton, NJ.

A NOVEL INSTRUMENTATION SYSTEM FOR MEASUREMENT OF HELICOPTER ROTOR MOTIONS AND LOADS DATA, PHASE 1

ROBERT MCKILLIP, JR. Apr. 1995 61 p
Contract(s)/Grant(s): (PB95-198040; NLR-TP-93418-U) Avail: CASI HC A03/MF A01

A method of improving accuracy of rotor blade load measurement is described. The new system will replace electrical, mechanical, and hydraulic systems and will feature a state-of-the-art instrument to measure blade loadings. This will enable measurements of blade loads to be improved, thus improving the performance of the helicopter. The system will be validated using early in-service data. This research developed methodology to predict the life of the tie bar under nominal operational flight loads. A probability model is indispensable because a revised design has yet to accumulate field data, and laboratory testing can never be sufficiently extensive for non-parametric reliability prediction. An algorithm was developed for three and four component systems that will generate the probability of system failure based on the probability of failure in its components. Finite element analysis was conducted on the tie bar to determine stress on each component for all possible damage configurations of the tie bar. A given set of flight loads was resolved into boundary conditions for the stress analysis. A methodology was developed to determine the probability of failure of each component using an idealized load history, based on the expected stress-life (S-N) relation of the component at the stress levels experienced by the component. The result is a prediction method that can fortify laboratory results to predict the probability of failure of a system given the system load history. This model will be verified using the early in-service failure statistics of the current design and can be used to assess revised designs. The model will provide a prediction of the failure distributions, (the bell-shaped distribution) as a fabrication of flight hours, or one, two, three, and four elements of failures within the lives of the tie bars. Author

N95-31065# Hoh Aeronautics, Inc., Lomita, CA.

N95-31416# Department of Defense, Fort Meade, MD.

ORIGINAL TEXT
5 AIRCRAFT DESIGN, TESTING AND PERFORMANCE

N95-31451# Virginia Polytechnic Inst. and State Univ., Blacksburg, VA.
J. A. BURNS and E. M. CLIFF 31 May 1994 16 p
Contract(s)/Grant(s): (F49620-92-J-0078)
(AD-A292861; ICAM-94-06-03) Avail: CASI HC A03/MF A01

This final technical report contains a summary of the research funded by AFOSR under Grant F49620-92-J-0078, titled Computational Methods for Control and Optimal Design of Aerospace Systems, for the period 1 January 1992 to 31 March 1994. During this period, the investigators concentrated on five problems: optimal design of forebody simulations, control of highly maneuverable aircraft, control of fluid flows, modeling and identification of smart materials, and robust control of nonlinear conservation laws. A new sensitivity equation method was developed for shape optimization and flow tailoring. This method was transitioned into software at the Arnold Engineering Development Center and at Virginia Tech. A new mathematical model for aircraft agility was used to investigate feedback control laws for time optimal maneuvers. New vortex shedding patterns were discovered for unsteady flows about rotating cylinders. The work on smart materials produced new models and computational methods for the dynamics of shape memory alloys. In addition, robust control theory was applied to nonlinear conservation laws yielding a new approach to sensor location. The report contains a complete list of papers produced during this period. DTIC

N95-31525# Air Force Environmental Tech. App. Center, Scott AFB, IL.
ARTIFICIAL INTELLIGENCE TECHNIQUES FOR FLIGHT TEST PLANNING, PHASE 1 Final Report
Contract(s)/Grant(s): (N00001-94-C-2972)
(AD-A293962; FR001) Avail: CASI HC A04/MF A01

We found that several AI techniques would be applicable to the development of a system to aid flight test engineers. Flight test engineers reported that test plan and test report creation be their most time-consuming activities and that they often made informal use of similar plans and reports. Based on the requirements of the flight test engineers, we developed the design for the Automated Flight Test Engineering System (AFTES). To prove its feasibility we implemented and demonstrated critical portions in three Phase 1 prototypes. AFTES is feasible and will benefit the Navy substantially when it is implemented. The three prototypes showed that the most critical aspects could be implemented. Furthermore, the very positive response we received from flight test engineers over both the AFTES designs and the Phase 1 prototypes indicates that AFTES will be utilized when it is implemented. Finally, the fact that the productivity of flight test engineers will markedly improve is based on the fact that AFTES was designed with precisely this purpose, along with improving the quality of the plans and reports produced. For example, the test plan produced in a few minutes by the prototype can take some less experienced flight test engineers several days to produce. DTIC

N95-31544# Defence Science and Technology Organisation, Canberra (Australia).
PREPARATION OF S-70A-9 BLACK HAWK HELICOPTER FOR FLIGHT TESTS TO INVESTIGATE CAUSE OF CRACKING OF INNER FUSELAGE PANEL
(AD-A293861; DSTO-TN-0004; DODA-AR-95-205) Avail: CASI HC A03/MF A01

An Australian Army Black Hawk helicopter has been fitted with suitable flight test instrumentation at the Aeronautical and Maritime Research Laboratory to enable an investigation of the cause of cracking in an internal fuselage skin panel. Nine accelerometer channels and 46 strain gauge channels have been provided. Reasons for the choice of measurement type and location are provided with details of the measuring system installed. Plans for the conduct of suitable flight tests and for the evaluation of the collected data are provided. DTIC

N95-31578# Naval Postgraduate School, Monterey, CA.
A CASE STUDY OF THE TEAMING CONCEPT IN THE PROCUREMENT OF THE V-22 AIRCRAFT M.S. Thesis
RICHARD D. COLVARD Dec. 1994 68 p
(AD-A293770) Avail: CASI HC A04/MF A01

This thesis is a case study of the V-22 Osprey program. It examines dual-sourcing of major weapon systems which was the original acquisition strategy for the V-22. It examines the history of the V-22 program management. The chronology of the program is presented from the birth of the Joint Services Aircraft Program in 1981 through the engineering, manufacturing, and development phase in 1994. The focus of this thesis is to look at the relationship between the Joint Program Office, the parent companies of Bell Helicopter, Inc. and Boeing Helicopter, Inc., and the Government. The thesis also looks at other strategies that have been used in major weapon systems programs such as the F/A-18 aircraft program which is being procured sole-source with the prime/subcontractor arrangement. This thesis concludes that the acquisition of the V-22 has not been efficient and that Bell and Boeing Aircraft Companies, operating under a teaming concept, have not presented a single face to the Government. DTIC

N95-31579# Naval Postgraduate School, Monterey, CA.
MODELING F/A-18 FLIGHT HOUR PROGRAM COSTS USING REGRESSION ANALYSIS M.S. Thesis
LARRY E. ARKLEY Dec. 1994 123 p
(AD-A293771) Avail: CASI HC A06/MF A02

This thesis is an in depth analysis of cost variance in Naval Air Reserve units flying the McDonnell Douglas F/A-18. The purpose of the thesis is to identify, analyze, and quantify the effect of variances in the cost per flight hour of the Naval Air Reserve's Flying Hour Program. The study begins with a review of the planning, programming, and budgeting system which is used to justify and fund the Flying Hour Program. Then three different methods of determining Flying Hour Program requirements are described. The four components of cost per hour within the Flying Hour Program (fuel, organizational maintenance activity, intermediate maintenance activity, and aviation depot level repairables) are defined. Finally, using regression analysis techniques, these four components of F/A-18 cost data are analyzed on the basis of the intensity of aircraft utilization: flight hours. The analysis includes a regression model to provide budgets at the headquarters or squadron level the means for predicting aircraft maintenance and fuel costs given a utilization rate. The thesis concludes with areas recommended for further research. DTIC

N95-31602# Virginia Polytechnic Inst. and State Univ., Blacksburg, VA.
LEONARD MEIVOVITCH 23 Jan. 1995 110 p
Contract(s)/Grant(s): (AF-AFOSR-0351-91)
(AD-A293689; AFOSR-95-0326TR) Avail: CASI HC A06/MF A02

The research has been carried out simultaneously on three aspects of aircraft wings performance optimization, as follows: (1) Structural tailoring and modern control of thin-walled model of composite aircraft wings; (2) Structural tailoring of a low-aspect ratio plate model of composite aircraft wings; and (3) Integrated structural design and vibration control by multidisciplinary optimization. Significant progress has been made on all fronts. DTIC

N95-32003# Wright Lab., Wright-Patterson AFB, OH. Flight Dynamics Directorate.
FLIGHT EVALUATION OF FOREBODY VORTEX CONTROL IN POST-STALL FLIGHT
LAWRENCE A. WALCHLI In AGARD, Active Control Technology:
Loss of directional stability in a post-stall flight environment has become a major design issue for future fighter aircraft. Numerous studies have addressed this issue, either from an aerodynamics perspective or through use of propulsive forces generated by vectoring exhaust nozzles. The X-29 aircraft, with its forward swept wing and other advanced technologies, suffers loss of directional power above 40 degrees angle of attack (AOA). An exploratory development program was undertaken on this configuration to regain the lost stability through use of a pneumatic system on the aircraft nose which influenced the external flow field, generating significant side forces useful for control. Wind tunnel test results were inserted into the X-29 flight simulator at NASA Dryden Flight Research Facility and the simulator was used to support a critical flight experiment of this technology. This experiment is the subject of this paper.

Author

This paper presents results from flight testing an F-16 aircraft modified with the Axysymmetric Vectoring Exhaust Nozzle (AVEN). This includes an assessment of the AVEN nozzle and the modified F-16 flight control system to provide stability and control power in an expanded maneuvering envelope, an assessment of flying qualities, and an overall assessment of tactical utility. Also included are lessons learned regarding the testing and implementations of active control technology.

Author

The RAFALE program was conceived from the beginning to define, develop and produce a general-purpose aircraft meeting the future needs of the State - the Army, Air Force, and Navy. The Navy version is intended to equip the French naval air forces by the end of the decade. It will operate starting from the conventional propulsion Foch and the Charles De Gaulle nuclear carrier aircraft. Furnished with a numerical flight control system, the RAFALE M01 prototype is the first aircraft with delta canards to be catapulted from an aircraft carrier (April 1993). It is also the first naval aircraft to use the original method of catapult-assisted dihedral launching. The study of naval aircraft catapult launching combines the technical disciplines implicit in the design of fighter aircraft: aerodynamics, structure, flight control, and aircraft systems. In the framework of this conference, the discussion has particularly focused on flight dynamics. It covers: the specifications of the RAFALE naval launching; some related aspects at the aircraft catapult design: flight control system, improved performance systems (dihedral launch, high-energy recovery rate); the ground tests; and the tests at sea. Trans. by CASI

The objective of the X-31 program (the first international US/German experimental program) was to develop a new fighter that can execute tactical maneuvers up to an angle of attack (AOA) of 70 degrees (which is far beyond the stall AOA) without the pilot losing control of the aircraft (poststall capability, PST). This capability extends aircraft performance with respect to deceleration capability, turn rate and radius, and pointing capability for weapon firing considerably and results in a distinctive improvement of the tactical advantages in close-in combat. The prerequisite for these capabilities is the use of thrust vector control to boost or even replace the aerodynamic controls which lose their effectiveness at low speeds and in the poststall regime. The technical development of the PST capability requires the application of new technologies in the areas of aerodynamics (separated vortex flow), propulsion (inlet aerodynamics and jet deflection) and in particular, flight control (unstable configurations, digital flight control systems, integrated thrust vector control). Flight test results of the X-31 showed that the four important basic maneuvers (safe flight and maneuvering at 70 deg. AOA, 360 deg. rolls about the velocity at 70 deg. AOA, poststall maneuvers at high load factors, and the 180 deg. J (or Herbst) turn with extremely small turn radii and high turn rates) have been successfully demonstrated. In Nov./Dec. 1993 the flight envelope was extended into the supersonic and flights with a helmet mounted display (HMD) were conducted. This paper gives an overview of the X-31 program and the results of the test flights.

Author

N95-32196# General Accounting Office, Washington, DC. National Security and International Affairs Div. REPORT TO THE CHAIRMAN, LEGISLATION AND NATIONAL SECURITY SUBCOMMITTEE, COMMITTEE ON GOVERNMENT OPERATIONS, HOUSE OF REPRESENTATIVES. UNMANNED AERIAL VEHICLES: PERFORMANCE OF SHORT-RANGE SYSTEM STILL IN QUESTION 15 Dec. 1993 19 p (GAO/NSIAD-94-65; B-229489) Avail: CASI HC A03/MF A01; GAO, PO Box 6015, Gaithersburg, MD 20877 HC

The Department of Defense (DOD) is acquiring the Short-Range Unmanned Aerial Vehicle (UAV) at an estimated cost of $4.1 billion to meet the needs of the military services for reconnaissance, surveillance, target acquisition, and intelligence missions. The Short-Range UAV's performance capability as demonstrated in recent testing is evaluated. Although DOD considered the short-range system's preproduction test results to be sufficient to justify its low-rate production, the detailed test results showed deficiencies that could jeopardize the system's capability to meet military requirements. In addition, several important performance requirements were either not tested or were tested under unrealistic conditions. Thus, DOD has committed to acquiring an unproven and possibly deficient system. This condition occurred because DOD allowed the Short-Range UAV program to be driven by schedule requirements rather than by demonstrated accomplishments, as required by DOD's stated policy.

Author

06 AIRCRAFT INSTRUMENTATION

Includes cockpit and cabin display devices; and flight instruments.

A95-92513 PASSIVE MILLIMETER WAVE CAMERA FOR AIRCRAFT LANDING IN LOW VISIBILITY CONDITIONS MERRIT SHOUCRI TRW Space and Electronics Group, Redondo Beach, CA, United States, ROGER DAVIDHIEISER, BRUCE HAUSS, PAUL LEE, MICHAEL MUSSETTO, STEVE YOUNG, and LARRY YUJIRI IEEE Aerospace and Electronic Systems Magazine (ISSN 0885-8966) vol. 10, no. 5 May 1995 p. 37-42 refs (BTN-95-EIXS92727321) Copyright

Fog and low visibility conditions have hampered aviation since its inception. Fog-related accidents are numerous, and canceled take-offs and landings due to fog and low visibility conditions (Cet III) have significant economic impact on airlines, parcel carriers and general aviation. Millimeter waves have good propagation properties in weather and give
adequate spatial resolution when used to image the forward scene. Passive millimeter wave focal plane array cameras are new sensors which, integrated into future guidance and landing systems, promise to be an effective aid, or alternative, to existing technology for aircraft landings and take-offs under Cat III conditions. They can produce visual-like radiometric images at real time frame rates (up to 30 Hz), and are directly amenable to image fusion with infrared and visible images. TRW has been actively involved in developing and productizing this technology both at the hardware and the system levels.

Author (Hemer)

A95-93612
AIRBORNE INTEGRATED COMMUNICATIONS SYSTEM

It is widely accepted that future military and civil airborne communications will require an increased range of functions such as multiple, simultaneously operating channels, advanced data links, reduction in crew workload, automatic communications management, improved logistics and availability. This paper examines the methods and possible architectures for integrating the various radio systems covering frequencies from HF to UHF, also addresses some of the issues of integrating the communications sub-system within the aircraft avionics system.

Author (Hemer)

A95-93620
DESIGN TRENDS IN PROPULSION CONTROL SYSTEMS

High bypass ratio turbofan engines entered civil airline service in the late 1960's. Since that time families of engines have evolved through a process of continuous improvement, leading to the achievement of unprecedented levels of fuel economy and operational reliability. This process has been accompanied by major parallel developments in engine control systems. Future trends indicate further growth in control system requirements. These requirements, which may include sophisticated control laws and diagnostics, significant additional sensing, actuation and data processing functions, higher reliability, lower volume and cost, will provide a major challenge for the system designer.

Author (Hemer)

A95-93621
CHINOOK GOES FADEC

Full Authority Digital Engine Control (FADEC) is being introduced onto the latest versions of the Chinook helicopter for the RAF and the US Army Special Operational Force (SOF). These applications will be the first of a modern technology electronic control on the Chinook and will replace the conventional hydromechanical control that has been in service for over thirty years. Hawker Siddley Dynamics Engineering in collaboration with Chandler Evans have produced a FADAC to control the Textron Lycoming T55 turboshaft engines on these aircraft.

Author (Hemer)

A95-93622
SURGE RECOVERY AND COMPRESSOR WORKING LINE CONTROL USING COMPRESSOR EXIT MACH NUMBER MEASUREMENT

Closed loop compressor working line controls which act preferentially to suppress surge events offer improvements in both engine performance and simplification of engine fuel systems. This paper outlines aspects of a control strategy, applied to a military turbofan engine, to support these objectives. Compressor exit Mach number feedback was used to maintain steady running lines or limit working points during transients. The control laws used for this are described and engine test results for both low pressure and high pressure compression systems are presented which demonstrate effective working point control together with rapid surge detection and recovery.

Author (Hemer)

A95-93628
FLIGHT CONTROL SYSTEMS/STRUCTURAL COUPLING BAE WARTON EXPERIENCE IN AERO-SERVO ELASTICITY

The structural coupling problem, associated with interaction between the flexible structure of the aircraft and its flight control system (FCS), is not as widely appreciated within the aircraft industry as the two disciplines on the fringes of which it lies: FCS design and Flutter. This paper is intended to provide a physical "handle" on the topic, rather than an in depth mathematical analysis. The approach to the problem solution developed at BAE Warton for flight clearance of the EAP Demonstrator aircraft is outlined, together with some of the recent development work which will lead into the EFA program.

Author (Hemer)

A95-93634
ASTRA - A SAFE, SIMPLEX, FLY-BY-WIRE AIRCRAFT CONTROL SYSTEM

The subject of this paper is a digital fly-by-wire control system designed and implemented by Cranfield Institute of Technology under contract to the United Kingdom Ministry of Defence. The system is installed in the Advanced Systems Training Aircraft (ASTRA), a BAE HAWK T MK 1 operated by the Empire Test Pilots School, Boscombe Down. System design requirements and implementation issues are discussed with particular emphasis on flight safety requirements of a system which can be configured to yield, in the limit, an uncontrollable aircraft.

Author (Hemer)

A95-93642
CONDITION MONITORING FOR HELICOPTERS: 3303 AIRBORNE VIBRATION MONITORING SYSTEM
RONALD W. CAULKINS (ISSN 0148-7191) 1993 8 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993 (SAE PAPER 931360; HTN-95-21211) Copyright

This paper discusses the use of a sixteen (16) channel vibration monitoring and analysis system permanently mounted on the aircraft. Aircraft vibrations are measured by accelerometers placed at various locations around the airframe, analyzed to obtain frequency information and compared to predetermined vibration limits. FFT data is downloaded to a ground based computer for trending to reveal component wear, component faults or assembly/maintenance errors. Continuous monitoring for catastrophic events and rotor track and balance calculations are also considered.

Author (Hemer)

A95-93681
MODULAR AVIONICS: TAKING TODAY'S AIRCRAFT INTO TOMORROW
JOHN R. THEDENS (ISSN 0148-7191) 1993 5 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993 (SAE PAPER 931416; HTN-95-21250) Copyright
The use of advanced technology is essential to meeting the mission requirements of present as well as future aircraft. Modular avionics are being introduced into next generation aircraft, as a means of achieving higher levels of performance, including reduced volume and improved adaptability, maintainability, and expandability. The reduction in military spending may result in a stretch out of these programs, delaying their availability. This will require that aircraft presently in inventory remain in service beyond their original design lifetime. These platforms must also continue to improve their capability if they are to cope with the threats of the 21st century. Therefore, it is important to apply technology improvements like modular avionics to existing aircraft. The government has started this effort through the establishment of the Modular Avionics System Architecture (MASA) program, created to promote the retrofit application of modular concepts to government program managers and industry avionics suppliers through study programs, sponsorships of public forums and establishment of a Modular Avionics Handbook. The purpose of this paper is to aid the application of modular avionics to today's aircraft. It discusses the status of present modular avionics standards and identifies several areas throughout the equipment life cycle where traditional approaches must be reexamined. Author (Hemer)

A95-95044
DESIGN OF HEAD-UP DISPLAY SYMBOLOGY FOR RECOVERY FROM UNUSUAL ATTITUDES
Copyright
Accident statistics show that spatial disorientation is a significant factor in military aviation mishaps. The 'Augie vector' symbology is designed to aid pilots flying with head-up displays (HUD) in recovering from unusual attitudes induced by spatial disorientation. The original concept of the Augie vector has now been elaborated and refined into an 'Augie display.' The results of a simulation that implemented variations of the Augie display are presented in this report. Subjects performed two types of tasks: initiation of recovery and execution of the full recovery. Pilots with instrument-flight experience and college students with computer-game flight-simulation experience were tested. Pilots showed a steeper learning curve than students, but performance between groups did not differ overall. Completion times for the full-recovery task were not diagnostic. Recovery initiation times indicated that command Augie displays were superior to status Augie displays. However, performance with the Augie display was not appreciably faster than performance without the display. The surprising result can be explained by a subject-reported strategy that yields interesting insights about the design of the HUD pitch ladder.
Author (Hemer)

A95-95194
ASRS PROBLEMS INVOLVING AIR CARRIER GROUND DEICING/ANTHICING
Copyright
The Aviation Safety Reporting System (ASRS) Office shares the FAA's and the Industry's desire to increase aviation safety through improved airframe ground deicing/anti-icing procedures. This study focused on the human factors associated with air carrier ground deicing/anti-icing. We sought to determine psychological and physical factors that affect a person's ability to properly detect ice, remove ice, and assure that the aircraft critical surfaces are free of ice before takeoff. Psychological factors evaluated included (but were not limited to) judgement and decision making, perceptual aspects, motivational, and attentional factors. Physical factors that we evaluated were (but were not limited to) difficulties trying to
The basis of cost weight and reliability. Experience to date with switched the applicability of replacing the mechanically driven accessories with electrically driven accessories is summarized. The benefits of electrically driven accessories are shown associated control unit; an electric pumping and actuation system; and defined, which includes a switched reluctance starter/generator and its ability stator actuation, and inlet particle separation. This paper discusses the functions of starting, fuel and lube pumping, variable functions in helicopter propulsion systems. Present helicopter technology for aircraft. Therefore, with the advent of HMD technology, along with the ability the pilot is looking, thus allowing for more aggressive tactical maneuvering at night. Therefore, with the advent of HMD technology, along with the ability to store a digital terrain data base on tactical aircraft, this capability can be realized. The overall objective of this program is to enhance tactical operations by utilizing a digital terrain system data base to generate a Synthetic Terrain Image (STI) on an HMD.

07 AIRCRAFT PROPULSION AND POWER

Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and on-board auxiliary power plants for aircraft.

A95-92589

APPLICABILITY OF ELECTRICALLY DRIVEN ACCESSORIES FOR TURBOSHIFT ENGINES

The software that has been developed as part of the Synthetic Terrain Imagery (STI) Helmet-Mounted Display program is written in C and is designed to execute on a Silicon Graphics VGX Workstation. This software was developed for purposes of evaluating the utility of synthetically derived representations of the local terrain presented on a helmet-mounted display.

In order to aggressively maneuver an aircraft at low altitude, the pilot must be aware of his attitude as well as the elevation of the surrounding terrain. Low altitude tactical maneuvering is difficult during day operations but becomes nearly impossible at night without an effective night attack system. A system that generates a terrain image from onboard data without the use of sensors would be valuable day or night under all weather conditions. Having a terrain image produced on a Helmet-Mounted Display (HMD) will provide a terrain reference wherever the pilot is looking, thus allowing for more aggressive tactical maneuvering at night. Therefore, with the advent of HMD technology, along with the ability to store a digital terrain data base on tactical aircraft, this capability can be realized. The overall objective of this program is to enhance tactical operations by utilizing a digital terrain system data base to generate a Synthetic Terrain Image (STI) on an HMD.

DTIC A95-92590 CONDENSATION IN JET ENGINE INTAKE DUCTS DURING STATIONARY OPERATION

J. B. YOUNG Univ of Cambridge, Cambridge, United Kingdom Journal of Engineering for Gas Turbines and Power, Transactions of the ASME (ISSN 0742-4795) vol. 117, no. 2 April 1995 p. 227-236 refs

The condensation of moist air in very long intake ducts of engines during stationary operation was analyzed. The analysis demonstrated the occurrence of homogeneous condensation, for moderate values of relative humidity, in an outer annulus adjacent to the intake cooling if the local flow Mach number is about 1.0. For Mach Number of 0.8, homogeneous condensation would unlikely to occur. However, heterogeneous condensation on foreign particles would likely occur if the intake duct is long enough. The effects of condensation on test engine were found to the two folds: (1) increase in entropy which resulted in loss of total pressure in intake duct; and (2) acceleration of flow approaching the engine due to mass and energy transfer between phases during the condensation process.

A95-93605 MANUFACTURE TECHNOLOGY

Design requirements are often constrained by the available manufacturing technology. This paper reviews how current and future aircraft engine designs are supported by manufacturing technology. This includes developments in new materials, processes and inspection, as well as the impact of computer based information systems on the relationship between the designer and the manufacturer. Author (Hemer)

A95-93606 THE ROLE OF MATERIAL BEHAVIOUR MODELLING IN STRESSING AND LIFE ASSESSMENT OF MODERN AERO-ENGINE COMPONENTS

Airframe engine components evolve through an iterative process involving the creation of the basic design to meet the performance requirements and the stress analyses and subsequent life evaluation of the individual components. A progressive increase in stage loading has resulted in more parts experiencing time as well as cycle dependent damage processes. The influence of cyclic softening in quantifying this effect is discussed. The implications of a fracture mechanics based on damage tolerance approach in determining the lives of service discs is examined. The role of three dimensional creep analysis, including the influence of transient thermal stress, in identifying critical areas in highly cooled rotor blades is discussed. Finally an approach for modeling anisotropic single crystal materials is illustrated. Author (Hemer)

A95-93631 THE AUXILIARY AND EMERGENCY POWER SUPPLY ON THE SAAB JAS39 GRIPEN AIRCRAFT

The Gripen aircraft employs a highly unstable canard, tail-first, configuration to optitize aerodynamic and performance benefits. Synthetic stability is imposed by fly-by-wire control technology throughout the flight
envelope, with control laws embodied in computer software ensuring optimum control surface configuration using hydraulic and electrical power sources. During normal operation secondary power is provided by hydraulic pumps and a generator driven by the main (single) engine. Since even a momentary interruption can result in the loss of the aircraft and the pilot, a self-contained system of high reliability with immediate response is required to back up the main engine. Traditionally conventional batteries, auxiliary air power units (APU) or emergency hydrazine power units have been used; however, batteries are heavy and need maintenance, APUs have altitude limitations and hydrazine in any of its forms, presents considerable environmental hazards.

Author (Hemer)

A95-93664
A DETAILED POWER INVERTER DESIGN FOR A 250 KW SWITCHED RELUCTANCE AIRCRAFT ENGINE STARTER/GENERATOR
ARTHUR RADUN and EIKE RICHTER (ISSN 0148-7191) 1993 15 p.
SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
Contract(s)/Grant(s): (F33615-90-C-2052)
(SAE PAPER 931388; HTN-95-21233) Copyright
The design results for a 250KW switched reluctance aircraft engine starter/generator system power inverter are presented. The starter/generator employs a single switched reluctance machine and a generating system architecture that produces two separate 270 Vdc buses from that single switched reluctance machine. The machine has six phases with three of the phases connected to one inverter supplying 125 kW to one 270 Vdc bus while the other three phases are connected to a second inverter supplying 125 kW to the other 270 Vdc bus. Each bus has its own electromagnetic interference (EMI) filter and control in addition to its own inverter. Two types of inverters have been developed, one type employs metal oxide semiconductor (MOS) Controlled Thyristors (MCTs) for the controlled switches and the other type employs Insulated Gate Bipolar-Transistors (IGBTs), high-current 500 A peak turn-off MCT modules were specifically developed for the MCT inverters. Two of these modules are placed in parallel to form the required 1000 A switches. Safe operating area issues and special considerations related to employing the MCT switches are described. The IGBT inverters use two commercial 400 A 600 V IGBT modules for each switch. The link capacitor bank for each inverter employs multilayer ceramic capacitors to meet the starter/generators temperature requirements. These same multilayer ceramic capacitors are also used in the EMI filters. Performance predictions and results for inverters are presented.

Author (Hemer)

A95-93665
DETAILED DESIGN OF A 250-KW SWITCHED RELUCTANCE STARTER/GENERATOR FOR AN AIRCRAFT ENGINE
C. A. FERREIRA and EIKE RICHTER (ISSN 0148-7191) 1993 12 p.
SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
Contract(s)/Grant(s): (F33615-90-C-2052)
(SAE PAPER 931389; HTN-95-21234) Copyright
The work reported in this paper has been conducted by General Electric Company and Sundstrand Corporation as part of a contract sponsored by the United States Air Force (USAF) Wright Laboratories, and Wright-Patterson Air Force Base (WPAFB). The objective of this contract is to prove the feasibility of an integral starter/generator (IS/G) through the preliminary design stage and demonstrate the starter/generator technology in the externally-mounted version (EIS/G) using switched reluctance (SR) machine technology. This paper reports on the detailed design and analysis of the EIS/G. The analysis and design encompassed definition of requirements and constraints, electromagnetic design, thermal analysis, mechanical stress and fit analysis, bearing and critical speed analysis, and mechanical layout and packaging, the results show that when properly designed the SR machine has a very competitive power density when compared to existing aircraft secondary power generator, and that the machine is capable of meeting the application performance requirements.

Author (Hemer)

A95-93667
PROPULSION EDUCATION AT CARLTON UNIVERSITY
H. I. H. SARAVANAMUTTOO Carleton University, Canada and S. A. SJOLANDER Carleton University, Canada (ISSN 0148-7191) 1993 12 p.
SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931391; HTN-95-21236) Copyright
Although relatively a small industrial nation, Canada has a very well-developed gas turbine industry with both an original design and manufacturing capability and a large industrial user base. Research and teaching at Carleton University has focused on the needs of the Canadian industry over many years. The paper gives an overview of the propulsion content of the programs at the undergraduate and postgraduate levels, as offered to students in both Mechanical and Aerospace Engineering. A short course presented regularly to designers and users of gas turbine engines is also briefly described.

Author (Hemer)

A95-93668
AN EDUCATIONAL INTRODUCTION TO TRANSONIC COMPRESSOR STAGE DESIGN PRINCIPLES
PHILIP G. HILL (ISSN 0148-7191) 1993 12 p.
SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931393; HTN-95-21237) Copyright
An introduction to the operational and design features of the transonic fan stage of a modern turbofan engine can give the student an example of highly developed turbomachinery whose performance and design can be readily appreciated from fundamental knowledge of compressible fluid flow and boundary layer separation. Application of continuity and momentum principles along with the constraint of a limiting tip-diameter Mach number (relative to the blade) can serve to determine the required fan size, FPM, blade angles and blade spacing for given mass flow rate and inlet stagnation pressure and temperature. Sensitivity of fan design parameters to limiting Mach number, hub-tip ratio and stall safety margin is readily determined by a simplified model which is compatible with the results of detailed design procedures.

Author (Hemer)

A95-93675
NATIONAL AUSTRALIAN AND SPACE ADMINISTRATION. Lewis Research Center, Cleveland, OH.
POWER SYSTEM CHARACTERISTICS FOR More ELECTRIC AIRCRAFT
SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931406; HTN-95-21244) Copyright
The paper will expand upon the issues and discuss some of the technologies involved in their resolution. Author (Hemer)

A95-93677
CALCULATION OF CONTROL LAWS FOR THE DIGITAL FUEL CONTROL UNIT OF A SMALL THRUST TURBOJET
G. TORELLA Italian Air Force Academy, Italy and G. LIOTTI (ISSN 0148-7191) 1993 6 p.
SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931407; HTN-95-21244) Copyright
It should not be surprising that more electric aircraft must meet significantly more difficult electrical power system requirements than were considered when today's power distribution systems were being developed. Electric power, no longer a secondary system, will become a critical element of the primary control system. Functional reliability requirements will be extremely stringent and can only be met by controlling element redundancy within a distributed power system. Existing electrical systems were not developed to have both the power system and the control/sensing elements distributed and yet meet the requirements of lightning tolerance and high intensity radio frequency (HIRF). In addition, the operation of electric actuators involves high transient loading and reverse energy flows. Such phenomena were also not anticipated when power quality was specified for either 270 vdc or 400 Hertz ac power systems. This paper will expand upon the issues and discuss some of the technologies involved in their resolution.

Author (Hemer)
07 AIRCRAFT PROPULSION AND POWER

0148-7191) 1993 15 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931411; HTN-95-21246) Copyright

The methods and the techniques set-up for evaluating the control laws for the digital Main Fuel Control Unit (MFCU) of a small thrust turbojet engine are shown. A suitable parameter defining the surge margin is considered. The paper deals with the results of a study carried out in order to evaluate the influence of engine operating parameters on the surge margin. For this aim the steady state engine simulation programs, based on the state vector technique, have proved very effective. Finally the codes and the obtained results have been used for calculating some suitable control laws for a digital MFCU. Author (Hemer)

A95-93578* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.
EXPERIMENTAL PERFORMANCE OF A VENTRAL NOZZLE WITH PITCH AND YAW VECTORING CAPABILITY FOR SSOTVL AIRCRAFT
(SAE PAPER 931412; HTN-95-21247) Copyright

Aircraft with supersonic, short takeoff and vertical landing capability have been proposed to replace some of the current high-performance aircraft. Several of these configurations use a ventral nozzle in the lower fuselage, aft of the center of gravity, for lift or pitch control. Internal vanes cantd at 20 deg were added to a swivel-type ventral nozzle and tested at tailpipe to ambient pressure ratios up to 5.0 on the Powered Lift Facility at NASA Lewis Research Center. The addition of sets of four or seven vanes decreased the discharge coefficient of the nozzle by at least 6 percent and did not effect the thrust coefficient. Side force produced by the nozzle with vanes was 14 percent or more of the vertical force. In addition, this side force caused only a small loss in vertical force in comparison to the nozzle without vanes. The net thrust force was 8 deg from the vertical for four vanes and 10.5 deg for seven. Author (Hemer)

A95-93592 LIGHTWEIGHT, OPTO-ELECTRONIC ENGINE CONTROL SYSTEM FOR AEROSPACE TURBINE ENGINES
BRADLEY J. MICROBERTS AlliedSignal Controls & Accessories, South Bend, IN, US and CHARLES T. WALEJEWSKI AlliedSignal Controls & Accessories, South Bend, IN, US (ISSN 0148-7191) 1993 14 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931442; HTN-95-21261) Copyright

AlliedSignal Control and Accessories (ASC) in cooperation with Pratt & Whitney Government Engine and Space Propulsion (PW GESP) have demonstrated a lightweight opto-electronic engine control system that features a lightweight fuel throttling valve, lightweight inlet guide vane servovalve, and a opto-electronic controller with lightweight enclosure. The engine control system was built and tested in support of the first phase of the government-sponsored Integrated High Performance Engine technology (IHPTET) initiative. Both the fuel throttling valve and inlet guide vane servovalve utilize fiber-optic position feedback sensors, low power, high force lightweight piezoelectric actuated direct drive servovalves, and advanced lightweight materials such as AA-6090 aluminum-lithium, silicon nitride ceramic, carbon fiber composites, and AA-8009 high temperature aluminum. Using these advanced lightweight materials, and employing innovative control techniques and advanced electromechanical interface devices, an overall weight savings of 25% was achieved over baseline YF119 components. The engine control system has completed over 100 hours of testing on the United States Air Force (USAF) JT6E XTE 65-1B engine with additional testing scheduled for the latter part of 1993. In addition, the components have amassed a total of 50 hours of component acceptance and design verification testing in the laboratory. Author (Hemer)

A95-94485 EFFICIENT MAPPING TOPOLOGY FOR TURBINE COMBUSTORS WITH INCLINED SLOTS/STAGGERED HOLES
S. L. YANG Michigan Technological Univ, Houghton, MI, United States and M. C. CLINE Journal of Propulsion and Power (ISSN 0748-4658) vol. 11, no. 3 May-June 1995 p. 572-574 refs
(BTN-95-EIX0616952745805) Copyright

An efficient mapping topology for generating grid systems for gas-turbine combustors with inclined slots or staggered holes is presented. This topology can be easily extended to gas-turbine combustors with a multiple-row, staggered hole geometry. Finally, a gas-turbine combustor with inclined slots is used as an example.

A95-94495 EVALUATION OF THE TRANSIENT OPERATION OF ADVANCED GAS TURBINE COMBUSTORS
THOMAS J. ROSFJORD United Technologies Research Cent, East Hartford, CT, United States and JEFFREY M. COHEN Journal of Propulsion and Power (ISSN 0748-4658) vol. 11, no. 3 May-June 1995 p. 497-504 refs
(BTN-95-EIX0616952745793) Copyright

A unique test capability has been defined and used to evaluate the transient response of advanced gas turbine combustors. This facility offers the opportunity to achieve predefined time variations of the air and fuel flow rates and air temperature delivered to a combustor model. This capability can be used for model scales ranging from multinozzle combustor sectors to smaller setups focusing on one component or process. A dedicated control computer aids in establishing time profiles for the input parameters and automatically executing the transient test. Among its applications, the facility has been used to study the occurrence of in-nozzle fuel vaporization during Bodie cycles and to assess the tolerance of a fuel-staged combustor to rapid fuel redistribution. Author (El)

A95-94503 VORTEX GENERATION AND MIXING IN THREE-DIMENSIONAL SUPERSONIC COMBUSTORS
D. W. RIGGINS Univ of Missouri-Rolla, Rolla, MO, United States and P. H. VITT Journal of Propulsion and Power (ISSN 0748-4658) vol. 11, no. 3 May-June 1995 p. 419-426 refs
(BTN-95-EIX0616952745783) Copyright

The generation and evolution of the flow vorticity established by instream injector ramps in a high Mach number/high enthalpy scramjet combustor flowfield are described in detail for a number of computational cases. Classical fluid dynamic circulation is presented for these cases in order to clarify the spatial distribution and convection of the vorticity. The ability of the simulations to accurately represent Stokes law of circulation is discussed and shown. In addition, the conservation of swirl is presented for these flows. The impact of both turbulent diffusion and the vortex/ramp nonuniformity on the downstream mixing rate is clearly illustrated. A correlation over the length of the combustor between fuel-air mixing and a parameter called the vortex stirring length is demonstrated. Finally, computational results for a representative ramp injector are compared with experimental data. Author (El)

A95-94504 INVESTIGATION OF SCRAMJET INJECTION STRATEGIES FOR HIGH MACH NUMBER FLOWS
D. W. RIGGINS Univ of Missouri-Rolla, Rolla, MO, United States, C. R. MCMILLAN, R. C. ROGERS, and R. D. BITTNER Journal of Propulsion and Power (ISSN 0748-4658) vol. 11, no. 3 May-June 1995 p. 409-418 refs
(BTN-95-EIX0616952745782) Copyright

A method for estimating the axial distribution of thrust performance potential in a supersonic combustor is described. A complementary tech-
An experimental study of scramjet nozzle was conducted to investigate how the nozzle flow is affected by ambient pressure. In order to elucidate the aerodynamic properties of nozzle flow, detailed measurements of thrust and wall pressure were carried out using cold nitrogen. Nozzle flow was also visualized using a shear sensitive liquid crystal. Wall pressure and shear stress distributions in an overexpanded nozzle showed that nozzle flow includes a crossing shock wave made at the side-fences. This flowfield can be approximated as a supersonic inlet flow compressed by sidewalls. The high-pressure region on the nozzle ramp generated by the shock waves results in a higher performance in scramjet nozzle than that estimated for a two-dimensional separation from the ramp.

Author (El)

N95-30517# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

WAVE ROTOR-ENHANCED GAS TURBINE ENGINES
Contract(s)/Grant(s): (RTOP 505-90-58)
(NASA-TM-106998; E-9777; NAS 1.15:106998; ARL-TR-806; AIAA PAPER 95-2799) Avail: CASI HC A03/MF A01

The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshift engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbotop engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-topping is shown to significantly enhance the specific fuel consumption and wave rotor performance levels are calculated using a one-dimensional, pressurized, and time dependent boundary conditions. The one-dimensional, perfect gas, CFD based code tracks the gasdynamics in each of the wave rotor passages as they rotate past the various ducts. The model can operate both on and off-design, allowing dynamic behavior to be studied throughout the operating range of the wave rotor. The model accounts for several major loss mechanisms including finite passage opening time, fluid friction, heat transfer to and from the passage walls, and leakage to and from the passage ends. In addition, it can calculate the amount of work transferred to and from the fluid when the flow in the ducts is not aligned with the passages such as occurs in off-design operation. Since it is one-dimensional, the model runs reasonably fast on a typical workstation. This paper will describe the model and present the results of some transient calculations for a conceptual four port wave rotor designed as a topping cycle for a small gas turbine engine.

Author

N95-30617# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

A NUMERICAL MODEL FOR DYNAMIC WAVE ROTOR ANALYSIS
Contract(s)/Grant(s): (RTOP 505-62-50)
(NASA-TM-106997; E-9776; NAS 1.15:106997; AIAA PAPER 95-2800) Avail: CASI HC A03/MF A01

A numerical model has been developed which can predict the dynamic and steady state behavior of a wave rotor, given the geometry and time dependent boundary conditions. The one-dimensional, perfect gas, CFD based code tracks the gasdynamics in each of the wave rotor passages as they rotate past the various ducts. The model can operate both on and off-design, allowing dynamic behavior to be studied throughout the operating range of the wave rotor. The model accounts for several major loss mechanisms including finite passage opening time, fluid friction, heat transfer to and from the passage walls, and leakage to and from the passage ends. In addition, it can calculate the amount of work transferred to and from the fluid when the flow in the ducts is not aligned with the passages such as occurs in off-design operation. Since it is one-dimensional, the model runs reasonably fast on a typical workstation. This paper will describe the model and present the results of some transient calculations for a conceptual four port wave rotor designed as a topping cycle for a small gas turbine engine.

Author
PRELIMINARY ASSESSMENT OF COMBUSTION MODES FOR INTERNAL COMBUSTION WAVE ROTORS
Contract(s)/Grant(s): (RTOP 505-90-58) (NASA-TM-107000; E-9779; NAS 1.15:107000; AIAA PAPER 95-2801) Avail: CASI HC A03/MF A01
Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail: premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition mode will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

JET MIXING AND EMISSION CHARACTERISTICS OF TRANSVERSE JETS IN ANNUAL AND CYLINDRICAL CONFINED CROSSFLOW
Original contains color illustrations
Contract(s)/Grant(s): (RTOP 537-02-21) (NASA-TM-106976; E-9737; NAS 1.15:106976; AIAA PAPER 95-2995) Avail: CASI HC A03/MF A01; 11 functional color pages
Three dimensional turbulent reacting CFD analyses were performed on transverse jets injected into annular and cylindrical (can) confined crossflows. The goal was to identify and assess mixing differences between annular and can geometries. The approach taken was to optimize both annular and can configurations by systematically varying orifice spacing until lowest emissions were achieved, and then compare the results. Numerical test conditions consisted of a jet-to-mainstream mass-flow ratio of 3.2 and a jet-to-mainstream momentum-flux ratio \(J \) of 30. The computational results showed that the optimized geometries had similar emission levels at the exit of the mixing section although the annular configuration did mix-out faster. For lowest emissions, the density correlation parameter \(C = (S/H) \) square root of \(J \) was 2.35 for the annular geometry and 3.5 for the can geometry. For the annular geometry, the constant was about twice the value seen for jet mixing at low mass-flow ratios (i.e., MR less than 0.5). For the can geometry, the constant was about 1 1/2 times the value seen for low mass-flow ratios.

THE INLETS OF TURBOFAN ENGINES Final Contractor Report
D. E. CICON and T. G. SOFRIN (Sofrin, T. G., Newington, CT.) May 1995 55 p
Contract(s)/Grant(s): (NAS3-26618; RTOP 538-03-11) (NASA-CR-195457; E-9577; NAS 1.26:195457) Avail: CASI HC A04/MF A01
This report describes a procedure for enhancing the use of the basic rotating microphone system so as to determine the forward propagating acoustic field in the inlet duct of the microphone plane in order to predict more accurate far-field radiation patterns. In addition, a modification was developed to obtain, from the same microphone readings, the forward acoustic modes generated at the fan face, which is generally some distance downstream of the microphone plane. Both these procedures employ computer-simulated calibrations of sound propagation in the inlet duct, based on the current radiation code. These enhancement procedures were applied to previously obtained rotating microphone data for the 17-inch ADP fan. The forward mode components at the microphone plane were obtained and were used to compute corresponding far-field directivities. The second main task of the program involved finding the forward wave modes generated at the fan face in terms of the same total radial mode structure measured at the microphone plane. To obtain satisfactory results with the ADP geometry it was necessary to limit consideration to the propagating modes. Sensitivity studies were also conducted to establish guidelines for use in other fan configurations.

JET MIXING IN A REACTING CYLINDRICAL CROSSFLOW
Original contains color illustrations
Contract(s)/Grant(s): (RTOP 537-02-20) (NASA-TM-106975; E-9736; NAS 1.15:106975; AIAA PAPER 95-3109) Avail: CASI HC A03/MF A01; 10 functional color pages
This paper addresses the mixing of air jets into the hot, fuel-rich products of a gas turbine primary zone. The mixing, as a result, occurs in a reacting environment with chemical conversion and substantial heat release. The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from round orifices. A specially designed reactor, operating on propane, presents a uniform mixture without swirl to mixing modules consisting of 8, 9, 10, and 12 holes at a momentum-flux ratio of 57 and a jet-to-mainstream mass-flow ratio of 2.5. Concentrations of \(O_2 \), \(CO_2 \), \(CO \), and \(HC \) are obtained upstream, downstream, and within the offsite plane. \(O_2 \) profiles indicate jet penetration while \(CO_2 \), \(CO \), and \(HC \) include film cooling considerations, has been used to study the effect of coolant velocity and temperature distribution at the hole exit on the heat transfer coefficient on three-film-cooled turbine blades, namely, the C3X vane, the VKI rotor, and the ACE rotor. Results are also compared with the experimental data for all the blades. Moreover, Mayle's transition criteria, Forrest's model for augmentation of leading edge heat transfer due to freestream turbulence, and Crawford's model for augmentation of eddy viscosity due to film cooling are used. Use of Mayle's and Forrest's models is relevant only for the ACE rotor due to the absence of showerhead cooling on this rotor. It is found that, in some cases, the effect of distribution of coolant velocity and temperature at the hole exit can be as much as 60% on the heat transfer coefficient at the blade suction surface, and 50% at the pressure surface. Also, different effects are observed on the pressure and suction surface depending upon the blade as well as upon the hole shape, conical or cylindrical.
and fuel-injection locations and to investigate whether new configurations may be more capable of providing high combustion efficiencies under new techniques to qualitatively determine optimum flame-stabilization dome lengths were investigated using non-intrusive water-tunnel flow visualization techniques.

The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a two-dimensional (2D) Navier-Stokes flow solver. Parametric studies were performed on turbulence models, computational grids and bleed models. The computer flowfield was substantially different from the original inviscid design, due to interactions of shocks, boundary layers, and bleed. Good agreement with experimental data was obtained in many aspects. Many of the discrepancies were thought to originate primarily from 3D effects. Therefore, a balance should be struck between expending resources on a high fidelity 2D simulation, and the inherent limitations of 2D analysis. The solutions were fairly insensitive to turbulence models, grids and bleed models. Overall, the k-ε turbulence model, and the bleed models based on unchoked bleed hole discharge coefficients or uniform velocity are recommended. The 2D Navier-Stokes methods appear to be a useful tool for the design and analysis of supersonic inlets, by providing a higher fidelity simulation of the inlet flowfield than incompressible methods, in a reasonable turnaround time.

A new design concept for a liquid-fueled-ramjet with increased efficiency is presented. The concept utilizes vortex combustion, a method which is based on the idea that by confining the combustion process to occur within vortices it is possible to use several advantageous features of vortical flow: combined bulk mixing of the reactants with intense fine-scale mixing leading to enhanced molecular mixing, long residence time to achieve complete combustion, localized high temperature regions, and an easily controllable environment. The concept was initially tested in laboratory scale ethylene diffusion flames. Air vortices were stabilized by acoustically forcing a turbulent air jet at its most unstable mode. Fuel was injected into the air vortices synchronously with the vortex formation sequence. The proper timing of the process was determined to be critical; when the vortex formation, the ambient air entrainment induced by the vortex and the fuel injection occurred in a certain sequence the fuel burning was more complete and the energy release increased significantly. The pulsed ramjet design is based on these basic principles. The liquid fueled ramjet is a coaxial dump combustor with an axial air inlet. A pulser located in the air inlet conduit produces pressure pulses in the inlet flow using spark ignition of premixed fuel/air which generates a train of flame kernels. These growing kernels interact with the jet flow to stabilize the flame and extend it. The proper timing of the process was determined to be critical; when the vortex formation, the ambient air entrainment induced by the vortex and the fuel injection occurred in a certain sequence the fuel burning was more complete and the energy release increased significantly. The pulsed ramjet design is based on these basic principles. The liquid fueled ramjet is a coaxial dump combustor with an axial air inlet. A pulser located in the air inlet conduit produces pressure pulses in the inlet flow using spark ignition of premixed fuel/air which generates a train of flame kernels. These growing kernels interact with the jet flow to stabilize the flame and extend it. The proper timing of the process was determined to be critical; when the vortex formation, the ambient air entrainment induced by the vortex and the fuel injection occurred in a certain sequence the fuel burning was more complete and the energy release increased significantly. The pulsed ramjet design is based on these basic principles. The liquid fueled ramjet is a coaxial dump combustor with an axial air inlet. A pulser located in the air inlet conduit produces pressure pulses in the inlet flow using spark ignition of premixed fuel/air which generates a train of flame kernels. These growing kernels interact with the jet flow to stabilize the flame and extend it.

Author

N95-31191# BBN Systems and Technologies Corp., Cambridge, MA.

N95-31199 Naval Postgraduate School, Monterey, CA.

N95-31159 A new design concept for a liquid-fueled-ramjet with increased efficiency is presented. The concept utilizes vortex combustion, a method which is based on the idea that by confining the combustion process to occur within vortices it is possible to use several advantageous features of vortical flow: combined bulk mixing of the reactants with intense fine-scale mixing leading to enhanced molecular mixing, long residence time to achieve complete combustion, localized high temperature regions, and an easily controllable environment. The concept was initially tested in laboratory scale ethylene diffusion flames. Air vortices were stabilized by acoustically forcing a turbulent air jet at its most unstable mode. Fuel was injected into the air vortices synchronously with the vortex formation sequence. The proper timing of the process was determined to be critical; when the vortex formation, the ambient air entrainment induced by the vortex and the fuel injection occurred in a certain sequence the fuel burning was more complete and the energy release increased significantly. The pulsed ramjet design is based on these basic principles. The liquid fueled ramjet is a coaxial dump combustor with an axial air inlet. A pulser located in the air inlet conduit produces pressure pulses in the inlet flow using spark ignition of premixed fuel/air which generates a train of flame kernels. These growing kernels interact with the jet flow to stabilize the flame and extend it. The proper timing of the process was determined to be critical; when the vortex formation, the ambient air entrainment induced by the vortex and the fuel injection occurred in a certain sequence the fuel burning was more complete and the energy release increased significantly. The pulsed ramjet design is based on these basic principles. The liquid fueled ramjet is a coaxial dump combustor with an axial air inlet. A pulser located in the air inlet conduit produces pressure pulses in the inlet flow using spark ignition of premixed fuel/air which generates a train of flame kernels. These growing kernels interact with the jet flow to stabilize the flame and extend it. The proper timing of the process was determined to be critical; when the vortex formation, the ambient air entrainment induced by the vortex and the fuel injection occurred in a certain sequence the fuel burning was more complete and the energy release increased significantly. The pulsed ramjet design is based on these basic principles. The liquid fueled ramjet is a coaxial dump combustor with an axial air inlet. A pulser located in the air inlet conduit produces pressure pulses in the inlet flow using spark ignition of premixed fuel/air which generates a train of flame kernels. These growing kernels interact with the jet flow to stabilize the flame and extend it. The proper timing of the process was determined to be critical; when the vortex formation, the ambient air entrainment induced by the vortex and the fuel injection occurred in a certain sequence the fuel burning was more complete and the energy release increased significantly. The pulsed ramjet design is based on these basic principles. The liquid fueled ramjet is a coaxial dump combustor with an axial air inlet. A pulser located in the air inlet conduit produces pressure pulses in the inlet flow using spark ignition of premixed fuel/air which generates a train of flame kernels. These growing kernels interact with the jet flow to stabilize the flame and extend it. The proper timing of the process was determined to be critical; when the vortex formation, the ambient air entrainment induced by the vortex and the fuel injection occurred in a certain sequence the fuel burning was more complete and the energy release increased significantly. The pulsed ramjet design is based on these basic principles. The liquid fueled ramjet is a coaxial dump combustor with an axial air inlet. A pulser located in the air inlet conduit produces pressure pulses in the inlet flow using spark ignition of premixed fuel/air which generates a train of flame kernels. These growing kernels interact with the jet flow to stabilize the flame and extend it. The proper timing of the process was determined to be critical; when the vortex formation, the ambient air entrainment induced by the vortex and the fuel injection occurred in a certain sequence the fuel burning was more complete and the energy release increased significantly. The pulsed ramjet design is based on these basic principles. The liquid fueled ramjet is a coaxial dump combustor with an axial air inlet. A pulser located in the air inlet conduit produces pressure pulses in the inlet flow using spark ignition of premixed fuel/air which generates a train of flame kernels. These growing kernels interact with the jet flow to stabilize the flame and extend it. The proper timing of the process was determined to be critical; when the vortex formation, the ambient air entrainment induced by the vortex and the fuel injection occurred in a certain sequence the fuel burning was more complete and the energy release increased significantly. The pulsed ramjet design is based on these basic principles. The liquid fueled ramjet is a coaxial dump combustor with an axial air inlet. A pulser located in the air inlet conduit produces pressure pulses in the inlet flow using spark ignition of premixed fuel/air which generates a train of flame kernels. These growing kernels interact with the jet flow to stabilize the flame and extend it.
07 AEROSPACE PROPULSION AND POWER

The AVMS program comprised four tasks. Task A determined the functional requirements of the next generation VMS. Task B defined and evaluated a baseline and six candidate architectural concepts. Task C defined a VMS development process based upon DOD Systems Engineering principles. Task D quantified benefits architectures, development processes, and tools. Identified shortfalls, and recommended actions to reduce shortfalls.

Author (Hemer)

A95-93659
SOME ADDITIONAL STABILITY AND PERFORMANCE CHARACTERISTICS OF THE SCISSOR/PIVOT WING CONFIGURATIONS
BRUCE P. SELBERG University of Missouri-Rolla, MO, US and PAUL VITT University of Missouri-Rolla, MO, US (ISSN 0148-7191) 1993 9 p.
SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931383; HTN-95-21228) Copyright

The development of a pitch pointing control system for an advanced high performance fighter aircraft using eigenstructure assignment and command generator tracking schemes is presented. A desired eigenstructure is first chosen to achieve a desired decoupling (i.e., pitch attitude and flight path angle), and to obtain a desired damping and rise time. The command generator tracker is next used to ensure zero steady-state error-to-step commands. The stability robustness to the parameter variations of the closed-loop system is evaluated in the sense of the conditioning of the achieved eigenstructure by using singular value analysis technique. The analysis and synthesis techniques for the pitch pointing control system are illustrated by applying the techniques to F-15 aircraft as a part of the NASA/USAF program named ACTIVE (Advanced Control Technologies for Integrated Vehicles).

Author (Ej)

A95-94045
DESIGN OF A MODERN PITCH POINTING CONTROL SYSTEM
(BTN-95-EIX95302731226) Copyright

The development of a pitch control system for an advanced high performance fighter aircraft using eigenstructure assignment and command generator tracking schemes is presented. A desired eigenstructure is first chosen to achieve a desired decoupling (i.e., pitch attitude and flight path angle), and to obtain a desired damping and rise time. The command generator tracker is next used to ensure zero steady-state error-to-step commands. The stability robustness to the parameter variations of the closed-loop system is evaluated in the sense of the conditioning of the achieved eigenstructure by using singular value analysis technique. The analysis and synthesis techniques for the pitch pointing control system are illustrated by applying the techniques to F-15 aircraft as a part of the NASA/USAF program named ACTIVE (Advanced Control Technologies for Integrated Vehicles).

Author (Ej)

A95-94208
PANEL FLUTTER LIMIT-CYCLE SUPPRESSION WITH PIEZOELECTRIC ACTUATION
ZHIHONG LAI Old Dominion Univ, Norfolk, VA, United States, DAVID Y. XUE, JEN-KUANG HUANG, and CHUH MEI Journal of Intelligent Material Systems and Structures (ISSN 1045-389X) vol. 6, no. 2 March 1995 p. 274-282 refs
(BTN-95-EIX95302731089) Copyright

An optimal control design is presented to suppress panel flutter limit-cycle motions using piezoelectric actuators. First, the nonlinear dynamic equations of motion based on the classical continuum method are derived for a simply supported isotropic panel with a pair of patched piezoelectric layers. After linearizing the dynamic modal equations, an optimal controller is developed to provide an optimal combination of impulse force and bending moments through piezoelectric actuators for flutter suppression. For the panel configuration studied, numerical simulations based on the nonlinear model show that the maximum suppressible dynamic pressure lambda(sub max) can be increased about three times of the critical dynamic pressure lambda(sub cr) by the piezoelectric actuation, and the

80 AEROSPACE STABILITY AND CONTROL

Includes aircraft handling qualities; piloting; flight controls; and autopilots.

A95-93655
AN ADVANCED VEHICLE MANAGEMENT SYSTEM
CARLOS A. BEDOYA and JOHN L. MOHR (ISSN 0148-7191) 1993 11 p.
SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931376; HTN-95-21224) Copyright

The Advanced Vehicle Management System (AVMS) Architecture Studies program defined the candidate vehicle management system (VMS) architectural concepts for advanced air vehicles and defined an integrated tool environment to support development of an advanced VMS. The AVMS program comprised four tasks. Task A determined the functional requirements of the next generation VMS. Task B defined and evaluated a baseline and six candidate architectural concepts. Task C defined a VMS development process based upon DOD Systems Engineering principles. Task D quantified benefits architectures, development processes, and tools. Identified shortfalls, and recommended actions to reduce shortfalls.

Author (Hemer)
bending moment is much more effective in flutter suppression than the inplane force. Within the maximum suppressible dynamic pressure, limit-cycle motions can be completely suppressed. For the actuator design, the two-set actuators perform better than the one-patched actuator, and the one-patched actuator may have better performance than the completely covered actuator. The results demonstrate that piezoelectric materials are effective in panel flutter suppression.

A95-94457

JET TRANSPORT RESPONSE TO A HORIZONTAL WIND VORTEX

(BTN-95-EIX06192952748163) Copyright

The dynamic response of a twin-jet transport aircraft encountering a horizontal wind vortex (or rotor) on final approach to landing is investigated. Computer simulations determine the effects of vortex strength, vortex length, lateral entry position, vertical entry position, and encounter incidence angle on the aircraft's roll response. Maximum roll rate and roll angle increase proportionally with vortex strength and length until a saturation length is reached. Roll response is highly dependent on entry location: changes in lateral entry position largely affect maximum roll angle while changes in vertical entry position affect maximum roll rate. Peak roll rate and roll angle obtain their largest values at near-zero incidence angles. The response is highly dependent on the precise initial conditions of the encounter - even small variations in initial condition cause significant changes in aircraft roll response.

A95-94467 National Aeronautics and Space Administration, Langley Research Center, Hampton, VA.

ACTUATED FOREBODY STRAKE CONTROLS FOR THE F-18 HIGH-ALPHA RESEARCH VEHICLE

DANIEL G. MURRI National Aeronautics and Space Administration Langley Research Cent, Hampton, VA, United States, GAUTAM H. SHAH, DANIEL J. DICARLO, and TODD W. TRILLING Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 555-562 refs

(BTN-95-EIX06192952748173) Copyright

A series of ground-based studies have been conducted to develop actuated forebody strake controls for flight-test evaluations using the NASA F-18 High-Alpaha Research Vehicle (HARV). The actuated forebody strakes were designed to provide increased levels of yaw control at high angles of attack where conventional rudders become ineffective. Results are presented from tests conducted with the flight-test strake design, including static and dynamic wind-tunnel tests, transonic wind-tunnel tests, full-scale wind-tunnel tests, pressure surveys, and flow visualization tests. Results from these studies show that a pair of conformal actuated forebody strakes applied to the F-18 HARV can provide a powerful and precise yaw control device at high angles of attack. The preparations for flight testing are described, including the fabrication of flight hardware and the development of aircraft flight control laws. The primary objectives of the flight tests are to provide flight validation of the ground-based studies and to evaluate the use of this type of control to enhance fighter aircraft maneuverability.

A95-94472

DIRECTIONAL CONTROL AT HIGH ANGLES OF ATTACK USING BLOWING THROUGH A CHINED FOREBODY

(BTN-95-EIX06192952748179) Copyright

Directional control through the use of pneumatic blowing was investigated on a generic subscale model with a chined forebody. Pneumatic control was accomplished by blowing through a chine slot in a direction normal to the forebody surface. Comparisons are made with a vertical tail on and off, and with control through conventional rudder deflection. Force and moment data were obtained for various blowing coefficients over an angle-of-attack range from 0 to 75 deg to document the techniques effectiveness. Flow visualization was also conducted in order to obtain qualitative information about the effect on the flowfield. Results indicate that pneumatic blowing through a chined forebody can be an effective technique for generating yaw moments at large angles of attack where conventional control surfaces lose their effectiveness. Yaw moments generated are typically much larger than that obtained by just the jet thrust effect alone since the forebody flowfield is significantly modified from the interaction of the jet with the chine vortices. Directional control capability was found to increase with angle of attack for a given blowing coefficient until a maximum was reached. Further increases in angle of attack result in a rather rapid loss of effectiveness. In addition, the effectiveness of the pneumatic concept was found to be dependent on tail configuration.

A95-30937# Carnegie-Mellon Univ, Pittsburgh, PA.

MARC BODSON 15 Feb. 1995 116 p

Contract(s)/Grant(s): (F49620-92-J-0086)

(A-D-A95-2711; AFSOR-95-1747) Avail: CASE HC A06/MF A02

The report discusses methods for the design of reconfigurable flight control systems. Model reference adaptive control algorithms were developed which allow for the rapid identification of aircraft parameters after failures or damages and for automatic control redesign. These algorithms are simple enough that they can be implemented in real-time with existing computers. Simulation results were obtained using a detailed nonlinear model of a fighter aircraft. The results demonstrate the ability of the adaptive algorithms to automatically adjust trim values after failures, to restore tracking of the pilot commands despite the loss of actuator effectiveness, and to coordinate the use of the remaining surfaces in order to maintain the decoupling between the rotational axes. The report also discusses analytical results that were obtained during the course of the research regarding the stability and convergence properties of multivariable adaptive control algorithms, the use of averaging methods for the analysis of transient response and robustness, and the estimation of uncertainty in dynamic models. A modified recursive least-squares algorithm with forgetting factor is also described which gives fast adaptation under normal conditions while keeping the sensitivity to noise limited when signal to noise ratios are poor.

N95-31071# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany). Inst. fuer Flugmechanik.

HANDLING QUALITIES ANALYSIS ON RATE LIMITING ELEMENTS IN FLIGHT CONTROL SYSTEMS

Copyright Avail: CASE HC A03/MF A02

Rate saturation conditions caused by rate limiting elements (RLE's) in flight control systems can contribute to severe pilot induced oscillation. In order to gain more theoretical insight in this problem the paper deals with the development of rate limiter describing functions in order to establish a theoretical basis for open and closed loop handling qualities analysis in the frequency domain. Although rate limitation produces nonlinear system behaviour it could be shown that rate limiter describing functions could be applied to existing methods used in handling qualities analysis of pilot/aircraft systems. A new handling quality parameter, the rate limiter onset frequency, is defined as a measure of input amplitude and frequency. Here the onset frequency in reference to the system bandwidth could be a suitable parameter in defining handling qualities boundaries for flight control systems with RLE's. The response in amplitude and phase is presented for different types of input signals such as triangle and sinusoidal oscillations. Rate limiter cascading is considered, too. Further, the suit-
ability of various existing handling quality criteria are compared with the RLE results especially with respect to PIO. Finally, the improvements in system behavior by applying an alternate control scheme (ACS), as proposed by A.Haramis, will be discussed. Derived from text

N95-31400 Nielsen Engineering and Research, Inc., Mountain View, CA.
PATION G. REISENTHEL* 18 Aug. 1994 129 p Limited Reproducibility: More than 20% of this document may be affected by microfiche quality
Contract(s)/Grant(s): (DAAL03-92-C-0013)
(AD-A288658; NEAR-TR-482; ARO-29049-A4-EG-S) Avail: Issuing Activity (Defense Technical Information Center (DTIC))
The goal of the research was to understand key issues of vorticity dynamics prior to, during, and after the initiation of dynamic stall. The first portion of this work examined the indicial theory to the prediction of dynamic applicability stall. The research focused on extending the semi-analytical formalism of indicial theory to predict the vorticity fluxes and the vorticity accumulation at the leading edge during unsteady maneuver. In the second portion of this work, highly accurate two-dimensional solutions of the Navier-Stokes equation were used on a model problem to investigate the Reynolds number scaling of incipient flow separation between Re = 50,000 and Re = 800,000. This portion of the work was motivated by the suggestion that the appearance of eruptive plumes of vorticity at high Reynolds number might be critical to the formation of the dynamic stall vortex. The results of the research appear to contradict the hypothesis that a form of Reynolds number bifurcation must take place at some intermediate laminar Reynolds number. Instead, self-similar behavior was observed, at least up to the time of formation of the primary stall vortex.

N95-31846# National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Center, Edwards, CA.
FLIGHT TEST VALIDATION OF A FREQUENCY-BASED SYSTEM IDENTIFICATION METHOD ON AN F-15 AIRCRAFT
Contract(s)/Grant(s): (RTOP 505-68-00)
(NASA-TM-47041; NAS 1.15:4704; AIAA PAPER 95-2362) Avail: CASI HC A03/MF A01
A frequency-based performance identification approach was evaluated using flight data from the NASA F-15 Highly Integrated Digital Electronic Control aircraft. The approach used frequency separation to identify the effectiveness of multiple controls simultaneously as an alternative to independent control identification methods. Fourier transformations converted measured control and response data into frequency domain representations. Performance gradients were formed using multitem frequency matching of control and response frequency domain models. An objective function was generated using these performance gradients. This function was formally optimized to produce a coordinated control trim set. This algorithm was applied to longitudinal acceleration and evaluated using two control effectors: nozzle throat area and inlet first ramp. Three criteria were investigated to validate the approach: simultaneous gradient identification, gradient frequency dependency, and repeatability. The report describes the flight test results. These data demonstrate that the approach can accurately identify performance gradients during simultaneous control excitation independent of excitation frequency.

ACTIVE CONTROL TECHNOLOGY: APPLICATIONS AND LESSONS LEARNED [LES TECHNOLOGIES DU SYSTEME DE CONTROLE ACTIF: APPLICATIONS ET ENSEIGNEMENTS]
in the last decade, Active Control Technology (ACT) has emerged from the realm of theory and modest experimental applications to full-scale use on production aircraft, while more elaborate forms of ACT are under test for the future production of aircraft. New technologies have been applied in military fighters to maximize maneuverability and agility, and in civil transports to reduce trim drag, lower pilot workload and improve riding qualities. During this symposium the status of Active Control Technology was assessed in light of the experience gained over the last decade. The symposium was organized around four sessions comprising 28 technical papers in all. These sessions focused on: Specifications for flight control design, Design and analysis methods, System integration and Implementation of experience. For individual titles, see N95-31990 through N95-32017.

N95-31990# Hoh Aeronautics, Inc., Lomita, CA.
THE ROLE OF HANDLING QUALITIES SPECIFICATIONS IN FLIGHT CONTROL SYSTEM DESIGN
ROGER H. HOH and DAVID G. MITCHELL. In AGARD, Active Control Technology: Applications and Lessons Learned 12 p Jan. 1995
Copyright Avail: CASI HC A03/MF A04
The handling qualities specification should be an essential element of the flight control system design and testing for an active control technology (ACT) aircraft. This is a significant departure from previous conventional aircraft where handling qualities depended more on the configuration (tail size, control surface sizing, etc.). The necessity for incorporating the handling qualities specification into the flight control system design process has not been recognized by the industry, as evidenced by the fact that most of the ACT aircraft do not meet the requirements of the current handling qualities specification. This has resulted in excessive phase lag in the flight controls, and numerous cases of pilot induced oscillation. This paper reviews key handling qualities criteria for ACT aircraft as well as lessons that should be incorporated into specification upgrades and flight control design efforts.

N95-31991# Gibson (J. C.), Saint Ames (England).
THE PREVENTION OF PIO BY DESIGN
J. C. GIBSON In AGARD, Active Control Technology: Applications and Lessons Learned 12 p Jan. 1995
Copyright Avail: CASI HC A03/MF A04
Control problems caused by poor pilot-aircraft closed loop characteristics have existed for as long as aircraft have been flown. The majority of them have been the result of excessive response amplitudes and phase lags conflicting with simple stability margin requirements. Their solutions have been rather straightforward and often amount to the provision of K/S-like responses, or sufficiently similar, within the bandwidths of interest. Most high order Pilot Induced Oscillation (PIO) problems have been introduced, not by more complex fly by wire control laws, but by unnecessary lags or sometimes by excessive gain placed between the pilot and the response. The pilot is forced to operate in a region of excessive phase lag and response gain, typically with the impression that the aircraft is not actually responding to the commands. The solutions address the provision of adequate stability margins in much the same way as in earlier problems. The high order PIO problem is identified in the open loop attitude behavior in the uniquely defined PIO frequency region, in which the response lags the stick by 180 degrees or more. It is not necessary to model the pilot who is found to operate in a synchronous manner with the attitude oscillation. The dominant feature in this is the rate zero crossing which acts to trigger the reversals of the control input. The input itself may take the form of a sinusoid, a relay switching action, or a mixture of the two. A number of simple criteria can be applied to control law design which have been found to ensure the prevention of high order PIO. The existence of a PIO problem can be identified with great certainty before flight by specific test methods, which should be applied with rigor.
no matter how much confidence exists in the design methods. Finally, it is crucial for all concerned to understand that if the underlying problem is there, no matter how extreme the pilot inputs may have to be to excite it, then it can be expected to happen in flight. It will be impossible to prevent it by pilot briefings.

Derived from text

N95-31992# McDonnell-Douglas Aerospace, Long Beach, CA.

THE IMPORTANCE OF FLYING QUALITIES DESIGN SPECIFICATIONS FOR ACTIVE CONTROL SYSTEMS

Copyright Aval: CASI HC A03/MF A04

The first part of this paper consists of recollections of how some of the flying qualities specifications for active control fighters emerged. These recollections include some lessons learned. The second part, with these recollections and lessons as motivation, introduces new data on the much more recent developments in active control transports.

Author

N95-31993# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany). Inst. fuer Flugmechanik.

EXPERIENCES WITH ADS-33 HELICOPTER SPECIFICATION TESTING AND CONTRIBUTIONS TO REFINEMENT RESEARCH

Copyright Aval: CASI HC A03/MF A04

The introduction of Active Control Technology in rotorcraft created the need for new handling qualities requirements. In response to this, a new helicopter handling qualities specification was developed under the leadership of the U.S. Army and published as Aeronautical Design Standard 33 (ADS-33). Since its introduction, research has been conducted to expand the handling qualities database on which ADS-33 is based. This paper presents DLR contributions to this research. A standard BO 105 was used to evaluate the applicability and repeatability of the current ADS-33C criteria in forward flight. As a result of this study, some data gaps were recognized and the criteria that need further verification were identified. The in-flight simulator ATTHeS was used for an investigation of the effects of bandwidth and phase delay and pitch-roll coupling on helicopter handling qualities in a high gain sismos tracking task. Results are shown that indicate a need to more tightly constrain the phase delay for the roll axis than in the current ADS-33 requirements. For the pitch-roll coupling criterion it is shown that although the format of the current ADS-33 requirements is valid for control and rate coupling, it cannot be used for coupling types typical of actively controlled helicopters. A frequency domain criterion that offers more comprehensive coverage of all types of pitch-roll coupling is proposed.

Author

N95-31994# Israel Aircraft Industries Ltd., Ben-Gurion Airport (Israel).

FLIGHT OPERATIONS

LAVI FLIGHT CONTROL SYSTEM: DESIGN REQUIREMENTS, DEVELOPMENT AND FLIGHT TEST RESULTS

MENAHEM SHMUL, ELI ENERTHAL, and MOSHE ATTAR In AGARD, Active Control Technology: Applications and Lessons Learned 13 p Jan. 1995

Copyright Aval: CASI HC A03/MF A04

The flight control system of the Lavi Multimission fighter is described. The control laws design philosophy is given along with the control laws development, the flying qualities requirements and the final structure of the pitch axis (DFCS). The simulation phase is covered along with special control laws features. The question 'how does the Lavi fly?' is addressed. Problems uncovered during flights, and solutions found, are detailed and the flying qualities data are given. Finally, the program status is explained.

Author

N95-31995# Technische Univ., Delft (Netherlands). Dept. of Aerospace Engineering.

ROBUST CONTROL: A STRUCTURED APPROACH TO SOLVE AIRCRAFT FLIGHT CONTROL PROBLEMS

Sponsored by NAL

Copyright Aval: CASI HC A03/MF A04

This paper discusses an application of several robust control methodologies such as H(sub infinity) optimal control, micro-synthesis and gain scheduling via linear fractional transformations applied to a flight control system. To illustrate the approach, a design model for the short period approximation of the Cessna Citation 500 has been chosen, for which certain handling quality requirements have to be met over a large set of operating conditions. For all these methods, the design framework remains the same, only the system 'norm' changes to the object to be minimized. The paper shows how these methods work and illustrates the features of the new approach.

Author

N95-31996# Honeywell, Inc., Minneapolis, MN.

DYNAMIC INVERSION: AN EVOLVING METHODOLOGY FOR FLIGHT CONTROL DESIGN

DALE ENNS, DAN BUGAJSKI, RUSS HENDRICK, and GUNTER STEIN In AGARD, Active Control Technology: Applications and Lessons Learned 12 p Jan. 1995

Copyright Aval: CASI HC A03/MF A04

This paper describes nonlinear dynamic inversion as an alternative design method for flight controls. The method is illustrated with super-maneuvering control laws for the F-18 High Angle-of-Attack Research Vehicle (HARV).

Author

EVALUATION OF THE TECHNIQUES OF FUZZY CONTROL FOR THE PILOTING AN AIRCRAFT [EVALUATION DES TECHNIQUES DE CONTROLE FLOU POUR LE PILOTAGE D'AVION]

N. IMBERT and A. PIQUEREAU In AGARD, Active Control Technology: Applications and Lessons Learned 10 p Jan. 1995 In FRENCH

Copyright Aval: CASI HC A02/MF A04

The characteristic of a fuzzy controller is to use a knowledge expressed in natural language in the forms of expert rules to calculate the value of the control starting from the numerical information from the sensors. The implementation of such a pilot requires the interpretation of the numerical field symbolically and reciprocally. This is carried out by the use of fuzzy assemblies. The associated theory allows starting from consideration of precise measurements on the vehicle of the stated expert rules, and choice of suitable operators to deduce a value from control. It results in a particular structure of the fuzzy controllers, whose main characteristics are the subject of the first part of the presentation. The implementation on the example of the longitudinal pilot control of an aircraft is then presented. Two approaches were adopted: the first uses the rules of manual piloting formulated in natural language by the 'experts' who are the pilots. The second uses the laws resulting from a conventional autopilot to build rules of piloting. The results are presented in the perspective from a comparison between the two types of controllers, conventional or fuzzy.

Translated by CASI

N95-31999# Wright Lab., Wright-Patterson AFB, OH.

THE CONTROL SYSTEM DESIGN METHODOLOGY OF THE STOL AND MANEUVER TECHNOLOGY DEMONSTRATOR

Copyright Aval: CASI HC A03/MF A04

This paper documents the development of a full-envelope integrated Flight/Propulsion control system. A combination of classical and multivariable design methodologies was used, including a unique inverse procedure to produce second-order equivalent systems meeting specified flying qualities requirements. The implementation was based on a rational choice between the two methodologies. It is suggested that a parallel
design approach in the beginning will produce efficient convergence on a practical optimum design. Finally, all control law revisions should be done analytically and only evaluated by simulation. Regardless of the design technique used, the process begins by specifying detailed design guidelines selected to meet the intent of MIL-F-8765C. Once the designs were complete and analyzed based on the design guidelines, manned flight simulation was used only to validate and demonstrate the flying qualities achieved prior to flight test. Problems encountered during simulation or flight testing were addressed first by reviewing the original design guidelines and evaluating the success achieved in implementing them.

N95-31999# Aeronautica Macchi S.p.A., Varese (Italy).
Copyright Avail: CASI HC A03/MF A04
The recently developed methods H-infinity and mu-Synthesis are used in the design of a control law for a tail controlled unstable airplane. The design procedure has been applied with success and seems to be very promising in order to solve control design problems in real applications. The (H-infinity) + mu controller, characterized by a very large order (namely 348), has been successfully reduced to one having order 55 with a very low decay in the overall performance. The reduced-order controller meets all the servo technical specifications demanded to the full-order one. At present it is under test as part of a 6-DoF simulation program to verify its real robustness in face of structured and unstructured perturbations.

N95-32000# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany). Inst. fuer Flugmekanik.
MODEL FOLLOWING CONTROL FOR TAILORING HANDLING QUALITIES: ACT EXPERIENCE WITH ATTHERS GERD BOUWER, WOLFGANG VON GRUHEN-HAGEN, and HEINZ-JUERGEN PAUSDER In AGARD, Active Control Technology: Applications and Lessons Learned 15 p Jan. 1995
Copyright Avail: CASI HC A03/MF A04
In-flight simulators will play an important and unique role in the development process of future helicopter systems and in generating credible handling qualities data which establish design guides for the integrated helicopter systems including sophisticated cockpit technologies and high authority control systems. The Institute for Flight Mechanics of DLR has developed the helicopter in-flight simulator ATTHERS (Advanced Technology Testing Helicopter System) which is based on a BO 105 helic. ober. The testbed is equipped with a full authority nonredundant fly-by-wire control system for the main rotor and a fly-by-light system for the tail rotor. In the simulation mode the testbed requires a two-man crew, a simulation and a safety pilot. The onboard computer system consists of two computers to which are assigned the separated tasks, data collection and digital control system. With the implemented software structure the flexibility is achieved to change the control laws without any changes in the real time process. Before undergoing any flight test with a new or modified control system, a real-time hardware/software-in-the-loop ground-based simulation has to be successfully performed. For the purposes of in-flight simulation an explicit model following control system was developed and the model following performance was evaluated in flight. This control system is composed of a dynamic feedforward, based on an extended model of the host helicopter, and an optimized feedback control system. The capability and flexibility of ATTHERS has been demonstrated in different test programs which have been related to the use of the testbed for test pilot training, handling qualities research, helicopter simulation, and control law design and evaluation including automatic navigation and hover position hold.

N95-32001# National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Center, Edwards, CA.
Copyright Avail: CASI HC A03/MF A04
Two X-29A aircraft were flown at the NASA Dryden Flight Research Center over a period of eight years. The airplanes' unique features are the forward-swept wing, variable incidence nose-coupled canard and highly relaxed longitudinal static stability (up to 35-percent negative static margin at subsonic conditions). This paper describes the primary flight control system and significant modifications made to this system, flight test techniques used during envelope expansion, and results for the low- and high-angle-of-attack programs. Throughout the paper, lessons learned will be discussed to illustrate the problems associated with the implementation of complex flight control systems.

N95-32002# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany). Inst. of Flight Mechanics.
Copyright Avail: CASI HC A03/MF A04
Aircraft operations at low altitudes often are affected by strong gusts and turbulence producing additional aerodynamic forces and moments. This results in extra aircraft accelerations and therefore in an unpleasant impact on passenger comfort and pilot workload as well as in extra structural loads. Active Control Technology is able to suppress these effects partly. The knowledge about the potential for improvement, the parameters of influence and the performance requirements for such gust alleviation systems is still quite small. Since the mid-seventies Domier and DLR (Institute of Flight Mechanics) have been working together on BMFT programs developing systems to improve the ride quality in gusty weather. The developed Open-Loop Gust Alleviation System OLGA was investigated through dynamic wind tunnel experiments and flight-tested onboard the experimental aircraft Do 128 TNT. This research was continued by DLR developing the Load Alleviation and Ride Smoothing System LARS using the modified VFW 614 aircraft ATTAS (Advanced Technologies Testing Aircraft System). The Deutsche Aerospace Domier Luftfahrt GmbH has concentrated on simulation studies for their aircraft types Do 228 and Do 328. The presented paper provides a brief description of the advantages of overall gust management systems considering lift, drag and pitch control. The following topics will be presented in detail: (1) the basic flight mechanics of gust load alleviation; (2) the design of integrated gust management systems; (3) simulation and flight test results; and (4) lessons learned and general perspectives.

N95-32004# Domier Luftfahrt G.m.b.H., Friedrichshafen (Germany).
AUTOMATIC FLIGHT CONTROL SYSTEM FOR AN UNMANNED HELICOPTER SYSTEM DESIGN AND FLIGHT TEST RESULTS M. WEIDEL and W. ALLES In AGARD, Active Control Technology: Applications and Lessons Learned 10 p Jan. 1995
Copyright Avail: CASI HC A02/MF A04
The use of unmanned air vehicles (UAV) in support of the Navy from small ships to fulfill tasks such as reconnaissance of large areas will succeed only if the user gains a high amount of confidence in the reliable operation of such a system, especially during the take off and landing phase. Take off from and landing on small landing pads on aviation facility ships in all-weather conditions prefer the application of VTOL-UAV's (Vertcal Take Off and Landing) with a coaxial rotor system. Manual take off and landing procedures which have to be applied during operational service both at day time and at night under all-weather conditions and ship motions overtax the service personnel already at low sea states. This fact
requires automatic take off and landing procedures. The German Ministry of Defence commissioned Dornier (DASA) in November 1990 with the development, test and demonstration of an automatic take off and landing system on the basis of the Gyrodyne QH-50 drone helicopter in order to prove the feasibility of such a system in general. The essential ship and state dependent motions of the landing pad - roll, pitch and heave - were simulated with a ship deck simulator. The customer's requirement consisted of ten automatic take offs and landings of the UAV from a 4 by 4 meters landing pad. The test and demonstration phase was performed on the airfield of Friedrichshafen in the presence of experts from several NATO-Countries by the end of 1991. Derived from text

N95-32005# British Aerospace Defence Ltd., Preston (England), Military Aircraft Div.

THE FCS-STRUCTURAL COUPLING PROBLEM AND ITS SOLUTION
B. D. CALDWELL In AGARD, Active Control Technology: Applications and Lessons Learned 13 p Jan. 1995

Implementation of ACT in aircraft is now almost routine, and often essential in realizing performance requirements. However, unless a proactive and thorough approach is taken to ensuring that the effects of the flexibility of the airframe structure and its interaction with the FCS (Flight Control System) are analyzed and accounted for, costly development delays and control system redesigns may ensue. This paper is intended to discuss the basis of the phenomenon referred to at BAE Warton as FCS-Structural Coupling, the evolution of the methodology evolved at Warton to ensure freedom from its effects, and the development directions required to advance the state of art in this field.

Author

N95-32006# Deutsche Forschungsanstalt fur Luft- und Raumfahrt, Goettingen (Germany).

STRUCTURAL ASPECTS OF ACTIVE CONTROL TECHNOLOGY
H. HOENLINGER, H. ZIMMERMANN (Deutsche Aerospace AG, Bremen, Germany), O. SENSBURG (Deutsche Aerospace AG, Munich, Germany), and J. BECKER (Deutsche Aerospace AG., Munich, Germany) In AGARD, Active Control Technology: Applications and Lessons Learned 25 p Jan. 1995

A survey on the structural relevant applications of Active Control Technology is presented. The benefits and disadvantages of various active control systems for transport and fighter aircraft are discussed. The problem of adverse structural coupling is addressed and possible solutions are outlined. The Smart Structure Technology offers new applications for active control technology, but to exploit the full potential of this technology multidisciplinary design methods have to be improved.

Author

DIGITAL AUTOPilot DESIGN FOR COMBAT AIRCRAFT IN ALenia ALDo TONoN and PIER LuIGI BELLUThI In AGARD, Active Control Technology: Applications and Lessons Learned 13 p Jan. 1995

Copyright: CASI HC A03/MF A04

ALENIA - Aeronautica has been involved in Digital Autopilot design for the AMX and EF 2000 programs. The AMX is a subsonic attack aircraft whose Flight Control System is based on Fly-by-wire technology, incorporating an Hybrid Analog and Digital Flight Control Computer for Control and Stability augmentation in pitch, roll and yaw axes, which guarantees the aircraft capability of full performance; in addition the Flight Control System has also a conventional mechanical back-up in the pitch plane control law for assessment on the project aircraft. This Control System has also a conventional mechanical back-up in the pitch plane control law for assessment on the project aircraft. The customer's requirement consisted of ten automatic take offs and landings of the UAV from a 4 by 4 meters landing pad. The test and demonstration phase was performed on the airfield of Friedrichshafen in the presence of experts from several NATO-Countries by the end of 1991. Derived from text

Author

N95-32010# British Aerospace Defence Ltd., Warton (England), Military Aircraft Div.

EXPERIMENTAL AIRCRAFT PROGRAMME (EAP): FLIGHT CONTROL SYSTEM DESIGN AND TEST
A. McCUISH In AGARD, Active Control Technology: Applications and Lessons Learned 14 p Jan. 1995

Copyright: CASI HC A03/MF A04

The objectives of the Experimental Aircraft Programme were to demonstrate various technologies relevant to a future combat aircraft within the rigors imposed by having to achieve flight clearance and demonstration. Prime areas for demonstration, among others, were modern cockpit displays, avionics systems integration, advanced material construction, advanced aerodynamics and active flight control. Nearly all future combat aircraft will have an unstable basic airframe due to the advantages that are accrued: smaller, lighter, aerodynamically more efficient, etc. Necessary to such an aircraft is a full time active control system. This paper outlines the philosophy and method taken to design the flight control laws and relates their development through the life of the programme. The experience gained from the three phase, 259 flight test programme is summarized. The success of the flight programme has provided a wealth of experience from the operation of the aircraft. In particular, and most impressive to the pilots, was the carefree handling capability; this was considered remarkable. A further success was the complete absence of pilot induced oscillation (PIO) tendency throughout the whole of the flight programme.

Author

N95-32011# Air Force Flight Test Center, Edwards AFB, CA.

AN INVESTIGATION OF PILOTR INDUCED OSCILLATION PHENOMENA IN DIGITAL-FLIGHT CONTROL SYSTEMS
WILLIAM A. FLYNN and ROBERT E. LEE In AGARD, Active Control Technology: Applications and Lessons Learned 6 p Jan. 1995

Copyright: CASI HC A02/MF A04

This paper summarizes the results of a technical review of pilot induced oscillations (PIO) in aircraft equipped with digital flight control systems. A review of the causes of PIO, the specific interaction of digital flight control systems, and an evaluation of the flight control development process was conducted. The paper discusses the highlights of the technical review and the recommendations for future development of flight control systems to reduce the occurrences of handling qualities problems in general and PIO in particular.

Author

N95-32012# British Aerospace Defence Ltd., Warton (England), Aerodynamics Dept.

FLIGHT DEMONSTRATION OF AN ADVANCED PITCH CONTROL LAW IN THE VAAC HARRIER AIRCRAFT

Copyright: CASI HC A03/MF A04

"Vectored thrust Aircraft Advanced Flight Control' (VAAC) is a UK project, sponsored by the Ministry of Defence and managed by the Defence Research Agency (DRA). The project is investigating, through ground-based simulation and flight test on the VAAC Harrier research aircraft, the low speed flight control, handling and cockpit display concepts applicable to an aircraft replacing the Harrier. As part of the project, British Aerospace Defence Limited have designed a revolutionary two-inceptor pitch plane control law for assessment on the project aircraft. This Control Law has now been flight tested and further developed 'in-flight' by the
N95-32014# Boeing Defense and Space Group, Philadelphia, PA. Helicopters Div.

ADVANCED FLIGHT CONTROL TECHNOLOGY ACHIEVEMENTS AT BOEING HELICOPTERS

KENNETH H. LANDIS, CHARLES DABUNDO, JAMES M. DAVIS, and JAMES F. KELLER In AGARD, Active Control Technology: Applications and Lessons Learned 16 p Jan. 1995

Copyright Avail: CASI HC A03/MF A04

Over the last two decades, flight control system requirements have been in a state of transition. Rotary wing missions have become more demanding, requiring vehicle management systems capable of conducting highly aggressive missions under night / adverse-weather conditions in severe electromagnatic environments. The digital, fly-by-wire / optics control system technologies developed at Boeing Defense and Space Group, Helicopters Division to meet these air vehicle requirements are overviewed. These technologies, which integrate digital multimode control laws and sidestick controllers within redundant- reconfigurable architectures, provide the rotocraft capabilities required for the 21st century. The advances in flight control design, as developed during various technology demonstrator programs and applied in production of the V-22 Osprey tiltrotor and the RAH-66 Comanche scout / attack helicopter, are summarized.

Author

PRACTICAL EXPERIENCES IN CONTROL SYSTEMS DESIGN USING THE NCR BELL 205 AIRBORNE SIMULATOR

Copyright Avail: CASI HC A03/MF A04

The objective of this paper is to describe a variety of examples of control system design and application on the NCR Bell 205 Airborne Simulator. For background, this paper will first examine the physical characteristics of the Bell 205 and the mathematical models which have been developed to describe them. The paper then reviews the classical control design techniques which have been used to develop high bandwidth rate and attitude response type systems on the aircraft, and describes the empirically determined fixes which have become standard elements of these types of systems. To complete the paper, two sections will deal with application of modern control theories; the first describes a limited effort to develop a translational rate command system using a six degree of freedom model of the Bell 205 and a publicly available software package, MATLAB/ Simulink. The second modern control theory section deals with a more detailed study performed in collaboration with Carleton University and supported by DND/CRAD to devise modern control theory controllers for the Bell 205. All discussions of the paper are substantiated with actual in-flight validation data to clearly demonstrate design successes and failures.

Author

N95-32016# Aerospatiale, Toulouse (France). Handling Qualities Dept.

Copyright Avail: CASI HC A01/MF A04

This conclusion to the the conference covers the flying qualities and flight control systems (FCS) of transport aircraft equipped with electrical flight control systems, as seen by Aerospatiale. A retrospective look at the related technological developments over the past 25 years precedes a comparison between the Airbus A340 and A320. The main points in the differences between the FCS in the A320 and the A340 are associated with the compensation effects of the more flexible structure of the A340, its design for long-range (‘minimum drag’), and the inherent limitations in take-off performance. Derived from text

PILOT INDUCED OSCILLATION: A REPORT ON THE AGARD WORKSHOP ON PIO

K. MCKAY In AGARD, Active Control Technology: Applications and Lessons Learned 10 p Jan. 1995 Workshop held on 13 May 1994

Copyright Avail: CASI HC A02/MF A04

Instability of the pilot/airframe combination has been a problem from the beginning of manned flight. The rapid advances made in aviation following the Second World War greatly increased the incidence of PIO problems and led to a large amount of research and development work aimed at understanding and mitigating these difficulties. Criteria and requirements were developed which could be used in design to obtain satisfactory PIO qualities. Nevertheless, in spite of all this work, and even with the great flexibility in modern control technologies available to the designer, PIO problems still often occur with new aircraft; in fact it is the power and responsiveness of modern control systems which makes them susceptible to various 'non-linear' effects such as time delays, rate limits, actuator saturation, etc., leading to unexpected PIO difficulties. With current experience, it is clear that a universal solution of the PIO problem still evades the engineering community. The cost of these problems in programme delay and financial terms is significant. The gathering together of specialists to discuss this problem, from their various points of view, has led to positive gains in the state of knowledge regarding PIOs; it has provided a significant step toward their elimination and contributed to the avoidance of PIO associated programme costs and penalties. This paper provides an overview of the results from the Workshop. Fuller details are to be published by AGARD in the proceedings of the Conference and Workshop in the near future and in a separate Advisory Report. Author

N95-32111 California Univ., Los Angeles, CA.

VIBRATION REDUCTION IN HELICOPTER ROTORS USING AN ACTIVELY CONTROLLED PARTIAL SPAN TRAILING EDGE FLAP LOCATED ON THE BLADE Ph.D. Thesis

THOMAS ALEXANDER MILLOTT 1993 519 p

Avail: Univ. Microfilms Order No. DA9420455

This dissertation describes the development of an aeroelastic analysis of a four-bladed hingeless helicopter rotor configuration incorporating an individually controlled aerodynamic surface located on each blade, and its application to the simulation of helicopter vibration reduction through individual blade control (IBC). The structural, inertial, and aerodynamic loads on an isolated rotor blade and control surface combination with fully coupled flap-lag-torsional dynamics are developed explicitly using a symbolic computing facility. Two blade models are used; the first is a simple offset-hinged spring restrained rigid blade model, and the second is a more realistic fully elastic blade model. The inertial loads on the blade are developed using D'Alembert's principle and quasi-steady aerodynamics, including the effects of a partial span trailing edge flap, is used to formulate the aerodynamic loads. Four blades are combined in a FORTRAN code to represent a four-bladed fixed hub hingeless rotor blade configuration. The rotor trim and blade response solutions are treated in a fully coupled manner using the harmonic balance technique. Various open-loop and closed-loop controllers based on global and local system models are implemented to reduce 4/rev vibratory hub loads using both an actively controlled aerodynamic surface on each blade as well as conventional IBC, in which the complete blade undergoes cyclic pitch
change. The effectiveness of the two approaches for the simultaneous reduction of the 4/rev hub shears and hub moments is compared. It was found that both approaches are very effective in producing substantial vibration reduction. Comparisons of power requirements to implement the control were carried out and it was discovered that conventional IBC requires 5 to 25 times more power to achieve approximately the same degree of vibration reduction. The effect of blade torsional flexibility on the vibration reduction effectiveness of the actively controlled aerodynamic surface was also considered and it was found that this parameter has a very substantial influence. This study clearly demonstrates the feasibility of this novel concept for vibration reduction. Based on the results obtained, this is potentially one of the most effective means for vibration reduction. Furthermore it has the unique feature that it does not utilize the conventional swashplate of the helicopter and thus it has no effect on its airworthiness characteristics.

Dissert. Abstr.

09 RESEARCH AND SUPPORT FACILITIES (AIR)

Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tube facilities; and engine test blocks.

A95-93630

The system described below has been designed by Sundstrand Aerospace in collaboration with Aerospalite, which is responsible to Airbus Industries for the complete aircraft electrical system. Lucas is responsible for the design and development of the Generator Control Unit, Ground Power Control Unit, various Current Transformers and the Auxiliary Power Unit Generator within the system. The a.c. electrical power generation system designed for the A340 aircraft is a traditional 115V, 3phase, 400Hz supply as used on existing civil aircraft. The main novel feature is that the system is designed to allow power transfers between the various electrical power sources without any interruption in the a.c. supply. This feature assures the A340 operators that they will not need to reset their complex electronic systems (such as the auto-navigational system), as a result of power interrupts caused by transfer between ground power, Auxiliary Power Unit power and/or main engine generated power. The same system configuration is also used on the A330 aircraft, and thus common electronic control units can be used for both aircraft control units and this commonality extends to the software embedded in these control units.

Author (Hemer)

A95-93636

THE DEVELOPMENT OF A MODEL SPECIFICATION FOR GROUND SUPPORT EQUIPMENT

This paper outlines the development of, and the need for, a model specification for ground support equipment (GSE). Included is a brief description of some problems experienced in-service together with the results of a user/supplier questionnaire circulated to obtain views on quality standards, specifications and contracts. An initial draft form of model specification is presented.

Author (Hemer)

A95-93676

PROPULSION SIMULATOR FOR HIGH BYPASS TURBOFAN PERFORMANCE EVALUATION

An Ultra high bypass turbofan Propulsion Simulator (UPS) was designed and built to evaluate candidate fan system configurations for current and future applications. This simulator can accommodate fans of nominally 0.06 meter tip diameter. The inlet, nacelle, exhaust system and the first stage of the booster to the core can be simulated in the UPS. The UPS can be used to evaluate fan aero performance, source noise and acoustic treatment effectiveness, high angle of attack inlet - fan operability performance and fan aeromechanics. Salient features of the design, instrumentation, data acquisition and operation of this simulator are described in this paper.

Author (Hemer)

A95-93744

ADAPTIVE AIRFOILS

The application of a shape memory alloy to actuate a shape change (camber) in the chordwise direction of an airfoil is investigated. Such shape changes can be used to actively control the camber and airflow over a helicopter rotor blade or fixed wing. The following explores some of the aspects of such a mechanism with the goal of minimizing power losses through shape change of the airfoil.

Author (Hemer)

A95-94462

EVENT CORRELATION FOR NETWORKED SIMULATORS
AMNON KATZ Univ of Alabama, Tuscaloosa, AL, United States Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 515-519 refs (BTN-95-EIX0619952748168) Copyright

The timing and synchronization issues of networked simulation over large distances are studied. It is shown that the absolute time-stamp is effective in removing inconsistencies between the world pictures presented by the networked simulators. The tolerance that can be maintained in correlation errors is dominated by the precision of the dead reckoning process over a time span that is the sum of propagation delay and clock error. Dead-reckoning statistics are invoked to determine the level of correlation that can be achieved for global networking. The clock accuracy required for this purpose is assessed.

Author (El)

A95-95159

THE DEVELOPMENT OF COMPUTER-BASED INSTRUCTIONAL SIMULATIONS FOR THE AIRLINE INDUSTRY
MICHAEL KARIM Univ. of North Dakota, Grand Forks, ND, US and KEITH A. HALL Ohio State Univ., Columbus, OH, US In International Symposium on Aviation Psychology, 7th, Columbus, OH, April 26-29, 1993, Vols. 1 & 2. A95-95037 Columbus, OH Ohio State University April 1993 p. 770-775 Copyright

The traditional training methodologies and paradigms no longer meet the needs of the pilot transitioning into the next generation digital aircraft. Significant effort is being expended on the design and development of new instructional strategies, including the area of computer-based instructional simulations (CBIS). This paper describes a brief history of simulations, description of the elements of a type of simulation structure typically used in procedural tasks such as those associated with aircrew training activities and one method of decreasing the enormous time and labor required for developing CBIS's. This paper describes a brief history of
simulations, description of the elements of a type of simulation structure typically used in procedural tasks such as those associate with aircrew training activities and one method of decreasing the enormous time and labor required for developing CBI's. Author (revised by Hemer)

A95-95161
THE SIMULATOR TRAINING RESEARCH ADVANCE TESTBED FOR AVIATION (STRATA): A SIMULATION RESEARCH FACILITY FOR ARMY AVIATION

Copyright
In September, 1992, the Army Research Institute Aviation Research and Development Activity (ARI/ARDA) initiated its research program using the Simulator Training Research Advance Testbed for Aviation (STRATA) system. STRATA was designed to specifically address the issues concerning the design and use of flight simulators and to provide a resource for the conduct of human performance research with aviation systems. This paper will describe the STRATA system and the research program to be carried out with it. Author (Hemer)

A95-95193
SAFETY IN AIRPORT GROUND HANDLING
NICK MCDONALD Trinity College Dublin, Dublin, Ireland, GEORGE WHITE Trinity College Dublin, Dublin, Ireland, RAY FULLER Trinity College Dublin, Dublin, Ireland, WILLIAM WALSH Trinity College Dublin, Dublin, Ireland, and FIONA RYAN Trinity College Dublin, Dublin, Ireland In International Symposium on Aviation Psychology, 7th, Columbus, OH, April 26-29, 1993. Vols. 1 & 2. A95-95037 Columbus, OH Ohio State University April 1993 p. 951-953

Copyright
Safe and effective ground handling is crucial to efficient and competitive airline operation. The airport ramp is a congested and difficult environment in which to work and there are many ergonomic and environmental hazards (including lifting in confined spaces, noise and climatic extremes, moving vehicles, jet blast). From the point of view of the safety, health and well-being of the worker the ramp is a dangerous environment with a high risk of occupational injury and mortality. The enhanced safety and well-being of the worker is thus a high priority. In other areas of aviation there has been a massive investment in the ergonomic design of new technological systems and in the human factors training of pilots. The same attention to ameliorating the human factor role in accident causation needs to be applied on the airport ramp. Author (Hemer)

N95-30493 Maryland Univ., College Park, MD.
A NUMERICAL STUDY OF THE STARTING PROCESS IN A HYPersonic SHOCK TUNNEL Ph.D. Thesis
JANG-YEON LEE 1993 217 p
Avail: Univ. Microfilms Order No. DA9425077
This dissertation represents the first time calculations have been made of the unsteady viscous simulation of the starting process in a hypersonic shock tunnel including the bifurcation phenomenon due to the interaction of the reflected shock with the boundary layer generated by the incident shock in the shock tube. In order to simulate the unsteady viscous flow in the NASA Ames 16-inch hypersonic shock tunnel, which consists of axisymmetric shapes (shock tube and nozzle), rectangular shape (test cabin), and octagonal shape (diffuser), a time-dependent ADI (alternating direction explicit) axisymmetric full Navier-Stokes code with a second order upwind TVD (total variation diminishing) scheme and a time-dependent three-dimensional thin layer Navier-Stokes code with an explicit MacCormack TVD scheme have been developed. As shown in the code validation study, these Navier-Stokes codes with the high resolution TVD algorithms give fair agreement with available experimental data and exact solutions. Numerical simulations of the starting process for the NASA Ames 16-inch hypersonic shock tunnel show that during the reflected shock interaction process at the end of the shock tube, the bifurcation phenomenon and the strong vortices become dominant features. The vortices due to the reflected shock interactions appear in the axisymmetric simulation but are not generated in the two-dimensional flow. For the nominal testing condition, the starting process in the NASA Ames shock tunnel takes 1700 microseconds. The required total testing time consists of the time for the starting process, 1.7 m sec, and the time for the flow establishment over a model in the test cabin which strongly depends on the model shape and size and model mounting location. For a 10 deg-cone model, the minimum required testing time is estimated as at least 2.7 m sec for the steady state. Dissert. Abstr.

A95-30592# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.
NASA LEWIS RESEARCH CENTER'S PREHEATED COMBUSTOR AND MATERIALS TEST FACILITY
STEVE A. NEMETS (NYMA, Inc., Brook Park, OH.), ROBERT C. EHlers (NYMA, Inc., Brook Park, OH.), and EDITH PARROTT Jun. 1995 11 p
Contract(s)/Grant(s): (NASA-27198; RTOP 505-62-94) (NASA-TM-106876; E-9012; NAS 1.15:106876) Available: CASI HC A03MF A01
The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lbs (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 °F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process in real time for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities. Author

N95-31468# Federal Aviation Administration, Atlantic City, NJ.
EVALUATION OF ALTERNATIVE PAVEMENT MARKING MATERIALS Final Report
KEITH W. BAGOT Jan. 1995 50 p
(AD-A229273; DOT/FAA/CT-94/119) Available: CASI HC A03MF A01
This study was undertaken to evaluate potential alternative marking materials for use on airport pavement markings. The materials were evaluated for conspicuity, durability, rubber buildup, color retention, friction, environmental acceptability, and cost benefits. In all, five materials (two water-borne, two epoxies, and one methacrytic resin) were evaluated at three test airports around the country for a period of one year. The three test airports, chosen for their different climatic conditions, were Atlantic City, Greater Pittsburgh, and Phoenix Sky Harbor International airports. Epoxies and resins were more durable than water-borne paints in areas subject to heavy snowfall and snowplow activity, particularly when applied to Portland cement concrete surfaces. The epoxies tested, however, did show signs of yellowing after extensive ultraviolet exposure. It was also determined that the addition of silica and/or glass beads improved the conspicuity of the markings, improved friction, and minimized rubber adherence. The cost-benefit analysis showed that more
durable materials and the addition of silica and/or beads does increase the initial cost of marking the airport surfaces but could reduce the number of painting cycles on many portions of the airport from several times per year to once every several years.

A01/MF A01

The equipment used for plastic media blasting (PMB) is generally independent of the media and is similar to equipment used in traditional abrasive blasting. PMB equipment is usually modified to enable the close control of the media flow and the operation at low pressures (30 - 40 psi). Because of the delicate nature of some of the stripping procedures, the nozzles used for PMB have been redesigned to improve cleaning rates, give an even distribution of particles and reduce the variation in particle velocity across the blast stream. This results in a more equal distribution of particles and impact energies at the substrate. There are three types of blast facilities available: blast cabinets for small components; blast booths and chamber for complete vehicles or aircraft and are generally not used for other purposes.

A01

A computer model has been developed to simulate the processes involved in the operation of the National Transonic Facility (NTF), a large cryogenic wind tunnel at the Langley Research Center. The simulation was verified by comparing the simulated results with previously acquired data from three experimental wind tunnel test programs in the NTF. The comparisons suggest that the computer model simulates reasonably well the processes that determine the liquid nitrogen (LN2) consumption, electrical consumption, fan-on time, and the test time required to complete a test plan at the NTF. From these limited comparisons, it appears that the results from the simulation model are generally within about 10 percent of the actual NTF test results. The use of actual data acquisition times in the simulation produced better estimates of the LN2 usage, as expected. Additional comparisons are needed to refine the model constants. The model will typically produce optimistic results since the times and rates included in the model are typically the optimum values. Any deviation from the optimum values will lead to longer times or increased LN2 and electrical consumption for the proposed test plan. Computer code operating instructions and listings of sample input and output files have been included.

10 ASTRONAUTICS

Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space transportation; spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.

A95-93330

STATIC SHAPE CONTROL FOR ADAPTIVE WINGS

A theoretical method was developed and experimentally validated, to control the static shape of flexible structures by employing internal translational actuators. A finite element model of the structure, without the actuators present, is employed to obtain the multiple-input, multiple-output control-system gain matrices for actuator-to-control as well as actuator-displacement control. The method is applied to the quasistatic problem of maintaining an optimum-wing cross section during various transonic-cruise flight conditions to obtain significant reductions in the shock-induced drag. Only small, potentially achievable, adaptive modifications to the profile are required. The adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by deforming the structure. Finite element analyses of an adaptive-rib model verify the controlled-structure theory. Experiments on the model were conducted, and arbitrarily selected deformed shapes were accurately achieved.

Author (Hemer)
10 ASTRONAUTICS

(SAE PAPER 931401; HTN-95-21240) Copyright

An overview of previous studies involving aircraft nose gear shimmy behavior is given together with some test results identifying the influence of different factors inducing shimmy. A NASA Langley test program conducted at the Landing Loads Track (LLT) facility to evaluate shimmy characteristics of an actual Space Shuttle nose gear is described together with some of the test results. Based on results from these various evaluations, recommendations are made concerning nose gear design features, such as coroating wheels, to minimize the occurrence of shimmy.

Author (Hemer)

A95-93716

UNANSWERED QUESTIONS CONCERNING THE NOCILLA GAS-SURFACE INTERACTION MODEL

Molecular beam scattering experiments with gas/surface combinations and energies to be expected for vehicles in orbit were used to obtain accurate representations of the Nocilla model parameters and of the accommodation coefficients. Comparisons between the aerodynamic coefficient predictions from the Nocilla model and the accommodation coefficients are not good. In an attempt to examine the cause for the differences, the Nocilla model was used to predict the accommodation coefficients and they are shown to disagree with the measured accommodation coefficients. This deficiency of the Nocilla model requires further examination.

Author (Hemer)

11 CHEMISTRY AND MATERIALS

Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; and propellants and fuels.

A95-93632

THE BASIS OF CIVIL CERTIFICATION AND CONTINUED AIRWORTHINESS FOR COMPOSITE AIRCRAFT STRUCTURES

Already published or about to be published are three documents which set out acceptable means of compliance with civil requirements in respect of composite materials in primary aircraft structures. The fields concerned are design, manufacture and maintenance (repair). The design aspects were covered in a paper given at the IMechE conference Fibre Reinforced Composites 86 and the information given then remains valid today. The main subject of this paper is the manufacturing aspects of airworthy composite structures. Reference will also be made to facilities for maintenance of composite structures. All these activities are centered around Europe-USA cooperation to formulate common requirements that are essential to maintain acceptable standards of safety, reliability and maintenance costs.

Author (Hemer)

A95-93633

THE CERTIFICATION OF COMPOSITE STRUCTURES FOR MILITARY AIRCRAFT

The introduction of advanced composites has prompted a critical appraisal of the certification procedures for metal structures. This paper outlines some of the more important changes that have been made in order to ensure that in use of these materials the designer is inhibited only by those provisions which are essential to maintain acceptable standards of safety, reliability and maintenance costs.

Author (Hemer)

A95-93674

DISSOLVED GAS - THE HIDDEN SABOTEUR
VINCENT G. MAGORIEN (ISSN 0148-7191) 1993 6 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993 (SAE PAPER 931404; HTN-95-21243) Copyright

Almost all hydraulic power components, to property perform their tasks, rely on one basic, physical property, i.e., the incompressibility of the working fluid. Unfortunately, a frequently overlooked fluid property which frustrates this requirement is its ability to absorb, i.e., dissolve, store and give off gas. The gas is, most often but not always, air. This property is a complex one because it is a function not only of the fluid's chemical make-up but temperature, pressure, exposed area, depth and time. In its relationship to aircraft landing-gear, where energy is absorbed hydraulically, this multi-faceted fluid property can be detrimental in two ways: dynamically, i.e., loss of energy absorption ability and stastically, i.e., improper aircraft attitude on the ground. The purpose of this paper is to bring an awareness to this property by presenting: 1) examples of these manifestations with some empirical and practical solutions to them, 2) illustrations of this normally 'hidden saboteur' at work, 3) Henry's Dissolved Gas Law, 4) room-temperature, saturated values of dissolved gas for a number of different working fluids, 5) a description of the instrument used to obtain them, and 6) some 'missing elements' of the Dissolved Gas Law pertaining to absorption, 7) how static and dynamic conditions affect gas absorption and 8) some recommended solutions to prevent becoming a victim of this 'hidden saboteur'.

Author (Hemer)

A95-94255

CONTROLLING MECHANISMS OF IGNITION OF SOLID FUEL IN A SUDDEN-EXPANSION COMBUSTOR
JING-TANG YANG Nat) Tsing Hua Univ, Hsinchu, Taiwan, Province of China and CLIFF Y. Y. WU Journal of Propulsion and Power (ISSN 0748-458X) vol. 11, no. 3 May-June 1995 p. 483-488 refs (BTN-95-EIX0616952745791) Copyright

Ignition of solid fuel by a hot oxidizing flow in a sudden-expansion combustor was investigated experimentally. The controlled variables of the experiments were concentration of oxygen (12-25%), gas temperature (750-850 °C), and flow velocity (19-46 m/s). The step height was 29 mm. The corresponding Reynolds numbers based on the flow velocity and the step heights were 12 x 10(sup 4)-31 x 10(sup 4). The controlling mechanisms of ignition in the flow with abundant oxygen were distinct from those with little oxygen. The initial flame kernels formed near the reattachment point and adjacent to the surface of solid fuel when the oxygen concentration was large. The process was controlled by diffusion and the ignition delay decreased with increased flow velocity. For the flow containing oxygen at a small concentration, the initial flame kernels formed within the recirculation zone and away from the surface of the solid fuel. The process was then controlled by the chemical kinetics and the ignition delay increased with increased flow velocity.

Author (ElE)

This patent discloses a pre-stressed composite liner structure is provided for tribological systems typically associated a pump engine, compressor or systems having bearings rotating within a journal. A hol-
The presence of a strong interface bond was felt to be detrimental in the
which agreed well with results when fiber degradation was incorporated.
Nevertheless, the models selected generally provided property predictions
fiber damage and strength loss was observed in the composites which
and Ni-20Al-30Fe (a/o) matrices were selected which gave brittle and
evaluation of the behavior models to develop recommendations. Ni-SiAl
coating constituents using a modeling-based approach; 2) fabrication of
providing improved combinations of matrix and interface coating. The pro-
mechanical behavior models can predict the properties of sapphire fiber/

A05/MFA01

ALLOY COMPOSITES Final Report

N95-30750 Department of the Navy, Washington, DC.

HIGH ASPECT RATIO METAL MICROSTRUCTURES AND METHOD
FOR PREPARING THE SAME Patent
JACQUEL H. GEORGET, JR., inventor (to Navy), MARTIN C. PECK-
ERAR, inventor (to Navy), MILTON L. REBBERT, inventor
(to Navy), JEFFREY M. CALVERT, inventor (to Navy), and JAMES J.
HICKMAN, inventor (to Navy) 30 Aug. 1994 17 p Filed 27 Apr. 1992
(AD-D017463; US-PATENT-5,342,737; US-PATENT-APPL-SN-874403;

High aspect ratio metal microstructures may be prepared by a method involving: (1) forming a layer of a photosensitive on a substrate;
(2) exposing the layer to actinic radiation in an image wise manner and
developing the exposed layer to obtain a surface which contains regions
having no remaining photosensitizer and regions covered with photosensitizer;
(3) metallizing the surface to form a layer of metal on the region of the sur-
face having no remaining photosensitizer and on the sides of the regions of
photosensitizer remaining on the surface; and (4) optionally, stripping the pho-

N95-30765* Fermi National Accelerator Lab., Batavia, IL.

REDUCING PROCESS NOISE IN SUPERCONDUCTING HELIUM
LIQUID LEVEL PROBES
J. BRUBAKER Mar. 1995 7 p
Contract(s)/Grant(s): (DE-A02-76CH-03000)
(DE95-008356; FNAL-TM-1929) Avail: CASI HC A02/MF A01

This memo presents methods to reduce the process noise accompanying
the use of superconducting helium liquid level probes in a splashing
environment. The development of these methods followed unsatisfac-
tory operation of unmodified, commercially available, level probes used in
each of the 24 valve box dewars of Tevatron refrigerators. The dewars
function both as reservoirs of refrigeration and as phase separators at the
inlet of the cold compressors used in subatmospheric magnet cooling
operation.

N95-30787* General Electric Co., Cincinnati, OH. Aircraft Engines.

THE EFFECT OF INTERFACE PROPERTIES ON NICKEL BASE
ALLOY COMPOSITES Final Report
1995 89 p
Contract(s)/Grant(s): (NASA-26501; RTOP 505-63-12)
(NASA-CR-198361; E-9769; NASA 1.26.198363) Avail: CASI HC A05/MF A01

This program was performed to assess the extent to which
mechanical behavior models can predict the properties of sapphire fiber/
nickel aluminide matrix composites and help guide their development by
improving defined combinations of matrix and interface coating. The pro-
gram consisted of four tasks: 1) selection of the matrices and interface
coating constituents using a modeling-based approach; 2) fabrication of
the selected materials; 3) testing and evaluation of the materials; and 4)
evaluation of the behavior models to develop recommendations. Ni-50Al
and Ni-20Al-30Fe (a/o) matrices were selected which gave brittle and
ductile behavior, respectively, and an interface coating of PVY YSZ was
selected which provided strong bonding to the sapphire fiber. Significant
fiber damage and strength loss was observed in the composites which
made straightforward comparison of properties with models difficult. How-
ever, the models selected generally provided property predictions
which agreed well with results when fiber degradation was incorporated.
The presence of a strong interface bond was felt to be detrimental in the
NIAI MMC system where low toughness and low strength were observed.

N95-31124# Naval Air Warfare Center, Warminster, PA.

A COMPARISON OF COATING ALTERNATIVES FOR US COAST
DONALD J. HIRST and STEPHEN J. SPADAFOFA 12 Dec. 1994 21 p
(AD-A293270; NAWCWAR-95014-43) Avail: CASI HC A03/MF A01

Current coatings used on U.S. Coast Guard aircraft contain high
volatile organic compound (VOC) contents. Federal, state and local
environmental agencies restrict the amount of VOCs from the use of
these materials through legislation such as the Clean Air Act and local Air
Quality Management District Rules. At the request of the Coast Guard,
the Naval Air Warfare Center Aircraft Division Warminster investigated
several low VOC candidate replacements to the current paint scheme.
The physical performance properties of these materials (i.e. corrosion
resistance, adhesion, etc.) were characterized using standard coatings
tests. The results of this program show that there are several acceptable
alternatives. Replacement of current coating systems would reduce the
total amount of hazardous materials emitted from Coast Guard painting
operations and eliminate the need for expensive control equipment which
will be required by the Clean Air Act (resulting in substantial future cost
savings).

N95-31203 Army Research Lab., Aberdeen Proving Ground, MD. Propul-

sion and Flight Div.

NUMERICAL SIMULATION OF RAM ACCELERATOR PER-
FORMANCE INCLUDING TRANSIENT EFFECTS DURING INITIA-
TION OF COMBUSTION AND SENSITIVITY STUDIES
MICHAEL J. NUSCA In Johns Hopkins Univ., The 31st JANNAF Com-
bustion Subcommittee Meeting, Volume 1 p 115-128 Oct 1994
Avail: CPIA, 10630 Little Patuxent Pkwy., Suite 202, Columbia, MD
21044-3200 HC

Computational fluid dynamics solutions of the full Navier-Stokes
equations have been used to numerically simulate the reacting in-bore
flowfield for the ram accelerator projectile propulsion system. In this sys-
tem a projectile and obturator are injected at supersonic velocity into a
stationary tube filled with a pressurized mixture of hydrocarbon, oxidizer
and inert gases. Flow stagnation on the obturator initiates combustion of
the mixture. A system of shock waves generated on the projectile, in con-
junction with viscous heating, sustains combustion. The resulting energy
release, which travels with the projectile, also generates high pressures
that impart thrust to the projectile. Numerical simulations utilizing finite-rate
chemical kinetics have been conducted to investigate this flowfield. Numerical
results are used to visualize the flowfield, predict effects of variation in
system parameters, and predict projectile in-bore velocity.

N95-31208 Army Research Lab., Aberdeen Proving Ground, MD.

WORKSHOP REPORT: MEASUREMENT TECHNIQUES IN HIGHLY
TRANSIENT, SPECTRALLY RICH COMBUSTION ENVIRONMENTS
TODD E. ROSENBERGER In Johns Hopkins Univ., The 31st JANNAF Com-
bustion Subcommittee Meeting, Volume 1 p 345-354 Oct 1994
Avail: CPIA, 10630 Little Patuxent Pkwy., Suite 202, Columbia, MD
21044-3200 HC

With the emergence of advanced propulsion systems such as liquid
propellant (LP), electrothermal-chemical (ETC), electromagnetic (EM),
conventional hypervelocity, and in-bore ramjet, the measurement of com-
bustion phenomena has become more complex. The data associated with
these systems can be rich in high-frequency components, and share
similar transient behavior. Measurement techniques associated with con-
ventional solid propellant systems are not always capable of accurately
recording these phenomena. The accuracy of pressure and acceleration
measurements in combustion chambers, barrels, and on-board projectiles
has been compromised by the lack of a fundamental understanding of the
effects of the mounting configuration and the mechanical and electrical
components of the transducer on the integrity of the measurement. Con-
sequently, the system development and technical understanding of the
physical processes involved in the ignition and combustion of such advanced propulsion systems have been compromised. A workshop was needed to bring together experts from the aforementioned and related communities to disseminate knowledge of lessons learned and to discuss the techniques necessary to make high-fidelity pressure measurements in these environments. This paper states the objectives, identifies the participants who met to address them, provides a list of the technical presentations made, presents highlights from these presentations and the discussions that they prompted, and ends with conclusions and recommendations which came out of the workshop.

Author

N95-31268 Combustion Inst, Pittsburgh, PA.

THE 25TH INTERNATIONAL SYMPOSIUM ON COMBUSTION 1994

ISSN 0082-0784

(Adapter-A288825) Avail: Issuing Activity (Defense Technical Information Center (DTIC))

DTIC

N95-31368# Army Tank-Automotive Command, Warren, MI.

FUEL-TYPE CLASSIFICATION AND PARAMETERS PREDICTION BY GAS LIQUID CHROMATOGRAPHY ANALYSIS Final Report

DONALD K. MINUS Mar. 1995 84 p

(Adapter-A283442; TARDEC-TR-13941) Avail: CASI HC A05/MF A01

There is a research effort that envisions having a vehicle mounted petroleum analysis system that could travel close to the frontlines and would provide rapid test results. This system would quicken results feedback time and increase the scope of analyses by using new technologies that could predict several fuel properties and parameters. One approach under consideration for use in this system is Gas Liquid-Phase Chromatography (GLC). To simplify the GLC chromatograph of fuel samples, the data was collected as a series of time-segmented regions. These regions were defined to simulate separations by normal alkanes carbon chain length. The GLC data was analyzed with PIROUETTE correlation software (INFOMETRIX, Seattle, WA) to assign the fuel's type and to predict a selected number of fuel's physical properties. To conduct this study, sixty-seven (67) fuel samples were used of which fifteen were JET aircraft.

DTIC

N95-31421# McDonnell-Douglas Aerospace, Long Beach, CA. Transport Aircraft

DEVELOPMENT OF STITCHED RTM PRIMARY STRUCTURES FOR TRANSPORT AIRCRAFT Report, 1 Apr. 1989 - 30 Apr. 1991

Author

N95-31471# Illinois Univ., Chicago, IL. Dept. of Civil Engineering Mechanics and Metallurgy

FAILURE ANALYSIS FOR POLYCARBONATE TRANSPARENCIES

Final Report, 1 May 1992 - 1 Sep. 1993

A. CHUDNOVSKY, T. J. CHEN, Z. ZHOU, C. P. BOSNYAK, and K. SEHANOBISH May 1994 45 p

(Adapter-A282926; WL-TR-94-3064) Avail: CASI HC A03/MF A01

Today polymers are increasingly used in advanced structural applications such as aircraft canopies. However, there are no well established models which could be used by design engineers for predicting time to failure for these materials. Development of adequate criteria for three basic stages of fracture (crack initiation, stable crack growth and dynamic crack propagation) is necessary for the accurate prediction of service lifetime. Part 1 of this report reflects a recent progress in understanding of various failure initiation mechanisms in transparency-grade Polycarbonate (PC). A new fatigue crack initiation map for PC is proposed. Another important stage of the fracture process which may strongly influence the total lifetime is crack propagation. Propagation of a crack surrounded by the process zone is a well-known phenomenon for the PC. The properties of the material in the process zone may strongly influence such critical fracture parameters as lifetime, fracture toughness, etc. The deformation of PC by shear banding at a notch-tip was found very similar to that obtained by cold-drawing of PC. In Part 2 of this report the tensile cold-drawing (necking) behavior of PC is further examined using simple tensile extension coupled with temperature measurements via an infrared camera.

DTIC

N95-31767# Battelle Memorial Inst., Columbus, OH.

ALTERNATIVES TO OZONE DEPLETING REFRIGERANTS IN TEST EQUIPMENT

RICHARD L. HALL and MADELEINE R. JOHNSON

Avail: CASI HC A02/MF A06

This paper describes the initial results of a refrigerant retrofit project at the Aerospace Guidance and Metrology Center (AGMC) at Newark Air Force Base, Ohio. The objective is to convert selected types of test equipment to properly operate on hydrofluorocarbon (HFC) alternative refrigerants, having no ozone depleting potential, without compromising system reliability or durability. This paper discusses the primary technical issues and summarizes the test results for 17 different types of test equipment: ten environmental chambers, two ultralow temperature freezers, two coolant recirculators, one temperature control unit, one vapor degreaser, and one refrigerant recovery system. The postconversion performance test results have been very encouraging: system capacity and input power remained virtually unchanged. In some cases, the minimum operating temperature increased by a few degrees as a result of the conversion, but never beyond AGMC's functional requirements.

Author
ENVIRONMENTALLY REGULATED AEROSPACE COATINGS

N95-31778# San Antonio Air Logistics Center, Kelly AFB, TX. Aircraft Production Div.
BICARBONATE OF SODA PAINT STRIPPING PROCESS VALIDATION AND MATERIAL CHARACTERIZATION
Avail: CASI HC A01/MF A06

The Aircraft Production Division at San Antonio Air Logistics Center has conducted extensive investigation into the replacement of hazardous chemicals in aircraft component cleaning, degreasing, and depainting.

One of the most viable solutions is process substitution utilizing abrasive techniques. SA-ALC has incorporated the use of Bicarbonate of Soda Blasting as one such substitution. Previous utilization of methylene chloride based chemical strippers and carbon removal agents has been replaced by a walk-in blast booth in which we remove carbon from engine nozzles and various gas turbine engine parts, depaint cowlings, and perform various other functions on a variety of parts. Prior to implementation of this new process, validation of the process was performed, and materials and waste stream characterization studies were conducted. These characterization studies examined the effects of the blasting process on the integrity of the thin-skinned aluminum substrates, the effects of the process on both air emissions and effluent disposal, and the effects on the personnel exposed to the process.

Author

N95-31775# AC Engineering, Inc., Huntsville, AL.
STANDARDIZATION OF SURFACE CONTAMINATION ANALYSIS SYSTEMS
Avail: CASI HC A02/MF A06

Corrosion products, oils and greases can potentially degrade material bonding properties. The Marshall Space Flight Center (MSFC) Surface Contamination Analysis Team (SCAT) utilizes a variety of analytical equipment to detect identify and quantify contamination on metallic and non-metallic substrates. Analysis techniques include FT-IR Microscopy (FT-IR), Near Infrared Optical Fiber Spectrometry (NIR), Optically Stimulated Electron Emission (OSEE), Ultraviolet Fluorescence (UVF) and Ellipsometry. To ensure that consistent qualitative and quantitative information are obtained, standards are required to develop analysis techniques, to establish instrument sensitivity to potential contaminants, and to...
12 ENGINEERING

A95-92405
NATURAL CONVECTION IN CENTRAL MICROCAVITIES OF VERTICAL, FINNED ENCLOSURES OF VERY HIGH ASPECT RATIOS
RAMON L. FREDERICK Universidad de Chile, Santiago, Chile and ALVARO VALENCIA International Journal of Heat and Fluid Flow (ISSN 0142-727X) vol. 16, no. 2 April 1995 88-98 refs (BTN-95-EIX95282711333) Copyright

Natural convection in the central microcavities of vertical, finned cavities of very high aspect ratios were numerically investigated using a spacewise periodical approach. When equally spaced fins are located on both active walls (problem b), different circulation rates are found in two consecutive microcavities. The average Nusselt number in a region comprising two consecutive microcavities is higher than the one observed when the fins are attached to only one of the active walls (problem a). The dependence of microcavity circulation rates and heat transfer on Rayleigh number, dimensionless fin length, and microcavity aspect ratio is discussed. The limits of applicability of the spacewise periodical approach are also outlined. Author (El)

A95-92408
MEASUREMENT IN LAMINAR AND TRANSITIONAL BOUNDARY-LAYER FLOWS ON CONCAVE SURFACE

Measurements of streamwise mean and fluctuating velocities in laminar and transitional boundary-layer flows on a concave surface of 2.0 m radius of curvature have been performed using hot-wire anemometry technique. A new turbulent intermittency detector method was used to calculate the intermittency factor. In addition to the spanwise distributions of mean velocity, the profiles of mean, fluctuating velocities and intermittency across the boundary layer at two different spanwise positions, namely, the upwash and downwash, are also presented. The experimental results show that the normal and spanwise distributions of mean velocity, normal turbulence intensity U'(sub rms)/U(sub 0) profiles experience different streamwise evolutions in the laminar and transition regions. Significant velocity profile distortion, saturated growth of Goertler vortices, and the existence of two peaks in U'(sub rms)/U(sub 0) profiles are the main features of the boundary-layer flow at the onset of transition. The intermittency profiles in the early stages of transition at the two spanwise positions have some similar characteristics and are not consistent with each other on some other aspects. Comparisons of the gamma profiles at the two spanwise positions confirm that the transition first starts at the low-speed regions. Author (El)
energy in the near wake show considerable disagreement with the measured values.

A95-92474
SIMULATION OF THE UNSTEADY INTERACTION OF A CENTRIFUGAL IMPELLER WITH ITS VAINED DIFFUSER: FLOW ANALYSIS
W. N. DAWS Whittle Lab, Cambridge, United Kingdom Journal of Turbomachinery, Transactions of the ASME (ISSN 0889-504X) vol. 117, no. 2 April 1995 p. 213-222

The development of compressor technologies requires detailed understanding of the multiple flow phenomena that must be considered. This paper uses a computational fluid dynamics (CFD) simulation to present and explain the development of the strong hub/comer stall that initiates a strong three-dimensional flow unsteadiness. The simulation is presented of the Krain stage performed using a time-accurate, three-dimensional, unstructured mesh, solution-adaptive Navier-Stokes solver. The predicted flowfield, compared with experiment where available, displays a complex, unsteady interaction, especially in the neighborhood of the diffuser entry zone, which experiences large periodic flow unsteadiness. Downstream of the throat, although the magnitudes of this unsteadiness diminishes rapidly, the flow has a highly distorted three-dimensional character. The loss levels in the diffuser are then investigated to try and determine how time-mean loss levels compare with the levels expected from ‘equivalent’ steady flow analysis performed by using the circumferentially averaged exit flow from the impeller as inlet to the diffuser. It is concluded that little loss could be attributed directly to unsteady effects but rather that the principal cause of the rather high loss levels observed in the diffuser is the strong spanwise distortion in swirl angle at inlet, which initiates a strong hub/comer stall.

Author (El)

A95-92475
DESIGN AND DEVELOPMENT OF AN ADVANCED TWO-STAGE CENTRIFUGAL COMPRESSOR

This paper describes the aeromechanical design and development of a 3.3 kg/s (7.3 lb/sec), 14:1 pressure ratio two-stage centrifugal compressor, which is used in the T600-LHT-800 helicopter engine. The design employs highly nonradial, splitter bladed impellers with swept leading edges and compact vanned diffusers to achieve high performance in a small and robust configuration. The development effort quantified the effects of impeller diffusion and passive inducer shroud bleed on surge margin as well as the effects of impeller loading on tip clearance sensitivity and the impact of sand erosion and shroud roughness on performance. The developed compressor exceeded its performance objectives with a minimum of 23 percent surge margin without variable geometry. The compressor provides a high-performance, rugged, low-cost configuration ideally suited for helicopter applications.

Author (El)

A95-92511
MAINTENANCE-FREE LEAD ACID BATTERY FOR INERTIAL NAVIGATION SYSTEMS AIRCRAFT
WILLIAM R. JOHNSON NSWC, Crane, IN, United States and DAVID G. VUTETAKIS IEEE Aerospace and Electronic Systems Magazine (ISSN 0885-8995) vol. 10, no. 5 May 1995 p. 36-42

The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.

Author (El)

A95-92751
DISCRETE CRACK GROWTH ANALYSIS METHODOLOGY FOR THROUGH CRACKS IN PRESSURIZED FUSELAGE STRUCTURES

A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modelling strategy. The structural response for each cracked configuration is obtained using a geometrically non-linear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology, and its applicability to performing practical analyses of realistic structures, is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.

Author (El)

A95-93316
National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.
COMPARISON OF COORDINATE-INARIANT AND COORDINATE-ALIGNED UPWINDING FOR THE EULER EQUATIONS

A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modelling strategy. The structural response for each cracked configuration is obtained using a geometrically non-linear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology, and its applicability to performing practical analyses of realistic structures, is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.

Author (El)

Author (Hemer)
TURBULENT FLOW MEASUREMENTS WITH A TRIPLE-SPLIT HOT-FILM PROBE
M. D. DOIRON Toronto Univ., Toronto, Canada and D. W. ZINGG Toronto Univ., Toronto, Canada AIAA Journal (ISSN 0001-1452) vol. 32, no. 9 September 1994 p. 1929-1931

Complex turbulent shear flows occur in many aerospace applications, such as aerodynamic devices and gas turbine engines. Measurements of mean and fluctuating velocity components can greatly aid our understanding of such flows. Experimental data are particularly useful in assessing and validating turbulence models used in computational fluid dynamics codes. Velocity measurements are generally made using a pilot-static tube, a constant temperature hot-wire anemometer, or a laser Doppler anemometer (LDA) for separated turbulent flows, pilot-static tubes and conventional hot-wire probes are generally inapplicable. Because of the high cost of LDA measurements, modified hot-wire techniques have been developed which are suitable for reversed flows. These include pulsed hot wires and flying hot wires. Disadvantages of these approaches are discussed by Nakayama. Triple-split hot-film probes are a potentially useful alternative for velocity measurements in separated turbulent flows. Such probes typically consist of three separate films deposited on a cylinder. The operating principle is based on the variation of the local heat transfer coefficient on a cylinder with the magnitude and direction of the oncoming flow velocity. Most studies involving split-film anemometry have been with double-split hot-film probes. These operate on the same principle but retain the directional ambiguity of conventional hot wires and, hence, are not applicable to separated turbulent flows. The results of these studies indicate that split-film probes provide comparable accuracy to hot-wire probes for mean velocities but have a more limited frequency response. Despite their potential, especially for measurements of mean velocities, triple-split hot-film probes have received little use. The only example of their use known to the authors is reported by Modera. A passive cooling approach for the aircraft electromechanical actuators is being developed to support the Air Force More Electric Airplane (MEA) program. A two-phase coolant is used in a reflux type cooler to electric/electronic navigational aids and communications that the effects were realized. The definition of electromagnetic compatibility (EMC): The ability of electrical and electronic equipments, sub systems and systems to share the electromagnetic spectrum and perform their desired function without unacceptable degradation from or to the specified electromagnetic environment. In other words the equipment must work without causing interference or being upset by interference from d.c. to light frequencies.

A95-93640
LASER VELOCIMETRY IN THE SUPERSONIC REGIME: ADVANCES, LIMITATIONS, AND OUTLOOK
MARK S. MAURICE, LINDA G. SMITH, GEORGE L. SEIBERT, CHARLES TYLER, and C. DEAN MILLER AIAA Journal (ISSN 0001-1452) vol. 32, no. 9 September 1994 p. 1808-1814

Laser Velocimetry (LV) is often utilized as an off-the-shelf nonintrusive measurement technique for low speed, steady state flows. However, in complex, supersonic flows, the application of LV becomes highly specialized. Set-ups must often contend with limited optical access, poor signal-to-noise ratios, and limited tunnel run times. Furthermore, seeding particles must survive large ranges of flow temperatures and pressures, and extensive data analysis and interpretation are required to ascertain whether measured particle velocities are representative of the fluid flow. Several examples of LV studies in the supersonic regime demonstrate recent advancements and the current state-of-the-art of this measurement technique. Results are included from three wind tunnel facilities, operating at freestream Mach numbers of 1.5, 3, and 6, and track an evolution of applications from flat plate boundary layers to the complex flowfield of a supersonic inlet. Results demonstrate that further development of collection, seeding and analysis techniques will continue to be the ability of LV seed to model the discrete motion of fluid molecules.
transport heat from the actuator electric motor to a cool aircraft structural surface. Energy storage, in the form of phase change material, is incorporated into the cooler to provide load leveling between peak loads and low loads. Transient thermal analysis, which was used to select the best combination of reflux working fluid and phase change material, indicates that motor temperatures can be reduced by more than 50°C when using thermal energy storage.

Author (Hemer)

A95-93593
LIGHTWEIGHT HIGH-TEMPERATURE FUEL METERING VALVES
JOE BENNETT (ISSN 0146-7191) 1993 12 p. SAE, Aerospace Atlantic Conference & Exposition, Dayton, OH, April 20-23, 1993
(SAE PAPER 931444; HTN-95-21262) Copyright

AlliedSignal Fluid systems has provided fuel metering valve hardware to three aircraft engine manufacturers for evaluation. Two of the programs were Integrated High Performance Turbine Engine Technology (IPTET) related. The third program was an R&D effort. Bench tests and evaluation of all three valve designs have been completed, and one of the designs has actually been used for engine test. Engine testing of the other two valve designs is planned for the future. These three designs are similar, but each is intended to be used in different system configurations, and each valve design offers unique features. The design approaches used for the three valve designs incorporate several new and innovative technologies, including high-temperature brushless dc motor actuators, low-pressure loss metering element design, fiber optic rotary output position sensor, no-moving-parts oscillating jet flow meter, high-temperature RS (rapid solidification) aluminum alloy, high-temperature elastomeric seals, high-pressure shock proof capabilities, and closed loop electronic fuel flow metering.

Author (Hemer)

A95-93598
DYNAMIC STIFFNESS AND DAMPING OF FOIL BEARINGS FOR GAS TURBINE ENGINES
Contract(s)/Grant(s): (N000140-86-C-9434) (SAE PAPER 931449; HTN-95-21257) Copyright

Foil bearings have been used since the 1970s in low temperature (600°F) application. However, adapting this type of hydrodynamic air bearing to the high temperature (1200°F) environment of gas turbine engines has been slow, due to suspected low damping values. Foil bearings develop mechanical interactions, thought to generate coulomb damping, which affects the dynamic characteristics - stiffness and damping, the primary factors influencing dynamic stability of rotor-bearing systems - of such a bearing. This paper reports on a program of experiments to identify the design parameters affecting foil bearing dynamic. A fractional factorial technique characterized the effects of the primary independent design parameters and their interactions. Results are presented for eight test bearings, with an analysis of variance used to determine the optimum configuration and show how it can improve the stability of a typical gas turbine engine.

Author (Hemer)

A95-93703
STABILITY ANALYSIS FOR ELASTICALLY TAILORED ROTOR BLADES
Contract(s)/Grant(s): (DAAL03-89-K-0007) Copyright

A finite element based stability analysis is developed for a hingeless, composite, isolated rotor in hover. It includes a mechanism for the inclusion of a complete 6 x 6 stiffness matrix, as well as the effects of rotary inertia. No restrictions are made on the magnitudes of the displacements and rotations if the magnitudes of the strains remain small compared to unity. The equilibrium position is obtained by an iterative solution of the complete nonlinear equations. The dynamic equations are linearized about this position, yielding eigenproblem. The lift model is a two-dimensional, quasi-steady strip theory, with inflow taken from momentum theory.

A95-93723
THE COPLANE PROJECTILE MOTION PROBLEM INCLUDING THE EFFECTS OF LIFT AND DRAG
Contract(s)/Grant(s): (A95-93728) National Aeronautics and Space Administration, Wash., DC.

LOW GRAVITY QUENCHING OF HOT TUBES WITH CRYOGENS
Contract(s)/Grant(s): (A95-937921-01-4) Copyright

An experimental procedure for examining flow boiling in low gravity environment is presented. The procedure involves both ground based and KC-135 flight experiments. Two experimental apparatus were employed, one for studying subcooled liquid boiling and another for examining saturated liquid boiling. For the saturated flow experiments, liquid nitrogen was used while from 113 was used for the subcooled flow experiments. The boiling phenomenon was investigated in both cases using flow visualization techniques as well as tube wall temperature measurements. The flow field in both cases was established by injecting cold liquid in a heated tube whose temperature was set above the saturation values. The tubes were both vertically and horizontally supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.

A95-93735
A NOTE ON THE KUTTA-JOUKOWSKI FORMULA

...
In this note some clarifications are made concerning the understanding and use of the classical Kutta-Joukowski lift formula $L = \rho U \Gamma$. First, the viscous source of this lift (although it has been a very well-known fact) is re-emphasized, since its inviscid derivation in many text books still caused confusion, especially among student readers. Second, it is directly shown that, unlike some authors have conceived, such a lift does not exist if a solid rotating cylinder is replaced by a Rankine vortex. In other words, the formula is applicable to solid body with circulation only. However, it is demonstrated that a Rankine vortex enveloped by a singular vortex sheet will initially experience a side force, but only for $U \Gamma$. \hfill Author (Hemer)

A95-94057
APPLICATION OF INTEGRAL METHODS TO ABLATION CHARRING RING EROSION, A REVIEW
ROBERT L. POTTS Science Applications Int Corp, Torrance, CA, United States Journal of Spacecraft and Rockets (ISSN 0022-4650) vol. 32, no. 2 March-April 1995 p. 200-209 refs (BTN-95-EIX95302694460) Copyright

To predict ablation, charring, and erosion of heat-shield materials, approximate heat balance integral (HBI) methods offer speed and versatility; however, traditional HBI articles treat only simple, idealized models of material response. This paper reviews application of HBI methods to more realistic models of material response, specifically, for carbon-carbon and carbon-phenolic heat shields on reentry vehicles. The review shows that HBI successfully extends to most such simulations of ablation, charring, and erosion in hypersonic flow, but unexpected problems can crop up and trade-offs exist. Pertinent material models are also summarized, including efficient expressions that fit material thermal properties and carbon-air thermochemical ablation functions. \hfill Author (El)

A95-94058
ENHANCEMENTS TO INTEGRAL SOLUTIONS TO ABLATION AND CHARRING

Two new enhancements to the heat-balance integral (HBI) technique improve the rapid prediction of aerothermal response of heat shielding of high-speed vehicles. The first enhancement uses a generalized cubic in-depth thermal profile to mitigate the well-known overestimation of classical HBI techniques to rapid changes in aerodynamic heat load. The second enhancement involves a direct method for solving in-depth charring problems in the context of an HBI solution. Together, these enhancements extend approximate HBI techniques to a broader range of aerothermal problems with improved accuracy at only a modest cost in computational speed. \hfill Author (El)

A95-94067
LEADING-EDGE SWEEPBACK AND SHAPE EFFECTS ON FIN-IN-DUCED FLUCTUATING Pressures
K. KLEIFGES Univ of Texas at Austin, Austin, TX, United States and D. S. DOLLING Journal of Spacecraft and Rockets (ISSN 0022-4650) vol. 32, no. 2 March-April 1995 p. 286-293 refs (BTN-95-EIX95302694471) Copyright

Measurements of the fluctuating wall pressure have been made on centerline upstream of blunt fins in a Mach 5 turbulent boundary layer. Leading-edge sweep considerably reduces the mean and rms pressure loading at the fin root, the extent of the region of unsteady separation shock motion (i.e., the intermittent region), and the separation length. The frequency of shock-induced pressure fluctuations in the intermittent region increases with leading-edge sweepback, while frequency spectra in the separated region are virtually unchanged. A strake at the root of an unswept fin has virtually no effect, whereas a swept blunted root fillet reduces the upstream influence and intermittent region lengths by 50%, and reduces the mean and rms pressure loading at the fin root by about 75% and 95%, respectively. Experiments using hemicylindrical, wedge-shaped, and flat leading edges show that separated-flow scales and root loading increase with increasing "bluntness" (i.e., wedge to hemicylinder to flat), while the intermittent-region length increases (in terms of fin thicknesses). The changes in flowfield unsteadiness are related to changes in separated-flow structure which alter the dynamics of the primary vortex and recirculation process. \hfill Author (El)

A95-94102
MATCHING FLUID AND STRUCTURE MESHES FOR AEROLESTIC COMPUTATIONS: A PARALLEL APPROACH
N. MAMAN University of Colorado at Boulder, Boulder, CO, United States and C. FARHAT Computers and Structures (ISSN 0045-7949) vol. 54, no. 4 February 17 1995 p. 779-785 refs (BTN-95-EIX95302679864) Copyright

Matcher is a program that generates the data structures needed for handling arbitrary and non-conforming fluid/structure interfaces in aerelastic computations. In this paper, we describe the key issues addressed by Matcher and overview the underlying parallel algorithm. We highlight its parallel performance on the iPSC/860/32 for a complete aircraft configuration where the fluid mesh contains 439,272 tetrahedra and 77,279 vertices, and the structural model contains 7520 triangular shell elements and 3841 nodes.

A95-94108
DEPOLARIZING TRIHEDRAL CORNER REFLECTORS FOR RADAR NAVIGATION AND REMOTE SENSING
DAVID G. MICHELSON Univ of British Columbia, Vancouver, BC, Canada and EDWARD V. JULL IEEE Transactions on Antennas and Propagation (ISSN 0018-926X) vol. 43, no. 5 May 1995 p. 513-518 refs (BTN-95-EIX95302727634) Copyright

A conventional trihedral corner reflector can be modified to present either a twist-polarizing or a circularly polarizing response by adding conducting fins or rectangular corrugations of prescribed dimensions and orientation to one of its interior surfaces. Since the modified reflector retains most of the mechanical ruggedness and ease of manufacture of the original, it is suitable for deployment in the field for extended periods as required in radar navigation and remote sensing applications. For most directions of incidence the response of the reflector is dominated by triple-bounce reflections from the interior and is a function of the size and shape of the reflecting panels, the dimensions of the corrugations, and the orientation of the reflector with respect to the radar. Experimental results show that prototype twist-polarizing and circularly polarizing reflectors respond as predicted.

A95-94130* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.
3-D NAVIER-STOKES ANALYSIS OF CROSSING GLANCING SHOCKS/TURBULENT BOUNDARY LAYER INTERACTIONS
D. R. REDDY National Aeronautics and Space Administration Lewis Research Cent, Cleveland, OH, United States Computers & Fluids (ISSN 0045-7930) vol. 24, no. 4 May 1995 p. 435-445 refs (BTN-95-EIX9530272768) Copyright

Three-dimensional viscous flow analysis is performed for a configuration where two crossing and glancing shocks interact with a turbulent boundary layer. A time marching 3-D full Navier-Stokes code, called PARC3D, is used to compute the flow field and the solution is compared to the experimental data obtained at the NASA Lewis Research Center 1 ft x 1 ft supersonic wind tunnel facility. The study is carried out as part of the continuing code assessment program in support of the Generic Hypersonic Research at NASA Lewis. Detailed comparison of static pressure fields and oil flow patterns is made with the corresponding solution on the wall containing the shock/boundary layer interaction in an effort to validate the code for hypersonic inlet applications. \hfill Author (El)
A95-94134
SUPERSONIC, TURBULENT FLOW COMPUTATION AND DRAG OPTIMIZATION FOR ASYMMETRIC AFTEROBODIES
R. M. CUMMINGS Univ of Southern California, Los Angeles, CA, United States, H. T. YANG, and Y. H. OH Computers & Fluids (ISSN 0045-7930) vol. 24, no. 4 May 1995 p. 487-587 refs

The compressible, turbulent flow about an asymmetric body was numerically studied using the MacCormack split explicit algorithm applied to the mass-average Navier-Stokes equations solved in conjunction with the k- epsilon turbulence model of Jones and Launder. Numerical predictions of total body drag (pressure drag, skin friction drag, and base drag) were made for an asymmetric body six diameters in length, with and without a boattail. Surface pressures and viscous layer profiles are compared with available wind tunnel data and are found to be in good agreement for both geometries. The Golden Section optimization method was used to optimize the body boattail angle for minimum drag. The solution method can serve as a tool for preliminary design analysis where the relative merits of utilizing boattails on asymmetric afterbodies is being considered. Author (EI)

A95-94197
AIRFOIL LEADING-EDGE SUCTION AND ENERGY CONSERVATION FOR COMPRESSIBLE FLOW

The leading-edge suction force produced when a flat-plate airfoil at zero angle of attack encounters a vertical gust was examined for compressible flow with a time-dependent gust. A simple derivation of the thrust force shows that the acoustic energy can be calculated using compact assumptions at low frequency, but that it must be calculated non-compactly at high frequency. For a general gust, the work done on the airfoil equals the energy taken from the fluid. For a sinusoidal gust the energy contained in the incident gust equals the sum of the energy remaining in the wake, the work done on the airfoil and the acoustic energy radiated away. Also, the relative proportions of the energy going to these three energy types depend on the gust frequency. El

A95-94205
GEODESIC CONSTANT METHOD: A NOVEL APPROACH TO ANALYTICAL SURFACE-RAY TRACING ON CONVEX CONDUCTING BODIES
R. M. JHA Nati Aerospace Lab, Bangalore, India and W. WIESBECK IEEE Antennas & Propagation Magazine (ISSN 1045-9243) vol. 37, no. 2 April 1995 p. 28-38 refs

A generalized approach to analytical surface-ray tracing in three dimensions, and a review of its application to convex conducting bodies, is presented, using the Eisenhart Coordinate System. The ray-parameters so obtained, for quadratic cylinders (QUACYLs) and surfaces of revolution (QUASORs), are in a one-parameter form for UTD mutual-coupling applications. The ray analysis is also extended to the hybrid QUACYLs (e.g., aircraft wings) and hybrid QUASORs (e.g., satellite-launch vehicles), by introducing Hertz's principle of particle dynamics to EM theory. This mathematical formulation is applicable even to other important non-Eisenhart surfaces, such as the ogive. A summary of the mathematical formulations is included. Author (EI)

A95-94250
STRUCTURAL INTEGRITY OF FUSELAGE PANELS WITH MULTISITE DAMAGE
JAI H. PARK Georgia Inst of Technology, Atlanta, GA, United States, RIPUDAMAN SINGH, CHANG R. PYO, and SATYA N. ATLURIS Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 656-662 refs

This mathematical formulation is applicable even to other important non-Eisenhart surfaces, such as the ogive. A summary of the mathematical formulations is included. Author (EI)

A95-94252
FATIGUE DESIGN OF AXIALLY LOADED SEMICIRCULAR LUGS
S. K. TSANG California Inst of Technology, Pasadena, CA, United States Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 672-676 refs

A simplified procedure based on the results of finite element analysis is proposed for the design of semicircular lugs under repeated axial loading. Maximum lug stresses corresponding to different failure modes are obtained by multiplying nominal stresses by stress correction factors given by design curves. Analytical limitations associated with the finite element approach and factors that affect stress and strength are discussed. The effect of friction on lug stresses is also investigated. When properly implemented, the present design procedure is expected to provide a simple, efficient, and sufficiently accurate method for the preliminary estimation of lug stresses. Author (EI)

A95-94478
DAMAGE TOLERANCE CERTIFICATION OF A FIGHTER HORIZONTAL STABILIZER
JIA-YEN HUANG Aeronautical Research Lab, Taichung, Taiwan, Prov. of China, MINH-YANG TSAI, JONG-SHENG CHEN, and CHING-LONG ONG Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 643-648 refs

A review of the program for the damage tolerance certification test of a composite horizontal stabilizer (HS) of a fighter is presented. The object of this program is to certify that the fatigue life and damage tolerance strength of a damaged composite horizontal stabilizer meets the design requirements. According to the specification for damage tolerance certification, a test article should be subjected to two design lifetimes of flight-by-flight load spectra simulating the in-service fatigue loading condition for the aircraft. However, considering the effect of environmental change on the composite structure, one additional lifetime test was performed. In addition, to evaluate the possibilities for extending the service life of the structure, one more lifetime test was carried out with the spectrum increased by a factor of 1.4. To assess the feasibility and reliability of repair technology on a composite structure, two damaged areas were repaired after two lifetimes of damage tolerance test. On completion of four lifetimes of the damage tolerance test, the static residual strength was measured to check whether structural strength after repair met the requirements. Stiffness and static strength of the composite HS with and without damage were evaluated and compared. Author (EI)
EFFECTS OF THE CHEMICAL REACTION MODEL ON CALCULATIONS OF SUPERSONIC COMBUSTION FLOWS

CORIN SEGAL, Univ. of Virginia, Charlottesville, VA, United States; HOSSEIN HAJ-HARIRI, and JAMES C. MCDANIEL. Journal of Propulsion and Power (ISSN 0748-4658) vol. 11, no. 3 May-June 1995 p. 565-568 refs

The numerical modeling of reacting supersonic flow in a generic configuration at low enthalpy revealed a strong effect of the selection of the reaction model on the solution. This effect was verified through calculation experiments with the use of the three-dimensional version of SPARK. Additionally, a mixing, non-reaction calculation was conducted to provide a comparison with the reacting case.

INTERACTION OF A WEAK SHOCK WITH FREESTREAM DISTURBANCES

ZVI RUSAK, Rensselaer Polytechnic Inst., Troy, NY, United States; THOMAS E. GIDDINGS, and JULIAN D. COLE. AIAA Journal (ISSN 0001-1452) vol. 33, no. 6 June 1995 p. 977-984 refs

A new transonic small-disturbance model to analyze the interactions of freestream disturbances with a weak shock has been developed. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. An alternative approach shows that the pressure field may be described by an equation that has an extended form of the classic nonlinear acoustic equation that describes the propagation of sound waves with a narrow angular spectrum. The model shows that distortion effects, nonlinear steepening effects, focusing effects, and induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite difference algorithm to solve the mixed-type elliptic/hyperbolic flows around the shock wave has also been developed. Numerical calculations of shock wave interactions with various deterministic vorticity and temperature disturbances result in complicated shock wave structures and describe peaked as well as rounded pressure signatures across the shock front, as were recorded in experiments of sonic booms running through atmospheric turbulence.

AIRBORNE IMAGING RADIOMETER SCAN SIMULATION

MARTTI KEMPINEN, Helsinki Univ. of Technology, Espoo, Finland, IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892) vol. 33, no. 3 May 1995 p. 660-669 refs

An imaging radiometer scan simulation program is developed for comparing the performance of different scan patterns and process behavior under varying circumstances. The program gives the radiometer's antenna beam the desired scan motion over an artificial target scene, computes the antenna radiometric temperature as the convolution of the antenna pattern with the scene brightness temperature, computes a moving average of the antenna output, and records the data values as well as the corresponding coordinates at the sampling moments. The simulation indicated that a helicopter-borne imager needs at least passive attitude stabilization. In addition, the state-of-the-art sampling rate was found to be too slow, if the sampling period is set equal to the integration time. A detailed study revealed that an achievable spatial resolution (fine pairs/length unit-definition) to be 1.0-1.2 x footprint dimensions, but the integration and sampling periods should be as short as 0.2-0.4 x footprint dimensions.

AEROTEK INC., National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH.

NUMERICAL SOLUTION OF EULER AND NAVIER-STOKES EQUATIONS FOR 2D TRANSONIC PROBLEMS

T. HULEK, Czech Technical Univ., Prague, Czech Republic; M. HUNEK, Czech Technical Univ., Prague, Czech Republic; and K. KOZEL, Czech Technical Univ., Prague, Czech Republic. In Computational fluid dynamics '92; Proceedings of the European Computational Fluid Dynamics Conference, 1st, Brussels, Belgium, Sep. 7-11, 1992. Vols. 1 & 2

Copyright

The present contribution is a numerical solution of Euler and Navier-Stokes equations for 2D transonic flow problems using several different numerical methods. The time marching cell centered and cell vertex finite volume methods were used for both flow models. Various explicit multi-stage Runge-Kutta methods (RK methods) were applied for inviscid flows and these methods were also used for numerical solution of incompressible and compressible Navier-Stokes equations.
A95-95383
LAMINAR AND TURBULENT FLOW OVER OPTIMAL RIBLETS
Research sponsored by AFOSR
Contract(s)/Grant(s): (NSF CTS-89-14422; F49620-91-C-0059)
Copyright
In the search for viscous drag reduction, many different techniques have been developed and investigated. One of the more interesting techniques is the drag reduction method involving the use of 'riblets'. Riblets are micro-grooves on the bounding surface that are aligned with the mean flow direction; this method is particularly attractive due to its completely passive nature. Riblets have been thoroughly investigated in recent years. A considerable amount of experimental data has been collected regarding the flow over various shapes, sizes, and spacings of riblets in the turbulent regime. It has been found that drag reduction on the order of 8% can be achieved for flow over a flat plate mounted with riblets, if the proper spacings and heights are used. The purpose of the present work is twofold: First, to investigate optimal shapes of riblets, and second to compare our detailed numerical results for triangular riblets with recently obtained experimental results. Author (revised by Hemer)

A95-95394
HEAT TRANSFER ON BENT-NOISE BICONIC IN HYPERSONIC FLOW
Copyright
The present article investigates numerically the characteristics of the heat flux distribution due to the separated flow around the bent-noise biconic. With emphasis on capturing the correlation between the separated flow and the heat flux distribution, thin layer Navier-Stokes equations are solved by the second-order Total Variation Diminishing (TVD) scheme at Mach number 7.0. The strong correlation between the heat flux distribution and the separation pattern is shown clearly.

Author (Hemer)

A95-95397
OPTIMAL SHAPE DESIGN IN HYPERSONIC AERODYNAMICS AND ELECTROMAGNETICS
Copyright
In the present study, we are trying to optimize the shape of an axisymmetric supersonic body. The shape of the body is defined by a finite set of design variables. Our problem is to find a shape minimizing the cost function under the constraints that the flowfield satisfies the Euler equations and that the radar cross section of the body stays below a certain limit. The design variables are chosen in order to get a well-conditioned problem, while retaining a high degree of smoothness while computing the electromagnetic field. These criteria are fulfilled by B-splines curves. In order to apply a descent method, we have to compute for any given design, the reference flowfield, the cost function and its gradient with respect to the shape. This is done by using the framework of optimal control theory. Due to the discretization of the Euler equations by an explicit space marching technique, the adjoint state equation can be solved by an explicit upstream space marching technique. In addition to the above flowfield and gradients calculation, the radar cross section corresponding to the shape is obtained by integrating an asymptotic formulation of the Maxwell equations based on geometrical optics. The algorithm is demonstrated on several simple examples.

Author (Hemer)
A ROBUST INVERSE INVISCID METHOD FOR AIRFOIL DESIGN

Copyright

An inviscid incompressible inverse design method for two-dimensional airfoil profiles is described. The method is based on the potential streamfunction formulation, where the physical space on which the boundaries of the airfoil are sought, is mapped onto the (phi, psi) space via a body-fitted coordinate transformation. A novel procedure based on differential geometry arguments is employed to derive the governing equations for the inverse problem, by requiring the curvature of the flat 2-D Euclidean space to be zero. An auxiliary coordinate transformation permits the definition of C-type computational grids on the (phi, psi) plane resulting to a more accurate description of the leading edge region. Geometry is determined by integrating Franel equations along the grid lines. To validate the method inverse calculation results are compared to direct, 'reproduction', calculation results. The design procedure of a new airfoil shape is also presented. Author (Hemer)

A95-95439

AN IMPROVED FINITE ELEMENT METHOD FOR THE SOLUTION OF THE COMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS

Copyright

Finite element solutions of the compressible Euler and Navier-Stokes equations have been previously obtained by the authors using an artificial viscosity in the form of Laplacians of the pressure and the velocity components, for the continuity and momentum equations, respectively. The present report outlines finite element scheme for the solution of the compressible Navier-Stokes equations, based on a higher order nonlinear artificial viscosity. The Laplacian terms of the artificial viscosity are balanced by nonlinear terms obtained from the governing equations. The added balancing terms are evaluated using a standard Galerkin method and are lagged; hence the Jacobian matrix of the original method is unaltered by these modifications. The residual, however, is of higher order accuracy and the solution is not contaminated with the effects of the often excessive viscosity needed in the previous work for numerical stability. Results are presented for compressible laminar flow over airfoils and are in good agreement with available data. Author (Hemer)

A95-95443

IMPLICIT MULTIDOMAIN CALCULATION OF VISCOUS TRANSONIC FLOWS WITHOUT ARTIFICIAL VISCOSITY OR UPWINDING

Copyright

When solving the compressible Navier-Stokes equations, any method requires some numerical dissipation. This dissipation, internal in upwind and Lax-Wendroff-type centered schemes, and artificial in Runge-Kutta centered scheme, is necessary to avoid instability and spurious oscillations. However, this numerical dissipation should be significantly smaller than the physical one, otherwise the accuracy would be disastrous. For steady problems, a good compromise can be achieved by using the implicit centered Lax-Wendroff method developed for inviscid flows and extended to viscous flows. In calculations of inviscid transonic flows, this method with no artificial viscosity or any other correction, gives accurate results and sharp numerical shocks. This means that its internal dissipation is very low and just sufficient to ensure inviscid and viscous flows, some robustness improvements were studied. The present paper is devoted to steady viscous transonic flow calculations using this implicit numerical method and a multidomain treatment. After a presentation of the method, an original multidomain matching condition suitable for implicit schemes is discussed. Then an a-priori mesh adaptation in the boundary
layer is suggested, and finally efficiency and accuracy are studied in details through numerical tests. Author (Hemer)

A95-95444
HIGH-LIFT CALCULATIONS USING NAVIER-STOKES METHODS
Copyright

This paper describes the Modular System for Computational Fluid Dynamics (MOSYS), a software facility for the construction and execution of arbitrary solution procedures on unstructured, structured body-fitted grids. It focuses on the structure and capabilities of MOSYS and the philosophy underlying its design. The system offers different levels of capability depending on the objectives of the user. It enables the applications engineer to quickly apply a variety of methods to geometrically complex problems. The methods developer can implement new algorithms in a simple form, and immediately apply them to problems of both theoretical and practical interest. And for the code builder it constitutes a toolkit for fast construction of CFD codes tailored to various purposes. These capabilities are illustrated through applications to a particularly complex problem encountered in aircraft propulsion systems, namely, the analysis of a landing aircraft in reverse thrust. Author (Hemer)

A95-95448
ON THE PREDICTION OF TRANSONIC UNSTEADY FLOWS USING SECOND ORDER TIME ACCURACY
Copyright

This paper describes the Modular System for Computational Fluid Dynamics (MOSYS), a software facility for the construction and execution of arbitrary solution procedures on unstructured, structured body-fitted grids. It focuses on the structure and capabilities of MOSYS and the philosophy underlying its design. The system offers different levels of capability depending on the objectives of the user. It enables the applications engineer to quickly apply a variety of methods to geometrically complex problems. The methods developer can implement new algorithms in a simple form, and immediately apply them to problems of both theoretical and practical interest. And for the code builder it constitutes a toolkit for fast construction of CFD codes tailored to various purposes. These capabilities are illustrated through applications to a particularly complex problem encountered in aircraft propulsion systems, namely, the analysis of a landing aircraft in reverse thrust. Author (Hemer)
shock was located at diffuser inlet instead of the position below the cavity. The normal shock in the middle of the diffuser caused a massive separation of the boundary layer and a large total pressure loss. In the 3-D analysis, the shock wave was distorted by the side wall boundary layer separation, and the complex flow structure was established. The result of the 3-D analysis agreed well with the experiment.

A95-95459

MULTIGRID SOLUTION FOR THE COMPRESSIBLE EULER EQUATIONS BY AN IMPLICIT CHARACTERISTIC-FLOW-AVERAGING

Copyright

A formulation of an implicit characteristic-flux-averaging method for the compressible Euler equations combined with the multigrid method is presented. The method is based on correction scheme and implicit Godunov type finite volume scheme and is applied to two dimensional cases. Its principal feature is an averaging procedure based on the eigenvalue analysis of the Euler equations by means of which the fluxes are evaluated at the finite volume faces. The performance of the method is demonstrated for different flow problems around RAE-2922 and NACA-0012 airfoils and an internal flow over a circular arc.

A95-95462

TRANSONIC VORTICAL FLOW PREDICTED WITH A STRUCTURED MULTIBLOCK EULER SOLVER

Copyright

A methodology for solving the Euler equations in geometrically complex domains has been developed at Alenia (DVD). The general features of the Alenia multiblock system, which provides a grid generation and Euler solution capability for complex configuration, are discussed. A systematic multiblock grid generator has been used to make the grids. Numerical results compared with available experimental data in transonic vortical flow around delta wing, wing-body and wing-body-canard configurations with sharp leading edge are presented and explained in a physical context.

A95-95463

AN UNSTRUCTURED NODE CENTERED SCHEME FOR THE SIMULATION OF 3-D INVISID FLOWS

Copyright

The paper describes an efficient way to generalize central difference schemes for the solution of Euler equations in an unstructured context. Applications to very complex geometries illustrates the flexibility and reliability of the numerical procedure.

A95-95467

AN INNOVATIVE ALGORITHM TO ACCURATELY SOLVE THE EULER EQUATIONS FOR ROTARY WING FLOW

Copyright

Due to the ability of Euler methods to treat rotational, nonisentropic flows and also to correctly transport on the rotation embedded in the flow field it is possible to correctly represent the inflow conditions on the blade in the stationary hovering flight of a helicopter, which are significantly influenced by the tip vortices (blade-vortex interaction) of all blades. It is shown that also the very complex starting procedure of a helicopter rotor can be very well described by a simple Euler method that is to say without a wake model. The algorithm based on the procedure is part of category upwind schemes, in which the difference formation orientates to the actual, local flow state that is to say to the typical disturbance expansion direction. Hence, the artificial dissipation required for the numerical stability is included in a natural way adapted to the real flow state over the break-up error of the difference equation and has not to be included from outside. This makes the procedure robust. An implicit solution algorithm is used, where the invention of the coefficient matrix is carried out by means of a Point-Gauss-Seidel relaxation.

A95-95470

SAUNA: A SYSTEM FOR GRID GENERATION AND FLOW SIMULATION USING HYBRID STRUCTURED/UNSTRUCTURED GRIDS

Copyright

We describe the development of a flow simulation facility for predicting the aerodynamics of complex configurations where the grid is composed of both structured and unstructured regions. This paper considers issues relating to the generation and analysis of such grids and to the accurate and efficient computation of both inviscid and viscous flows therein. Further, the development of a comprehensive post-processing and visualization facility is explored. Techniques are illustrated throughout by application to realistic aircraft geometries.

A95-95471

A CARTERIAN GRID FINITE ELEMENT METHOD FOR AERODYNAMICS OF MOVING RIGID BODIES

Copyright

A finite element solver based on non-body-fitted meshes has been developed for steady transonic potential flows. Its extension to unsteady flows around arbitrarily moving rigid bodies is presented. Its two main ingredients are: a robust potential flow solver and an effective mesh management strategy. They are illustrated by numerical experiments which simulate a two-dimensional store release problem.
GRID ADAPTATION FOR PROBLEMS IN COMPUTATIONAL FLUID DYNAMICS
R. HAGMEIJER National Aerospace Lab., Amsterdam, Netherlands and K. M. J. DE COCK National Aerospace Lab., Amsterdam, Netherlands
Copyright
A recently developed algorithm to adapt computational grids is briefly described and the main features are discussed. Application to a turbulent-flow Computational Fluid Dynamics (CFD) problem around a NACA-0012 airfoil shows that the algorithm is robust and that high-gradient spots are well-captured.

Author (Hemer)

MULTI-BLOCK FINITE VOLUME CALCULATION OF COMPRESSIBLE FLOW PAST AERODYNAMIC CONFIGURATIONS
Copyright
The primary objective of this paper is to describe an on-going local endeavor in developing and applying computational fluid dynamics technology focusing on the implementation of a proven finite volume numerical solution technique for integrating the Euler/Navier-Stokes equations in a multi-block framework consisting of structural grids, while preserving its accuracy and convergence properties. The implementation is carried out on a NEC-SX1A supercomputer by using its extended memory unit to facilitate block flow data transfer and storage during each cycle of computation. Some preliminary computed inviscid results are presented for high Reynolds number aerodynamic flows over a wing and wing-body combinations. Comparison of the results with the corresponding experimental data is also provided.

Author (Hemer)

A 2D PARALLEL MULTIBLOCK NAVIER-STOKES SOLVER WITH APPLICATIONS ON SHARED- AND DISTURBED MEMORY MACHINES
Copyright
Based on a finite volume discretization of the compressible Navier-Stokes equations, a multiblock method has been developed in which non-overlapping grid blocks are connected in a conservative way. The code has been parallelized and implemented on both shared- and distributed memory multiprocessor machines. The 2D parallel multiblock method is illustrated by an airflow and a cascade flow computation.

Author (Hemer)

GRID GENERATION: ALGEBRAIC AND PARTIAL DIFFERENTIAL EQUATIONS TECHNIQUES REVISITED
BHARAT K. SONI Mississippi State Univ., Mississippi State, MS, US
Copyright
A systematic procedure for grid generation which can provide computational grids for a wide range of geometries related to internal/external flow configuration is developed by combining the best features of algebraic and elliptic grid generation systems. The algebraic and elliptic grid generation systems are well developed in the literature. A review of these techniques is given in this paper in view of economy and efficiency of the grid generation process. A technique to automatically calculate slopes and twist vectors required in hermite finite interpolation is developed. The weighted finite-interpolation is combined with automatically created Bezier, B-spline curves, and Non-Uniform Rational B-spline (NURB) curves to generate well-distributed, smooth and near orthogonal grid patches (sub-blocks). A novel approach to evaluate control functions for elliptic generation systems is developed. This approach allows a quick refinement utilizing elliptic system. Computational examples are presented to demonstrate the success of these methodologies.

Author (Hemer)
displacement of the moving body and a distortion form of the finite element mesh is connected with linear function for simplification of mesh reconstruction. Two applications, the Reynolds number 100 and 400 flows around a perfect square cylinder with vortex-induced vertical oscillations, are presented.

Author (Hemer)

A95-95495
HIGH PERFORMANCE PARALLELIZED IMPPLICIT EULER SOLVER FOR THE ANALYSIS OF UNSTEADY AERODYNAMIC FLOWS
Copyright

Simulation of transient flows is more and more useful for industrial applications in aeronautics. For instance, the unsteady aerodynamic coefficients can be of great importance in order to predict the behavior of flying bodies: this is in particular the case for missiles which are spun around their longitudinal axis. It is also well known that the experimental tools used to evaluate the unsteady aerodynamic characteristics present a certain number of limitations: complexity of the experiments, limited degree of accuracy, high costs and delays. In this context, the Computational Aerodynamics Department of Matra Defense has been developing a software library called AEROLOG for the prediction of the steady and unsteady aerodynamics of tactical missiles using Computational Fluid Dynamics (CFD) techniques. The aim of this paper is as follows: (1) Detailed presentation of the numerical method, with particular emphasis on the high performances in terms of computational time achieved thanks to the use of an implicit scheme combined with a domain decomposition of structured mesh well suited for vector and parallel implementation, and (2) Analysis of 2-D and 3-D unsteady numerical simulations corresponding to academic and industrial cases, showing the accuracy of the method together with its range of applications.

Author (Hemer)

A95-95497
HYPERSONIC NAVIER-STOKES COMPUTATIONS ABOUT COMPLEX CONFIGURATIONS
Copyright

A 3D code, called EURANUS, for solving the Reynolds Averaged Navier-Stokes equations is presented. The code is based on a multiblock/multigrid approach and incorporates both central and upwind schemes within a global formulation. Runge-Kutta time stepping and implicit solvers, using relaxation methods, are available. EURANUS is illustrated with perfect gas calculations around the Hermes configuration at M = 10 and 30 deg angle of attack.

Author (Hemer)

A95-95507
NAVIER-STOKES SIMULATION OF TURBULENT VORTEX HIGH-RE-NUMBER FLOWS OVER A DELTA WING
Copyright

An investigation of a Reynolds-averaged Navier-Stokes method for simulating the high Reynolds number flow over a delta wing is presented. The flow equations are solved by the finite volume method using a space centered explicit time marching scheme stabilized by scalar adaptive dissipation. Implicit residual smoothing accelerates convergence to steady state, and the Baldwin-Lomax turbulence model closes the system. Results are presented for flow over a delta wing with M(sub infinity) = 0.65 and alpha = 12 degrees, at two Reynolds numbers, 9 and 72 million, in both laminar and turbulent flow.

Author (Hemer)

N95-30502# Norwegian Defence Research Establishment, Kjeller (Norway).
RESULTS FROM TESTS OF THE KEARFOTT T16-B INERTIAL MEASUREMENT UNIT
B. JALVING 6 Jan. 1995 87 p (PB95-212031) Avail: CASI HC A05/MA A01

The Norwegian Defense Research Establishment (NDRE) has tested Kearfott Guidance & Navigation Corporation's T16-B Inertial Measurement Unit (IMU) as part of a program for investigating alternative technologies and vendors for the new antiship missile for the Royal Norwegian Navy. Two different IMU's were tested. Among the tests carried out were static navigation, gyro compassing, dynamic navigation, performance during vibrations and determination of gyro random walk coefficients, accelerometer biases and gyro biases. Additionally the applicability of the IMU navigation data for seeker stabilization has been investigated. Significant difference in performance between the two tested units and dependence on the flight profile were observed. The results obtained indicate that the Kearfott T16-B IMU is well suited for the new antiship missile.

NTIS

N95-30507# Lawrence Livermore National Lab., Livermore, CA.
INTEGRATED X-RAY TESTING OF THE ELECTRO-OPTICAL BREADBOARD MODEL FOR THE XMM REFLECTION GRATING SPECTROSCOPETER

Contract(s)/Grant(s): (W-7405-ENG-48) DE95-00892; UCRL-JC-118213; CON-940723-36) Avail: CASI HC A03/MF A01

X-ray calibration of the Electro-Optical Breadboard Model (EOBB) of the XMM Reflection Grating Spectrometer has been carried out at the Pantex test facility in Germany. The EOBB prototype optics consisted of a four-shell grazing incidence mirror module followed by an array of eight reflection gratings. The dispersed x-rays were detected by an array of three CCD's. Line profile and efficiency measurements where made at several energies, orders, and geometric configurations for individual gratings and for the grating array as a whole. The x-ray measurements verified that the grating mounting method would meet the stringent tolerances necessary for the flight instrument. Post EOBB metrology of the individual gratings and their mountings confirmed the precision of the grating boxes fabrication. Examination of the individual grating surface's at micron resolution revealed the cause of anomalously wide line profiles to be scattering due to the crazing of the replica's surface.
The performance deterioration of a high speed axial compressor rotor due to surface roughness and airfoil thickness variations is reported. A 0.025 mm (0.001 in.) thick rough coating with a surface finish of 2.54-3.18 RMS microns (100-125 RMS micrometers) is applied to the pressure and suction surface of the rotor blades. Coating both surfaces increases the leading edge thickness by 10% at the hub and 20% at the tip. Application of this coating results in a loss in efficiency of 6% and a 9% reduction in the pressure ratio across the rotor at an operating condition near the design point. To separate the effect of thickness and roughness, a smooth coating of equal thickness is also applied to the blade. The smooth coating surface finish is 0.254-0.508 RMS microns (10-20 RMS micrometers), compared to the bare metal blade surface finish of 0.508 RMS microns (20 RMS micrometers). The smooth coating results in approximately half of the performance deterioration found from the rough coating. Both coatings are then applied to different portions of the blade surface to determine which portions of the airfoil are most sensitive to thickness/roughness variations. Aerodynamic performance measurements are presented for a number of coating configurations at 60%, 80%, and 100% of design speed. The results indicate that thickness/roughness over the first 10% of blade chord accounts for virtually all of the observed performance degradation for the smooth coating, compared to about 70% of the observed performance degradation for the rough coating. The performance deterioration is investigated in more detail at design speed using laser anemometer measurements as well as predictions generated by a quasi-3D Navier-Stokes flow solver which includes a surface roughness model. Measurements and analysis are performed on the baseline blade and the full-coverge smooth and rough coatings. The results indicate that coating the blade causes a thickening of the blade boundary layers. The interaction between the rotor passage shock and the thickened suction surface boundary layer then results in an increase in blockage which reduces the diffusion level in the rear half of the blade passage, thus reducing the aerodynamic performance of the rotor.

Author
fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated. Author

N95-30727 Department of the Navy, Washington, DC.

APPARATUS AND METHOD FOR PRODUCING THREE-DIMENSIONAL IMAGES Patent

An apparatus and method is capable of acquiring useful three-dimensional radar images from an aircraft which travels in a curvilinear path to generate only a sparsely filled synthetic array. A motion measurement unit outputs position measurements as the aircraft travels in the curvilinear path. The system includes a motion compensation and timing unit and a wave transmitter which outputs chirped radar signals. An antenna coupled to the wave generator sends the chirped radar signals to a region to be imaged and receives scattered chirped radar return signals from scatterers in the region. DTIC

N95-30783* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

ORBITER RAREFIED-FLOW REENTRY MEASUREMENTS FROM THE OARE ON STS-62
(NASA-TM-110182; NASA-1.15:110182) Avail: CASE HC A03/MF A01

Acceleration data taken from the Orbital Acceleration Research Experiment (OARE) during reentry on STS-62 has been analyzed using calibration factors taken on-orbit. The data includes the flight regime from orbital altitudes down to about 100 km which covers the free-molecule-flow regime and some of the flow-transition into the hypersonic continuum. Ancillary data on orbiter position, orientation, velocity, and rotation rates have been used in models to transform the measured accelerations to the orbiter center-of-gravity, from which aerodynamic accelerations along the orbiter body axes have been calculated. Additional steps are discussed which remove residual offsets introduced in the measurements by unmodeled orbiter forces. The resulting aerodynamic accelerations and their ratios, \(A_{(s)} / A_{(x)} \), are discussed and compared with free-molecule-flow predictions of the aerodynamic coefficient ratios \(C_{(s)} / C_{(x)} \). Author

N95-30851* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

A LASER-BASED ICE SHAPE PROFILOMETER FOR USE IN ICING WIND TUNNELS
EDWARD A. HOVENAC (NYMA, Inc., Brook Park, OH.) and MARIO VARGAS Jun. 1995 25 p Original contains color illustrations
Contract(s)/Grant(s): (NAS-27186)
(NASA-TM-106936; E-9664; NASA-1.15:106936) Avail: CASE HC A03/MF A01; 1 functional color page

A laser-based profilometer was developed to measure the thickness and shape of ice accretions on the leading edge of airfoils and other models in icing wind tunnels. The instrument is a hand-held device that is connected to a desktop computer with a 10 meter cable. It projects a laser line onto the ice shape and uses solid state cameras to detect the light scattered by the ice. The instrument corrects the image for camera angle distortions, displays an outline of the ice shape on the computer screen, and can print a full scale drawing of the ice shape. The profilometer has undergone extensive testing in the laboratory and in the NASA Lewis Icing Research Tunnel. Results of the tests show very good agreement between profilometer measurements and known simulated ice shapes and fair agreement between profilometer measurements and hand tracing techniques. Author

N95-30902* Federal Aviation Administration, Atlantic City, NJ.

OFFSHORE NEXT GENERATION WEATHER RADAR (NEXRAD) OT&E INTEGRATION AND OT&E OPERATIONAL TEST Final Report
RADM. J. H. MARTINEZ, BAXTER STRETCHER, JOHN PORCELLO, PETER GUTHLEIN, and WILLIAM DIVINEY Mar. 1995 83 p (AD-A283227; DOT/FAA/CT-TNS/95/10) Avail: CASE HC A05/MF A01

This document is the Final Report for Phase I limited Operational Test and Evaluation (OT&E) Integration and OT&E Operational testing of the first Federal Aviation Administration (FAA) redundant configuration Next Generation Weather Radar (NEXRAD) installed in Kauai, Hawaii, and provides an account of the results of OT&E testing, including recommendations for future considerations. This report provides background information on the Offshore NEXRAD system. In addition, the report contains a description of testing and evaluation including information about the test schedule and location test participants, specialized test equipment used during testing, test objectives/criteria, test descriptions, test results, and methods used for data collection and analysis. The report continues with a comprehensive discussion of overall test results, including Critical Operational Issues (C01) and their resolution. Finally, the report ends with test conclusions and recommendations to improve system performance. DTIC

N95-30906* Arnold Engineering Development Center, Arnold AFS, TN.

Following a proof-of-principle demonstration of Planar Laser-Induced Fluorescence (PLIF) in the AEDC Impulse Facility in FY93, a set of four PLIF images was obtained during FY94 runs of the facility. The images were obtained away from the nose region of a spherically blunt cone, using excitation of nitric oxide in the flow. Two laser sheet geometries were employed and two excitation wavelengths were used. A procedure was developed whereby calibration images allow the remapping of the PLIF images to test article coordinates. Using this technique, it was shown that the bow shock positions determined by PLIF agree well with the shock positions measured using schlieren photography. More importantly, the set of PLIF images constitutes an initial database against which Computational Fluid Dynamics calculations of high enthalpy flows can be compared. Initial results of such a comparison, obtained through Computational Flow Imaging, are reported. Recommendations are given for future PLIF applications at the Impulse Facility. DTIC

N95-30922* Federal Aviation Administration, Atlantic City, NJ.

ELECTRICAL SHORT CIRCUIT AND CURRENT OVERLOAD TESTS ON AIRCRAFT WIRING
PATRICIA CAHILL Mar. 1995 13 p
(AD-A293308; DOT/FAA/CT-TN94/55) Avail: CASE HC A03/MF A01

This document describes the electrical short circuit and current overload tests that were conducted on wires used in commercial transport category aircraft. This testing was conducted to evaluate the fire potential that may result from electrical faults. Results of this testing showed that circuit breakers provide reliable overload protection and that circuit breakers may not protect wires from ticking faults but can protect wires from short circuits. It also showed that circuit breakers may not safeguard against the ignition of flammable materials by ticking faults. Preliminary testing also indicated that direct short circuits are not likely to start a fire and that direct short circuits do not erode insulation and conductors to the same degree that ticking faults do. Current overload testing that resulted in complete thermal degradation of the wire was also con-
fluctuations which determine C(n)-2 are not isotropic—and exhibit spectra and correlation scales which differ greatly from those of velocity. This paper reports wind tunnel measurements to determine the source of this temperature structure in aircraft wakes and laser propagation measurements in this regime. Modifications to CFD and to propagation models are suggested.

Author

This thesis summarizes the major technical achievements obtained as a part of a collaborative research and development project between Ecole Polytechnique and Pratt & Whitney Canada. These achievements include: (1) a thermal-mechanical fatigue (TMF) testing rig which is capable of studying the fatigue behaviors of gas turbine materials under simultaneous changes of temperatures and strains or stress; (2) an advanced alternative current potential drop (ACPD) measurement system which is capable of performing on-line monitoring of fatigue crack initiation and growth in specimen testing under isothermal and TMF conditions; (3) fatigue crack initiation and short crack growth data for the titanium specimens designed with notch features associated with bolt holes of compressor discs; (4) thermal-mechanical fatigue crack growth data for two titanium alloys being used in PW engine components, which explained the material fatigue behavior encountered in full-scale component testing; (5) a complete fractographic analysis for the tested specimens which enhanced the understanding of the fatigue crack growth mechanisms and helped to establish an analytical crack growth model; and (6) application of the ACPD fatigue crack monitoring technique to single tooth fret free specimen (STFT) LCF testing of PWA 1480 single crystal alloy. Finally, a comprehensive discussion concerning the results pertaining to this research project is presented.

Dissert. Abstr.

The turbulent particle dispersion is investigated with regard to the two-phase flow of fuel spray and combustion air in gas turbine combustion chambers. For that purpose, an atmospheric isothermal experiment is presented, that allows the verification of mathematical models for the calculation of turbulent two-phase flows by virtue of the application of nonintrusive measuring techniques and the similarity of its flow configuration to the practical flow. The basic configuration of the gas flow is an axisymmetric, expanding swirl flow with a practical swirl strength and expansion ratio. By using a monodisperse droplet generator, the investigation of turbulent dispersion was separated from atomization. For the gaseous phase, mean and fluctuating velocities as well as Eulerian integral time scales have been measured. The droplet-phase is documented by the measurement of droplet-flux density, velocity, and ensemble rms velocity.

Author

A Linear Motor Free Piston Compressor (LMFPC), a free piston pressure recovery system for fuel cell powerplants was developed. The LMFPC consists of a reciprocating compressor and a reciprocating expander which are separated by a piston. In the past energy efficient
turbochargers have been used for pressure large (over 50 kW) fuel cell powerplants by recovering pressure energy from the powerplant exhaust. A free piston compressor allows pressurizing 3 - 5 kW sized fuel cell powerplants. The motivation for pressurizing PEM fuel cell powerplants is to improve fuel cell performance. Pressurization of direct methanol fuel cells will be required if PEM membranes are to be used Direct methanol oxidation anode catalysts require high temperatures to operate at reasonable power densities. The elevated temperatures above 80 °C will cause high water loss from conventional PEM membranes unless pressurization is employed. Because pressurization is an energy intensive process, recovery of the pressure energy is required to permit high efficiency in fuel cell powerplants. A complete LMPC which can pressurize a 3 kW fuel cell stack was built. This unit is one of several that were constructed during the course of the program.

N95-31423# Allison Engine Co., Indianapolis, IN.
ADVANCED K-_EPSILON MODELING OF HEAT TRANSFER Final Report
OKEY KWON and FORREST E. AMES Jul. 1995 153 p
Contract(s)/Grant(s): (NAS3-25950; RTOP 505-62-10)
(NASA-CR-4679; E-9748; NAS 1.26:4679) Avail: CASI HC A08/MF A02
This report describes two approaches to low Reynolds-number k-epsilon turbulence modeling which formulate the eddy viscosity on the wall-normal component of turbulence and a length scale. The wall-normal component of turbulence is computed via integration of the energy spectrum based on the local dissipation rate and is bounded by the isotropic condition. The models account for the anisotropy of the dissipation and the reduced mixing length due to the high strain rates present in the near-wall region. The turbulent kinetic energy and its dissipation rate were computed from the k and epsilon transport equations of Durbin. The models were tested for a wide range of turbulent flows and proved to be superior to other k-epsilon models, especially for nonequilibrium anisotropic flows. For the prediction of aerofoil heat transfer, the models included a set of empirical correlations for predicting laminar-turbulent transition and laminar heat transfer augmentation due to the presence of freestream turbulence. The predictions of surface heat transfer were generally satisfactory.

N95-31432# Christian Brothers Coll., Memphis, TN.
MARK A. DRIVER 28 Feb. 1995 69 p
Contract(s)/Grant(s): (F49620-94-1-0292)
(AA-D93012; USAATCOM-TR-94-D-22) Avail: CASI HC A08/MF A01
Application of Total Variation Diminishing (TVD) schemes to turbulent flows is considered. The mathematical and physical basis of TVD schemes is discussed. TVD methodology is extended to the solution of turbulent flow problems. A first-order time accurate, second-order space accurate algorithm is used to compute solutions to the problems of shock-boundary-layer interaction, turbine rotor cascade flow, and unsteady, shock-induced heat transfer using the TVD algorithm. This algorithm provides the capability to accurately predict separation, reattachment and pressure and skin friction profiles for shock-boundary-layer interaction. Improved accuracy is demonstrated in computing surface pressures for a turbine rotor cascade. Heat transfer for the cascade is predicted with fair accuracy, showing all the significant features of the experimental Stanton number profiles. Fairly accurate comparison with theory and experiment is evident in the unsteady solutions.

N95-31443# Mississippi Univ., University, MS.
SUMON K. SINHA 21 Feb. 1995 60 p
Contract(s)/Grant(s): (AF-AFOSR-0410-91)
In order to develop a mechanically simple and robust actuator for active flow separation control on axial compressor blades, three different types of acoustic transducers were tested in a wind tunnel. Flow separation on a cylinder in cross flow was used. The first transducer had an internally mounted acoustic speaker blowing through a slot. It could control flow separation only for low Reynolds number laminar flows. A flush mounted high-frequency circular piezo-electric transducer was tried next. It was marginally effective only around the laminar-turbulent transition regime. Since it could not focus the perturbations over a small area, the Acoustosurf was developed next. It consisted of an array of flush mounted narrow strip shaped acoustic transducers capable of detecting surface pressure fluctuations prior to separation. When the appropriate strips were excited at the predominant fluctuation frequency, separation was delayed for transitional and tripped flows. It is believed that the Acoustosurf produces a synergistic interaction between roughness, surface compliance and acoustic radiation to redirect the kinetic energy of the flow by exploiting flow instabilities. Negligible power is therefore needed to operate the Acoustosurf. This has attracted the attention of several aircraft manufacturers.
are reported in this paper. These properties are suitable for use in analyti-
cal models of these fabric structures.

N95-31728# Foreign Broadcasting Information Service, Washington, DC.
FBIS REPORT: SCIENCE AND TECHNOLOGY. CENTRAL EURASIA 18 Jul. 1995 81 p. Translat. into ENGLISH from various Central Eurasian
articles (FBIS-JST-95-029) Avail. CASI HC A05/MF A01
Translated articles cover the following topics: Use of Radar Set With
Synthesized Antenna for Estimating Effectiveness of Active Masking and
Simulating Interference Signals; Simulation of Echo Signals Picked From
Sea Surface by Grazing Radar Beam at Low Grazing Angle; Methods and
Algorithms of Sea Surface Radar Image Processing and Identification;
Aircraft Optimum Control Synthesis Based on Group Analysis of
Motion Equations; On issue of Maximizing Aircraft Glide Range Planning;
Effect of Amplitude and Phase Noise on Quality of Radar Image Forma-
tion; Narrow-Band Infrared (1.0-1.2 micron) Photodiodes on Stressed
Selective Epitaxial GaAs/InGaAs Structures; Selection of Transverse
Modes in InGaAsP Lasers with Dielectric Coating on Mirrors; Single-
Mode Stripe-Geometry lambda = 1.55 micron Stripe-Geometry InGaAsP/

N95-31738# National Aeronautics and Space Administration, Lewis
Research Center, Cleveland, OH.
EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF THE
TIP CLEARANCE FLOW IN A TRANSONIC AXIAL COMPRESSOR
ROTOR
KENNETH L. SUDER and MARK L. CELESTINA (Swedrup Technology, Inc.,
Brook Park, OH.) Jun. 1995 17 p. Presented at the 39th Interna-
tional Gas Turbine and Aeroengine Congress and Exposition, The
Contract(s)/Grant(s): (NASA-235266; RTOP 505-62-52)
(NASA-TM-106711; E-9076; NAS 1.15:106711) Avail. CASI HC A03/MF
A01
Experimental and computational techniques are used to investigate tip
clearance flows in a transonic axial compressor rotor at design and
part speed conditions. Laser anemometer data acquired in the endpoint
region are presented for operating conditions near peak efficiency and
near stall at 100% design speed and at near peak efficiency at 60%-
design speed. The role of the passage shock/leakage vortex interaction in
generating endwall blockage is discussed. As a result of the shock/vortex
interaction at design speed, the radial influence of the tip clearance flow
extends to 20 times the physical tip clearance height. At part speed, in the
absence of the shock, the radial extent is only 5 times the tip clearance
height. Both measurements and analysis indicate that under part-speed
operating conditions a second vortex, which does not originate from the
tip leakage flow, forms in the endwall region within the blade passage and
exits the passage near midpitch. Mixing of the leakage vortex with pri-
mary flow downstream of the rotor at both design and part speed condi-
tions is also discussed.

N95-31948 Clarkson Univ., Potsdam, NY.
A TIME STEPPING COUPLED FINITE ELEMENT-STATE SPACE
MODELING ENVIRONMENT FOR SYNCHRONOUS MACHINE PER-
FORMANCE AND DESIGN ANALYSIS IN THE ABC FRAME OF REF-
ERENCE. Ph.D. Thesis
FANG DENG 1994 290 p. Translat. into ENGLISH from various Central Eurasian
articles (FBIS-JST-95-029) Avail. CASI HC A05/MF A01
This dissertation centers on the development of a modeling envi-
rionment to predict the performance and operating characteristics of
collector-pole synchronous generators. The model basically consists of an
algorithm consisting of two sections, a time stepping two-dimensional
(2D) magnetostatic field finite element (FE) computation algorithm
coupled to a state-space (SS) time-domain model of the winding circuits.
Hence the term time stepping Coupled Finite Element-State Space (CFE-
SS) modeling environment is adopted for this approach. In the FE sec-
tion, magnetic vector potential (MVP) based finite element (FE) formula-
tions and computation of two-dimensional (2D) magnetostatic fields are
used to get the magnetic field solutions throughout a machine's cross-
section at a sequence (samples) of rotor positions covering a complete
(360 deg e) ac cycle. These field solutions yield the winding inductances
by means of an energy and current perturbation method. The output of
the FE section is the magnetic field solutions and the entire set of phase,
field, damper, and sleeve winding inductance profiles versus rotor posi-
tion, including all space harmonics due to rotor saliency, damper bar slot-
ting, sleeve segmentation, stator slotting, and magnetic saturation. These
inductance profiles are decomposed into their harmonic components by
Fourier analysis. The magnetic field solutions and resulting winding induct-
tances represent the key input data to the SS portion of the CFE-SS
modeling environment. Laminated machine iron core loss calculations,
which include the losses in the stator and rotor as well as pole face are
Bian-induced component of such a field. By hybridizing two dynamic
domain decomposition techniques, the grid generation task is simplified,
the computer memory requirement is reduced, and the governing equa-
tions of the rigid-body dynamics are simplified with certain assumptions.
Three dimensional, unsteady Navier-Stokes equations are solved on each of the subdomains by a fully-vectorized, finite-volume, upwind-
baised, and approximately-factored method. These equations are solved
on the composite meshes of hybrid subdomain grids that can move with
respect to each other. Hence, the present method combines the advan-
tages of an efficient, geometrically conservative, minimally and automati-
cally dissipative algorithm with the advantages and flexibility of the domain
decomposition techniques. Several measures that reduce the numerical
error are studied and compared with the exact solution of a moving
normal shock in a tube. This solution compares very well with the analytic
solution of the isentropic equations. It is concluded, that as a minimum
measure, the connectivity of nonconservative overlapped scheme needs
to be second-order accurate for spatial and temporal discretizations, as
well as for the moving subdomain interpolations. Furthermore, the CFL
numbers should be restricted to below unity, if affordable, for flows with
high flow gradients. The method is further scrutinized by simulating the
flow past a sinusoidally pitching airfoil, and the flow past a sinusoidally
pitching and plunging airfoil. The results of the former case are success-
fully compared with the experimental data. The final two-dimensional case
is the separation of a store from an airfoil along a prescribed path. As the
first three dimensional case, the flowfield past an oscillating cylinder near
a vertical wall is simulated. Prior to coupling it with the flowfield equations,
the 6-DOF trajectory method is validated by successfully comparing the
path it predicts with the one used in a captive trajectory testing. Finally, a
rigid-body dynamics method is used to predict the aerodynamically deter-
mained trajectory of a store dropped from its initial position under a wing.
The results of the present investigation contribute to the understanding of
the unsteady aerodynamic interference and the boundary-induced com-
ponent of such a flowfield. However, its main contribution is the newly
proposed computational method for flows involving relative boundary
motions.

N95-31837 Old Dominion Univ., Norfolk, VA.
UNSTEADY FLOW SIMULATIONS ABOUT MOVING BOUNDARY
CONFIGURATIONS USING DYNAMIC DOMAIN DECOMPOSITION
TECHNIQUES Ph.D. Thesis
Avail. Univ. Microfilms Order No. DA9423440
A computational method is developed to solve the coupled govern-
ing equations of an unsteady flowfield and those of rigid-body dynamics in
six degrees-of-freedom (6-DOF). This method is capable of simulating the
unsteady flowfields around multiple component configurations with at
least one of the components in relative motion with respect to the others.
Two of the important phenomena that such analyses can help us to
understand are the unsteady aerodynamic interference and the bound-
ary.
subsequently performed using the magnetic field solution data. Conversely, the output of the SS portion is the entire set of phase, field, damper winding (circuit), and sleeve segment currents, which also include all the resulting time harmonics. These winding current results form in turn the key input data to the FE portion of the modeling environment which is iteratively used in obtaining inductance parameters prior to another round of SS computation of the steady-state current profiles. Again, the model is iterative in nature, in which the user continues cycling through the two sections, namely the FE and SS sections of the CFE-SS modeling environment, until the desired degree of convergence is achieved. The CFE-SS approach uses only design data such as physical dimensions, magnetic circuit geometry, magnetic material characteristics, winding particulars and layouts, and hence does not depend on the existence of actual hardware. The modeling environment is totally within the ABC frame of reference, therefore no approximating assumptions such as sinusoidally distributed mmf's or current sheets were made.

Dissert. Abstr.

The theoretical development and calibration of a nonintrusive, high-resolution, optical flowfield-diagnostic technique utilizing OH laser-induced fluorescence (OH LIF) for the measurement of velocity in steady, high-speed, reacting flows is reported. The particular high-speed, reacting flows of interest are those occurring in supersonic combustors for proposed hypersonic flight vehicles. The theory of the OH LIF strategy employed is described, with emphasis on the optimization of the strategy for quantitative velocity measurements. A simplified model is derived for the calculation of expected signal levels from pulsed, narrow-linewidth, (1,0) band excitation of OH in flames when collecting filtered (1,1) and (0,0) band fluorescence with a gated detector. Several illumination techniques are presented for measuring the Doppler shift of the OH LIF while eliminating systematic errors. A unique reacting underexpanded jet was constructed for the calibration of the OH LIF velocity measurement technique over a wide range of flow conditions. A complete analysis of the distribution of flow properties in the jet flowfield is presented, including results from a full Navier-Stokes calculation with finite-rate chemistry. Comparisons of results from pointwise OH LIF velocity measurements along the centerline and planar OH LIF velocity measurements along the central plane of the reacting underexpanded jet with the numerical solution demonstrate the resolution, range, and accuracy of the technique. Measured and calculated velocities in the supersonic jet core agree on average to within +/-1.3 percent for the pointwise measurements and +/-2.2 percent for the planar measurements. The uncertainty (2 sigma) in the pointwise velocity measurements in the jet core was on average +/-6.0 percent for a single measurement and +/-3.5 percent for the average value of three scans. For the planar velocity measurements in the jet core, the uncertainty (2 sigma) was on average +/-4.9 percent for a single measurement and +/-2.2 percent for the average value of five scans.

Dissert. Abstr.

This report describes progress made in the advanced turbine systems program conceptual design and product development. The topics of the report include selection of the Allison GFATS, castool technology development for industrial engines test plan and schedule, code development and background gathering phase for the ultra low NOx combustion technology task, active turbine clearance task, and water vapor/air mixture cooling of turbine vanes task.

DOE

Paint stripping and repainting of aircraft surfaces are required periodically during the operating lifetime of an aircraft. Historically, paint removal has been achieved using chemical strippers, involving materials which contain toxic components and which create hazardous working conditions. The process generates large amounts of hazardous waste from the chemicals used. Alternative methods for aircraft paint removal are now being investigated within the NATO nations with regard to their environmental safety and effective application. These processes include: Plastic Media Blasting, Wheat Starch Dry Media Blasting, Carbon Dioxide Pallet Blasting, Sodium Bicarbonate Blasting and Thermal Decomposition Methods (Laser, Flash Lamps/Carbon Dioxide). The Lecture Series will review these current state-of-the-art alternative methods with environmental effects and related health hazards, costs, process controls, and more. For individual titles, see N95-32166 through N95-32161.

N95-32170# Eqsquimat Defence Research Detachment, Victoria (British Columbia). WATER BLASTING PAINT REMOVAL METHODS TERRY FOSTER In AGARD, Environmentally Safe and Effective Processes for Paint Removal 3 p Apr. 1995 Copyright Avail: CASI HC A01/MF A01

Water blasting is a paint removal technique that has been used for cleaning and paint removal for many years. The major disadvantages until recently were the slow rate of paint removal and the possibility of damage to the substrate from the high pressures used. With the improvement in nozzle design that allows for higher operating pressures and the use of environmentally compliant paint softeners or strippers, water blasting is becoming a recognized technique for paint removal in the aircraft industry.

Author

N95-32175# Aerospatiale, Toulouse (France). Direction des Estudes. SELECTIVE CHEMICAL STRIPPING OLIVIER MALAVALLON In AGARD, Environmentally Safe and Effective Processes for Paint Removal 3 p Apr. 1995 Copyright Avail: CASI HC A01/MF A01

At the end of the 80's, some of the large European airlines expressed a wish for paint systems with improved strippability on their aircraft, allowing the possibility to strip down to the primer without altering it, using 'mild' chemical strippers based on methylene chloride. These improvements were initially intended to reduce costs and stripping cycle times while facilitating rapid repainting, and this without the need to change the conventionally used industrial facilities. The level of in-service performance of these paint systems was to be the same as the previous times while facilitating rapid repainting, and this without the need to damage to the substrate from the high pressures used. With the improvement in nozzle design that allows for higher operating pressures and the use of environmentally compliant paint softeners or strippers, water blasting is becoming a recognized technique for paint removal in the aircraft industry.
cal stripping, is a 3-coat system with characteristics as near as possible to the previously used paints.

N95-32179# Esquimalt Defence Research Detachment, Victoria (British Columbia).

OPERATIONAL PARAMETERS AND MATERIAL EFFECTS

TERRY FOSTER In AGARD, Environmentally Safe and Effective Processes for Paint Removal 6 p Apr. 1995
Copyright: Avail: CASI HC A02/MF A01

Although there are six types of plastic media, the focus on operational parameters and materials effects of PMB (plastic media blasting) will be on the Type 5 acrylic media with some reference and comparisons to Type 2 media. The other four plastic media are not used extensively in general aircraft stripping and will not be discussed in this paper. There are several military and commercial documents available with detailed procedures for plastic media stripping of aircraft. The actual choice of blasting parameters will, to a great extent, depend on the media chosen and the substrate to be stripped. The effects of various blasting conditions on materials can be evaluated using visual, optical microscopy, scanning electron microscopy (SEM) and mechanical and corrosion test methods. In some test methods up to twelve specimens are required to give meaningful results; therefore statistical analysis tools are also required to interpret the results due to the scatter in some of the data.

N95-32180# Aerospatiale, Toulouse (France). Direction des Etudes.

PROCESS EVALUATION

OLIVIER MALAVALLON In AGARD, Environmentally Safe and Effective Processes for Paint Removal 3 p Apr. 1995
Copyright: Avail: CASI HC A01/MF A01

It is not always easy to conduct a study and implement a systematic policy in the aeronautical paint stripping field. The situations to be studied are complicated by extensive technical data, material conditions and financial unknowns. To these are added demands both in the civil and military fields to increase the performance obtained, optimize cycles, reduce recurrent costs, quickly amortize investments and now increasing respect for the environment. To reply correctly, the various possibilities must be assessed using, if possible, identical criteria and reference systems. The only criterion which applies to all the processes and methods is the overall stripping cost. It is not sufficient for a process to meet the related technical requirements (for example 'I ATA guidelines'), it must also be economically justifiable. The overall costs take into account therefore the costs and materials, labor and also the downtime of the aircraft, amortization and maintenance of the installations and processing of waste, etc. For many years now, AEROSPATIALE has undertaken research and development programs to find and evaluate alternatives to the conventional chemical stripping process. This work has led it to carry out comparative analyses from technical elements enhanced as the work progressed.

N95-32181# Aerospatiale, Toulouse (France). Direction des Etudes.

STANDARDIZATION WORK

OLIVIER MALAVALLON In AGARD, Environmentally Safe and Effective Processes for Paint Removal 1 p Apr. 1995
Copyright: Avail: CASI HC A01/MF A01

For several years now, the main civil aircraft manufacturers (Airbus and its partners, Boeing, Fokker, McDonnell Douglas) have been working jointly on the writing of technical recommendations and the drawing up of an international standard. This work concerns the evaluation of the processes and products used to strip aeronautical paint systems. This process was initiated on request from the main airlines. In effect, the airlines are faced with situations in which the financial and operational objectives are becoming increasingly important. The need was felt to rationalize and, if possible, harmonize the criteria and technical requirements of the various civil aircraft manufacturers in order to facilitate in-service maintenance of the fleets of airlines operating Airbus, Boeing, Douglas aircraft, etc.

N95-32205# Toledo Univ., OH.

FCAS3D USER'S GUIDE: A THREE DIMENSIONAL FULL POTENTIAL AEREOLOSTIC PROGRAM, VERSION 1 Final Contractor Report
MILIND A. BAKHLE Jul. 1995 46 p
Contract(s)/Grant(s): (NAG3-1234; RTOP 538-06-14)
(NASA-CR-198367; E-9796; NAS 1.26:198367) Avail: CASI HC A03/MF A01

The FCAS3D computer code has been developed for aerelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady three-dimensional full potential equation which is solved for a blade row. The structural analysis is based on a finite-element model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aerelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FCAS3D code. A complete description of the input data is provided in this report. In addition, six examples, including inputs and outputs, are provided.

N95-32206# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

A PROBABILISTIC DESIGN METHOD APPLIED TO SMART COMPOSITE STRUCTURES

(NASA-TM-106715; E-9018; NAS 1.15:106715) Avail: CASI HC A03/MF A01

A probabilistic design method is described and demonstrated using a smart composite wing. Probabilistic structural design incorporates naturally occurring uncertainties including those in constituent (fiber/matrix) material properties, fabrication variables, structure geometry and control-related parameters. Probabilistic sensitivity factors are computed to identify those parameters that have a great influence on a specific structural reliability. Two performance criteria are used to demonstrate this design methodology. The first criterion requires that the actual angle of the wing tip be bounded by upper and lower limits at a specified reliability. The second criterion requires that the probability of ply damage due to random impact load be smaller than an assigned value. When the relationship between reliability improvement and the sensitivity factors is assessed, the results show that a reduction in the scatter of the random variable with the largest sensitivity factor (absolute value) provides the lowest failure probability. An increase in the mean of the random variable with a negative sensitivity factor will reduce the failure probability. Therefore, the design can be improved by controlling or selecting distribution parameters associated with random variables. This can be implemented during the manufacturing process to obtain maximum benefit with minimum alterations.

Author
13 GEOSCIENCES

13 GEOSCIENCES

Includes geosciences (general); earth resources; energy production and conversion; environment; pollution; geophysics; meteorology and climatology; and oceanography.

A95-93441
INTERNATIONAL CONFERENCE ON AVIATION WEATHER SYSTEMS
(HTN-95-92940) Copyright

Papers presented at the conference included overviews of aviation weather systems, range and aerospace meteorology, detecting weather systems that can impact on aviation, training and education in aviation meteorology, aviation impact weather variables, aviation weather forecasting, dissemination of aviation weather information, and the economic effects of weather on aviation. Papers dealing with forecasting aviation weather were also presented in a Joint session with the 13th Conference on Weather Analysis and Forecasting. Poster sessions at the conference dealt with requirements for aviation weather products, aviation weather forecasting, detecting weather systems that can impact on aviation, dissemination of aviation weather information, range and aerospace meteorology, and aviation impact variables. For individual titles, see A95-93442 through A95-93561.

A95-93442
AN OVERVIEW OF FAA-SPONSORED AVIATION WEATHER RESEARCH AND DEVELOPMENT
Copyright

The Federal Aviation Administration sponsors research and development work aimed at improving the weather information provided to the air traffic control system, pilots and other users of aviation weather information, e.g. dispatchers and airport operators. There are four major thrusts currently underway: The Aviation Gridded Forecast System (AGFS), the Aviation Weather Products Generator (AWPG), the Integrated Terminal Weather System (ITWS) and applied research and development.

A95-93443
THE FORECAST SYSTEMS LABORATORY'S ROLE IN THE FAA'S AVIATION WEATHER DEVELOPMENT PROGRAM
Copyright

The Federal Aviation Administration (FAA) has embarked on an ambitious program to upgrade weather support for a large cross section of the aviation community. With National Weather Service (NWS) participation, this program will affect the products coming out of the National Meteorological Center (NMC), the operations of the National Aviation Weather Advisory Unit (NAWAU) in Kansas City, Missouri and the operations of each Center Weather Service Unit (CWSU) in the country. There is a CWSU at every Air Route Traffic Control Center and at the Air Traffic Control Systems Command Center (ATCSCC) in Washington, D.C. The new NWS products, based on forecast models and analyses called the Aviation Gridded Forecast System (AGFS), will be produced more frequently and have a higher spatial resolution than current products. Products will be transmitted in a gridded format, enabling meteorologists and users in the aviation community to create graphics along any desired spatial plane. For example, aviation users will be able to create displays along route-specific vertical cross sections. The jargon in the FAA Aviation Weather Development Program (AWDP) for this type of product creation is to 'slice and dice' the data. This paper provides an overview of the responsibilities of the Forecast Systems Laboratory (FSL) in helping the FAA and NWS accomplish the goals of the AWDP.

A95-93444
NATIONAL AVIATION WEATHER PROGRAM PLAN
Copyright

The aviation weather system exists to serve the operational needs of the many users of the national airspace. Users can be broadly categorized as follows: Non-federal users, such as general aviation, air taxi/commuters, air carriers, helicopters, fixed base operators, state aviation entities, and commercial vendors. Department of Defense (DOD) users, including Air Force, Navy, Army, and Marines. Other federal users, such as the Federal Aviation Administration (FAA), the National Weather Service (NWS), the National Aeronautics and Space Administration (NASA), the Department of Agriculture (USDA), the Department of Interior (DOI), and the U.S. Coast Guard. The operational usage of weather information can be viewed in terms of both information categories and phases of flight. The former includes current observations, and forecasts from very near-term to time horizons of 24 hours and beyond; the latter includes flight planning, terminal departure, en route/oceanic, and approach/landing. Clearly when the range of information and the diversity of users is considered, the provision of adequate aviation weather products/services represents a multi-faceted challenge.

A95-93446
OPERATIONAL AVIATION WEATHER REGULATIONS
Copyright

The Federal Aviation Administration (FAA) is responsible for aviation within the United States (US), and within US controlled airspace. This responsibility includes providing support to aviation operations, one aspect of which is aviation weather. In accordance with various agreements, aviation weather information is jointly provided by the National Weather Service, the FAA, and non-Federal organizations including private industry. The weather needs of the aviation users can be provided by the Government and/or the private sector. However, the Government must ensure that the operational aviation weather requirements in the Federal Aviation Regulations (FAR) are met. The FAR identify situations and circumstances where the use of specific weather information is required. These regulations are recognized as having the full force of federal law behind them, and have identified procedures to be followed in their enforcement. As such, the weather related FAR are considered to be legally valid without need for further justification. The purpose of this paper is to identify the weather related aviation regulations in general, and to show their application in a scenario using a hypothetical flight profile from the presflight phase through landing.

A95-93447
A STATUS REPORT ON THE DEVELOPMENT OF THE FEDERAL AVIATION ADMINISTRATION/NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MEMORANDUM OF AGREEMENT

Copyright

The Federal Aviation Act of 1958 directs the Secretary of Transportation 'to make recommendations to the Secretary of Commerce for providing meteorological service necessary for the safe and efficient movement of aircraft in air commerce'. As a result of Office of Management and Budget (OMB) directive and budget guidance, the National Weather Service (NWS) must have the Federal Aviation Administration's (FAA's) requirements before it can enhance existing aviation-specific products and services or add new products and services for the FAA. The current Memorandum of Agreement (MOA) between the FAA and the National Oceanic and Atmospheric Administration (NOAA) for the provision of aviation weather services has been in effect since 1977. A working group composed of FAA and NOAA/WSS participants is updating the existing MOA. The updated MOA will address the FAA's weather-related requirements. The Memorandum of Agreement defines working arrangements between the FAA and NOAA with regard to aviation weather services. It is intended to provide broad guidance to regional offices of the FAA and NOAA for the development of regional and local agreements and working arrangements for day-to-day operations. The MOA addresses the high-level roles and responsibilities of the agencies in providing aviation weather services and defines working arrangements related to the following areas: Administration, Finance, Facilities and Equipment, Operations, Communications, Training, and Research and Development.

Author (revised by Hemer)

A95-93448

Copyright

The Federal Aviation Administration (FAA) is faced with the challenge of implementing increasingly complex, interrelated technological solutions to satisfy the weather needs of multiple users and diverse operations within the aviation community. Operational system planning is a new way of looking at making the best use of technology and arriving at appropriate functional capabilities for advanced aviation weather systems. Operational system planning is based on thorough examination of the operational processes pertinent to the National Airspace System (NAS) goals of safety, capacity, and efficiency. Requirements management for weather requirements is an activity which promotes oversight of operational system planning throughout the Major Systems Acquisition (MSA) process. It begins with articulation of the user's need and rationale for weather information for the daily operations performed by the user. Operational requirements are derived from these needs by analyzing the user's environment, decision levels, and overall job responsibilities. Operational requirements become the NAS top level weather requirements which flow down into system specifications and designs, and operational test and evaluation criteria. This paper presents a requirements management methodology which can be used to identify Air Traffic (AT) needs for weather information in the NAS and apply them to operational system planning. This methodology includes the identification of operational weather needs, a process for the translation of operational weather needs into engineering requirements, and an approach for requirements management which expedites both programmatic decision-making and the proper choice of technological solutions to meet the needs.

Author (Hemer)

A95-93449

Copyright

The Integrated Terminal Weather System (ITWS) is one of three major development projects sponsored by the Federal Aviation Administration's (FAA's) Aviation Weather Development Program (Sankey, 1993). Focused on the environment within the terminal area, ITWS integrates data and products from relevant FAA and National Weather Service (NWS) sensors and systems to create a suite of weather products that will provide for improvements in terminal planning, capacity, and safety. The ITWS products, which will require no special meteorological interpretation, will be tailored to the needs of individual users (e.g., pilots, controllers, terminal area traffic managers and terminal automation systems). Although ITWS has no dedicated sensors of its own, the system architecture is extremely complex. A functional prototype of the ITWS is being developed by M.I.T. Lincoln Laboratory to provide a mechanism for exploring the operational concept for the system, for identifying the issues surrounding real-time access to the diverse data sources, for exercising the algorithms that produce the products in an operational setting, and for facilitating transfer of the ITWS technology to a production contractor. There are a number of challenges inherent in designing and engineering the ITWS—the most significant of which are derived from the high priority placed on an early system deployment. The conference speech will present the overall system concept followed by a review of the design and engineering challenges; indicating first how these challenges affect the strategies applied to phased development and validation of the weather algorithms, second how they affect the strategies for the development and use of prototype systems in the field, and finally how they affect various mechanisms for achieving an early initial operational capability for the system. Progress to date in addressing these challenges will be presented.

Author (Hemer)

A95-93450

Copyright

The Federal Aviation Administration (FAA) initiated the Terminal Doppler Weather Radar (TDWR) program in the mid-1980's in response to the need for improved real-time hazardous weather (especially low-altitude wind shear) surveillance in the terminal area. The initial focus of the TDWR was to provide reliable, fully automated Doppler radar detection of microbursts and gust fronts and 20-minute warning of wind shifts which could effect runway usage. Subsequent operational demonstrations have shown that the overall terminal situational awareness provided by the TDWR color Geographical Situation Display (GSD) depiction of wind shear locations, weather reflectivity and storm motion also yields substantial improvements in terminal operations efficiency for air traffic managers and for airlines. In this paper, we will describe the current status and deployment strategy for the operational systems and recent results from the extensive testing of the radar system concept and of the weather information dissemination approach.

Author (Hemer)
A95-93452
THE INTEGRATED TERMINAL WEATHER SYSTEM (ITWS) STORM CELL INFORMATION AND WEATHER IMPACTED AIRSPACE DETECTION ALGORITHM
Copyright
The Integrated Terminal Weather System (ITWS) is an FAA-sponsored program (Sankey, 1993; Ducot, 1993) whose objective is to acquire data and products from a variety of weather sensors, integrate the data and create aviation weather products for users, such as Air Traffic Control (AT) controllers and traffic managers, pilots, and airline and airport operations managers. The goal of ITWS is to increase capacity at airports, reduce controller workload, and enhance safety. The objective of the ITWS Storm Cell Information (StoCel) and Weather Impacted Airspace (WIA) Detection products is to identify storm cell characteristics (echo top, echo bottom, presence of heavy rain, hail, etc.) and airspace that pilots are likely to avoid because it contains hazardous weather. The StoCel/WIA products rely on the integration of pencil-beam data and products and Air Surveillance Radar (ASR-9) Weather Channels data. ASR-9 radars are useful because they cover the entire airspace of interest, perform a volume update at roughly 30-second intervals, and will be the weather representation most widely available to the Air Traffic Control (ATC) community. Nearby WSR-88D radars also cover the entire airspace of interest and provide indications of storm vertical structure. However, the volume update rate is typically on the order of 5 to 10 minutes, depending on the scanning strategy. Terminal Doppler Weather Radar (TDWR) radars perform volume updates about every 2.5 to 3 minutes, but perform sector scans that do not cover the entire airspace. Integration of the data from these various sensors produces a product that is superior to a product based on any single sensor. Field tests of components of this algorithm were conducted at Dallas-Ft. Worth (DFW) and Orlando (MCO) International Airports during the summer of 1993. The objectives of these tests are to evaluate the technical performance of the algorithm and validate the operational concept. This paper will describe the algorithm, and discuss the operational concept and functional requirements for the product. Author (revised by Hemer)

A95-93453
IMPROVING AIRCRAFT IMPACT ASSESSMENT WITH THE INTEGRATED TERMINAL WEATHER SYSTEM MICROBURST DETECTION ALGORITHM
Copyright
In recent years a number of aircraft accidents have resulted from a small scale, low altitude wind shear phenomena known as a microburst. Microbursts are produced within thunderstorms and are characterized by intense downdrafts which spread out after impacting the earth's surface, displaying strong divergent outflows of wind. The Terminal Doppler Weather Radar (TDWR) program is the first system developed to detect microbursts from a ground-based radar in the airport terminal area. Improving safety is its primary goal, and test operations in Denver, Kansas City, and Orlando have shown it to be highly successful in identifying microbursts. In general, this identification has been performed with a more than 90% Probability of Detection (POD) and a less than 10% Probability of False Alarm (PFA). The Integrated Terminal Weather System (ITWS) will introduce several new low-level wind shear products. These products include the Microburst Prediction product, the Microburst Trend product, and an improved Microburst Detection Product. The Microburst Prediction product will provide estimates of the future location, onset time, and peak intensity of microbursts before their surface effects are evident. The Improved Microburst Detection Algorithm being developed under the ITWS program attempts to build on the performance of the TDWR Microburst algorithm by improving POD and PFA and providing finer localization capabilities. Most importantly, enhancements to the TDWR algorithm are necessary in order to: (1) provide a consistent input to the microburst trend algorithm; (2) closely relate the microburst alert to the energy loss that the aircraft will actually experience and to alerts from an on-board forward-looking Doppler radar. The TDWR algorithm does a good job detecting the microburst impacted airspace, but makes no attempt to deduce the number and centers of the events. The focus of this paper is on the second motivating factor listed above: relating the microburst alert more closely with actual aircraft performance.

A95-93454
ITWS CEILING AND VISIBILITY PRODUCTS
Copyright
A major function of the Integrated Terminal Weather System (ITWS) is to provide weather products that can be used in traffic planning and management to increase the actual capacity of an airport. The ITWS ceiling and visibility products are directed towards the management of the arrival traffic. The planned rate of arriving traffic at an airport is based on the Airprot Acceptance Rate (AAR), the number of arriving airplanes per hour that is believed can be safely handled by Air Traffic Control. Ceiling and visibility conditions near the airport are a major consideration in setting the AAR. Low ceilings and obscured visibility restrict the ability of pilots to see the runway and other aircraft. Necessary increased caution and separations in these conditions impede traffic flow near the airport. Unexpected, rapidly degrading low ceiling or visibility conditions can reduce the airport arrival capacity below the AAR with the result of holding large numbers of airplanes in terminal airspace before they can be safely landed. In extreme circumstances, pilots may be required to divert to their alternate destination. Conversely, unexpectedly rapidly improving low ceiling or visibility conditions can increase the airport arrival capacity at a time when there is insufficient approaching traffic to take advantage of the situation. Accurate short-term forecasts of these changing situations will provide the information needed by traffic managers for planning realistic acceptance rates and by pilots for diversion decisions. We present an overview of the product development strategy and discuss some of the technical considerations. It will be necessary to overcome significant scientific challenges in order to be successful. Our optimism comes from the improved operational meteorological data in the terminal area, from the ability to access and to process these data rapidly, and from ongoing advances in data assimilation for mesoscale models. Our role is to coordinate the fusion of these technical and scientific advances into operational aviation weather products and to evaluate the effectiveness of these products.

A95-93455
ITWS GRIDDED ANALYSIS
Copyright

654
13 GEOSCIENCES
sponsored by the Federal Aviation Administration
Copyright

The Integrated Terminal Weather System (ITWS) brings together data from a number of FAA and non-FAA weather sensors to provide knowledge of the weather in an extended region surrounding an airport. ITWS supports a variety of new products designed to increase airport capacity and improve safety. The ITWS gridded analysis system provides an analysis of several state-of-the-atmosphere variables: wind, temperature, pressure, and humidity. The Local Analysis and Prediction System (LAPS), developed by NOAA/ERL/FSL provides the basic concepts and the initial prototype. The LAPS analysis combines data from the Mesoscale Analysis and Prediction System (MAPS) with observations from a variety sensors, such as wind profilers, ground stations, and aircraft. Several enhancements are being added to LAPS, creating an analysis system that is appropriate for terminal-area sensors and the temporal and spatial scales required for terminal operations. In 1992, a prototype terminal gridded winds analysis was tested at Orlando International Airport. Successful field operations from August 17 until September 25 featured the first real-time analysis using Terminal Doppler Weather Radar (TDWR) and the National Weather Service WSR-88D (NEXRAD) data.

An improved system will operate at the Orlando airport this summer. We describe the prototype winds analysis, with particular attention to our implementation of Multiple Single Doppler Analysis (MSDA) and the cascade of scales, and give some examples from our 1992 demonstration.

Author (modified by Hemer)

A95-93456

THE ITWS MICROBURST PREDICTION ALGORITHM

Lincoln Laboratory is developing a prototype of the Federal Aviation Administration (FAA) International Terminal Weather System (ITWS) to provide improved aviation weather information in the terminal area by integrating data and products from various FAA and National Weather Service (NWS) sensors and weather information systems. The ITWS Microburst Prediction products is intended to provide an additional margin of safety for pilots in avoiding microburst wind shear hazards. The product is envisioned for use by traffic managers, supervisors, controllers, and pilots (directly via datalink). Our objective is to accurately predict the onset of microburst wind shear five or more minutes in advance. The approach we have chosen in developing the ITWS Microburst Prediction algorithm emphasizes fundamental physical principles of thunderstorm evolution and downdraft development, incorporating heuristic and/or statistical methods as needed for refinement. Image processing and data fusion techniques are used to produce an 'interest image' (Delany et al., 1991, 1992) that reveals developing downdrafts. We use Doppler radar data to identify regions of growing thunderstorms and probable regions of downdraft, and combine these with measures of the ambient temperature structure (height of the freezing level, lapse rate in the lower atmosphere; Wolfson 1990), total lightning flash rate, and storm motion to predict the microburst location, timing, and outflow strength.

Author (Hemer)

A95-93457

THE REAL-TIME ANALYSIS AND PREDICTION OF STORMS PROGRAM

The Research Applications Program (RAP) at the National Center for Atmospheric Research (NCAR) has been conducting a variety of basic and applied research on meteorological phenomena that may improve the safety and efficiency of our nation's air traffic system. To this end, RAP has had a rich history in the organization and participation of field observation programs. RAP has found that field programs enhance the understanding of the physical and dynamical processes of the atmosphere, allow rapid testing and evaluation of systems to detect and forecast meteorological phenomena, and facilitate the simultaneous scientific and engineering development that is necessary to rapidly transfer the technology to the operational community. RAP has participated in a multitude of field programs (e.g. JAWS, CLAWS, CINDE, TDWR, CAPE and WISP) to study phenomena ranging from microbursts to in-flight icing. The Real-time Analysis and Prediction of Storms (RAPS) field program represents an extension of RAP's ongoing efforts to observe and study phenomena in the convective weather environment. These studies have included short-term thunderstorm forecasting (using humans and artificial intelligence), advanced remote sensing, real-time numerical modeling, hail detection, and tornado forecasting. The purpose of this paper is to describe the programs general research, goals and operations.

Author (Hemer)

A95-93458

PRELIMINARY COMPARISONS BETWEEN MM5 NCAR/PENN STATE MODEL GENERATED ICING FORECASTS AND OBSERVATIONS

Copyright

The Winter Icing and Storms Project (WISP) is a research study primarily directed toward improving the forecasting of icing conditions for the aviation community. A large part of this study is to develop and upgrade microphysical parameterizations for use in numerical models which predict areas of icing potential on a national scale. Presently, within the National Weather Service, the National Aviation Weather Advisory Unit in Kansas City is the only provider of aircraft-icing forecasts for the continental United States. Because none of the present numerical forecasts models explicitly predict areas of supercooled liquid water (hereinafter referred to as SCLW), the icing forecasts are primarily based on humidity and temperature thresholds to determine potential icing conditions. Schultz and Politovich (1992) developed an algorithm that uses the temperature and humidity data from the National Meteorological Center, Nested-Grid Model (NGM) to diagnose areas of potential icing. Due to the coarse horizontal resolution of the larger scale forecast models (about 80 km) mesoscale features like frontal rain or snowbands are not accurately resolved. In addition to under predicting the severity of aircraft icing, lack of horizontal resolution can also result in over predicting the spatial and temporal evolution of the icing event. In this paper, additions made to the microphysical package of the MM5 NCAR/Penn State mesoscale model to explicitly predict SCLW will be described. An example of how the new
parameters improve the prediction of SCLW and therefore icing events will also be given.

A95-93459
KNOWING OUR USERS -- A CHALLENGE FOR METEOROLOGISTS AT THE NATIONAL AVIATION WEATHER ADVISORY UNIT

The National Aviation Weather Advisory Unit (NAWAU) in Kansas City, with a staff of 20 meteorologists, plays a major role in the National Weather Service's aviation weather program. NAWAU forecast products include: Sigmets, Convective Sigmets, Airmets and Area Forecasts for the 48 contiguous states. The unit recently began issuing International Sigmets for large portions of the north Atlantic and north Pacific. Products of the unit serve both general and commercial aviation. Two categories of NAWAU inflight advisories are important to both groups, the Convective Sigmets which advise of significant convective activity and non-convective Sigmets which describe severe turbulence and icing conditions of importance to all aircraft. Certain other phenomena rate Sigmet attention such as volcanic ash and areas of blowing sand or dust. The Airmet advisories describe areas of Instrument Flight Rules (IFR) conditions (generally ceilings less than 1000 feet above ground level and/or visibility less than 3 miles or 4800 meters). Other Airmet criteria include: mountain obscuration, moderate intensity turbulence and icing, and strong sustained surface winds. Another in the NAWAU lineup of products is the Area Forecast, commonly termed the FA. The FA provides a state by state description of general cloud and weather conditions for a 12 hour period with an outlook for an additional 6 hours. Who uses NAWAU products? And how do they receive those products? Virtually all who fly come in contact with NAWAU issuances. But no one receives the product directly from the Kansas City unit. Distributors of NAWAU products include: Center Weather Service Unit meteorologists, Central Flow Control Facility meteorologists in Washington DC, FAA Flight Service Station specialists, Weather Service pilot briefing offices, Airline dispatch, meteorological and operation personnel, DUAT - The Direct User Access Terminal, computer based briefing service, Private vendors or weather data and firms providing briefing services, and Military users. Among those groups, the chief disseminators for general aviation products are the briefing specialists at the FAA's Automated Flight Service Stations (AFSS) and Flight Service Stations. Author (revised by Hemer)

A95-93460
AN INTEGRATED SYSTEM TO IMPROVE AVIATION WEATHER FORECASTS FOR THE ALASKA RANGE

A large amount of tight air traffic flies over the Alaska Range. The complex terrain comprising the Alaska range and surrounding mountain ranges in conjunction with their proximity to the gulf of Alaska, a region of major cyclone activity, creates a flying environment that is extremely hazardous to general aviation. There is, therefore, a need to improve aviation weather forecasts for the Alaska Range. A proposed integrated system for forecasting weather conditions in the area is discussed. The system would include profilers for measuring wind, temperature, and other meteorological parameters and a remote lower powered sensor system uplinked to small relay satellites that would downlink the data to a computer in the weather forecast office. These data would form the basis for advisories to aircraft flying the Alaska Range. A system incorporating these features will be evaluated by a two stage process. The first stage will involve case study modeling, model development, evaluation, and improvement, and simulation experiments. The second stage will involve an extended field demonstration of a prototype system.

A95-93461
TRANSITIONING TO THE AVIATION ROUTINE WEATHER REPORT (METAR) AND THE INTERNATIONAL AERODROME FORECAST (TAF) WITHIN THE FEDERAL AVIATION ADMINISTRATION

With more airlines operating in an international environment there is a need to move towards a single surface aviation weather code. The adoption of a single code has been under review for more than 10 years and is fully supported by the international aviation community, specifically International Air Transport Association (IATA). At the present time, two aviation weather codes are in use, the Surface Aviation Weather Observation (SAQ) used in North America and the Aviation Routine Weather Report (METAR) used by the rest of the world. Similarly, there are two forecast codes, the Terminal Aerodrome Forecast (TAF) and the Terminal Forecast (FT). The adoption of a single surface aviation weather and forecast code benefits users by simplifying the training requirements and, of greater importance, reducing the possible miscommunication of information, therefore increasing safety. The purpose of this paper is to describe the process the United States undertook in committing to implement METAR/TAF, the code format and the most significant differences/exceptions filed with the International Civil Aviation Organization (ICAO) and the World Meteorological Organization (WMO) and provide a description of the coordination process within the United States.

A95-93462
AVIATION WEATHER EDUCATION AND THE UNIVERSITY OF NORTH DAKOTA AVIATION WEATHER SURVEY

The state of pilot aviation weather knowledge has recently become the focus of academic investigations. Studies conducted by the Aviation Weather Forecasting Task Force of the National Center for Atmospheric Research and the US Air Force have generated an increasing amount of interest in the subject. These studies indicated that today's pilots are not very knowledgeable about aviation meteorology. Much of the blame for this problem has been directed towards the FAA for its apparent lack of concern for the problem. This has led to many pilots being certified without a necessary, comprehensive knowledge of meteorology. Some of these pilots become flight instructors. These young and inexperienced flight instructors, who were poorly trained and tested as students in the aviation meteorology field to start with, are now responsible for teaching meteorology to new pilots. As a part of an effort to meet this problem, the Center for Aerospace Sciences of the University of North Dakota conducted a survey of active flight students and instructors to evaluate their knowledge of aviation weather and their preflight aviation meteorology gathering skills and techniques in the spring of 1992. One part of the survey involved having the flight instructors and students self rate their knowledge of aviation meteorology. The results indicated that both the instructors and students were deficient in general meteorology, special
A95-93463 PILOT TRAINING INITIATIVES FOR THE '90S

Copyright
The Federal Aviation Administration (FAA) and the National Weather Service (NWA) have spent the last decade defining and developing aviation weather and air traffic systems which will meet the anticipated needs and requirements of the users. As part of these modernization plans, the National Aviation Weather Program Plan (NAWPP) was developed. After extensive survey of the user communities: pilot, industry and government personnel, a list of needs was developed. Unanimously, the groups pinpointed the training of pilots in weather as the most critical area to be addressed. In response to this consensus the FAA, as lead organization for the government in this issue, is developing an action plan to respond to this need. The purpose of this paper is to present a baseline of the current state of the training function, describe the specific weakness from the perspectives of the pilots, the government and private industry involved in training tasks, and suggest solutions. There are also training initiatives being developed by the government and private industry which may help in eliminating the weakness discovered. These initiatives will also be discussed. Author (Hemer)

A95-93464 AVIATION AND THE ENVIRONMENT

Copyright
Environmental issues associated with aviation are discussed. Concerns about the potential impact of aviation on the environment have increased since the United States Conference on Environment and Development held at Rio de Janeiro in 1992. Since the conference, attention has been focused on concerns that aviation may contribute to depletion of the ozone layer, global warming, and acidification, especially since the number of air passengers in the year 2000 is predicted to be around 800 million. Until recently, the most important environmental concern associated with civil aviation was aircraft noise. Although technological improvements to reduce aircraft noise have been made, noise is still high on the agenda of problems. Atmospheric pollution from aircraft engine emissions, however, has become the major environmental concern of the 1990s. The world's aviation industry consumed an estimated 136 million tons of fuel in 1990. This is expected to increase to 220 million tons by the year 2010. This will lead to increases in emissions of carbon dioxide and nitrogen oxides. Currently world aviation has been estimated to produce just 3% of the carbon dioxide resulting from the burning of fossil fuels and less than 3% of the nitrogen oxides produced by man-made sources. Limited financial resources make it essential that the aviation community use all of the information available to understand and lessen its impact on the environment. Greater use of in-flight weather reports could become an important part of a fuel efficient flight planning program. Greater fuel efficiency means less fuel burned and fewer emissions into the atmosphere. Author (Hemer)

A95-93465 STRATUS' TEPHIGRAM AS A TRAINING/FORECASTING TOOL
FRANCES DE VERTEUIL Environment Canada, Montreal, Quebec, Canada, CAMERON HAYNE Environment Canada, Montreal, Quebec, Canada, SIMON INWOOD Environment Canada, Montreal, Quebec, Canada, DENIS JACOB Environment Canada, Montreal, Quebec, Canada, and PETER ZWACK Universite de Quebec a Montreal, Montreal, Quebec, Canada In International Conference on Aviation Weather Systems, 5th, Vienna, VA, Aug. 2-6, 1993. Preprint Volume. A95-93441 Boston, MA American Meteorological Society 1993 p. 92-94

Copyright
The goal of the Stratus project is to design and develop a prototype expert advisory system to assist meteorologists in the production of the low cloud portion of airport terminal weather forecasts. One of the X window based tools developed in the project is the tephigram. This tool is a computerized version of the graph of potential temperature versus temperature commonly used by aviation meteorologists to display a vertical profile of the atmosphere. It can be used to visualize data from a variety of sources including numerical model output and upper-air soundings. The tephigram tool enables interactive editing of the temperature and humidity data, with automatic recalculation and display of the wet bulb and frost point curves. The editing is available on both the original and zoomed views of the graph. The mouse is used to drag a data point to the desired temperature point along the isobar. This editing is usually constrained to satisfy the following physical criteria: the dew point temperature cannot exceed the temperature; the unsaturated lapse rate cannot exceed the dry adiabatic lapse rate; and the saturated lapse rate cannot exceed the wet adiabatic lapse rate. The user can disable any of the above constraints, edit freely, and then request that the data points be adjusted so that the constraints apply. Alternatively, the user has the option of having the other data points adjusted continuously as the one data point is moved. Full numeric and graphical feedback is provided so that the meteorologists is firmly in control. Author (revised by Hamer)

A95-93466 AVIATION METEOROLOGY EDUCATION IN AN AB INITIO SETTING

Copyright
Ab initio flight and ground training embraces the crew concept. It is designed to take paired pilots applicants with no prior flight deck experience through an intensive flight and ground school program. Candidates leave the program as crew-qualified aviators with the skill and knowledge required to assimilate quickly into an air carrier's flight line as first officers. Many flight training facilities have recognized this need and offer ab initio pilot training; approximately sixteen programs have been developed by various institutes worldwide. Few, however, offer meteorology as a separate part of the curriculum. The University of North Dakota Aerospace Foundation, located in Grand Forks, ND, has developed a curriculum entitled 'Spectrum' which offers a significant amount of meteorological training to the pilot candidates. This paper will discuss pilot education in the Spectrum ab initio pilot training program. Author (Hemer)

A95-93467 SENSING THUNDERSTORM MICROPHYSICS WITH MULTIPARAMETER RADAR: APPLICATION FOR AVIATION

Copyright
Polarimetric radar signatures depend on the mean values and dis-
tributons of size, shape, and spatial orientation as well as the composition (dielectric constant) of particles filling the radar resolution volume. Hail, graupel, snow, and rain have distinctive electromagnetic scattering characteristics. Multi-wavelength radar systems exploit geometric relationships between hydrometeor size and radar wavelength and have shown potential for detecting hail. Multiparameter radars, i.e., radars capable of making both polarimetric and multi-wavelength measurements, can be used to identify mixed-phase precipitation and homogeneous precipitation types. During the summer of 1992 radar measurements were obtained with the National Center for Atmospheric Research (NCAR) CP-2 radar and with the Colorado State University-University of Chicago and Illinois State Water Survey (CSU-CHILL) radar. The combined dataset gives a full suite of multiparameter radar measurements and is being used to refine multiparameter techniques for the remote retrieval of precipitation microphysical properties. This paper illustrates how the radar measurements can be used to specify regions of snow, graupel, hail, and rain within thunderstorms. In an operational setting, such techniques can be used to automatically determine areas of potential aviation hazard and to optimize airport capacity.

Author (Hemer)

A95-93468
A COMPARATIVE PERFORMANCE STUDY OF TDWR/LLWAS 3 INTEGRATION ALGORITHMS FOR WIND SHEAR DETECTION

Copyright

In 1993 the FAA will begin to deploy two new wind shear detection systems, the Terminal Doppler Weather Radar (TDWR) and the third generation Level Low Windshear Alert System (LLWAS 3). Eventually, up to 45 airports may receive both a TDWR and an LLWAS 3. Co-located systems will be integrated to provide a single set of wind shear alerts, and to provide increased performance relative to each subsystem. To meet TDWR production schedules one of three integration algorithms had to be chosen for specification by Fall 1991. To assess the relative performance of the three algorithms we performed a comparative study of the integration algorithms, and the TDWR and LLWAS 3 algorithms at Orlando International Airport (MCO) in the Summer of 1991. This paper gives an overview of this study. The algorithms are described briefly, followed by a section on data collection at the Orlando test bed. Next, a methodology for estimating various algorithm performance statistics based on a comparison with a dual Doppler algorithm is detailed. Lastly, some results of applying this methodology to the various algorithms are presented and discussed.

Author (Hemer)

A95-93469
USE OF WSR-88D DATA IN THE FAA'S WEATHER IMPACTED AEROSPACE PRODUCT

Copyright

A network of Doppler weather radars (WSR-88D) is being deployed at the present time. By 1996, most of the continental U.S. will have radar coverage. This data source will provide the aviation community a new 4-dimensional data set with weather information that has never been available on such a large scale. This information will be valuable for both enroute and terminal area users. As part of the Federal Aviation Administration's (FAA) improvement of weather information for aviation, three systems are being developed to improve aviation weather products: the Aviation Gridded Forecast System (AGFS), the Integrated Terminal Weather System (ITWS) and the Aviation Weather Products Generator (AWPG). In the scheme of the ITWS and AWPG, products are being developed to identify airspace that is potentially hazardous due to weather conditions. This product, deemed Weather Impacted Space (WIA) will be utilized in both the ITWS and AWPG for both terminal area and enroute airspace activities. The initial WIA Product will define a volume of airspace, in which, the weather is deemed hazardous to all aircraft. Future developments for the WIA Product may include aircraft dependent or index defined regions of airspace. For the Terminal WIA product, ARSR-9, TDWR and WSR-88D data will be utilized along with numerous other weather sensors. The processing of the WSR-88D data will include the running of four consecutive weather algorithms: Storm Cell Identification and Tracking, Hail Detection, Mesocyclone Detection and Tornado Detection. The focus of this paper is to describe the plan to use the WSR-88D data and algorithms to define the WIA.

Author (revised by Hemer)

A95-93470
NEXRAD/ARSR OPERATIONAL COMPARISON

Copyright

The National Weather Service (NWS), Federal Aviation Administration (FAA), and Department of Defense are in the process of fielding the Next Generation Weather Radars (NEXRAD). These doppler weather radars, also known as Weather Surveillance Radars (WSR)-88D, will be replacing the WSR-57 and WSR-74 weather radars in use today. The NEXRAD data will be used by the FAA's Advanced Automation System (AAS) in place of the Air Route Surveillance Radar (ARSR) weather data currently being used by air traffic controllers. Because the NEXRAD's scanning strategy is more time consuming than the ARSR's, there have been some concerns expressed within the FAA about using 'untimely' NEXRAD data in an Air Traffic Control (ATC) environment. In response to these concerns, the FAA's Center for Advanced Aviation System Development (CAASD) at MITRE conducted a study (Dunbar, 1993) under the sponsorship of the FAA's National Airspace System (NAS) System Engineering Service (ASE), to assess the relative ability of NEXRADS and ARSRs to detect and present significant weather in order to determine if there is any operational impact in using NEXRAD data in lieu of ARSR data. There are four types of weather radar data used in the study: NEXRAD, ARSR, Terminal Doppler Weather Radar (TDWR), and Airport Surveillance Radar (ASR)-9. Each is described as well as a description of the reflectivity mapping scheme.

Author (Hemer)

A95-93471
FINAL RESULTS OF THE WEATHER TESTING COMPONENT OF THE TERMINAL DOPPLER WEATHER RADAR OPERATIONAL TEST AND EVALUATION

Copyright

The final results of the operational testing and evaluation of the weather observation component of the Terminal Doppler Weather Radar (TDWR) system are presented. The TDWR is a C-band weather radar consisting of a 25 foot diameter center-fed parabolic reflector antenna, with the feed mounted on a tripod. The antenna beamwidth is 0.55 degrees. The transmitter tube is a 250 kilowatt peak power pulsed klystron that transmits a 1.1 millisecond pulse (-6 decibel width) at pulse repetition frequencies of 250 to 2000 hertz. The large dynamic range, more than 128 decibels, provides good clutter suppression and accurate reflecti-
tivity measurements. The TDWR was tested at the Federal Aviation Administration Aeronautical Center in Oklahoma City from 24 August to 30 October 1992 and 26 April to 24 May 1993. The Fall test results were inconclusive mainly because there was not a significant number of weather cases for evaluation. The most significant results obtained during Spring testing was the observation of a large number of large scale thunderstorm complexes that often associated with fast moving squall lines with strong gust fronts. Isolated storms with strong microbursts, which are more likely to occur during the summer months in Oklahoma, were rarely observed. The microburst detection algorithms, however, seemed to perform well with few false alarms. The gust front detection algorithm also performed well. However, it periodically identified false wind shifts due to range folded echoes for failures in the velocity dealing algorithm.

Hemer

A95-93472
FLYING WITH AUTOMATED SURFACE OBSERVATIONS

Copyright
Two automated observing systems are now being deployed in the national airspace: the automated weather observation system (AWOS) and the automated surface observation system (ASOS). When the network is completed, more than 1,200 automated systems will provide minute by minute observations 24 hours a day. Voice transmission of the current weather conditions will also be instantaneous to pilots via phone and aircraft radios. Both the AWOS and ASOS evaluate visibility, sky conditions, precipitation, and other meteorological parameters than can obstruct vision, using multiple sensors that are linked to a computer. The data were then converted into transmitted surface observations utilizing complicated algorithms. Data obtained from a network of human observers are also used in the transmissions. After 2 years of using AWOS and ASOS in Nebraska, pilots have praised the ability of the systems to provide continuous observations at many airports where before only limited or no observations existed. The pilots, however, have raised concerns over the limited areas of coverage of AWOS and ASOS. The pilots have also continued to rely on human observations. Despite this, automated observations are a reality. They will provide a vast observation network with continuous reports. Although AWOS and ASOS are not an exact replacement for human observations, they are a valuable source of information.

Hemer

A95-93476
INVESTIGATION OF OUTFLOW STRENGTH VARIABILITY IN FLORIDA DOWNDRAFT-PRODUCING STORMS

Copyright
The term 'downdraft' was coined by Fujita and Byers (1977) to describe unusually intense, small-scale convective downdrafts having vertical velocities greater than 12 ft/s (approximately m/s) at an altitude of 300 ft (approximately 100 m) AGL. As the descending column of negatively-buoyant air nears the ground, vertical momentum is converted to horizontal momentum and accelerated radially by pressure gradient forces, resulting in horizontally-divergent, shallow outflow patterns that can exhibit wind speeds in excess of 40 m/s. In this study we make no distinction between the mechanisms of a typical thunderstorm downdraft and those of a downburst. However, we define downbursts as surface outflow events with a divergent Doppler radar differential radial velocity (delta V) of 10 m/s or greater. During June, July, and August of 1990, the FAA held an Operational Test and Evaluation (OT and E) of a prototype TDWR system in Orlando, Florida as part of the radar's on-going development. This project utilized two 5-cm Doppler radars, operated by Lincoln Laboratory (FL-2C) and the University of North Dakota (UND). Upper-air soundings were taken by the National Severe Storms Laboratory's (NSSL) mobile sounding system, and a surface mesonet was also in place. Inspection of Doppler radar data from the 1990 TDWR OT and E revealed that storms of similar reflectivity structure, occurring in similar environments, often produced downbursts of very different strength, with low-altitude Doppler radar measured velocity difference across the downburst (delta V) varying anywhere from 10 to 40 m/s. As part of the important task of understanding downbursts, this study utilized Doppler radar data, soundings, mesonet data and a 3D numerical cloud model to investigate eight downburst-producing storms in an effort to gain insight into the cause of this variability. It is proposed that information from this study may benefit further development of a microburst prediction (MBF) product as well as our general understanding of convective outflows.

Author (revised by Hemer)

A95-93477
TRANSPORT CANADA PROPOSED R&D PROGRAM FOR THE DEVELOPMENT OF A MULTI-PARAMETER DUAL X-KA BAND DOPPLER RADAR FOR AVIATION METEOROLOGY APPLICATIONS

Copyright
Transport Canada Aviation Research and Development (R and D) approach to the weather observation systems deficiencies regarding the collection of data with resolutions suitable to aviation has been to conduct preliminary studies on potential sensing technologies before prototyping. R and D plans for the design and development of a Multi-parameter Dual X-Ka Band Cloud Research Doppler Radar System result from such a preliminary study. The knowledge acquired in the development and use of such a system could be used in the development of a core sensor of an intelligent atmospheric information processing system for the detection and classification of weather phenomena impacting aviation. A cloud sensing system is required to detect the cloud bulk parameters relevant to air operations which are: cloud amount, cloud opacity, and heights of bases and tops of each layer, as well as to analyze the spatio-temporal variations of each layer. The initial system should be able to detect all types of clouds to a distance of not less than 20 km in all directions and to discriminate between light and moderate precipitation and cloud layers. The range resolution should not exceed 30 m. As a remote sensing instrument, the system would support research and development in aviation meteorology. Transport Canada Aviation contracted the McMaster University's Communications Research Laboratory for a feasibility study to determine possible upgrades to their IPIX radar to permit millimeter wave operation. The objectives of the study were to define the functional and performance requirements of a Multi-parameter Dual X-Ka Band Cloud Research Doppler Radar System, derive design specifications, and estimate the cost of the proposed implementation. The use of X and Ka bands is considered to be the most appropriate choice for dual-wavelength operation given constraints of matched beamwidths and transportability.

Author (Hemer)

A95-93479
ESTIMATION OF ATMOSPHERIC TURBULENCE SEVERITY FROM IN-SITU AIRCRAFT MEASUREMENTS
Throughout the latter half of this century, a great deal of research has been performed to better understand atmospheric turbulence. These wide ranging efforts dealt with turbulence phenomenology, in-situ and remote detection, numerical modeling, forecasting and the response of aircraft flying through turbulent air. However, direct application of the resultant knowledge to operational meteorology and aviation has been somewhat limited. This is due, in large part, to an all too common problem: inadequate real-time measurements. Apart from the poor spatial and temporal resolution of the basic meteorological data that could be used to diagnose it, the only direct measurement of turbulence intensity currently available is from pilot reports (PIREPS). The purpose of this paper is to describe new, operationally useful techniques intended to provide adequate real-time, comprehensive, and direct atmospheric turbulence measurements. In brief, these methods would augment the qualitative, intermittent, and subjective turbulence PIREPS with quantitative, 'state-of-the-atmosphere' measurements. These real-time and fully automated algorithms have been designed to run on commercial transport aircraft utilizing currently available data sources and computational capabilities. Computationally efficient methods have been developed to estimate eddy dissipation rates from aircraft vertical acceleration data. Computed turbulence measurements would then be appended to the winds and temperature reports currently broadcast via the Aircraft Communications Addressing and Reporting System (ACARS).

A95-93480
TOWARDS IMPROVING THE NMC AIRCRAFT DATA BASE

From measurements, the critical ranges for temperature, cloud liquid water content, and cloud drop size can be identified under which aircraft icing is likely to occur. These data can, therefore, be used to either forecast or monitor atmospheric icing conditions. In this paper, a system is described for in-situ monitoring of icing conditions. The system is based on a hot film sensor and is intended to be installed aboard aircraft. It combines measurements of three parameters, temperature and cloud liquid water content and drop size, and generates a warning if the values fall within critical ranges. With such a system, warning of icing is possible before the first observable icing occurs. A laboratory version of the hot film system was developed. The set-up consists of a small wind tunnel with flow speeds up to 150 m/s and various drop generators. Drops can be sprayed into the flow and subsequently hit the hot film sensor. The size of the active part of the sensor is approximately 1 mm. The output voltage of the anemometer system is digitized. A sampling frequency of 0.5 to 1 MHz is used. Digitized data are analyzed on-line with a signal detection algorithm. A typical signal is characterized by three time scales: an initial increase lasting for about 10 to 50 microsec, followed by a nearly exponential decrease of 100 microsec, which is followed by a smaller than exponential decrease lasting several msec. Studies are currently underway to identify which signal characteristic is related to drop size and to evaluate the performance of various drop generators.

A95-93482
REPRESENTATIVENESS AND RESPONSIVENESS OF AUTOMATED WEATHER SYSTEMS

A95-93483
THE INFERENCE OF AVIATION WEATHER HAZARDS BASED ON THE INTEGRATION OF RADAR AND LIGHTNING DATA

During the past 3 years, the National Weather Service (NWS) Eastern Region has conducted a national risk-reduction exercise at the Washington D.C. Weather Service Forecast Office in Sterling, VA. The focus of this exercise is to devise and test ways in which information from complementary atmospheric remote sensor technologies, such as the weather radar system, a lightning detection network, and the Automated Surface Observing System (ASOS; Short and McNitt 1991), can be integrated to detect aviation weather hazards. The development of ASOS impacts both weather forecasting procedures and airport operations. The new, automated observational system provides for the continuous monitoring of many important weather phenomena. However, the identification, location, and movement of thunderstorms, which are of considerable significance to aviation activities, will not be reported by ASOS. Supplemental, thunderstorm-related information is readily available from radar and lightning.
observation of sites with a network of automatic observation stations. This has
been done, in part, to meet the increasing demand for weather informa-
tion. The preliminary version of the lightning/radar product (Phase
One Product) was tested, and the evaluation indicated this product cor-
rectly identified a variety of aviation hazards. However, the initial format
of the product required considerable meteorological interpretation by
the users and was technically restrictive. Subsequently, several changes
were introduced, and an Enhanced Phase One Product was evaluated
last summer. For the enhanced product, the radar reflectivity data were
post-processed in combination with short-range dynamical model fore-
casts to allow for the identification of storm segments, components, and
associated centroids. Summary information was included about the loca-
tion and movement of convective storms. In addition, lightning and radar
data were analyzed to determine the presence of a thunderstorm at an
evaluation site.

Author (revised by Hemer)

A95-93484
PRELIMINARY RESULTS OF HIGH RESOLUTION MEA-
SUREMENTS OF SNOWFALL AT STAPLETON INTERNATIONAL
AIRPORT DURING THE WINTER OF 1992-93
J. A. COLE National Center for Atmospheric Research, Boulder, CO, US;
R. M. RASMUSSEN National Center for Atmospheric Research, Boulder;
CO, US; and D. A. WESLEY National Center for Atmospheric Research,
Boulder, CO, US. In International Conference on Aviation Weather Sys-
tems, 5th, Vienna, VA, Aug. 2-6, 1993. Preprint Volume. A95-93441 Bos-
ton, MA American Meteorological Society 1993 p. 175-178
Copyright
Efficient runway management and plane de-icing or anti-icing
efforts depend on accurate measurement and prediction of snowfall rate
and water content on the one minute time scale. Hold-over-times (HOT's)
for ground deicing purposes are also given in terms of minutes, suggesting
that short time period fluctuations in snowfall rate may be important in
determining HOT's. The hourly snow observation made at local National
Weather Service (NWS) stations are clearly inadequate for these pur-
poses. These requirements include high resolution measurements of
snowfall, both spatially and temporally. The National Center for Atmo-
spheric Research (NCAR) has developed a snowfall rate display based
on radar data that was demonstrated at Stapleton International Airport
(SIA) during the winters of 1990 and 1991. A problem with this type of
snowfall rate estimation is the conversion between radar return and the
actual snowfall rate. Often there is significant ambiguity on the amount
of snowfall estimated by this conversion. This ambiguity occurs primarily
due to the variations in ice crystal type and temperature that are typically
present in the snowfall. In order to overcome this problem, NCAR con-
ducted a snowgauge/radar experiment during the winter of 1992-93 at
SIA in order to investigate the possible use of real-time snowgauge data
to calibrate the radar snowfall estimate. We present preliminary results
from this study.

Author (revised by Hemer)

A95-93485
AUTOMATION OF OBSERVATIONS IN THE NETHERLANDS
W. C. M. VAN DUIK Royal Netherlands Meteorological Institute, De Bilt,
Netherlands. In International Conference on Aviation Weather Systems,
5th, Vienna, VA, Aug. 2-6, 1993. Preprint Volume. A95-93441 Boston,
MA American Meteorological Society 1993 p. 179-182
Copyright
In the Netherlands, the Royal Netherlands Meteorological Institute
(KNMI) has replaced its regular forecasting stations and many of its
observing sites with a network of automatic observation stations. This has
been done, in part, to meet the increasing demand for weather informa-
tion on the North Sea required for helicopter flight operations. Although
in the entire network the standards as developed by KNMI are used, there
is an exception made for civil airports. A different system has been de-
veloped for the civil airports because of the need to incorporate additional or
modified data generated by human observers and to link this with the air
traffic control system. A suggested system for civil airports, as exemplified
by the system currently in use at Schipol Airport, outside Amsterdam,
consists of sensors interfaced to a microcomputer system, known as the
Sensor Intelligent Adaptation Module (SIAM). SIAM generates a weather
forecast or message every 12 seconds and is linked to the Aeronautical
Meteorological Information Systems (AMIS). AMIS provides data via vari-
ous graphical and numerical databases to aviation users such as observ-
ers, meteorologists, and air traffic controllers.

Author (revised by Hemer)

A95-93486
USE OF HIGH RESOLUTION LIGHTNING DETECTION AND
LOCALIZATION SENSORS FOR HAZARDOUS AVIATION
WEATHER NOWCASTING
MARK WEBER MIT, Lexington, MA, US; ROBERT BOLDI MIT, Lexing-
ton, MA, US; PIERRE LAROCHE Office Natl. d'Etudes et des
Recherches Aerospatiales, Meudon, France, PAUL KREHBIEL New
Mexico Institute of Mining and Technology, Socorro, NM, US, and XUAN-
MINH SHAO New Mexico Institute of Mining and Technology, Socorro,
NM, US. In International Conference on Aviation Weather Systems, 5th,
American Meteorological Society 1993 p. 183-187 Research sponsored
by the FAA
Copyright
The presence of lightning is taken by most pilots to indicate the like-
lihood of turbulence, strong updrafts and downdrafts, and heavy precipita-
tion. We note, for example, that the 'Stormscope' used widely by General
Aviation pilots is viewed as an operationally useful substitute for onboard
weather radar. Additionally, lightning poses a direct threat through the
possibility of strike to an aircraft in flight (often triggered by the conducting
plane) or to ground personnel engaged in baggage handling or refueling
operations. The U.S. Government has recently awarded a contract to
provide real-time information on the location of cloud-to-ground (CG)
lightning strikes throughout the contiguous 48 states. These data, while
operationally valuable, do not reliably detect intradoud (IC) flashes — by
far the dominant type of lightning. In this paper, we discuss measures
ments and an airport operational evaluation that used lightning mapping
systems capable of 'imaging' both CG and IC lightning with resolution
comparable to weather radar. Case studies are presented documenting
the close coupling between lightning activity and the updraft/downdraft
cycle that governs the evolution of deep convection. Algorithms that
exploit these relationships, for example in forecasting of storm growth or
dissipation, are presented and an ongoing evaluation program is
described. We conclude with discussion of an initial operational evaluation
of the high-resolution lightning data at an airlines ground operation center
at Orlando, Florida's International Airport (MCO).

Author (revised by Hemer)

A95-93488
THE USE OF RADAR WIND PROFILES TO REMOVE TDWR GUST
FRONT ALGORITHM FALSE ALARMS CAUSED BY VERTICAL
WIND SHEAR
GREGORY J. STUMPF NOAA, Norman, OK, US and KURT D. HNDL
NOAA, Norman, OK, US. In International Conference on Aviation
A95-93441 Boston, MA American Meteorological Society 1993 p. 192-195
Research sponsored by the FAA
Copyright
In response to increasing awareness of wind shear hazards to avi-
tion, the Federal Aviation Administration (FAA) developed the Terminal
Doppler Weather Radar (TDWR) program. A network of 5-cm Doppler
radars will be deployed throughout the country at 47 major airports to
assist in warning aircraft of wind shear hazards. Computer algorithms
have been developed to detect the radar signatures associated with vari-
ous wind shear phenomena, including gust fronts. A gust front is the lead-
ing edge of the cold air outflow originating from rain-cooled thunderstorm

661
down drafts. Changes in wind speed and direction along these boundaries can produce winds shears and turbulence severe enough to be hazardous to aircraft during takeoff and landing. These wind shifts also impact runway management. Throughout the course of the algorithm development over the past few years, the TDWR system has been tested operationally at several locations across the country, including Denver (1987 and 1988), Kansas City (1989), and Orlando (1990-1993). Upon testing of the TDWR Gust Front Algorithm (GFA) in Kansas City during the spring and summer of 1989, an unexpected high number of false alarms was detected. Upon closer inspection, we found that these false detections occurred during times when there was a strong low-level jet (LLJ) occurring, causing regions of strong vertical wind shear within 2 km of the ground. In this manuscript, we will describe the low-level jet phenomenon and explain how its associated vertical wind shear causes false detections within the TDWR GFA. Then, we will describe a method we have developed to remove the false alarms generated by vertical wind shear. In essence, we employ a Velocity Azimuth Display (VAD) algorithm to determine the vertical wind profile, use this information to determine the regions in the radar domain where the vertical wind shear is strong enough to cause false detections, and then remove all or part of the detections in these regions.

Author (Hemer)

A95-93489

THE PERFORMANCE OF FORWARD SCATTER VISIBILITY SENSORS FOR APPLICATION IN AUTOSTATIONS AND RUNWAY VISUAL RANGE IN SNOW AND FREEZING PRECIPITATION EVENTS

Copyright

Forward scatter visibility sensors have come into general service in the past few years for automatic weather stations and are about to come into service in Runway Visual Range (RVR) applications. Forward scatter visibility sensors are cheaper to buy, install, and operate than transmissometers, which have been previously used for RVR applications. Although transmissometers provide strong signals at the receiver when visibility is high, they are limited in the range of visibility that they report. If something happens to the beam (such as blockage with ice or a burned out emitter), the default signal is a low visibility. Hence, the interest in forward scatter visibility sensors. This paper reports the results of tests of seven forward scatter visibility sensors conducted at the Atmospheric Environment Service Test Site in St. Johns, Newfoundland during the winters from 1988 through 1993. The sensors evaluated consisted of the Belfort visibility sensor, the Qualimetrix sensor, horizontal plane two head and four head sensors, the Handar commercial sensor, the HSS visibility sensor, and the Vaisala sensor. The performance of the sensors was compared with that of a transmissometer.

Hemer

A95-93490

TERMINAL DOPPLER WEATHER RADAR POINT TARGET FILTER THRESHOLD SELECTION

Copyright

The Terminal Doppler Weather Radar (TDWR) system developed by Raytheon Company for the Federal Aviation Administration (FAA), provides automatic detection of microbursts and low-level wind shear. Another major function of TDWR is to improve air traffic management through forecasts of wind shifts, precipitation and other weather hazards. The TDWR system generates high quality meteorological base data and windshear products and, through the timely detection and reporting of hazardous windshear, automatically prepares warning messages for air traffic controllers to relay to pilots. These data are displayed to air traffic controllers in easy to interpret graphic and alphanumeric products. The radar collects low altitude meteorological data and performs reliably in the terminal area environment characterized by natural and man-made ground clutter. The TDWR through the use of special data conditioning techniques provides for the extraction of weather information in the presence of contaminated radar returns. Radar returns in the airport environment are subjected to contamination from severe ground clutter, moving non-weather targets, and range and velocity ambiguities. One of the functions utilized to produce high quality data is a technique referred to as the Point Target Filter (PTF). This filter has been independently implemented and tested on the MIT/LL FL-2 radar. This paper describes the filter and the process utilized to establish the thresholds for the filter.

Author (Hemer)

A95-93491

LLWAS 2 AND LLWAS 3 PERFORMANCE EVALUATION

Copyright

Low level wind shear has been identified as a cause or contributing factor in a significant number of aviation accidents. Research has shown that the most dangerous type of wind shear is the microburst. During the past 17 years, the mainstay of the effort by the Federal Aviation Administration (FAA) to provide wind shear warnings to pilots has been the Low Level Wind Shear Alert System (LLWAS). The LLWAS system is being developed in four phases, I, II, III, and IV. The original LLWAS, now called LLWAS I, was designed for the detection of frontal shears under the assumption that hazardous wind shear is associated with large-scale meteorological features. LLWAS II was developed to reduce the false alert rate of LLWAS I and to provide a modest microburst detection capability. It is a direct response to recommendations by the National Research Council (NRS-NAS, 1983), following the 1982 microburst crash in New Orleans. This upgrade, deployed by modifying the software in LLWAS I, provided an improvement that would not suffer the delays and the costs of the major construction that is required for off-airport LLWAS III sensors. These upgrades to LLWAS I were installed between 1988 and 1991. LLWAS II will be the operational wind shear detection system at many airports until the late '90s. LLWAS III was developed in response to the requirement that LLWAS have a microburst detection capability. LLWAS III combines a dense sensor network and a sophisticated Wind Shear/Microburst (WSMB) detection algorithm to provide substantial microburst detection capability. The prototype LLWAS III has continued to operate at Stapleton International Airport, Denver since 1987 and has been credited with the 'save' of a commercial airliner on July 8, 1989. Nine LLWAS III's are being installed this year. LLWAS IV will be deployed at 83 airports in the late '90s. The LLWAS IV wind shear and microburst detection algorithms will be identical to LLWAS III. Major improvements include an ice-free sensor and hardware that is more reliable and maintainable. This report provides an evaluation of the effectiveness of LLWAS II and LLWAS III. The TDWR operational test bed at Orlando International Airport, Orlando (MCO) provides a unique data set for this evaluation. This test-bed features data from a 14-sensor LLWAS, the prototype TDWR, FL-2C operated by MIT/LL, and the University of North Dakota meteorological radar (UND). Data from this test bed in the summers of 1991 and 1992 are used to provide an evaluation of LLWAS II and LLWAS III.

Author (revised by Hemer)

A95-93492

TEST RESULTS OF A LOW COST AIRPORT WEATHER RADAR

Paramex Systems Corporation embarked on a study and design effort 3 years ago to develop a "mini-TDWR" with an installed cost of $500K that would have the added capability of predicting a microburst 2-4 minutes before it becomes a hazard to aviation. Specific performance goals were: (1) surface microburst windshear detection and track within 10 km of the airport; (2) gust front detection and track within 20 km of the airport; (3) thunderstorm detection and track within 30 km of the airport; (4) 2 to 4 minute microburst prediction. It was recognized that microburst prediction would be the most difficult task and the research and development effort initially focused on achieving this capability. Field tests at Denver and Orlando in 1991 and 1992 have demonstrated greater than 90% correct prediction and less than 10% incorrect prediction. As a result the radar is now referred to as the Microburst Prediction Radar (MPR). The following design decisions were made at the outset: (1) on-airport radar location to decrease rf power and improve windshear aspect measurement geometry; (2) X-band operation for increased weather reflectivity and smaller antenna size; (3) multiple antenna beams for reduced surveillance time. The MPR measures the reflectivity, velocity and spectral width of return from rain droplets (which act as faithful tracers of the wind) between 1-3 km AGL to detect microburst downdrafts which are the most reliable precursor signatures of surface microburst windshear. The MPR utilizes a unique paired beam antenna pattern to resolve measured radial velocity into vertical and horizontal components. Vertical velocity is computed from the sum and difference of radial velocities measured in an antenna beam pair that are slightly offset from each other in elevation. The radial sum and difference velocity are compensated for vertical and horizontal windshear, when present. A joint estimate of vertical and horizontal velocities and vertical and horizontal shears are made using a Kalman filter which introduces weighted previous estimates of these quantities. Measurement variances are estimated from SNR and turbulence inputs derived from the reflectivity and spectral width measurements for each range cell. The 2D wind-field aloft permits detection of microburst generating downdrafts (including so-called 'dry microbursts') whose downdraft moisture evaporates before reaching the earth's surface. No other single airport sensor has the ability to directly measure microburst downdraft velocity aloft.

A95-93493 CRITERIA OF FORECASTING LOW LEVEL WIND SHEAR OVER QATAR

Copyright

Based on theoretical knowledge in meteorology, local accumulated data and practical experience gained in four years of operational work at Doha central forecasting office, this attempt has been made to forecast a low level wind shear possible through forecasting meteorological phenomena producing this shear in this region. The main phenomena include thunderstorms, low level nocturnal jet, strong (Shamal) surface wind. The scope of the paper is to develop operational criteria to enable aeronautical forecasters to predict the low level wind shear accompanying such phenomena and to issue the required warning with relatively high probability of occurrence. The observations showed that, most of vertical low level wind shear were of light (less than 4 knobs/100 Feet) magnitude and were extending in the layer between 250 and 1500 Feet above the surface with a max core centered in a layer between 600-800 Feet. They occurred mainly in early morning and evening hours. These lasted normally for 3-5 hours before diminishing. The occurrence of wind shear in the early morning is found to be related to the low level temperature inversion and low level nocturnal jet at the boundary layer. The criteria for the expectation of boundary layer inversion are developed. Author (revised by Hemer)

A95-93494 ROLE OF THE AVIATION WEATHER SYSTEM IN PROVIDING A REAL-TIME ATC VOLCANIC ASH ADVISORY SYSTEM

Copyright

Inadvertent engine ingestion of volcanic ash has caused expensive damage to a number of aircraft recently and could have caused accidents in at least two cases. Consequently, there is a great interest in a real-time air traffic control (ATC) volcanic ash advisory system which could provide timely warnings of operationally significant ash concentrations to planes in flight as well as information for flight planning. The current system is characterized by non-automatic determination of ash eruption characteristics (especially altitudes) with trajectory analysis based on the National Meteorological Center (NMC) forecast winds being used to provide warnings of future locations. SIGMETS and Airport Weather Advisories are the principal means of providing information of the ash locations to pilots and controllers. After one to three days, volcanic ash from Alaska can be transported over major portions of the US aviation system. The operational use of the ash trajectory predictions which do not provide information on hazard associated with the ash density has resulted in more frequent disruption of air traffic. The most recent example was an incident on 19 September 1992 where a 17 September eruption from Mt. Spurr in Alaska resulted in a significant disruption of air traffic in the Upper Midwest. This paper discusses how the weather sensors and an aviation-oriented weather information dissemination system currently under development by the Federal Aviation Administration (FAA) and National Weather Service (NWS) could play a key role in generating and disseminating volcanic ash advisory information to the aviation system. Author (revised by Hemer)

A95-93495 ALASKA'S VOLCANIC ASH WARNING SYSTEM

Copyright

At least 42 active volcanoes exist in the Alaska Range west of Anchorage and southwestward along the Alaska Peninsula and the Aleutian Islands. Volcanic eruptions in this area are especially dangerous to aircraft operations because of the proximity of the great circle routes between North America and Asia, the impact on the major air terminal at Anchorage, and the general impact on aviation dependent Alaska. Since 1986, three volcanoes west and southwest of Anchorage have erupted. St. Augustine volcano erupted in 1986 causing a major disruption to air traffic and damage to jet aircraft in flight. The ash plume from Redoubt's December 15, 1989 eruption damaged several commercial aircraft in flight. Most recently, Spurr volcano erupted in June, August, and September of 1992. The August eruption closed Anchorage International Airport for more than a day, blanketed the city of Anchorage with ash, and disrupted air traffic throughout much of Southcentral and Southeast Alaska. The 1989-90 eruptions of Redoubt with the accompanying disruption to air travel and potential for disaster, created a strong need for an effective volcanic ash warning system that could quickly and accurately warn of...
eruptions and ash plumes and their trajectories. The warning system is now in place and has been operating effectively for over a year. While the U.S. Geological Survey (USGS), the Federal Aviation Administration (FAA) and the National Weather Service (NWS) all play critical roles in the volcanic ash warning process, this paper focuses on the technology and activity of the NWS's volcanic eruption response in Alaska.

Author (Hemer)

A95-93497
DEVELOPMENT OF A CLIMATOLOGY FOR POSSIBLE MICROBURST OCCURRENCE IN CANADA

Copyright
Low level wind shear, specifically the hazardous form of wind shear known as microbursts, has been recognized as a danger to aviation that has caused a number of accidental disasters over the past two decades. Their existence, frequency of occurrence, and potential threat in Canada has always been suspected, but never scientifically confirmed. This study, performed for Transport Canada's Transportation Development Centre, was an effort to establish a climatology of days with possible microburst events on a country-wide basis. Transport Canada will use the results of this study to assist in determining the requirements and potential placement of detection systems for the country's airports.

Author (Hemer)

A95-93498
THE AVIATION GRIDDED FORECAST SYSTEM VERIFICATION PROGRAM - A DESCRIPTION OF AVIATION-IMPACT-VARIABLE EVALUATION PLANS

Copyright
The Federal Aviation Administration (FAA) has developed a program to improve aviation weather services. Participants in the program include the Forecast Systems Laboratory (FSL), the National Center for Atmospheric Research's (NCAR) Research Applications Program (RAP), and the Massachusetts Institute of Technology's (MIT) Lincoln Laboratory (LL). FSL's role is to develop the Aviation Gridded Forecast System (AGFS). The AGFS will generate analyses and gridded forecasts of state-of-the-atmosphere variables (SAVs) (i.e., mass, momentum, and moisture) and aviation-impact variable (AVIs) (e.g., visibility, ceiling, turbulence, and icing). The FSL Aviation Division's Verification Program was created to assist in the derivation of AVIs from the output of meteorological forecast and analysis systems. The objective of this program is to provide atmospheric models with statistical measures of the accuracy of forecasts and analyses to develop and improve aviation forecasts. This program will continue through the development of the AGFS and its planned implementation in 1996. Periodic evaluations will be performed on the forecast and analysis systems. To date, a first evaluation has been conducted and completed. A second evaluation is in progress. The first evaluation, Exercise 1 (E1), which was conducted in 1992, provided a baseline evaluation of four forecast and analysis systems. Analyses and forecasts were made for select points across the continental United States for 1-10 April 1991. These 10 days included snow storms, wind storms, and convective events. The second evaluation, Exercise 2 (E2), includes those forecast and analyses systems evaluated in E1 and one other system. For the second evaluation, a more complete independent verification data set was obtained from NCAR's Storm-scale Operational and Research Meteorology (STORM) Project Office. Data collected during the STORM-Fronts Experiment Systems Test (STORM-FEST) program conducted from 1 February to 15 March, 1992, includes automated surface observations, experimental aircraft, and a higher resolution (both in time and space) of upper air sounding data (STORM 1992). This paper describes the first two evaluations.

Author (revised by Hemer)

A95-93500
COMPREHENSIVE VERIFICATION OF TERMINAL FORECAST CEILING AND VISIBILITY

Copyright
Since 1983, the National Weather Service (NWS) has implemented a national forecast verification system utilizing Automation of Field Operations and Services (AFOS), known as AFOS Era Verification (AEV). The aviation portion of AEV verifies NWS terminal forecast (FT) ceiling, visibility, and wind against corresponding surface observation (SAO) data sampled at three or six hour intervals. Aside from quality control measures regarding FT product format, this sampling procedure constitutes the entirety of AEV for aviation forecast products. However, this does not mean that AEV is simple — far from it. One cause of difficulty lies in decoding the nearly limitless possibilities available to both FTs and SAOs. AEV output statistics are available to local AFOS sites via AEV local verification. Despite these efforts, however, AEV falls short of full evaluation of FT ceiling and visibility forecasts. Not only are conditional FT terms not even considered, but the sampling process also discards most observational SAO data. Those SAOs that are sampled, often do not represent the overall situation. These can have a catastrophic effect on verification results. To counter this, some forecasters have tended to forecast mainly for the sampling times. Others have tended to use conditional terms carelessly; since these are not verified at all. Finally AEV makes no acknowledgements regarding forecast difficulty either at a given site or between sites. In this article a verification system is presented which addresses and attempts to remedy these shortcomings.

Author (Hemer)

A95-93501
OBJECTIVE VERIFICATION OF AN ENHANCED TERMINAL FORECAST EXPERIMENT AT DENVER, COLORADO

Copyright
In 1991, the National Weather Service (NWS) conducted an experiment at the forecast office in Denver, CO, to assess short-fused aviation weather prediction. An enhanced terminal forecast (EFT) concept (National Weather Service, 1990) was developed to increase spatial and temporal resolution, replace the outlook phrases with specific element forecasts, and improve product readability. The primary adjustments to standard terminal forecasts (FTs) as defined in NWS Operations Manual Chapter D-21 (National Weather Service, 1988), included: tightening amendment criteria, adding restrictions to the use of remarks during the initial 3 hr, increasing forecast frequency, and replacing categorical forecasts in the last 6 hr with conventional FT terminology. In addition, the visual format was changed from continuous to one phrase per line. The experiment began in mid-January and concluded by the end of November. Scheduled forecasts were issued every 6 hr, and scheduled updates were issued, if necessary, at 3-hr midpoints. Hence, the maximum number of daily non-amended forecasts was eight. Amendments were issued if aircraft operations were affected by changing conditions. Meteorologists provided EFT's to three local airports: Denver/Stapleton (DEN), Arapahoe/Centennial (APA), and Broomfield/ Jefferson County (BUC). Due to time constraints, the final verification data set was limited to forecasts and observations from DEN for March and April, 1991.

Author (Hemer)
A95-93502
VERIFICATION OF TERMINAL FORECASTS
Copyright
The Federal Aviation Administration (FAA) is modernizing the National Airspace System (NAS) through the implementation of the Aviation System Capital Investment Plan (CIP) (FAA, 1991). As part of this modernization, improvements will be made in the detection and forecasting of weather and in the processing and dissemination of weather information within the NAS. As a result of these improvements, new hazardous weather products will be available for use by en route controllers. Before requirements are specified for these new hazardous weather products, the operational context within which the products will be used, both current and future, must be analyzed to ensure that the products will effectively meet the operational needs of en route controllers. This paper presents the results of an analysis of en route controllers’ hazardous weather-related tasks. The purpose of this analysis was to determine how controllers currently use hazardous weather information to make decisions and perform their air traffic control duties and to determine the types and characteristics of the hazardous weather information controllers currently need. The analysis focused on en route controllers in Air Route Traffic Control Centers (ARTCCs). Specifically, the analysis focused on the radar controller position of the Washington, Atlanta, and Denver ARTCCs.

A95-93503
ANALYSIS OF EN ROUTE CONTROLLER HAZARDOUS WEATHER-RELATED TASKS
Copyright
The initial flight information services, provided by the Data Link Processor (DLP), help to fulfill the need for pilots to receive weather information in-flight and help to satisfy a long-standing Federal Aviation Administration (FAA) need to reduce the controller’s role in weather dissemination. The services are basically request/reply, initiated by the aircraft, and were chosen to be easily implemented with low risk in order to get a data link system into the field quickly. Initially, they were intended for general aviation users; the Automatic Terminal Information System (ATIS) and windshear services were added to appeal to commercial users. While the initial services will be useful, users have requested graphical weather products. Data represented graphically has the potential to convey more information in a shorter period of time than would a conventional alphanumeric display. This becomes especially important in the cockpit where heads down time is at a premium. Display technology is advancing to the point where it will be practical for more and more aircraft, including general aviation aircraft, to have graphical displays in the cockpit. Future services will meet the need of these aviation users. The DLP will provide a platform for the collection of aviation related weather and aeronautical information and for the dissemination of information to pilots of data linked equipped aircraft in-flight. Initially, the DLP will collect alphanumeric products from the Weather Message Switching Center Replacement (WMSCR), from the Automated Weather Observing System (AWOS) Data Acquisition System (ADAS), and from the Tower Data Link System (TDSL) and store them in its own database for later retrieval by pilot request via data link. The DLP is a phased implementation in which functionality will be added over a series of builds. Services provided by these builds can be categorized as either initial or future, with initial services being fielded in the 1995 timeframe and future services being fielded after the turn of the century.

A95-93505
A NEW LOOK AT AVIATION METEOROLOGY: INTEGRATING AIRCRAFT SITUATION DISPLAY (ASD) WITH CONVENTIONAL WEATHER DISPLAYS
Copyright
Integrating aircraft situation displays (ASDs) with conventional weather displays was discussed. Stand-alone data offer some insight into weather forecasting and aircraft dispatch; however, a composite view of their individual elements requires integrating them onto a single screen or display. Observing the proximity of aircraft to strong convection cells, for example, can be achieved by integrating ASD with conventional weather displays such as those obtained by radar and satellite observations. ASD consists of different display elements that provide a latitude/longitude fix on the aircraft, flight ID, aircraft type, speed, time to arrival, origin and destination, flight path test, waypoints, and flight events. ASD is currently being combined with conventional weather displays at Southwest Airlines. ASD is part of an overall integrated workstation that is also used to monitor dispatch operations. Future applications could include incorporated ASD with features such as the icing potential at multiple flight levels.

A95-93506
JET STREAM WINDS: COMPARISONS OF OPERATIONAL ANALYSES WITH INDEPENDENT AIRCRAFT DATA AT MULTIPLE LONGITUDES
Copyright
This paper expands a 1989 comparison of jet stream wind analyses with independent aircraft data to a wider range of longitudes and fore-
A SHORT-TERM, HIGH-RESOLUTION AUTOMATED SNOWFALL FORECASTING SYSTEM
Copyright

A spatially and temporally accurate short-term (0-1 hr) snowfall prediction system would be of considerable benefit to ground and terminal area aviation operations during snowstorms. Currently, many operational decisions that depend on short-term snowfall forecasts (e.g. deicing, capacity) are often made using either persistence or the relatively coarse terminal area forecasts. Particularly during marginal and variable weather conditions, these forecasts can be subject to considerable error and therefore may be inhibiting the safe and efficient operations of the airport. To this end, we have been developing an automated system aimed at proving high resolution (approximately 1 km spacial, 5 min. temporal) snowfall rate and accumulation guidance to airport operations personnel. Our approach has been first to make a prediction of the radar reflectivity

A95-93510
image in the terminal area and then to calibrate the radar image into snowfall rate using a continuously updated calibration on recent snow gauge measurements.

Author (Hemer)

A95-93512

AUTOMATED AIRCRAFT ROUTING THROUGH WEATHER-IMPACTED AIRSPACE

Copyright

The FAA has embarked on a project to develop a 3-dimensional data grid containing current and forecast weather information (FAA, 1992). Typical data fields envisioned are radar reflectivity, wind speed and direction, turbulence, icing severity and temperature. One of the purposes of the grid is to provide data to an automated system tasked with routing aircraft through the national airspace while avoiding those regions which contain weather more severe than the pilot wishes to encounter. In this paper we describe a simple approach to automating the computation of aircraft tracks through a grid of weather-impacted airspace. For simplicity we use radar reflectivity to determine the degree of impact. We apply the method to simulate traffic along several typical routes into and out of Denver's Stapleton airport for most of the heavy weather periods during June 1992, and examine the statistics produced by this simulation.

Author (Hemer)

A95-93513

AN ECHO MOTION ALGORITHM FOR AIR TRAFFIC MANAGEMENT USING A NATIONAL RADAR MOSAIC

Copyright

The Advanced Traffic Management System (ATMS) is a rapid prototype system used to provide automation support for air traffic management at the Federal Aviation Administration's (FAA) Central Flow Control Facility and 20 Air Route Traffic Control Centers (ARTCC). The primary purpose of air traffic management is to minimize delays and congested airspace while maximizing the overall flow of the National Airspace System. Accordingly, timely and accurate weather information is essential for the strategic planning of air traffic. At the heart of ATMS is the Aircraft Situation Display (ADS), an interactive workstation that integrates real-time air traffic and weather information. In addition to knowing cloud ceilings and visibilities, air traffic managers are interested in knowing where areas of strong thunderstorms will severely impact the flow of air traffic within the enroute structure, and particularly near critical pace-setting terminal areas. Today's air traffic managers function mostly in a reactive sense, or after thunderstorms have already moved near a terminal area. By having some sort of objective guidance as to where significant echoes are expected to be in a window of 15 to 30 minutes, the traffic manager can be 'proactive' in determining when these areas will adversely affect a terminal area or jet route. This paper describes a product soon to be available on the ADS that applies a cross-correlation tracker (CCT) to a national radar mosaic, providing traffic managers with short-term position forecasts of significant echoes. A description of the product derivation will be given, followed by case examples that show the utility of such a product. One particular case is a graphic example of how this product can aid in the strategic planning of air traffic near a major airport.

Author (revised by Hemer)

A95-93514

DEVELOPING THUNDERSTORM FORECAST RULES UTILIZING FIRST DETECTABLE CLOUD RADAR-ECHOES

Copyright

In an attempt to improve the safe and efficient operation of aircraft, the National Center for Atmospheric Research (NCAR) is developing, for the FAA, techniques for accurate and precise forecasts to thunderstorms and related phenomena. It has been shown that monitoring the location of boundary layer convergence lines with Doppler radars, together with monitoring cumulus cloud development in the vicinity of these boundaries, provides the capability to make spatially detailed short-term (0-30 minute) forecasts of thunderstorm initiation. This study noted that the initiation of thunderstorms by moving and/or colliding convergence lines is often dependent upon whether cumulus clouds are already present in the region into which the convergence lines are moving. Present satellite cloud imagery usually does not provide sufficient temporal and spatial resolution for the cloud monitoring function. However, a recent study by Knight and Miller (1993) emphasizes that sensitive Doppler radars can be used to detect cumulus clouds, even in their earliest development stages, before precipitation develops. For very short period forecasting purposes it is necessary to know how fast a 40 dBZ(sub e) storm can be initiated. Knight et al. (1985) have shown from visual and model simulations that a cloud can grow, by the ice process, from first cloud to a 30 dBZ(sub e) echo in roughly 15 minutes. If clouds are already present this time could be as little as 5 minutes. However, this study did not examine cases relative to boundary locations. Wilson and Schmeiber (1986) showed that the median time was 19 minutes for echoes to reach 30 dBZ(sub e) after a convergence line passed a location but their study did not consider whether clouds were present before the convergence line arrived. In this study we examine the time required for radar echoes to reach 40 dBZ(sub e) in the vicinity of convergence lines using a radar capable of detecting early cumulus clouds.

Author (Hemer)

A95-93515

TESTING OF TKE PARAMETERIZATIONS IN NUMERICAL MODELS FOR CLEAR-AIR TURBULENCE FORECASTING

Copyright

In the past, the approach to forecasting clear air turbulence (CAT) has been based on diagnostic formulations or risk-indices that fail into two main categories: (1) empirical relations based upon correlations between atmospheric deformation regions and CAT, and (2) formulations using the Richardson number (Ri) and/or its tendency. The use of the Richardson number has been motivated by theoretical results from linear stability analysis of stable sheared flows. In the bases of this analysis, a critical value of Ri = 0.25 has been used indiscriminately to infer turbulence generation in linear and nonlinear flows everywhere in the atmosphere. Several studies point to the fact that Ri = 0.25 is a necessary but not a sufficient condition for instability (turbulence). Furthermore, observational and theoretical investigations reveal that turbulence can exist for Ri greater than 2.0. This is why it is difficult to define a critical Ri to characterize the onset of turbulence. CAT forecasting algorithms based on turbulent kinetic energy (TKE) parameterizations will obviate such difficulty. The phenomenon of turbulence in the upper troposphere has received relatively little attention. Richard et al. (1989) used a 1.5-order-closure TKE parameterization to study the effects of surface friction on downslope storms. They found a more realistic description of the winds and TKE aloft when surface friction was included for the wind storm over Boulder, Colo-
rado, on 11 January 1972 (Lilly 1978). Shapiro (1976, 1980), Kennedy and Shapiro (1980), and Shapiro and Hastings (1973) conducted field experiments using aircraft to study CAT in upper-jet-stream/frontal-zone systems. They concluded that regions of turbulence may be observed above and below the jet maximum. The purpose of our paper is to investigate the applicability of the 1.5-order-closure TKE parameterization of Bechtold et al. (1992) which is a modified version of the one used by Richard et al. (1989) and the Mellor and Yamada (1974) boundary layer TKE parameterization to describe turbulence in the upper troposphere using numerical weather prediction models. These parameterizations are aimed at solving a prognostic turbulent kinetic energy equation that includes contributions to TKE from advection, diffusion, vertical and horizontal shear, buoyancy, and dissipation. A realistic transition into the regimes conducive to turbulence is provided by the dynamics of the numerical model. In this paper we address two main problems associated with these TKE formulations: (1) vertical and horizontal resolution of the numerical model, and (2) mixing-length computation. We make use of turbulence studies from gravity wave breaking and upper-level jet-front systems published in the literature to address these problems.

Author (revised by Hemmer)

A95-93516
MFMFOG - THE MEMPHIS FOG ALGORITHM

In 1986, Federal Express Corporation realized the possible consequences of fog and other delay-related weather phenomena on its operations. This led to creation of a meteorology department at its hub in Memphis, where more than 100 of its jet aircraft arrive between 11 PM and 2 AM local time. Its meteorologists track not only Memphis weather, but also predict cloud ceilings, visibility, and other critical meteorological parameters for over 150 airports across North America. Along with standard forecast tools such as satellite, national radar, and computer model guidance, the meteorologists have access to in-house algorithms of such mesoscale parameters as lake effect snow. Recently a new algorithm has been developed as an aid in predicting Memphis fog episodes. The algorithm known as MFMFOG is based on recognizing typical synoptic conditions present when radiation fog forms. MFMFOG uses six parameters: mean relative humidity, 700 mb level vertical velocity, mean boundary layer wind speed, surface wind speed, 3,000 foot wind speed, and visibility. The algorithm is run at the Federal Express Weather Services office on its primary weather service support system (currently McdAS from the University of Wisconsin). Upon input of data from the National Meteorological Center at 0345Z and 1545Z daily, MFMFOG predicts the possibility of fog occurring at 6 hour intervals. The McdAS workstation screens will prompt a fog alert when conditions indicate that fog can form. The results of using MFMFOG to predict fog over the past two winter seasons have been encouraging. During the winter of 1991-1992, six of eight actual fog events characterized by surface visibility remaining below 0.5 mile for at least 2 hours were predicted by the algorithm. Hemmer

A95-93517
MDCRS: AIRCRAFT OBSERVATIONS COLLECTION AND USES

The Meteorological Data Collection and reporting System (MDCRS) is a system designed for the Federal Aviation Administration and National Weather Service to collect, store, and disseminate aircraft meteorological observations. It is designed primarily to improve upper air wind forecasts.

The major features of MDCRS include receiving aircraft weather observations in multiple formats and forwarding them to users in a standard format, obtaining observations along airline flight routes, having the capability of adding new airline formats without creating a new decoder for each one, and having a query capability that allows scheduled transmissions of predefined geographic areas, routes, and altitudes. MDCRS currently provides approximately 8,000 observations a day. Delta, Northwest, and United Airlines are currently participating in MDCRS. Future goals of MDCRS include adding new airlines, adding SATCOM reports, and increasing reporting frequency.

A95-93518
THE IMPROVEMENT OF METEOROLOGICAL DATA FOR AIR TRAFFIC MANAGEMENT PURPOSES

Over the next decade, the potential axis for an enhanced capability to be introduced into the air traffic management (ATM) system by the use of increased automation and computer assistance both on the ground within air traffic control (ATC) and on the flight deck within the flight management system (FMS). This project examines the meteorological forecast requirements in terms of accuracy and timeliness, and the role of an air-ground and ground-air data link, to meet the future needs for short-term forecasts required for accurate trajectory prediction and for the avoidance of unsuitable flying conditions in the climb, cruise and descent phases of flight. The timescales involved are typically 20 minutes ahead in the case of ATC (the time taken to fly across a sector of airspace), but this may be extended to 1 or even 2 hours ahead for FMS planning (within Europe). This involves consideration of the effects of errors in the forecasts of wind, temperature, icing, turbulence and, possibly, vertical air movement. Weather in the terminal area (eg cloud, visibility, windshear, wake vortices) is not considered in this study.

A95-93519
FTGEN - AN AUTOMATED FT PRODUCTION SYSTEM

A software program, called FTGEN, is being developed at the Newfoundland Weather Center (NWC) to automatically generate airport forecasts (FT's). The process incorporates graphical manipulation of numerical model output, a climatological database, and assimilation of present conditions. Preliminary testing has already produced FT's via this procedure; the results have been very encouraging.

A95-93520
AVIATION TERMINAL FORECASTS BASED ON AUTOMATED OBSERVATIONS (FTAUTO)

For the first time in Canada, on October 9, 1992, aviation terminal forecasts were issued operationally using airport observations from a completely automated system. The automated observing system is known as the Remote Environmental Automatic Data Acquisition Concept (READAC). This paper describes the READAC system and our
experiences in implementing and writing the FTAUTO forecasts to date.

Author (Hemer)

NORTAF: COMPUTER GENERATED AERODROME FORECASTS

Copyright

The national meteorological institutes in Finland, Sweden, Norway and Denmark has agreed to start a joint project called NORTAF. The objective of the project is to create an automatic/manual system for production of Terminal Area Forecasts (TAFs) at each institute. The system that is built should be able to produce both short and long TAFs according to new regulations. TAFs are at the moment produced to a great extent subjectively by forecasters. This production is highly manual and therefore ineffective. An automatic system must rely on output from numerical models. Partly direct model output and partly statistical interpretation. A forecast matrix will be filled with observations and data from different models. Data from this matrix, which contains all necessary meteorological parameters, will be translated to a TAF. The forecaster should be able to change the final forecast, either by editing the forecast matrix or the TAF-coded forecast. The local projects in each institute will decide in what way the forecaster should interact with the system. The Swedish contribution to the project will mainly be a development of a one-dimensional version of the HIIRALM-model. HIIRALM is now the operational model for numerical weather prediction in Finland, Sweden and Denmark. This article will describe how the one-dimensional model is constructed and in what way it will be used in the system.

Author (Hemer)

THE COMBINATION OF FORECASTS IN AN AUTOMATED AVIATION WEATHER FORECASTING SYSTEM

Copyright

Terminal airport forecasts (TAF) are produced manually at the moment in Nordic countries (Denmark, Finland, Norway and Sweden). During spring 1992 a research and development project was started. The aim of the project was develop tools for operative automatic production or terminal airports forecasts (TAF). The project was called NORTAF. The purpose of the effort was to make the production and verification of TAF's more effective. Each participating country was in responsible for building their own operative systems. The software tools to be developed are related to following branches: quality control of observations, application of a 1-dimensional high resolution numerical model, interpretation of numerical model output and radar information in terms of local weather phenomena, encoding of a forecasts matrix to TAF code and real time verification. Extensive verification of the existing manual TAF's was also an important element of the project. The different sub projects are divided between the meteorological institutes of the four Nordic countries. The individual institutes are, however, in charge of the implementation of final operative systems. The backbone of the system is a numerical high resolution model. The vertical resolution of the model is, anyhow, too coarse in comparison to the foreseen future. The concept of directly linking such weather types to the airport. The increased need for accurate and dependable forecasting of the above mentioned phenomena, however, conflicts with a number of forecasting handicaps related to the topography: Human observers and radar installations have a limited view or range of detection; Mesoscale systems (fronts, convective systems) are modified, deaccelerated or accelerated by the orography; local wind-systems and convective systems may be forced by the orography; and kinematic extrapolation of moving systems, direct model output and statistical guidance material is affected by all or most of the above. The proposed 'Pooman's expert system' is a guideline to forecasters in their decision-making process. The first, or entry-level consists of determining the seasonal type prevailing at the time. Next, the current weather type ('Grosswetterlage') needs to be found. The concept of weather types has been used before to a varying degree of success. The concept of directly linking such weather types to observed weather is tempting, but prone to failure. The weather types used in the following are few, flow-dependent and differ according to seasons. The basic forecasting tools used in this study are fairly standard and available in most forecasting offices: Direct model output at the nearest gridpoint (GP); Upper air soundings (UA); with derived parameters such as cu-base, PWV, showalter index, etc; Conventional Weather Maps: Analyses (Surface, UA) Model forecast maps; Vertical Cross Sections (CS) of potential and equi-potential, wind; Information on Local Conditions (LC); Soil moisture, Snow cover, Vegetation type, Radar Network data (RN); Calibrated rainfall rates from a weather radar network, Satellite imagery (SAT): IR, VIS and WV-channels, the use of manually produced UA-anaalyses, cross-sections and surface charts may appear
anachronistic at first sight: nevertheless they provide a rapid means of verifying the latest available model run, which may be 12-16 hrs old in some circumstances. Such a real-time check on timing, intensity and phase of synoptic-scale and mesoscale systems is a valuable aid in avoiding unnecessary 'misses'.

Author (revised by Hemer)

A95-93525
DISSEMINATION OF TERMINAL WEATHER PRODUCTS TO THE FLIGHT DECK VIA DATA LINK

Copyright

A new concept for providing up-to-the-minute terminal weather information based on ground radar and other information was presented. The proposed Terminal Weather Data Link Service would provide near real-time information about (1) runway wind shear, and precipitation impact, (2) microburst, gust front and storm cell location and motion near the airport and (3) forecasted wind shear, precipitation and wind shift impact at the airport. The proposed service makes use of the existing aircraft communications, addressing and reporting system (ACARS) data link capability found in many air carrier aircraft and the new ground-based weather sensing systems, such as Terminal Doppler Weather Radar (TDWR), which are currently being deployed. A demonstration of the proposed service is planned during the summer of 1993 at Orlando, FL involving up to five air lines. Additional demonstrations are planned for 1994 involving the use of advanced Integrated Terminal Weather System weather products and the transmission of graphical weather products via ACARS.

Author (Hemer)

A95-93526
DISSEMINATION OF WEATHER PRODUCTS

Copyright

It is vital for the safety of flight that meteorological information reaches the pilot without delay and that the data is easy to read and understand. Text data can be difficult to assimilate quickly and it sent over long distances can be distorted by some communication systems making the information difficult to read. It is essential that the end product received by the customer is equally as good as the original, and if possible the data should be presented in a graphics format such as a chart or map display to assist mental assimilation. The increasing use of facsimile and personal computer (PC) systems is enabling these problems to be overcome, and with satellite communication links will ensure that products can be sent over long distances with little distortion of the data during the transmission. A facsimile system known as 'Automatic Routine Transmission of Information via Facsimile' (ARTIFAX) has been developed within the United Kingdom Meteorological Office (UK Met O) for the dissemination of products in T4 facsimile code direct to customers using a group 3 facsimile receiver, which are universally available in offices and homes. This system developed within the UK Met O enables products generated on the main frame computer to be fed directly into the ARTIFAX facility and sent directly to individual customers, equally data which is prepared in the Central Forecasting Office (CFO) by the forecasters can be scanned into the ARTIFAX and then routed to those customers requiring the information. Finally other data either generated within CFO or collected in the telecommunications center and routed through the telecommunications systems can be fed into ARTIFAX and directed to the customers as necessary. Products from each of these three different sources are identified within the ARTIFAX and stored, each product has a defined customer list and each is assigned a priority category to enable it to be disseminated efficiently to each customer.

Author (Hemer)
error. Because of the Shuttle’s rapid re-entry to earth, the pilot must be able to see all runway and visual navigation aids from high altitude to land the Shuttle. In addition, the heat resistant tiles which are used to protect the Shuttle during its re-entry into the earth’s atmosphere are extremely sensitive to any type of precipitation. Extensive damage to these tiles could occur if the Shuttle passes through any cloud that contains precipitation size particles. To help guard against changing weather conditions or any type of weather problems that might occur prior to landing, flight rules have been developed as guidelines for all landings. Although the rules vary depending on the location of the landing (Kennedy Space Center or Edwards AFB), length of mission, and weight of vehicle, most of the rules can be condensed into 4 major groupings. These are: (1) Cloud ceilings should not be less than 3048 m (10,000 feet), (2) Visibility should not be less than 13 km (7 nm), (3) Cross-wind no greater than 5-8 m/s (10-15 knots); and (4) No showers or thunderstorms at or within 56 km (30 nm) of the Shuttle Landing Facility. This study consisted of developing a climatological database of the Shuttle Landing Facility (SLF) surface observations and performing an analysis of observed conditions one and two hours subsequent to given conditions at the SLF to help analyze the oz cloud cover rule. Particular emphasis was placed on Shuttle landing weather violations and the amounts of cloud cover below 3048 m (10,000 ft.). This analysis has helped to determine the best and worst times to land the Shuttle at KSC. In addition, nomograms have been developed to help forecasters make cloud cover forecasts for End of Mission (EOM) and Return to Launch Site (RTLS) at KSC. Results of categorizing this data by month, season, time of day, and surface and upper-air wind direction are presented. Author (revised by Hemer)

A95-93531 National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, FL.

ANALYSIS OF RAPIDLY DEVELOPING FOG AT THE KENNEDY SPACE CENTER
Contract(s)/Grant(s): (NAS10-11844)
Copyright
Space Shuttle landings at Kennedy Space Center (KSC) are of special concern to NASA's landing community because of Florida's rapidly changing weather conditions. Since a large number of Shuttle landing attempts occur in the morning hours (just after sunrise) fog and stratus development are a problem. The deorbit burn decision for a landing at KSC is typically made 90 minutes before Shuttle touchdown. In that 90 minutes weather conditions can change very rapidly. Fog to the west of KSC an advect in and reduce visibility to less than 7 miles. The most important difference between Shuttle and normal aircraft landings is that the Shuttle has no go-around capability requiring a forecast with little room for error. To help guard against rapidly changing weather conditions, flight rules have been developed as guidelines for all landings. This paper concerns fog development that would affect less than 7-stature mile visibility rule which is in effect for End-Of-Mission (EOM) Shuttle landings at KSC (Rule 4-64(A)). Data used for this analysis included hourly surface observations at the X88 Shuttle Landing Facility (SLF) and upper-air observations from the CCAFS (Cape Canaveral Air Force Station-72794) rawinsonde site for the five year period, 1986 to 1990. This investigation focused on rapidly developing fog or stratus that developed between dejecton time and landing. Author (Hemer)

A95-93532 DEVELOPING THE AVIATION GRIDDED FORECAST SYSTEM
Copyright
Increasing air traffic and higher performance aircraft demand that the Federal Aviation Administration (FAA) find ways to increase the capacity of the nation's airspace, decrease weather-related delays, and provide pilots maximum flexibility in using airspace. A promising way to do this is to increase the accuracy, timeliness and spatial resolution of the weather products used by pilots, air traffic controllers, and airspace managers. This paper describes the Aviation Grided Forecast System (AGFS) and the approach and tasks that NOAA's Forecast Systems Laboratory (FSL) is undertaking to develop it. The AGFS is part of a major effort by the FAA and the National Weather Service (NWS) to improve weather-related decision-making products for aviation users. That effort includes the following: implementing advanced weather sensors that make more observations than today's sensors make; conducting field experiments to understand better atmospheric processes that impact aviation (e.g., processes that cause icing); developing the high-resolution forecast tools capable of generating the accurate, timely, and site-specific meteorological information required to tailor products to aviation decision making; and developing advanced processing (i.e., massively-parallel processing) required to run those high-resolution forecast tools quickly. Author (Hemer)

A95-93533 DEVELOPING AND TESTING DECISION-MAKING PRODUCTS FOR CENTER WEATHER SERVICE UNIT METEOROLOGISTS
Copyright
This paper describes initial results of the work to evaluate Center Weather Service Unit (CWSU) forecasters' assessments of the utility of the meteorological products on the Aviation Grided Forecast System (AGFS) functional prototype (FP) workstation. This interactive, information-processing, display, and communications system is intended to serve as a vehicle for testing concepts, interfaces, and experimental products. It is part of the larger AGFS effort being undertaken by NOAA's Forecast Systems Laboratory (FSL) in conjunction with the Federal Aviation Administration and the National Weather Service. Author (Hemer)

A95-93534 THE PROTOTYPE AVIATION WEATHER PRODUCTS GENERATOR A VEHICLE TO ASSESS USER NEEDS
Copyright
The FAA is developing three new major initiatives: the Integrated Terminal Weather System (ITWS), the Aviation Grided Forecast System (AGFS), and the Aviation Weather Product Generator (AWPG). These initiatives were developed to take advantage of the weather sensor modernization program developed by the FAA and the National Weather Service (NWS) that is projected to dramatically increase the quality and quantity of aviation weather information during this decade. These new instrumentation platforms coupled with the development of the ITWS, AGFS, and AWPG processing systems are part of the FAA Aviation Weather Development Program (AWDP). The AWPG, which is being
developed by the National Center for Atmospheric Research (NCAR), will collect, integrate, and process data from both the AGFS and ITWS. It will provide user-specific, aviation weather products to regional and national FAA facilities including: Air Route Traffic Control Centers (ARTCC), Automated Flight Service Stations (AFSS) and the Air Traffic Control System Command Center (ATCSCC). The AWPG products will also be available to non-FAA facilities such as the airlines and weather vendors. The major goals of the AWPG are to: (1) provide weather information to aviation users that require no meteorological interpretation, (2) improve safety of flight by providing accurate and timely warnings of weather impacted airspace, (3) improve the capacity of the NAS by providing timely and accurate weather forecasts to assist air traffic managers, flight planning, and air traffic control, (4) improve the efficiency of FAA operations by improving the human factors of depicting weather information and, (5) improve the efficiency of operations by providing much-improved analyses and forecasts of winds, temperatures, and weather impacted airspace.
A weather hazards advisory system for aviation was developing at Northwest Airlines (NWA) in the 1950's with the introduction of clear air turbulence forecasting techniques. Also joint work was done by United Airlines and NWA in the early 1960's on the forecasting and avoidance of mountain wave activity. On 10 October 1968 the copyrighted Turbulence Plot (TP) System became operational at NWA. There were 3 major types of hazards for which reports and or forecasts were issued, in 1968: (1) CAT and mountain wave activity; (2) thunderstorms and (3) low altitude frontal wind shear. All three categories of TP messages would be hand written, passed to another employee to be typed and sent as a teletype message to NWA company radio operators, stations and dispatchers. The Minneapolis-St. Paul International Airport (MSP) dispatch and meteorology office used the large board for displaying the active TP's. Station agents would post TP messages for preflight review by flight crews. Radio operators would broadcast the message to flight crews en route. Crews plotted the information on a map similar to a Jeppesen airway chart during both preflight preparation and en route. The TP system was incorporated into the NWA training of all involved: dispatcher, meteorologist and pilot. Avoidance of CAT and Mountain Wave TP hazards were included as part of the daily and meteorology flight planning procedures. Pilot training addressed all three hazards. Pilot avoidance was emphasized, and operating procedures to minimize effects when an encounter occurred were also included. The TP system has been expanded to include advisories for ozone, volcanic ash and icing, in addition to the three original hazards. Also, hazards are now differentiated between low altitude: surface to approximately 5.5 km (18,000 feet), and high altitude: 5.5 km (18,000 feet) to 13.7 km (45,000 feet).

Author (revised by Hemer)

A95-93540

ASSESSMENT OF THE BENEFITS FOR IMPROVED TERMINAL WEATHER INFORMATION

Copyright

An important part of the FAA Aviation Weather Development Program is a system, the Integrated Terminal Weather System (ITWS), that will acquire data from the various FAA and National Weather Service (NWS) sensors and combine these with products from other systems (e.g., NWS Weather Forecast Offices and the FAA Aviation Weather Products Generator. This wide variety of input and products will enable the ITWS to provide a unified set of weather products for safety and planning/capacity improvement for use in the terminal area by pilots, controllers, terminal area traffic managers, airlines, airports, and terminal automation systems (e.g., Terminal Air Traffic Control Automation (TATCA) Center Tracon Advisory System (CTAS) and wake vortex advisory systems. The assessment of benefits from the ITWS, particularly in the area of reducing delay and other aviation system operations costs, has been an important element of the ITWS initial development phase. At the last Aviation Weather Conference, initial results were reported on delays associated with various types of weather based on use of climatology and FAA National Airspace Performance Reporting System (NAPRS) statistics for O'Hare airport. This paper extends the earlier results to consider a broader range of terminal weather impacts on aviation and discuss how the ability of the ITWS to reduce the impact will be quantified.

Author (Hemer)

A95-93541

CREATING A GLOBAL CLIMATOLOGY OF FREEZING RAIN USING

NUMERICAL MODEL OUTPUT

Copyright

The accretion of sheet ice on aircraft surfaces which may occur on encounter with freezing rain represents a considerable aviation hazard. Records exist with which the frequency of freezing rain observed at ground level may be assessed. However, because freezing rain often occurs in layers above the surface, little is known about the overall frequency of freezing rain events. In the current design environments for civil aircraft (FAR25 and JAR25) the problem of freezing rain is not explicitly addressed, although this is a recognized shortcoming. This work aims to help quantify the aviation hazard through the creation of a global climatology of freezing rain based on analyses from the UK Met Office Unified Model (Cullen, 1993). The work was prompted by an earlier study of Mills-Hicks and Mansfield (1990) which suggested that the frequency of both surface and elevated freezing rain events over the British Isles was about 1%. This incidence is, perhaps, higher than might be expected and suggests that in regions more susceptible to freezing rain the aviation hazard might have been underestimated. In section 2 the algorithm used to diagnose freezing rain from the model analyses is briefly described. Initial results from 6 months of analyses - November 1992 through April 1993 - are presented in section 3.

Author (Hemer)

A95-93542

THE PRODUCTION OF SUPERCOOLED LIQUID WATER BY A SECONDARY COLD FRONT

Copyright

Aircraft icing, the accretion of supercooled liquid water on an airframe, has been shown to cause a degradation of performance characteristics as well as contribute to accidents. A comprehension of the processes which both produce and deplete cloud liquid is vital to understanding when and where icing conditions will occur. On 27 February 1990, during the Winter Icing and Storms Project (WISP), a cold front passed through the Colorado Front Range area, followed twenty-four hours later by a strong secondary cold surge which produced a widespread upslope, primarily liquid water cloud. Scattered altostratus and altocumulus cloud embedded in southwestern flow above the frontal surface produced ice crystals which fell into the lower cloud, reducing the liquid water content through riming. This paper will present measurements obtained during the event to document the processes involved in supercooled liquid water (SLW) production and depletion, provide preliminary explanations of the observations, and suggest ways that these findings may be incorporated into detection and forecasting schemes.

Author (Hemer)

A95-93543

AN APPLICATION OF SOME CLOUD MODELING TECHNIQUES TO A REGIONAL MODEL SIMULATION OF AN ICING EVENT

Contract(s)/Grant(s): (AF PROJECT 2310G7; AF PROJECT 2310CP)

Copyright
Aircraft icing continues to be one of the primary causes of accidents among civilian aviation aircraft and is a concern for the military which has requirements for high-performance aircraft operations in potential icing environments. Therefore, both the military and civilian aviation communities stand to benefit from the accurate prediction of aircraft icing conditions. The methods and techniques currently used by the Air Force to predict aircraft icing were developed mainly in the 1950's, with some later refinements (Air Weather Service 1980). However, enormous advances in theory and computer power have made possible the use of sophisticated numerical weather prediction (NWP) models to predict objectively the timing, location, and intensity of icing events. In the last two decades alone, cloud microphysics research has made substantial progress. It is also true that considerable research on limited-area, or regional numerical models has yielded impressive gains in the forecast skill of mesoscale motions. This has occurred despite the wide use within these models of highly parameterized moist physics. Only recently has effort been directed toward merging these two areas of model formulation. In this report, we describe a microphysics parameterization that incorporates some formulations developed for use within cloud-scale prediction models. The parameterization was included within a regional hydrostatic prediction model which was then used to simulate the events surrounding an icing event that occurred on 13-15 February during the 1990 Winter Icing and Storms Project (WISP-90). The main goals of WISP are to (1) study and improve our understanding of the dynamical and microphysical processes leading to the formation, depletion, and deposition of supercooled liquid water in winter storms, and (2) improve forecasts of aircraft icing. It is hoped that parameterizations like the one described here will eventually contribute toward the attainment of these goals.

A95-93544
AIRPLANE ICING RESEARCH AT THE BOEING COMPANY: PARTICIPATION IN THE SECOND CANADIAN ATLANTIC STORMS PROGRAM
Copyright
From 15 January to 15 March 1992, the Boeing Company took part in the second Canadian Atlantic Storms Project (CASPII), based out of St John's, Newfoundland, Canada. CASPII was under the direction of the Canadian Atmospheric Environment Service (AES); its objective was to study winter storms in the north Atlantic in the vicinity of the Maritime provinces of Canada. It was preceded by the first Canadian Atlantic Storms Program (CASPI), based out of Nova Scotia, Canada in 1988. Boeing's primary motivation for participating in CASPII was to collect data pertinent to airplane icing concerns specific to Extended Range Operation with Two-Engine Airplanes (ETOPS) diversion flights along oceanic routes. The Boeing approach to defining the ETOPS diversion icing threat is through determination of the probability of supercooled water catch along possible ETOPS diversion routes. The key elements in the threat analysis are thus to determine statistically the supercooled cloud water content (SLWC), and the fraction of the diversion path through SLWC.

A95-93545
AIRCRAFT ICING: METEOROLOGICAL EFFECTS ON AIRCRAFT PERFORMANCE
Copyright
Aircraft icing is a complex interaction between environmental and aircraft characteristics. What we refer to as 'icing intensity' is related to the rate of accretion as well as to the effect on flight. Although progress is being made in understanding the factors involved in ice accretion through wind tunnel, numerical simulation, and flight test experiments, there is little dialogue between those conducting such studies and the meteorological community. Forecasters generally lack guidance to assist them in predicting icing occurrence or intensity. Likewise, those conducting research into forecast model development have little direction for definition, calculation, and required accuracy of parameters critical to the icing environment. The purpose of this paper is to discuss meteorological variables related to icing, describe their effect on ice accretion and flight, and suggest areas to concentrate further efforts on. Numerical simulations, flight tests and wind tunnel experiments are reviewed, and some examples of recently-collected data are provided.

A95-93546
PRELIMINARY STUDIES OF ICE FORMATION IN UPSLOPE CLOUDS
Copyright
Winter storms in the Colorado Front range are strongly influenced by the presence of the Rocky mountains and associated local east-west ridges such as the Palmer divide and the Cheyenne ridge. Regions of enhanced vertical motions develop in association with these topographic features, resulting in high condensate supply rates in preferred locations. These locations provide optimal growth conditions for ice crystals, resulting in heavy snowfall close to these regions. If sufficient numbers of ice crystals are not present, these same regions can produce sustained regions of supercooled liquid water hazardous to aircraft. Our current understanding of ice initiation in the atmosphere, however, is relatively poor, making it difficult to accurately model the depletion of supercooled liquid water by ice crystals. Crystal concentrations often vary by one to two orders of magnitude from predictions based on known primary and secondary ice formation processes. In this paper we will investigate the formation of ice crystals in shallow upslope storms along the Colorado Front Range using data from the 1990 and 1991 field seasons of the Winter Icing and Storms Project (WISP). In particular, the initiation of ice near the tops of these clouds will be investigated using data collected by the University of Wyoming King Air aircraft and University of North Dakota Citation II jet aircraft.

A95-93547
A NORTHERN HEMISPHERE CLEAR AIR TURBULENCE CLIMATOLOGY
Copyright
With the increase in high altitude, international air traffic expected to continue indefinitely, there is a need for knowledge of clear-air turbulence (CAT) frequency and coverage worldwide. CAT is a sub-synoptic to mesoscale aviation hazard that may result in: (1) passenger injury or discomfort, (2) structural damage to aircraft, (3) increased fuel consumption, and (4) late arrivals due to reduced airspeeds. A climatological data base that shows the global distribution of CAT risk and its variation with the seasons should assist in the planning of air routes and daily forecast
operations. Collections of aircraft pilot reports (PIREPs) have been relied upon in the past to determine where CAT can be found. With this approach, however, only heavily traveled air routes can be considered to be sampled often enough to obtain a clear picture of CAT frequency. The merging of PIREPs with computer techniques provided more uniform information, but because this approach relied on rawinsonde data, it was limited to continental regions. The rapid improvement of numerical forecast models within the last ten years and their assimilation of wind data from various sensors (aircraft, satellite, rawinsonde and profiler) has made numerical model data the most logical approach in producing CAT climatologies. This paper describes a preliminary climatology of CAT for the northern hemisphere based on long period averages of a numerical index. Regions of relatively high CAT risk are described, as are typical variations with season and flight level.

Author (Hemer)

AN EVALUATION OF CLEAR-AIR TURBULENCE INDICES
DONALD W. MCCANN
National Severe Storm Forecast Center, Kansas City, MO, US
Copyright

The diagnosis of clear air turbulence (CAT) has been a baffling problem for aviation meteorologists in spite of the advances in understanding CAT during the last quarter century. Since the capability of forecasting CAT begins with diagnosis, a study was initiated to determine how some of the better known CAT indices detect the reports of CAT from aircraft in flight. The study ran from December 1992 through February 1993, a period when significant CAT is very likely to occur in the United States each day. A total of 567 turbulence reports obtained from computer analyses of rawinsonde data were analyzed according to six turbulence indices (TIs) to determine if any would be useful in forecasting CAT. The indices included the Richardson number (RI), the rate of change of the wind shear (LDR1), and an index based on horizontal flow acceleration (ACCL). The ability of the TIs to diagnose CAT, as exemplified by their correlation coefficients, varied from -0.346 to 0.219. The RI and LDR1 showed the best correlation with the rawinsonde data; however, neither cloud indicate how severe the turbulence would be. It was concluded that although the study data suggest that the RI, and to a lesser extent the LDR1, can diagnose CAT, neither of these indices can determine its severity. New indices that can diagnose CAT severity must be found. The ideal index should take into account the importance of vertical wind shear in CAT production and how the stability can delay the development of turbulence until the wind shear is large.

Hemer

THE DEVELOPMENT OF AN AIRCRAFT ICING FORECAST TECHNIQUE USING DATA FROM MAPS
JOHN R. SMART NOAA, Boulder, CO, US
Copyright

This paper describes ongoing research at the Forecast Systems Laboratory (FSL) in developing an objective technique to forecast inflight aircraft icing. This work began during the Winter Icing and Storms Projects (WISP90 and WISP91) when meteorologists from FSL and the National Center for Atmospheric Research (NCAR) conducted experiments in forecasting supercooled liquid water content (SLWC). A primary objective of the experiments was to develop conceptual models suitable for diagnosing and forecasting SLWC production and depletion over eastern Colorado. While the technique that resulted from the WISP experiment is designed for eastern Colorado, and does have skill, our present work is to examine the performance nationally. This paper describes the icing algorithm and the implementation design and discusses the performance using the Mesoscale Analysis and Prediction System, MAPS for one period during an icing event over eastern Colorado on March 30 in 1993. In addition, the investigation sets the framework for more thorough analyses of MAPS gridded data for aircraft icing diagnoses.

Author (Hemer)

PRELIMINARY RESULTS OF TURBULENCE PREDICTIONS FOR USE IN AVIATION WEATHER FORECASTING
Copyright

Because atmospheric turbulence can become a significant hazard to aviation, the prediction of its location and intensity before it is physically encountered would contribute significantly to flight safety. The National Weather Service's Mesoscale Eta Model is scheduled to begin producing operational forecast guidance in 1994. One component of that guidance that is being studied is its turbulence prediction capability. Turbulent kinetic energy (TKE) is a prognostic variable in the model's Mellor-Yamada Level 2.5 second-order turbulence closure scheme. It is assumed that some of the processes that are parameterized in this formulation of TKE generation correspond to those responsible for the creation of atmospheric turbulence that occurs in nature and thus the model's description of TKE evolution might be useful in aviation weather guidance. The computation of TKE in the model generally follows that specified by Level 2.5 in the hierarchy described by Mellor and Yamada (1974, 1982). The so-called boundary layer approximation is used in which only the vertical derivatives of wind and potential temperature are retained in the calculations for production/dissipation of TKE due to shear and buoyancy; all horizontal derivatives are ignored. In the Eta Model, the prognostic equation for the production/dissipation term is expanded in terms of the TKE itself. The value of TKE at the new time step is then found by analytic integration of the prognostic equation while considering physical realizability constraints. Many reports of turbulence were made by pilots over the Denver area on 9 December 1992. Among other things, these reports include the latitude, longitude, and altitude of the turbulence as well as a subjective relative intensity. The intensity scale runs from 0 (none) to 7 (extreme). Between 0600UTC and 2100UTC, pilots reported experiencing turbulence in the vicinity of Denver with intensities of 4 (moderate) or 5 (moderate to severe) and once with an intensity of 6 (severe to extreme). Most of these incidents were at altitudes ranging from 31,000 to 39,000 feet (9.4 to 11.9 km). Several different configurations of the Eta Model were used in order to determine if it was possible to see any evidence of the reported turbulence in the forecast.

Author (revised by Hemer)

AMPLIFICATION AND BREAKING OF ATMOSPHERIC GRAVITY WAVES
Copyright

Here we investigate the amplification and breaking of atmospheric gravity waves generated by airflow over mountains. Understanding the conditions conducive to wave breaking, and determining the location of breaking, is of fundamental importance in determining the potential for...
wave-induced turbulence. In the upper troposphere and lower stratosphere overturning gravity waves are associated with Clear Air Turbulence (CAT), presenting a substantial in-flight hazard. Large amplitude mountain waves can also produce windstorms and localized regions of severe turbulence near the lee side of mountain ranges. In this study we address the amplification of nonhydrostatic gravity waves and the location of the breaking region as a function of the depth of the tropopause and tropospheric Richardson number. The upstream atmospheric profile includes the important dynamical effects of wind increasing with height in the troposphere and a stability jump at the tropopause. The troposphere is characterized by constant stability and linearly increasing wind, and hence constant Richardson number. For this atmospheric profile, the linear solution consists of partially trapped, nonhydrostatic gravity waves which are preferred atmospheric modes, and may dominate the solution throughout the troposphere and far into the stratosphere. Preliminary results from a nonlinear, anelastic numerical model based on second-order-accurate semi-Lagrangian approximations suggest that wave breaking in the troposphere depends on the Froude number (based on the ground wind), the depth of the tropopause, and the Richardson number. When the gravity wave does not break in the troposphere, the nonlinear solution closely resembles the linear solution in the troposphere, and the partially trapped, nonhydrostatic waves leak into the stratosphere. Once in the stratosphere these waves amplify and break due to non-Boussinesq effects.

Author (Hemmer)

A95-93553* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

TURBULENCE NEAR THUNDERSTORM TOPS

PETER F. LESTER San Jose State University, San Jose, CA, US

Copyright

For several years, scientists at San Jose State University, NASA-Ames, and the University of Arizona have carried out cooperative research programs to understand the causes and effects of severe turbulence. The primary sources of data for this work are Digital Flight Data Recorder (DFDR) tapes from airliners that have been involved in turbulence incidents. A significant result of the analysis of these data has been the identification and quantification of the turbulence causes. Turbulence signatures include breaking Kelvin-Helmholtz waves, large amplitude mountain lee waves, turbulence in and around thunderstorms, and maneuvering. The requirements that must be met for a turbulence incident to be included in the NASA study are rather straightforward: (1) severe or greater turbulence must have been reported (usually with passenger injuries) and (2) the flight data tapes must be available. Despite these rather general criteria, and the fact that our cases are drawn from a wide geographical area over the U.S. and the Atlantic Ocean, we have found an interesting bias in our sample. Of 12 cases at cruise altitude, four were definitely associated with thunderstorms and two are suspected thunderstorm cases. The others were due to mountain waves, CAT, high level windshear/maneuvering, or to causes not yet determined. Although our sample is small, these numbers have raised several questions, not the least of which are: How pervasive is the problem of aircraft encountering with severe turbulence in or near thunderstorm tops (TNTT)? Given the available visible and radar evidence of thunderstorms, Why do such incidents occur? Can anything be done to alleviate the problem? This paper outlines some very preliminary efforts to answer these questions. In the following sections, physical and statistical characteristics of TNTT are discussed (Section 2). TNTT causes are summarized (Section 3), current recommendations for TNTT avoidance are reviewed (Section 4), and some suggestions to ameliorate the problem are given (Section 5).

Author (Hemmer)

A95-93555

A PROTOTYPE FOR DISPLAYING AVIATION FORECAST VARIABLES USING ETA NUMERICAL MODEL OUTPUT

Copyright

In response to the need for more timely and accurate aviation weather information, NOAA's Forecast System Laboratory (FSL) in collaboration with the Federal Aviation Administration (FAA) is developing the Aviation Gridded Forecast System (AGFS). The goal of the AGFS is to improve aviation weather forecasting by developing high-resolution gridded analyses and forecasts of weather affecting the aviation community using numerical weather prediction models. The ETA model, the National Meteorological Center's next generation forecast model, is one of the national domain models that will be used as a forecast component of the AGFS. Weather variables that pertain to the aviation community, known as aviation impact variables or AIVs, include visibility and obstruction to visibility; heights of cloud tops, bases and ceiling; relative humidity; altimeter setting; precipitation phase and type; and most importantly, icing and clear air turbulence. AIVs are diagnostically computed from state-of-the-atmosphere variables (SAVs) such as temperature and dewpoint temperature, wind magnitude and direction, precipitation occurrence and amount, and turbulent kinetic energy (TKE), all of which are obtained directly from ETA numerical model output. This paper describes a prototype display system (PDS) to display SAVs and AIVs using ETA model output. We also discuss the basic software support for the PDS, the commercially available Application Visualization System (AVIS).

Author (Hemmer)

A95-93555

OPERATIONAL MULTI-SCALE ENVIRONMENT MODEL WITH GRID ADAPTIVITY (OMEGA) APPLICATION TO AVIATION WEATHER

Copyright

The Operational Mesoscale Environment model with Grid Adaptivity (OMEGA) represents a new approach to atmospheric simulation which merges state-of-the-art computational fluid dynamics techniques with a comprehensive non-hydrostatic equation set. Based upon an unstructured triangular prism grid, OMEGA can operate with horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from a few meters in the boundary layer to 1 km in the free troposphere. More importantly, OMEGA can allocate this resolution in a natural fashion anywhere in the computational domain. OMEGA represents a significant advance in the field of weather prediction in general, and opens up numerous possibilities for new aviation weather forecasts. For example, the OMEGA grid can be made to adapt to fixed surface features of particular importance to aviation such as terminal airspace or air traffic corridors. The OMEGA grid could also be made to dynamically adapt to weather features which might not drive the weather, but might be significant for aviation operations such as freezing level, fog, or frontal passage.

Author (Hemmer)
The basic formulation of the OMEGA model is contained in a companion paper by the authors in the 13th Conference on Weather Analysis and Forecasting. In this paper, we will focus on the OMEGA grid structure and upon the grid generation techniques which have application to aviation weather.

Author (Hemer)

A95-935650

AN OVERVIEW OF ISSUES ENCOUNTERED IN PARALLELING HIGH-RESOLUTION WEATHER PREDICTION MODELS

FRANCIS G. TOWER Forecast Systems Laboratory, Boulder, CO, US

Copyright

The Forecast Systems Laboratory (FSL) in Boulder, Colorado, transfers technological developments in atmospheric and oceanic research to the Nation's operational services. FSL is working with the Federal Aviation Administration (FAA) Aviation Weather Development Program (AWDP) to develop high-resolution analysis and prediction models to provide both en route and terminal weather support. The modeling portion of the project will continue over the next seven years and will provide both state-of-the-art forecasting variables and aviation-impact variables. To provide both en route and terminal weather support, the models will cover two specific domains. The national domain covers the lower 48 states. The first two models scheduled to be paralleled for the national domain are FSL's Mesoscale analysis and Prediction system (MAPS) model and the National Meteorological Center's (NMC)Eta model. The second domain is centered on the Weather Forecast Office (WFO) and covers an area 400 by 400-km. WFO domain models will analyze every 5 minutes at 2-km resolution and forecast every hour at 10-km resolution using the locally available, higher density data (i.e., Doppler radar, mesonet, profiler). Many risks are associated with a modeling effort of this scope and duration. Risks associated with computing hardware, the complexity of parallel processing, and the distributed nature of the software development must be minimized to assure program success and amortize the enormous cost to parallelize models. FSL has therefore taken a very conservative approach to the issues that have arisen on software, software management, and hardware. Parallel software is being developed with source code portability and maintainability as the primary consideration. Existing standards are used where possible and propriety solutions are avoided. This paper briefly discusses issues that arose during the startup of the project.

Author (Hemer)

A95-935651

THE 1992-3 OPERATIONAL WINTER FORECASTING EXPERIMENT FOR STAPLETON AIRPORT

Copyright

During the 15 November 1992 - 2 April 1993 time period, a winter forecasting experiment was conducted for Denver's Stapleton airport (DEN), as part of RAP's ongoing program on aircraft ground de-icing. Snowfall forecasts, especially in the 0-5 hour time frame, are critically important to airline operations such as de-icing scheduling and procedures. Highly varying snowfall rates on both small temporal and spatial scales complicate the de-icing problem for the airlines and necessitate the measurement and prediction of precipitation on a sub-1-hour basis. The goals of the NCAR operational forecast experiment last winter were as follows: (1) Detect and nowcast snowfall at DEN in the 0-1 hour time period. (2) Provide additional snowfall outlooks in the 1-24 hour time period. (3) Gain insight into the dynamical and microphysical aspects of snow production in the Colorado Front Range region. In this project, 24-hour outlooks were prepared daily. During snowfall, 1 and 5-hour forecasts of accumulation, liquid equivalent, temperature and winds were disseminated. The tools used in developing these forecasts were primarily Mile High Doppler radar data, a special high-resolution snowgauge network, surface meteorological measurements from the PROFS mesonetwork and two PAM stations, and standard NWS surface, sounding, satellite and model data.

Author (Hemer)

N95-31157# Technische Univ., Delft (Netherlands).

DIGITAL SIMULATION OF WIND VELOCITIES FOR WIND TURBINE ROTORS: GENERAL CONSIDERATIONS

J. B. DRAGT Dec. 1993 18 p

PB85-206447; IW-93070R) Avail: CASI HC A03/MF A01

One of the methods to reliably predict the dynamic loads of a wind turbine rotor due to the turbulence of the atmosphere is to simulate the stochastic wind field over the rotor area in a digital way, in order to generate the wind input for a rotor dynamical code. As many points in the rotor area are involved and many time steps, a rather time consuming computation is required. A number of different approaches can be followed, some of which have been realized in practical computer programs, others still have to be explored. This report gives a general overview of simulation methods based on the inverse fast Fourier transform.

NTIS

N95-31465# Massachusetts Inst. of Tech., Lexington, MA.

INITIAL EVALUATION OF THE OREGON STATE UNIVERSITY PLANEARY BOUNDARY LAYER COLUMN MODEL FOR ITWS APPLICATIONS

Contract(s)/Grant(s): (DTFA01-91-R-Z-02036; F19628-95-C-0002) (AD-A293775; ATC-233) Avail: CASI HC A03/MF A01

The Federal Aviation Administration (FAA) Integrated Terminal Weather System (ITWS) is supporting the development of products important for air traffic control in the terminal area. Some ITWS products will allow air traffic managers to anticipate operationally significant short-term (0-30 min) changes in ceiling and visibility (C&V) and aircraft separations necessary to avoid encounters with wake vortices. Development of such products exploits data that will by available from new FAA terminal area sensor systems. These sensor systems include Terminal Doppler Weather Radar (TDWR), Next Generation Weather Radar (NEXRAD), the Meteorological Data Collection and Reporting System (MDCRS), and the Automated Surface Observing System (ASOS). A Dynamic Atmospheric Vertical Structure Nowcast System (DAVS-NS) is being developed that will add value to ITWS by providing current analyses and short-term forecasts of the vertical atmospheric structure focused at specific sites within the terminal domain. This report summarizes the initial evaluation of the Oregon State University one-dimensional boundary layer model for its potential role within a DAVS-NS.

NTIS

N95-31587# Federal Aviation Administration, Atlantic City, NJ.

THE ATC OPERATIONAL EVALUATION OF THE PROTOTYPE INTEGRATED TERMINAL WEATHER SYSTEM (ITWS) AT DALLAS/FORT WORTH AND ORLANDO AIRPORTS (MAY-SEPTEMBER 1993) Final Technical Note

THOMAS M. WEISS Mar. 1995 119 p

(AD-A293808; DOT/FAA/CT-TN95/1) Avail: CASI HC A06/MF A02

The Integrated Terminal Weather System (ITWS) was developed by Massachusetts Institute of Technology/Lincoln Laboratory (MIT/LIL). The ITWS processor acquires data from Federal Aviation Administration (FAA) and National Weather Service (NWS) weather sensors in the terminal area and provides an integrated set of safety and planning weather products to air traffic personnel. An operational evaluation of the ITWS functional prototype was performed from May through September, 1993 at Dallas/Fort Worth (DFW) and Orlando (MCO) airports. ITWS geographical situation displays (6 SD) were located both at DFW and MCO.
as well as the Fort Worth Air Route Control Center (ARTCC/DFW) and Jacksonville ARTCC (ZJX). The purpose of testing ITWS at these sites was to evaluate various technical and operational issues of ITWS weather products and their display and usability on the GSD.

15 MATHEMATICAL AND COMPUTER SCIENCES

Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

A95-92597
MULTIVARIABLE ADAPTIVE CONTROL USING ONLY INPUT AND OUTPUT MEASUREMENTS FOR TURBOJET ENGINES
JIN-QUAN HUANG Nanjing Univ of Aeronautics and Astronautics, Nanjing, China and JIAN-GUO SUN Journal of Engineering for Gas Turbines and Power, Transactions of the ASME (ISSN 0742-4795) vol. 117, no. 2 April 1995 p. 314-319 refs

B95-92708
NEW FILTERING METHOD FOR LINEAR WEAKLY COUPLED STOCHASTIC SYSTEMS
Z. GAJIC Rutgers Univ, Piscataway, NJ, United States and Z. AGANOVIC Journal of Guidance, Control, and Dynamics (ISSN 0731-5090) vol. 18, no. 3 May-June 1995 p. 630-633 refs

A95-93595
EVOLVING STANDARDS FOR SAFETY CRITICAL SOFTWARE

DTIC

A95-93596
DEPENDABLE SOFTWARE - THE STATE OF THE ART

This paper is intended to set out the author's views of the ‘state of the art’ in the development of dependable (especially safety critical avionic) software from both an industrial and an academic (research) perspective. Inevitably such an exercise is judgemental as there is no uniform ‘state of the art’ in either academia or industry and I am reflecting my perceptions of those industrial and academic organisations with which I have significant interactions. The purpose of making such a comparison is to try to enlighten academics to engineering perspectives and problems, and to inform industrialists about pertinent research.

A95-93597
DEVELOPMENT OF SOFTWARE FOR SAFETY CRITICAL APPLICATIONS FOR THE EH101 HELICOPTER

This paper describes the management of software developed for use in flight critical applications on the EH101 Helicopter. It discusses the integrity rationale, design assurance and verification techniques employed. The interpretation of the certification requirements and interface with the regulatory authorities. It examines the approach adopted in three specific applications; flight control, cockpit displays and aircraft sensors.

A95-93757
A STUDY OF MESH ADAPTATION TECHNIQUES IN STRUCTURED AND UNSTRUCTURED MESHES

(1879921-01-4) Copyright

Two distinctively different approaches to grid adaption were studied. The first method is for structured meshes which were adapted by moving points on the mesh. The unstructured meshes were adapted using a point enrichment algorithm. The object of the research was to study the advantages and shortcomings of each method. The mesh generation and mesh adaption techniques were applied to two different geometries. The first is a ramp at an angle of 5 degrees and a free stream Mach number of 2. The second geometry is a missile with open bays travelling at a free stream Mach number of 1.87. Finally, the last case is a NACA-0012 airfoil at a free stream Mach number of 2.1.

A95-30406# Air Force Inst. of Tech., Wright-Patterson AFB, OH.
SELECTING OPTIMAL EXPERIMENTS FOR FEEDFORWARD MULTILAYER PERCEPTRONS Ph.D. Thesis
LISA M. BELUE Mar. 1995 187 p

(AD-A290856; AFIT/DS/ENS/95-01) Avail: CASI HC A09/MF A02

Where should a researcher conduct experiments to provide training data for a multilayer perceptron? This question is investigated and a statistically-based method for optimally selecting experimental design points for multilayer perceptrons is introduced. Specifically, a criterion is developed based on the size of an estimated confidence ellipsoid for the weights in the multilayer perceptron. This criterion is minimized over a set of exemplars to find optimal design points. Initially, single output networks are examined. An example is used to demonstrate the superiority of optimally selected design points over randomly chosen points and points chosen in a grid pattern. Also, two measures are successfully used to...
rank the design points in terms of their importance. Two methods are presented to significantly reduce complexity—a distributed linear feedthrough network structure and a weight subset method. Next, multiple output network models are examined. The criterion in this framework becomes more complex and a simplifying technique is employed to judiciously choose desired outputs of the network to produce uncorrelated actual outputs. Finally, the methods described above are integrated and tested on two applications dealing with aircraft survivability. In both cases, simulating the indicated experiments produced a superior multilayer perceptron.

DTIC

N95-30892# Stanford Univ., CA. Dept. of Electrical Engineering.

FOUNDATIONS OF TECHNOLOGY FOR CONSTRUCTING HIGHLY RELIABLE DISTRIBUTED REALTIME SYSTEMS Final Report, 1 Aug. 1991 - 30 Sep. 1994

DAVID C. LUCKHAM 30 Sep. 1994 12 p
Contract(s)/Grant(s): (AF-AFOSR-95-054-91)
(AD-A292524; AFOSR-95-02330TR) Avail: CASI HC A03/MF A01

We have investigated event-based specification and constraint language extensions of our Rapid prototyping language. We have also investigated testing methods and tools for detecting constraint violations in simulations of distributed time-sensitive avionics systems and control systems. Rapid models the behavior of a distributed system by generating causal event simulations. A causal event simulation is a timed poset (partially ordered set of events with timing). Dependencies between events as well as their timing are captured in the poset execution model, thus providing a more detailed and precise picture of the behavior of a real-time, distributed system than current simulation technology based upon sequential traces of events. Posets allow more powerful constraint specifications than traces, e.g., asynchronous behavior. This work has developed (1) basic algorithms for implementing posit computations, (2) a constraint language for specifying behavior in terms of posets, and (3) automatable algorithms and tool-set for detecting constraint violations in posets. To establish the feasibility of scaling this simulation technology to practical avionics examples, we have applied the technology to developing high level systems architectures of avionics systems. We have also applied constraint monitoring of the avionics simulations to detect design errors. The avionics systems studied include the IBM ADAGE helicopter avionics system architecture, and a high level architecture of the Boeing DARTS system for building flight simulators.

DTIC

N95-30961 Michigan Univ., Ann Arbor, MI.

DENNIS S. BEFINSITE 30 Oct. 1994 28 p Limited Reproducibility: More than 20% of this document may be affected by poor print
Contract(s)/Grant(s): (F49620-92-J-0127)
(AD-A292883; AFOSR-95-0202TR) Avail: Issuing Activity (Defense Technical Information Center (DTIC))

This final report for AFOSR Grant F49620-92-J-0127 summarizes results obtained in five areas, namely, robust control, linear control, sampled-data control, tracking and disturbance rejection, and nonlinear control. Principal results include new bounds for the structured singular value, implementation of structured singular value synthesis using fixed-structure optimization techniques, a more rigorous foundation for the Maximum Entropy control technique, extensions of linear-quadratic control to stabilize all states, and determination of the achievable performance of sampled-data controllers in the presence of sample-rate constraints, control of noise in an acoustic duct, stability theory for second-order systems, a rigorous treatment of Guan's condition, a deterministic foundation for energy flow theory, a unified treatment of quadratic optimality and state-observation, nonlinear control of the spinning top and rotating bodies with known and unknown mass imbalance, global stabilization of the oscillating eccentric rotor using integrator backstepping, and Lyapunov theory for finite-time convergence.

DTIC

N95-31455# Massachusetts Univ., Amherst, MA. Dept. of Mechanical Engineering.

IAN R. GROSSE, MICHAEL SHEEHY, PRASANNA KATRAGADDA, and SHANKAR Raman Dec. 1994 122 p
Contract(s)/Grant(s): (F30602-93-C-0040)
(AD-A29211; RL-TR-94-218) Avail: CASI HC A06/MF A02

Modeling methodologies were developed, implemented, and tested for both rapid thermal finite element analysis of small-scale integrated circuit features in MCM's, and for thermal stress finite element analysis of chip-to-substrate interconnects. A three-step sequential analysis methodology was developed that is initiated with a macroscopic thermal analysis of the entire MCM package. The macroscopic finite element thermal analysis is then followed by two successive finite element thermal submodels of the hottest die first and then of the hottest die microfeature. In this manner, the thermal analysis process mathematically zooms into the hottest IC microfeature without resorting to supercomputer-size finite element models of the MCM. A two-step sequential thermal-stress finite element submodeling analysis procedure was also developed for thermally induced stress analysis of the most highly stressed wirebond or TAB interconnect in an MCM package. For automation purposes, both the IC thermal submodeling and the interconnect elastostatic submodeling methodologies were implemented into an existing blackboard-based, object-oriented MCM software design tool called the Intelligent MCM Analysis (IMOMA).

DTIC

N95-3168# Dayton Univ., OH. Research Inst.

GEORGE A. GERI and IZIDOR C. GERTNER Dec. 1994 124 p
Prepared in cooperation with City College of the City Univ. of New York, NY
Contract(s)/Grant(s): (F33615-90-C-0006)
(AD-A293416; ALHR-TR-1994-0106) Avail: CASI HC A06/MF A01

Flight simulator imagery is often made up of real scenes whose characteristics are not constant across the image. This property suggests that such imagery can be most efficiently represented by spectral techniques that use spatially localized basis functions. This report describes techniques for decomposing full gray-scale images into a joint position/spatial-frequency domain using bases derived from various window functions. The first set of window functions consists of the hermite functions that are related to gaussian derivatives. The second set is based on a new window function that is obtained from a weighted Zak transform and that provides good localization properties and stable computation. The third set is based on a localized cosine function and allows images to be decomposed using real numbers only. All of the techniques described provide a framework for filtering images in a position-varying manner. For all the basis functions described here, image generation from combined position and spatial-frequency information involves a computationally intensive four-dimensional summation. By an application of the Zak Transform, we are able to replace this summation with a fast Fourier transform, significantly reducing the complexity of the computation.

DTIC

N95-31982# Old Dominion Univ., Norfolk, VA. Dept. of Computer Science.

GEOMETRIC MODELING FOR COMPUTER AIDED DESIGN Final Report, period ended 30 Jun. 1995

JAMES L. SCHWING and STEPHEN OLAIRU Jul. 1995 28 p
Contract(s)/Grant(s): (NCC1-99)
(AD-A293416; RL-TR-94-218) Avail: CASI HC A06/MF A01

The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typi-

REPORT TO THE CHAIRMAN, LEGISLATION AND NATIONAL SECURITY SUBCOMMITTEE, COMMITTEE ON GOVERNMENT OPERATIONS, HOUSE OF REPRESENTATIVES. TACTICAL AIRCRAFT: F-15 REPLACEMENT IS PREMATURE AS CURRENTLY PLANNED
25 Mar. 1994 10 p
(GAO/NSIAD-94-118; B-253662) Avail: CASI HC A02/2MF A01; GAO, PO Box 6015, Gaithersburg, MD 20877 HC

The F-22 program was initiated in 1981 to meet the evolving threat in the mid-1990s. This threat revolved around a fighter threat that had a significant quantitative advantage and was becoming more capable with the introduction of two new high performance fighters. Since the F-22 program entered full-scale development in 1991, the severity of the projected military threat in terms of quantities and capabilities has declined. Instead of confronting thousands of modern Soviet fighters, U.S. air forces are expected to confront potential adversary air forces that include few fighters - the U.S. front line fighter. The F-15 exceeds the most advanced threat system expected to exist. And no improvements will be made to the F-15 but the capability of the 'most advanced threat' assumes certain modifications. Further, analysis shows that the current inventory of F-15's can be economically maintained in a structurally sound condition until 2015 or later. Thus, the F-22's initial operational capability can be delayed 7 years and its planned production start date of 1996 can be postponed to a future date deemed appropriate by DOD to meet the new initial operational capability date.

Derived from text

A95-93965
EFFECTS OF ACTIVATED REACTIVE EVAPORATION PROCESS PARAMETERS ON THE MICROHARDNESS OF POLYCRYSTALLINE SILICON CARBIDE THIN FILMS
YONGHWA CHIS CHA Department of Materials Science and Engineering, School of Engineering and Applied Science, University of California, Los Angeles, CA 90024, US; GUHO KIM Department of Materials Science and Engineering, School of Engineering and Applied Science, University of California, Los Angeles, CA 90024, US; HANS J. DOERR Department of Materials Science and Engineering, School of Engineering and Applied Science, University of California, Los Angeles, CA 90024, US, and ROINTAN B. BUSHAM Department of Materials Science and Engineering, School of Engineering and Applied Science, University of California, Los Angeles, CA 90024, US Thin Solid Films (ISSN 0021-8669) vol. 253, no. 1-2 December 15, 1994 p. 212-217 Copyright (c) 1995 Elsevier Science B.V., Amsterdam. All rights reserved.

(0040-6090) vol. 253, no. 1-2 December 15, 1994 p. 212-217 Copyright (c) 1995 Elsevier Science B.V., Amsterdam. All rights reserved.

A95-94248
SIGNAL PROCESSING OF NOISE DATA FROM HIGH-SPEED FLY-OVERS
JEFFREY J. KELLY Lockheed Engineering and Sciences Co, Inc, Hampton, VA, United States and MARK R. WILSON Journal of Aircraft (ISSN 0021-8669) vol. 32, no. 3 May-June 1995 p. 590-595 refs (BTN-95-EIX0619952748178) Copyright

Narrow-band spectra characterizing jet noise are constructed from flyover acoustic measurements. Radar and c-band tracking systems provided the aircraft position histories from which directivity and smear angles from the aircraft to each microphone are computed. These angles are based on source emission time. This allowed spectra to be correlated to aircraft position at the time of sound emission. Simulated spectra are included in this article to demonstrate spectral broadening due to smear angles. A detailed description of the signal processing procedures is provided. The spectra demonstrated the forward radiation of broadband shock noise of supersonic jets, confirming what has been observed in static tests.

Author (Elsevier)
Infrared astronomers have made significant discoveries using the NASA/Ames Research Center C-141 Kuiper Airborne Observatory (KAO) with its 0.91-meter telescope. The need for a 3-meter class airborne observatory has been established to improve astronomy data gathering capability. The new system envisioned by NASA and the international community of astronomers will be known as the Stratospheric Observatory for Infrared Astronomy (SOFIA). The platform of choice for SOFIA is a modified Boeing 747SP. SOFIA is viewed as a logical progression from the KAO. Potentially, a 3-meter telescope operating at the altitude achievable by the 747SP aircraft can be 11 times more sensitive than the KAO, can have 3.3 times better angular resolution, and will allow observations of compact sources in a volume of space up to 36 times that of the KAO. The KAO has enabled detection of about 15 percent of the far infrared IRAS survey point-sources; SOFIA should be able to detect them all. This document presents the results of in-house ARC and contracted concept definition studies for SOFIA. Using the ARC-based Kuiper Airborne Observatory as a basis for both SOFIA design and operations concepts, the SOFIA system concept has been developed with a view toward demonstrating mission and technical feasibility, and preparing preliminary cost estimates. The reference concept developed is not intended to represent final design, and should be treated accordingly. The most important products of this study, other than demonstration of system feasibility, are the understanding of system trade-offs and the development of confidence in the technology base that exists to move forward with a program leading to implementation of the Stratospheric Observatory for Infrared Astronomy (SOFIA).

The Mini-Business Approach at Chadderton

To accomodate a 60 per cent share increase in variety and a five-fold increase in volume over five years, British Aerospace’s Chadderton factory is implementing cell manufacture for Airbus wing components. This required the introduction of demand-driven manufacture, supported by logistics and control systems which balance production through the four mini-business cells and permit on-time delivery to the assembly plant.

The Mini-Business Approach at Chadderton

To accomodate a 60 per cent share increase in variety and a five-fold increase in volume over five years, British Aerospace’s Chadderton factory is implementing cell manufacture for Airbus wing components. This required the introduction of demand-driven manufacture, supported by logistics and control systems which balance production through the four mini-business cells and permit on-time delivery to the assembly plant.

Author (Hemer)

Cooperative Problem Solving Between Airline Operations Control and Air Traffic Flow Management

The author discusses his observations on cooperative decision making as he has viewed it as an airline operations controller. The comments are personal observations of the interaction between Air Traffic Control Traffic Flow Management (ATC TFM) and Airline Operations Control (AOC). The paper addresses the increase in cooperative planning between ATC TFM and AOC.

Author (revised by Hemer)

Space Sciences
Includes space sciences (general); astronomy; astrophysics; lunar and planetary exploration; solar physics; and space radiation.

Aeronautics and Space Report of the President Activities Report, Fiscal Year 1994

This report describes the activities and accomplishments of all agencies of the United States in the fields of aeronautics and space science during FY 1994. Activity summaries are presented for the following areas: space launch activities, space science, space flight and space technology, space communications, aeronautics, and studies of the planet Earth. Several appendices providing data on U.S. launch activities, the Federal budget for space and aeronautics, remote sensing capabilities, and space policy are included.

CASI
ACCIDENT PREVENTION
Fundamentals of catastrophic failure prevention by thrust vectoring
[BTN-95-EIX0919952748178] p 606 A95-94470

ASRS problems involving air carrier ground
decision/anti-icing p 611 A95-95194

Metallurgical problems in safety science
[PB95-195460] p 645 N95-35021

SCARLET: DLR rate saturation flight experiment
p 598 N95-31066

ADJUSTMENT COEFFICIENT
Unanswered questions concerning the Novella
gas-surface interaction system
[ISBN 1-879921-01-4] p 628 A95-93716

ACCUMULATIONS
A short-term, high-resolution automated snowfall
forecasting system p 666 A95-93510

The 1992-3 operational winter forecasting experiment
for Stapleton airport p 677 A95-35561

ACCURACY
Verification of terminal forecasts p 684 A95-93502

Jet stream winds: Comparisons of operational analyses
with independent aircraft data at multiple longitudes
p 665 A95-93506

Flight test evaluation of the Stanford University/United
Airlines differential GPS Category 3 automatic landing
system [NASA-TM-110354] p 593 N95-30788

ACOUSTIC DUCTS
Robust fixed-structure control
[AD-A299883] p 679 N95-30961

ACOUSTIC MEASUREMENT
Signal processing of noise data from high-speed
flyovers
[BTN-95-EIX0919952748178] p 680 A95-94248

Method for extracting forward acoustic wave
components from rotating microphone measurements in
the inlets of turbofan engines [NASA-CR-195457]
p 616 N95-30779

ACRYLIC RESINS
Operational parameters and material effects
p 651 N95-32179

ACTIVE CONTROL
Flow Vehicle Integration Panel Workshop on Pilot
induced Oscillations
[AGARD-AR-305] p 567 N95-31061

Investigating the use of smart acoustically active
surfaces for flow separation control in turbomachinery.
[AD-A299819] p 651 N95-34413

Active control technology: Applications and lessons
learned [AGARD-CR-560] p 620 N95-31899

The role of handling qualities specifications in flight
control system design p 620 N95-31995

Experiences with ADS-33 helicopter specification testing
and contributions to refinement research
p 621 N95-31993

Model following control for tailoring handling qualities:
ACT experience with ATTRAHs
[NASA-TP-622] p 622 N95-32000

Structural aspects of active control technology
p 623 N95-32006

Flight test results of the F-16 aircraft modified with
axiymmetric vectored exhaust nozzle
p 629 N95-32007

Experimental Aircraft Programmes (EAP): Flight control
system design and test p 623 N95-32010

Pilot Induced Oscillation: A report on the AGARD
Workshop on PIO p 625 N95-32017

Vibration reduction in helicopter rotors using an actively
controlled partial span trailing edge flap located on the
turbine hub p 624 N95-32111

ACTUATORS
Static shape control for adaptive wings
[HTN-95-A71767] p 627 A95-93330

A-STRATA - A safe, simplex, fly-by-wire aircraft control
system [CONFERENCE PAPER C428-37-218] p 610 A95-93634

Advanced passive cooling for high
electromechanical actuators
[SAE PAPER 91397] p 634 A95-93669

Power system characteristics for more electric aircraft
[SAE PAPER 931406] p 613 A95-92675

Adaptive airfoils
[ISBN 1-879921-01-4] p 625 A95-95744

Panel flutter limit-cycle suppression with piezoelectric
actuation [BTN-95-EIX09120731089] p 618 A95-94208

New adaptive methods for reconfigurable flight control
systems, appendix 1
[AD-A292711] p 619 N95-30937

ADAPTIVE CONTROL
Multi-valve adaptive control using only input and output
measurements for turbojet engines
[BTN-95-EIX091992721165] p 677 A95-92357

New tuning method for linear weakly coupled stochastic
systems [BTN-95-EIX0919952748178] p 678 A95-92708

Adaptive airfoils
[ISBN 1-879921-01-4] p 625 A95-95744

A study of mesh adaption techniques in structured and
unstructured meshes
[ISBN 1-879921-01-4] p 678 A95-93757

Flight assessment of the onboard propulsion system
model for the Performance Seeking Control algorithm
on an F16 aircraft [NASA-TM-4705] p 617 N95-31425

ADDITIVES
Environmentally safe aviation fuels
p 631 N95-31768

AERODYNAMICS
Method for extracting forward acoustic wave
components from rotating microphone measurements in
the inlets of turbofan engines

AERODYNAMIC CHARACTERISTICS
An experimental investigation of forward-swept wings
at low Reynolds numbers
[SAE PAPER 901370] p 604 A95-93650

Prediction of airframe states
[BTN-95-EIX0919952748178] p 584 A95-94458

Transonic aerodynamic characteristics of a proposed
wing-body reusable launch vehicle concept

Hypervelocity wind tunnel number 9, high Mach number
development program
[AD-A299834] p 584 N95-30929

Unified criteria for ACT aircraft longitudinal dynamics
p 607 N95-31065

Effects of cavity bleed and its configuration on
aerodynamic characteristics of supersonic internal flow
(NASA-1247) p 594 N95-31715

AERODYNAMIC COEFFICIENTS
Unanswered questions concerning the Novella
gas-surface interaction system
[ISBN 1-879921-01-4] p 628 A95-93716

AERODYNOMIC CONFIGURATIONS
Optimal shape design in hypersonic aerodynamics
and electromagnetics
p 639 A95-95397

Navier-Stokes computations around a realistic fighter
configuration: a general inverse design procedure for
danalytical bodies
p 606 N95-30497

Numerical investigation into vortex flow about a
data-wing configuration up to incidences at which vortex
breakdown occurs in experiment
[PB95-198024] p 593 N95-30837

Application of multigrid computational fluid dynamics
(CFD) methods to rotor analysis
[AD-A293012] p 646 N95-31475

A general inverse design procedure for aerodynamic
bodies
p 606 N95-30497

Active control of flow separation control in turbomachinery
[AD-A292619] p 648 N95-31443
A numerical study of the starting process in a hypersonic rocket engine.

BOUNDARY VALUE PROBLEMS

Effect of initial conditions on the response of nonlinear dynamical systems with the application to helicopter rotor dynamics.

ISBN 1-879291-01-4

BOW WAVES

Analysis of planar laser-induced fluorescence images obtained during shakedown testing of the AEDC impulse facility.

AD-A292237

BRANCHING (MATHEMATICS)

Assessment of technology for aircraft development.

[BTN-95-E0X19952748118] p 606 A95-94474

BREADBOARD MODELS

Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer.

DE95-008629

BREAKING

Amplification and breaking of atmospheric gravity waves.

A95-93552

BRIGHTNESS TEMPERATURE

Airborne imaging radiometer scan simulation.

AD-A95-E0X32753018

BYPASS RATIO

Vortex rotor-enhanced gas turbine engines.

NASA-TM-109696

C

BAND

Final results of the weather testing component of the Terminal Doppler Weather Radar operational test and evaluation.

AD-A95-93471

CADMIUM

Cadmium plating replacements.

A95-31773

CALIBRATING

A short-term, high-resolution automated snowfall forecasting system.

A95-93510

Cambered wings

Variable camber geometry for transport aircraft wings.

AD-A95-30501

CAMERAS

Passive millimeter wave camera for aircraft landing in low visibility conditions.

AD-A95-2722121

CANADA

Transport Canada proposed R&D program for the development of a multi-parameter dual X-band Doppler radar for aviation meteorology applications.

A95-93477

CanadianconstraintoccurrenceinCanada.

A95-93497

Aviation terminal forecasts based on automated observations (ETF/ATCF).

A95-93520

CANARD CONFIGURATIONS

Calpit-lauhichingoftherAFALEdesignandexperimeuement.

A95-32066

CANOPIES

Failure analysis for polycarbonate transparencies.

AD-A929292

CAPE KENNEDY LAUNCH COMPLEX

Development of a climatological database to help forecast cloud cover conditions for shuttle landings at the Kennedy Space Center.

A95-70059

Analysis of rapidly developing fog at the Kennedy Space Center.

A95-93531

CARBON DIOXIDE

Aviation and the environment.

A95-93464

Carbon fiber reinforced plastics.

The basis of civil certification and continued airworthiness for composite aircraft structures.

AD-A95-3471

CARBONATES

Bicarbonate of soda paint stripping process validation.

AD-A95-31776

CARGO AIRCRAFT

Report to Congressional Committees.

Military air: C7 settlement is not a good deal.

GAO/NSIAD-94-141

CASCADE FLOW

Numerical calculations of the turbulent flow through a controlled diffusion compressor cascade.

[BTN-95-E0X5282710056] p 632 A95-92473
Robust control: A structured approach to solve aircraft flight control problems
- p 621 A95-31995
- Model following control for tailoring handling qualities:
 ACT experience with ATCHeS
- p 622 A95-32000

OPTIMIZATION
Surplus, turbulent flow computation and drag optimization for advanced afterbodies
- [BTN-95-EIX9532097272772] p 637 A95-94134
- A general inverse design procedure for aerodynamic bodies
- p 606 A95-30497

Fixed structure control
- [AD-A292863] p 679 A95-30981

OPTOELECTRONIC DEVICES
Lightweight, opto-electronic engine control system for aerospace turbines
- [SAGE PAPER 931442] p 614 A95-93992

ORGANIZATIONS
Organizational ergonomics and aviation safety
- p 598 A95-90583

OSCILLATING FLOW
Dynamical systems as models for flow-induced vibrations
- [PB95-206961] p 647 N95-30956

OCCUPATIONAL SOLUTIONS
Modeling and analysis of a dual-wheel nosegear: Shimmyn instability and impact motions
- [SAGE PAPER 931402] p 605 A95-93872

Numerical study of multi-element airfoil aerodynamics
- [ISSN 1-87992-0-1] p 587 A95-93750

OZONE DEPLETION
Alternatives to ozone depleting refrigerants in test equipment
- p 530 N95-31767

PAINTS
A comparison of coating alternatives for US Coast Guard aircraft
- [AD-A293270] p 629 N95-31124
- Cadmium plating replacements
- p 631 N95-31173
- Ecoroots of coats paint stripping process validation and material characterization
- p 631 N95-31177
- Environmentally Safe and Effective Processes for Paint Removal
- [AGARD-LS-201] p 650 N95-32165
- Water blasting paint removal methods
- p 650 N95-32170
- Selective chemical stripping
- p 650 N95-32175
- Operational parameters and material effects
- p 650 N95-32179
- Process evaluation
- p 651 N95-32180
- Standardization work
- p 651 N95-32181

PANEL FLUTTER
Panel flutter limit-cycle suppression with piezoelectric actuation
- [BTN-95-EIX9529271089] p 618 A95-94208

PANELS
Structure integrity of fuselage panels with multisite damage
- [BTN-95-EIX95619952748188] p 637 A95-94350

PARACHUTE FABRICS
High strain-rate testing of parachute materials
- [DE85-005577] p 648 N95-31614

PARACHUTES
Turbulent effects on parachute drag
- [BTN-95-EIX95919952748793] p 591 A95-94482
- High strain-rate testing of parachute materials
- [DE85-005577] p 648 N95-31614

PARALLEL PROCESSING (COMPUTERS)
An overview of issues encountered in parallelizing high-resolution weather prediction models
- p 676 A95-93560

NUSSELT NUMBER
Natural convection in central microcavities of vertical, finned enclosures of very high aspect ratios
- [BTN-95-EIX953251539236] p 632 A95-92405

NYLON (TRADEMARK)
High strain-rate testing of parachute materials
- [DE85-005577] p 646 N95-31614

OBSERVATION
Verification of terminal forecasts
- p 666 A95-85502

Weather products for aviation from WAFG Blackburn
- p 670 A95-55527

OKLAHOMA
Final results of the weather testing component of the Terminal Doppler Weather Radar operational test, and evaluation
- p 658 A95-84371

ONE DIMENSIONAL FLOW
A one-dimensional inviscid nonequilibrium flow solver
- [ISBN 1-879921-01-4] p 586 A95-39352

OPERATING COSTS
Modeling F-A-16 flight hour program costs using regression analysis
- [AD-A2953771] p 608 N95-31579

OPTICAL FIBERS
Standardization of surface contamination analysis systems
- p 651 N95-31788

OPTICAL TRACKING
Autonomous helicopter hover positioning by optical tracking
- [HTN-95-C2006] p 585 A95-83394

OPTIMAL CONTROL
New filtering method for linear weakly coupled stochastic systems
- [BTN-95-EIX9509552735485] p 676 A95-82708
- Panel flutter limit-cycle suppression with piezoelectric actuation
- [BTN-95-EIX95520321089] p 618 A95-94208
- New adaptive methods for reconfigurable flight control systems, appendix 1
- [AD-A292711] p 619 N95-30937
- Handling qualities analysis on rate limiting elements in flight control system
- p 619 N95-31071

ORIGINIZATION
Testing of TKE parameterizations in numerical models for clear-air turbulence forecasting
- p 667 A95-83515

PILOT ERROR
An application of some cloud modeling techniques to a regional model simulation of an icing event
- p 673 A95-93543

PARTICLE SIZE DISTRIBUTION
An in-situ system for warning of icing conditions
- p 660 A95-89341

PARTITIONS (MATHEMATICS)
Implicit multiblock Euler and Navier-Stokes calculations
- [HTN-95-A1755] p 634 N95-33188

PASSAGEWAYS
Aircraft evacuations through Type-3 exits I: Effects of seat placement at the exit
- [DOT/FAM/AA-65/22] p 595 N95-31845

PIANTS
Patient/aircraft forecasting for the strategic aeromedical evacuation lift-bed process
- p 595 N95-31512

PATTERN RECOGNITION
Selecting optimal experiments for feedforward multilayer perceptrons
- [AD-A290856] p 678 N95-30406

PENDEULUMS
Dynamical systems as models for flow-induced vibrations
- [PB95-26991] p 647 N95-30956

PERCEPTION
Psycho-social safety perceptions: Helicopters as a case study
- p 596 A95-95192

PERFORMANCE PREDICTION
Assessment of technology for aircraft development
- [BTN-95-EIX9509552748181] p 606 A95-84474

Navier-Stokes applications to high-lift airfoil analysis
- [BTN-95-EIX95619952748152] p 580 A95-84475

Probabilistic reliability modeling of fatigue on the H-46 tie bar
- [AD-A290926] p 607 N95-30987

High jet/wake turbulent structure and laser propagation
- Part 3: Laser propagation measurements and modeling
- p 647 N95-30992

PERFORMANCE TESTS
The performance of forward scatter visibility sensors for application in autostruts and runway visual range in snow and freezing precipitation events
- p 662 A95-93489

LLWAS 2 and LLWAS 3 performance evaluation
- p 662 A95-93491

Test results of a low cost airport weather radar equipment
- User involvement in the development of an advanced icing product for use in aviation
- p 672 A95-89357

Operational and research aspects of a radio-controlled model test flight program
- [BTN-95-EIX9509552748177] p 646 N95-30507

Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer
- [DE95-008829] p 644 N95-30507

Results from tests of the Honeywell integrated flight management unit
- [PB95-211355] p 601 N95-33597

A novel instrumentation system for measurement of helicopter rotor motions and loads data, phase 1
- [AD-A293308] p 607 N95-30923

Alternatives to ozone depleting refrigerants in test equipment
- Environmentally safe aviation fuels
- p 630 N95-31767

Aircraft plating replacements
- p 631 N95-31775

Report to the Chairman, Legislation and National Security Subcommittee, Committee on Government Operations, House of Representatives. Unmanned aerial vehicle: Performance of short-range system still in question
- [USG/GAO/NSIAD-94-65] p 614 A95-93692

Probabilistic reliability modeling of fatigue on the H-46 tie bar
- [AD-A290926] p 607 N95-30987

High jet/wake turbulent structure and laser propagation
- Part 3: Laser propagation measurements and modeling
- p 647 N95-30992

PHASE CHANGE MATERIALS
Advances in passive cooling for high power electronic-Radiators
- [SAGE PAPER 931937] p 634 A95-93669

PHOTOCONDUCTORS
High aspect ratio microstructures and method for preparing the same
- [AD-007146] p 629 N95-30750

PLANE ELECTRIC TRANSDUCERS
Panel flutter limit-cycle suppression with piezoelectric actuation
- [BTN-95-EIX9582731089] p 618 A95-94208

PILOT ERROR
Organized ergonomics and aviation safety
- p 596 A95-85083
SUPERSONIC DIFFUSERS

Performance variation of scramjet nozzle at various nozzle pressures. [BTN-95-EIx0616552745781] p 615 A95-94505

SUPERSONIC DIFFUSERS

Parametric study on 2D Navier-Stokes analysis of a Mach 2.64 birotated rectangular mixed-compression inlet. [NASA-TM-107003] p 617 N95-30861

SURFACE FLOW

SUPERSONIC SURGES

Surge recovery and compressor working line control using compressor exit Mach number measurement. [CONGRESS PAPER C428-32-210] p 610 A95-94522

SURFACE PROPERTIES

Techniques for airframe and engine surface integration. [SAA PAPER 913416] p 610 A95-93581

SUPERSONIC SURVIVE

A new approach to supersonic Survive significant flight conditions. [SAA PAPER 91339] p 613 A95-93665

SUPERSONIC WINDS

Sweep forward winds. X-29 high AOA flight test results: An overview. [SAA PAPER 913367] p 506 A95-93648

SUPERSONIC SURFACES

Surface properties and material effects. [SAE PAPER 931383] p 618 A95-93569

SUPERSONIC WAVES

Analysis of rapidly developing fog at the Kennedy Space Center. [DE95-000088] p 650 N95-32163

SWEEP EFFECT

Additional stability and performance characteristics of the scramjet/airliner wing configurations. [SAA PAPER 913365] p 615 A95-93969

SWEEP FORWARD WINGS

An experimental investigation of forward-sweep wing configurations at low Reynolds numbers. [SAA PAPER 913370] p 624 A95-93680

SWIRLING

Evaluation of initial conditions on a single jet in crossflow. [NASA-TM-107002] p 615 N95-30589

SYSTEMS SIMULATION

Foundations of technology for constructing highly reliable distributed real-time systems. [AD-A925241] p 678 N95-30892

T-55 ENGINE

Choke nook goes FADEC. [CONGRESS PAPER C428-32-078] p 610 A95-93821

TABS (CONTROL SURFACES)

Lift-enhancing tabs on multi-element airfoils. [BTN-95-EIx0619952745781] p 619 A95-94472

TAIL ASSEMBLIES

Directional control at high angles of attack using blowing through a choked forebody. [BTN-95-EIx0619952745781] p 619 A95-94472

TARGET ACQUISITION

Apparatus design methodology for aircraft and technology. [AD-A727360] p 620 N95-31180

TECHNOLOGIES

TECHNOLOGY ASSESSMENT

Assessment of technology development for aircraft. [BTN-95-EIx0619952745781] p 660 A95-94474

TECHNOLOGY Bases

The relation of handling qualities ratings to aircraft design. [SAE PAPER 931382] p 607 N95-30508

TECHNOLOGY WORKSHOP

TECHNOLOGY UTILIZATION

Structural aspects of active control technology. [AD-A910560] p 620 N95-31989

TECHNOLOGY UTILIZATION

Advanced turbine systems program conceptual design and product development. [DE95-000088] p 623 N95-32009

TELEMETRY

Advanced unmanned vehicle technology development. [DE95-000088] p 623 N95-32009

TELEMETRY MEASUREMENT

Airborne imaging radiometer scan simulation. [BTN-95-EIx0619952745781] p 638 A95-94953

TEMPERATURE

Development of technology for constructing highly reliable distributed real-time systems. [AD-A925241] p 678 N95-30892

TEMPERATURE DISTRIBUTION

Effect of velocity and temperature distribution at the hole exit on film cooling of turbine blades. [NASA-TM-106954] p 616 N95-30702

TEMPERATURE INVERSIONS

Criteria of forecasting low-level wind shear over Qatar. [AD-A913943] p 663 A95-93493

TEMPERATURE MEASUREMENT

Airborne imaging radiometer scan simulation. [BTN-95-EIx0619952745781] p 638 A95-94793

TEMPERATURE PROFILES

Stratus' telemeter as a radar/forecasting tool. [AD-A910560] p 620 N95-31989

TELEMETRY TECHNICAL ASSESSMENT

The improvement of meteorological data for air traffic management purposes. [AD-A915650] p 629 N95-31208

THERMOMETER

Creating a global climatology of freezing rain using numerical model output. [AD-A910560] p 673 N95-93541

TEMPORAL DISTRIBUTION

Use of pilot report for verification of aircraft icing diagnoses and forecasts. [SAE PAPER 931382] p 666 A95-93508

TEPHRAGRAMS

Stratus' telemeter as a radar/forecasting tool. [AD-A910560] p 657 A95-93465
VIBRATORY LOADS

VANES
Simulation of the unsteady interaction of a centrifugal impeller with its vane duster: flow analysis
[BTN-95-EIX95287210055] p 633 A95-92474
Experimental performance of a ventral nozzle with and yaw vectoring capability for SSTOL aircraft
[SAE PAPER 931341] p 614 A95-93678

VARIABILITY
Investigation of outflow strength variability in Florida downburst-producing storms
p 659 A95-93476

VARIABLE SWEEP WINGS
Some additional stability and performance characteristics of the Scissor/hiwing configurations
p 618 A95-93659

VECTORS (MATHEMATICS)
Optimal trajectories for an unmanned air-vehicle in the horizontal plane
[BTN-95-EIX0619952748191] p 606 A94480

VELOCITY DISTRIBUTION
Measurement in laminar and transitional boundary-layer flows on concave surface
[BTN-95-EIX95287211333] p 632 A95-92408
Experimental investigation of the flow in a diffuser behind an axial flow compressor
[BTN-95-EIX95287211007] p 632 A95-92472
Correlation of unsteady pressure and inflow veloicty fields of a pitching rotor blade
[BTN-95-EIX0619952748169] p 589 A95-94463
Effect of velocity and temperature distribution at the hole exit on film cooling of turbine blades
Laser anemometer measurement of the three-dimensional rotor flow field in the NASA low-speed centrifugal compressor
[NASA-TP-3527] p 610 N95-31985

VELOCITY MEASUREMENT
Measurement in laminar and transitional boundary-layer flows on concave surface
[BTN-95-EIX95287211333] p 632 A95-92408
Multivariable adaptive control using only input and output measurements for turbojet engines
[BTN-95-EIX9529721165] p 677 A95-92557
Laser velocimetry in the supersonic region: Advantages, limitations, and outlook
[SANE PAPER 931365] p 636 A95-93466
Fabry-Perot interferometer measurement of static temperature and velocity for ASTOV, model tests
Laser anemometer measurements of the three-dimensional rotor flow field in the NASA low-speed centrifugal compressor
[NASA-TP-3527] p 610 N95-31985

VOLATILE SUBSTANCES
Measurement in laminar and transitional boundary-layer flows on concave surface
[BTN-95-EIX95287211333] p 632 A95-92408
Spatially-resolved velocity measurements in steady, high-speed, reacting flows using laser-induced OH fluorescence
p 650 N95-32109

VOLTAGE AIR CURRENTS
The ITWS microburst prediction algorithm
p 655 A95-93456

VOLTAGE DISTRIBUTION
Stratus' telemeter as a training/forecasting tool
p 657 A95-93465
Jet stream winds: Comparisons of operational analyses with independent aircraft data at multiple longitudes
p 665 N95-93506

VORLICAL LANDING
Automatic flight control system for an unmanned helicopter system design and flight test results
p 622 N95-32004

VIRTUAL MOTOION SIMULATORS
Moving-base simulation of an integrated flight and propulsion control system for an ejector augmentor STOVL aircraft in hover
[NASA-TP-109867] p 606 N95-30646

VIBRATION DAMPING
Panel flutter lmit-cycle suppression with piezoelectric actuators
[BTN-95-EIX95502731029] p 619 A95-94208
Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the blade
p 624 N95-32111

VIBRATION MEASUREMENT
Condition monitoring for helicopters: 3303 Airborne vibration monitoring system
[SANE PAPER 931360] p 636 A95-93464
Condition monitoring for helicopters: 3303 Airborne vibration monitoring system
[SANE PAPER 931360] p 610 N95-30642

VIBRATION METERs
Condition monitoring for helicopters: 3303 Airborne vibration monitoring system
[SANE PAPER 931360] p 610 N95-30642

VIBRATIONAL STATES
Flow models for the design of a hypersonic iodine vapor plasma nozzle: nonequilibrium effects
p 592 N95-30448

VIBRATORY LOADS
Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the blade
p 624 N95-32111
WING OSCILLATIONS

WING OSCILLATIONS
Unsteady transonic wind tunnel test on a semispan straked delta wing, oscillating in pitch. Part 1: Description of the model, test setup, data acquisition, and data processing
[AD-A293113] p 593 N95-30885

WING PANELS
Non-contact calibration of a CNC rivetting machine
[CONGRESS PAPER C426-32-075] p 583 A95-93618

WING TIP VORTICES
On controlling the tip vortex flow of a lifting wing
[ISBN 1-879921-01-4] p 587 A95-93736

WINGS
Static shape control for adaptive wings
[HTN-95-A1767] p 627 A95-93300
The mini-business approach at Chadderton
[CONGRESS PAPER C428-26-037] p 681 A95-93602
Hybrid laminar flow over wings enhanced by continuous boundary layer suction
[S A E P A P E R 9 2 1 3 8 6] p 5 8 7 A 9 5 - 9 3 6 6 2
Analytic solution of the thickness problem of a rectangular wing in steady subsonic flow
[ISBN 1 - 8 7 9 9 2 1 - 0 1 - 4] p 5 8 8 A 9 5 - 9 3 7 5 8
Quantifiable vortex features of F-106B aircraft at subsonic speeds
[BTHN-95-EIX0619952748161] p 588 A95-94455
Computation of delta-wing roll maneuvers
[BTHN-95-EIX0619952748164] p 605 A95-94458
Spectral mapping of quasiperiodic structures in a vortex flow
[BTHN-95-EIX0619952748165] p 569 A95-94459
In-flight pressure measurements on a subsonic transport high-lift wing section
[BTHN-95-EIX0619952748170] p 569 A95-94464
High-lift calculations using Navier-Stokes methods
[p 641 A95-95444
Development of stitched/RTM primary structures for transport aircraft
Performance improvement of composite wings through aerospatial tailoring and modern control
[AD-A293689] p 608 N95-31602
A probabilistic design method applied to smart composite structures
[NASA-TM-106715] p 651 N95-32206

WINTER
Aircraft icing research at the Boeing Company: participation in the second Canadian Atlantic Storms Program
[p 674 A95-93544
The 1992-3 operational winter forecasting experiment for Stapleton airport
[p 677 A95-93561

WORKING FLUIDS
Dissolved gas - the hidden saboteur
[S A E P A P E R 9 3 1 4 0 4] p 6 2 8 A 9 5 - 9 3 6 7 4

WORKSTATIONS
Developing and testing decision-making products for center weather service unit meteorologists
[p 671 A95-93533
Synthetic Terrain Imagery for Helmet-Mounted Display. Volume 2: Software design document
[AD-A295611] p 612 N95-31655

X

X RAY ASTRONOMY
Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer
[DE95-008829] p 644 N95-30507

X RAY SPECTROSCOPY
Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer
[DE95-008829] p 644 N95-30507

X RAYS
Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer
[DE95-008829] p 644 N95-30507

X WING ROTORS
Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the blade
[p 624 N95-32111
X-29 AIRCRAFT
X-29 high AOA flight test results: An overview
[S A E P A P E R 9 3 1 3 6 7] p 5 8 6 A 9 5 - 9 3 6 4 8
X-29 flight control system: Lessons learned
[p 622 N95-32001
Flight evaluation of forebody vortex control in post-stall flight
[p 609 N95-32003
X-31 AIRCRAFT
X-31: A program overview and flight test status
[p 609 N95-32013

A-40
HENRY, SANDRA G.
Developing thunderstorm forecast rules utilizing first detectable cloud radar-shears p 667 A95-93541

HEPPNER, P. G.
A look at aviation meteorology: Integrating aircraft situation display (ASD) with conventional weather displays p 665 A95-93505

HESTER, E.
An unstructured node centered scheme for the simulation of 3-D inviscid flows p 642 A95-95463

HEUWINIKEL, RICHARD J.
National aviation weather program plan p 659 A95-93445

Plot training initiatives for the '90s p 657 A95-93463

HICKMAN, JAMES J.
High aspect ratio metal microstructures and method for preparing the same [AC-50-447] p 629 N95-30750

HICKS, BETTY
General aviation landing incidents and accidents: A review of ASRS and AOPA research findings p 596 A95-9198

HILL, PHILIP G.
An educational introduction to transonic compressor stage design principles [SAE PAPER 931392] p 613 A95-93568

HIRAWING, K.
Performance variation of scrountal nozzle at various nozzle pressure ratios [BTN-95-EIX061995274817] p 615 A95-94505

HIRSCH, CHARLES

HIRST, DONALD J.
A comparison of costing alternatives for US Coast Guard aircraft [AD-A293270] p 590 N95-31124

HO, Y.-L.
Operational multi-scale environment model with grid adaptivity (OMEGA) application to aviation weather p 676 A95-93556

HODGES, DEWEY H.
Effect of leading-edge extension fences on the vortex wake of an F/A-18 model [BTN-95-EIX061995274819] p 591 A95-94481

HOBERT, JOSEPH E.
Analysis and modeling of an airport departure process [AD-A293782] p 602 N95-31581

HOCHMAN, SCOTT T.
An application of some cloud modeling techniques to a regional model simulation of an icing event p 573 A95-93043

HOECSTRA, M.
Discretization of the parallelised Navier-Stokes equations p 628 A95-93562

HOFER, NIcole
Numerical investigation of vertical flow about a delta-wing configuration up to incidences at which vortex breakdown occurs in experiment [F909-198024] p 583 N95-30837

HENDRICK, RUSSELL
Dynamic inversion: An evolving methodology for flight control design p 621 N95-31996

HENDORL, KURT D.
The use of radar wind profiles to remove TDWR gust front algorithm false alarms caused by vertical wind shear p 661 A95-93548

HOUSH, CLINTON
A design trade study using CFD modeling of reaction jets for aerodynamic control [SAE PAPER 950318B] p 586 A95-93560

HOVENAC, EDWARD A.

HREKA, MARK A.

HU, MING
Application of multigrid computational fluid dynamics (CFD) methods to rotor analysis [AD-A293012] p 648 N95-31475

HU, YONGTANG
Examination of conditions in the proximity of pilot reports of aircraft icing during storm-fest p 666 A95-93509

Huang, JEN-KUANG
Panel flutter lim-cycle suppression with piezoelectric actuation [BTN-95-EIX0532731069] p 618 A95-94208

Huang, JIA-YEN
Damage tolerance certification of a fighter horizontal stabilizer [BTN-95-EIX061995274816] p 637 A95-94474

Huang, JIN-GUAN
Multivariable adaptive control using only input and output measurements for turbojet engines p 622 A95-93527

HUBNER, JAMES P.
Spectral mapping of quasiperiodic structures in a vortex flow [BTN-95-EIX061995274815] p 589 A95-94459

HUFFORD, GARY L.
Alaska's volcanic ash warning system p 663 A95-93495

HUGUE, PAUL B.
Lean manufacturing for lean times [BTN-95-EIX0532730538] p 640 A95-94036

HULR, T.
Numerical solution of Euler and Navier-Stokes equations for 2D transonic problems p 638 A95-93566

HUMI, MAYER
Turbulent effects on parachute drag [BTN-95-EIX061995274819] p 591 A95-94482

HUNEM, K.
Numerical solution of Euler and Navier-Stokes equations for 2D transonic problems p 638 A95-93566

HUNTER, M.
Guidelines for the design of GPS and LORAN receiver controls and displays [AD-A293753] p 602 N95-31572

HUTCHEON, RICHARD J.
Alaska's volcanic ash warning system p 663 A95-93495

HWOSCHINSKY, PETER V.
Psycho-social safety perceptions: Helicopters as a case study p 596 A95-91982

IAINELLI, KAT
A Gust condition conscious perturbation stream function boundary element algorithm for 2-D potential aerodynamics [BAA-1-67921-01-4] p 587 A95-93751

IMBERT, M.
Evaluation of the techniques of fuzzy control for the piloting an aircraft p 621 N95-31997

INGRAFFA, ANTHONY R.
Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures [BTN-95-EIX0532731064] p 633 A95-92751

INWOOD, SIMON
Stratus' tephigram as a training/forecasting tool p 657 A95-93465

ISAAC, GEORGE A.
Airplane icing research at the Boeing Company: Participation in the second Canadian Atlantic Storms Program p 674 A95-93544

IYANOVA, A. P.
Aviation weather forecasting automated methods in the RAFC Moscow and the Air Port Vnukovo p 669 A95-93523
SAKATA, KIMIO

ROSSENFELD, T. E.

ROSENBERGER, TODD E.

ROGERS, R. C.

ROGLIN, R. L.

ROGERS, R. C.

ROSENBERGER, TODD E.

Rossi, Michael J.

Ross, James C.

Rosness, R.

Rosenfeld, Thomas J.

Rogers, R. C.

Rogers, R. L.

Robert, R. M.

Roberts, R. M.

Robinson, William L.

ROEBLING, J. W.

ROEBLING, J. W.

ROBYN, FIONA

ROBBINS, O.

ROBBINS, O.

Robinson, William L.

ROBINSON, WILLIAM L.

ROBBINS, O.

ROBBINS, O.

ROBBINS, O.

Robbins, William L.

ROBBINS, O.

ROBBINS, O.

ROBBINS, O.

Robbins, William L.

ROBBINS, O.

ROBBINS, O.

ROBBINS, O.

Robbins, William L.

ROBBINS, O.

ROBBINS, O.

Robbins, William L.

ROBBINS, O.

ROBBINS, O.

ROBBINS, O.

Robbins, William L.

ROBBINS, O.

ROBBINS, O.

Robbins, William L.

ROBBINS, O.

ROBBINS, O.

ROBBINS, O.

Robbins, William L.

ROBBINS, O.

ROBBINS, O.

Robbins, William L.
YANG, S. L.
Efficient mapping topology for turbine combustors with inclined slots/staggered holes [BTN-95-EIX0619552745805] p 614 A95-94485

YEN, GUANG-WEI
Unsteady flow simulations about moving boundary configurations using dynamic domain decomposition techniques [BTN-95-EIX0619552748171] p 590 A95-94465

YILBAS, BEKIR S.
Cooling of aerospace plane using liquid hydrogen and methane [BTN-95-EIX0619552748171] p 590 A95-94465

YIP, LONG P.
In-flight pressure measurements on a subsonic transport high-lift wing section [BTN-95-EIX0619552748170] p 589 A95-94464

YOUNG, J. B.
Condensation in jet engine intake ducts during stationary operation [BTN-95-EIX06195527271154] p 612 A95-92590

YOUNG, S.
Operational multi-scale environment model with grid adaptivity (OMEGA) application to aviation weather [BTN-95-EIX95282721322] p 609 A95-92513

YUJIRI, LARRY
Passive millimeter wave camera for aircraft landing in low visibility conditions [BTN-95-EIX06195527271154] p 609 A95-92513

Z

ZACK, J.
Operational multi-scale environment model with grid adaptivity (OMEGA) application to aviation weather [BTN-95-EIX95282721322] p 676 A95-93556

ZHAO, D. H.
Measurement in laminar and transitional boundary-layer flows on concave surface [BTN-95-EIX952827711333] p 632 A95-92408

ZHOU, Z.
Failure analysis for polycarbonate transparencies [AD-A292992] p 630 N95-31471

ZHANG, WEIHUA
Modeling and analysis for the GPS pseudo-range observable [BTN-95-EIX95302731227] p 600 A95-94306

ZIENER, T.
Experimental investigation of the flow in diffusers behind an axial flow compressor [BTN-95-EIX952827710057] p 632 A95-92472

ZIMMERMANN, H.
Structural aspects of active control technology [BTN-95-EIX95302731227] p 600 A95-94306

ZINGG, D. W.
Turbulent flow measurements with a triple-split hot-film probe [BTN-95-A1774] p 634 A95-93337

ZWACK, PETER
ITWS ceiling and visibility products [BTN-95-EIX95302731089] p 618 A95-92408

Zhang, D.H.
Initial exploration of the ASRs database [CONGRESS PAPER C428-25-172] p 595 A95-93537

Wood, G. K.
The effect of interface properties on nickel base alloy composites [NASA-TP-3527] p 618 N95-31985

Wood, J. M.
Electromagnetic compatibility - A general overview [CONGRESS PAPER C428-25-172] p 634 A95-93637

Woodburn, P. A.
External viewing airborne CCTV system [CONGRESS PAPER C428-25-172] p 595 A95-93537

Wray, BUNTINE
Initial exploration of the ASRs database [CONGRESS PAPER C428-25-172] p 681 A95-935204

Wright, K.
The effect of interface properties on nickel base alloy composites [NASA-TP-3527] p 618 N95-31985

X

XUE, DAVID Y.
Panel flutter limit-cycle suppression with piezoelectric actuation [BTN-95-EIX95302731089] p 618 A95-93537
Corporate Source Index Listing

A

- **AC Engineering, Inc., Huntville, AL.** Strategic design of surface contamination analysis systems p 631 N95-31796
- **Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France).** Flight Vehicle Integration Panel Workshop on Pilot Induced Oscillations (AGARD-AR-335) p 597 N95-31081
- **AGARD-CP-560** p 620 N95-31089
- **Environmental Safety and Effective Processes for Paint Removal** (AGARD-LS-201) p 650 N95-32165
- **Aerospalsie, Toulouse (France).** Plying quality of civil transport aircraft with electrical flight control p 624 N95-32016
- **Selective chemical stripping** p 650 N95-32175
- **Process evaluation** p 651 N95-32180
- **Standardization work** p 651 N95-32181
- **Air Force Environmental Technical Applications Center, Scott AFB, IL.** Artificial intelligence techniques for flight test planning, phase 1 (AD-A292962) p 600 N95-31525
- **Air Force Flight Test Center, Edwards AFB, CA.** Flight test results of the F-16 aircraft modified with asymmetric vectoring exhaust nozzle p 609 N95-32007
- **An investigation of pilot induced oscillation phenomena in digital-flight control systems** p 620 N95-32011
- **Air Force Inst. of Tech., Wright-Patterson AFB, OH.** Selecting optimal experiments for feedforward multilayer perceptrons (AD-A290656) p 678 N95-30406

B

- **Battelle Memorial Inst., Columbus, OH.** Alternatives to ozone depleting refrigerants in test equipment p 630 N95-31767
- **BBN Systems and Technologies Corp., Cambridge, MA.** An active liner system for jet engine exhaust silencers: phase 1 (AD-A292277) p 617 N95-31191
- **Boeing Defense and Space Group, Philadelphia, PA.** Advanced flight control technology achievements at Boeing Helicopters p 624 N95-32014
- **Boeing Defense and Space Group, Seattle, WA.** Cadmium plating replacements p 631 N95-31773
- **British Aerospace Defence Ltd., Preston (England).** The FCS-structural coupling problem and its solution p 623 N95-32005
- **Pilot induced Oscillation: A report on the AGARD Workshop on PIO** p 624 N95-32017
- **British Aerospace Defence Ltd., Warton (England).** Experimental Aircraft Programme (EAP): Flight control system design and test p 623 N95-32010
- **Flight demonstration of an advanced pitch control law in the VAAC Harrier aircraft** p 623 N95-32012

C

- **California Univ., Los Angeles, CA.** Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the baseline p 624 N95-32111
- **Chalk (Charles R.), Williamsport, NY.** Caspian experience of PIO and the effects of rate limiting p 598 N95-31072

D

- **Christian Brothers Coll., Memphis, TN.** Improved modeling of unstable heat transfer (The first step) p 648 N95-31342
- **City Coll. of the City Univ. of New York, NY.** Image representation using last algorithms based on the Zak transform (AD-A293416) p 679 N95-31584
- **Clarkson Univ., Potsdam, NY.** A time stepping coupled finite element-state space modeling environment for synchronous machine performance and design analysis in the ABC frame of reference p 649 N95-32184
- **Columbia Univ., New York, NY.** Qualitative environmental navigation: Theory and practice p 601 N95-30486
- **Combustion Inst., Easton, PA.** The 25th International Symposium on Combustion p 630 N95-31266
- **Continuum Dynamics, Inc., Princeton, NJ.** A novel instrumentation system for measurement of helicopter rotor motors and loads data, phase 1 (AD-A293090) p 607 N95-30923

CORPORATE SOURCE INDEX

A

- **AC Engineering, Inc., Huntville, AL.** Standardization of surface contamination analysis systems p 631 N95-31796
- **Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France).** Flight Vehicle Integration Panel Workshop on Pilot Induced Oscillations (AGARD-AR-335) p 597 N95-31081
- **AGARD-CP-560** p 620 N95-31089
- **Environmental Safety and Effective Processes for Paint Removal** (AGARD-LS-201) p 650 N95-32165
- **Aerospalsie, Toulouse (France).** Plying quality of civil transport aircraft with electrical flight control p 624 N95-32016
- **Selective chemical stripping** p 650 N95-32175
- **Process evaluation** p 651 N95-32180
- **Standardization work** p 651 N95-32181
- **Air Force Environmental Technical Applications Center, Scott AFB, IL.** Artificial intelligence techniques for flight test planning, phase 1 (AD-A292962) p 600 N95-31525
- **Air Force Flight Test Center, Edwards AFB, CA.** Flight test results of the F-16 aircraft modified with asymmetric vectoring exhaust nozzle p 609 N95-32007
- **An investigation of pilot induced oscillation phenomena in digital-flight control systems** p 620 N95-32011
- **Air Force Inst. of Tech., Wright-Patterson AFB, OH.** Selecting optimal experiments for feedforward multilayer perceptrons (AD-A290656) p 678 N95-30406

B

- **Battelle Memorial Inst., Columbus, OH.** Alternatives to ozone depleting refrigerants in test equipment p 630 N95-31767
- **BBN Systems and Technologies Corp., Cambridge, MA.** An active liner system for jet engine exhaust silencers: phase 1 (AD-A292277) p 617 N95-31191
- **Boeing Defense and Space Group, Philadelphia, PA.** Advanced flight control technology achievements at Boeing Helicopters p 624 N95-32014
- **Boeing Defense and Space Group, Seattle, WA.** Cadmium plating replacements p 631 N95-31773
- **British Aerospace Defence Ltd., Preston (England).** The FCS-structural coupling problem and its solution p 623 N95-32005
- **Pilot induced Oscillation: A report on the AGARD Workshop on PIO** p 624 N95-32017
- **British Aerospace Defence Ltd., Warton (England).** Experimental Aircraft Programme (EAP): Flight control system design and test p 623 N95-32010
- **Flight demonstration of an advanced pitch control law in the VAAC Harrier aircraft** p 623 N95-32012

C

- **California Univ., Los Angeles, CA.** Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the baseline p 624 N95-32111
- **Chalk (Charles R.), Williamsport, NY.** Caspian experience of PIO and the effects of rate limiting p 598 N95-31072

D

- **Christian Brothers Coll., Memphis, TN.** Improved modeling of unstable heat transfer (The first step) p 648 N95-31342
- **City Coll. of the City Univ. of New York, NY.** Image representation using last algorithms based on the Zak transform (AD-A293416) p 679 N95-31584
- **Clarkson Univ., Potsdam, NY.** A time stepping coupled finite element-state space modeling environment for synchronous machine performance and design analysis in the ABC frame of reference p 649 N95-32184
- **Columbia Univ., New York, NY.** Qualitative environmental navigation: Theory and practice p 601 N95-30486
- **Combustion Inst., Easton, PA.** The 25th International Symposium on Combustion p 630 N95-31266
- **Continuum Dynamics, Inc., Princeton, NJ.** A novel instrumentation system for measurement of helicopter rotor motors and loads data, phase 1 (AD-A293090) p 607 N95-30923
Virginia Polytechnic Inst., Blacksburg, VA.

A general inverse design procedure for aerodynamic bodies p 606 N95-30497
Virginia Polytechnic Inst. and State Univ., Blacksburg, VA.
Computational methods for control and optimal design of aerospace systems (AD-A292881) p 608 N95-31451
Performance improvement of composite wings through aerelastic tailoring and modern control (AD-A2933689) p 608 N95-31602
Virginia Univ., Charlottesville, VA.
Spatially-resolved velocity measurements in steady, high-speed, reacting flows using laser-induced OH fluorescence p 650 N95-32109

Wright Lab., Wright-Patterson AFB, OH.
The control system design methodology of the STOL and maneuver technology demonstrator p 621 N95-31998
Flight evaluation of forebody vortex control in post-stall flight p 609 N95-32003
FOREIGN TECHNOLOGY INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Supplement 323)

November 1995

Typical Foreign Technology Index Listing

<table>
<thead>
<tr>
<th>COUNTRY OF INTELLECTUAL ORIGIN</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANADA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUSTRIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical study of Görtler instability: Application to the design of a quiet supersonic wind tunnel [PIN89-164801]</td>
<td>21</td>
<td>N95-10644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study of the effect of the combustor dome of an aircraft engine</td>
<td>659</td>
<td>A95-93477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of a climatology for possible microburst occurrence in Canada</td>
<td>664</td>
<td>A95-93497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTGEN - An automated FT production system</td>
<td>668</td>
<td>A95-93519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aviation terminal forecasts based on automated observations (FITAUTO)</td>
<td>668</td>
<td>A95-93520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propulsion education at Carton University [SAE PAPER 93139]</td>
<td>613</td>
<td>A95-93667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An educational introduction to transonic compressors and supersonic combustor design principles [SAE PAPER 93139]</td>
<td>613</td>
<td>A95-93668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling and analysis for the GPS pseudo-range observable [BTN-95-EI95302731227]</td>
<td>600</td>
<td>A95-94048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doppler birefringence tomography reflectors for radar navigation and remote sensing [BTN-95-EI95302727034]</td>
<td>636</td>
<td>A95-94108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An improved finite element method for the solution of the compressible Euler and Navier-Stokes equations</td>
<td>640</td>
<td>A95-95439</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal-mechanical fatigue crack growth in aircraft engine materials [ISDN-0-315-86543-1]</td>
<td>647</td>
<td>N95-31098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical experiences in control systems design using the NCR Bell 205 Airborne Simulator</td>
<td>624</td>
<td>N95-32015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water blasting paint removal methods</td>
<td>627</td>
<td>N95-32170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities used for plastic media blasting</td>
<td>650</td>
<td>N95-32170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational parameters and material effects</td>
<td>651</td>
<td>N95-32179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural convection in central microcavities of vertical, finned enclosures of very high aspect ratios [BTN-95-EI95327312236]</td>
<td>632</td>
<td>A95-92405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multivariable adaptive control using only input and output measurements for turboshaft engines [BTN-95-EI95302721165]</td>
<td>677</td>
<td>A95-29597</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZECHOSLOVAKIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical solution of Euler and Navier-Stokes equations for 2D transonic problems</td>
<td>638</td>
<td>A95-95386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENMARK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscous flow simulation using the discrete vortex diffusion velocity method</td>
<td>639</td>
<td>A95-95421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINLAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The combination of forecasts in an automated aviation weather forecasting system</td>
<td>669</td>
<td>A95-93522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne imaging radiometer scan simulation [BTN-95-EI95302752016]</td>
<td>638</td>
<td>A95-94703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effects of free-stream turbulence intensity on a boundary layer recovering from concave curvature effects [BTN-95-EI95302721058]</td>
<td>632</td>
<td>A95-92471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal shape design in hypersonic aerodynamics and electromagnetics</td>
<td>659</td>
<td>A95-36937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical simulation of the 3D turbulent flow around the combustor dome of an aircraft engine</td>
<td>640</td>
<td>A95-95423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implicit multicomponent calculation of viscous transonic flows without artificial viscosity or upwinding</td>
<td>640</td>
<td>A95-95443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A cartesian grid finite element method for aerodynamics of moving rigid bodies</td>
<td>642</td>
<td>A95-95471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High performance parallelized implicit Euler solver for the analysis of unsteady aerodynamic flows</td>
<td>644</td>
<td>A95-95485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight Vehicle Integration Panel Workshop on Pilot Induced Oscillations [AGARD-AR-355]</td>
<td>597</td>
<td>N95-31061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active control technology: Applications and lessons learned [AGARD-CP-560]</td>
<td>620</td>
<td>N95-31969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of the techniques of fuzzy control for the piloting an aircraft</td>
<td>631</td>
<td>N95-31967</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalayu-launching of the RAFALE design and experimentation</td>
<td>609</td>
<td>N95-32008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flying qualities of civil transport aircraft with electrical flight control</td>
<td>624</td>
<td>N95-32016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmentally Safe and Effective Processes for Paint Removal [AGARD-LS-201]</td>
<td>650</td>
<td>N95-32165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective chemical stripping</td>
<td>650</td>
<td>N95-32175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process evaluation</td>
<td>651</td>
<td>N95-32160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardization work</td>
<td>651</td>
<td>N95-32181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMANY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomous helicopter hover positioning by optical techniques [HTN-95-C0006]</td>
<td>585</td>
<td>A95-93394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An in-litl-s system for warning of icing conditions</td>
<td>660</td>
<td>A95-93481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An innovative algorithm to accurately solve the Euler equations for rotary wing flow</td>
<td>642</td>
<td>A95-95457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCARLET: DL R extreme turbulence flight experiment</td>
<td>598</td>
<td>N95-31306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standing quality analysis on rate limiting elements in flight control systems</td>
<td>619</td>
<td>N95-31071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental investigation of turbulent particle dispersion in swirling flows [DLR-FB-94-20]</td>
<td>647</td>
<td>N95-31355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiences with ADS-33 helicopter specification testing and contributions to refinement research</td>
<td>621</td>
<td>N95-31993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model following control fortailoring handle qualities; ACT experience with ATTHES</td>
<td>622</td>
<td>N95-32000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced gust management systems: Lessons learned and perspectives</td>
<td>622</td>
<td>N95-32002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic flight control system for an unmanned helicopter system design and flight test results</td>
<td>622</td>
<td>N95-32004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural aspects of active control technology</td>
<td>623</td>
<td>N95-32006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-31: A program overview and flight test status</td>
<td>609</td>
<td>N95-32013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREECE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A robust invaris chaos method for airfoil design</td>
<td>640</td>
<td>A95-95431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the prediction of transonic unsteady flows using second order time accuracy</td>
<td>641</td>
<td>A95-95448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multigrid solution for the compressible Euler equations by an implicit characteristic-flux-averaging</td>
<td>642</td>
<td>A95-95459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction-time response of aircraft crash [BTN-95-EI95327271296]</td>
<td>595</td>
<td>A95-92626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geodesic constant method: A novel approach to analytical surface-ray tracing on convex conducting bodies [BTN-95-EI95302731054]</td>
<td>637</td>
<td>A95-82405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRELAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety in airport ground handling</td>
<td>626</td>
<td>A95-95193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISRAEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of catastrophic failure prevention by threat vectoring [BTN-95-EI950372748176]</td>
<td>606</td>
<td>A95-94470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal trajectories for an unmanned air-vehicle in the horizontal plane [BTN-95-EI9530272748191]</td>
<td>606</td>
<td>A95-94480</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.
Improving the tire resistance of aircraft structures
[CONGRESS PAPER C426-31-152] p 603 A95-93616

Tooling - a source of productivity
[CONGRESS PAPER C426-32-017] p 583 A95-93619

Design trends in propulsion control systems
[CONGRESS PAPER C426-33-123] p 610 A95-93620

Chinook goes FADEC
[CONGRESS PAPER C426-33-078] p 610 A95-93621

Surge recovery and compressor working line control
using compressor exit mach number measurement
[CONGRESS PAPER C426-33-210] p 610 A95-93622

Load alleviation for civil transport aircraft
[CONGRESS PAPER C426-35-057] p 604 A95-93627

Flight control systems/structural coupling BAe Warton
experience in aero-servo elasticity
[CONGRESS PAPER C426-35-059] p 610 A95-93628

The A340 electrical power generation system
[CONGRESS PAPER C426-37-198] p 603 A95-93633

The development of a model specification for ground
support equipment
[CONGRESS PAPER C426-38-095] p 625 A95-93636

Electromagnetic compatibility - A general overview
[CONGRESS PAPER C426-38-084] p 634 A95-93637

Laser processing aircraft and turbine engine parts
[SAE PAPER 931356] p 634 A95-90840

Condition monitoring for helicopters: 3303 Airborne
vibration monitoring system
[SAE PAPER 931350] p 610 A95-93642

Laser velocimetry in the supersonic regime:
Advancements, limitations, and outlook
[SAE PAPER 931365] p 634 A95-93646

Primary and secondary vortex structures over
accelerated-decelerated airfoils at high angles of attack
[SAE PAPER 931368] p 586 A95-93649

An advanced vehicle management system
[SAE PAPER 931376] p 618 A95-93655

Concepts for aircraft subsystem integration
[SAE PAPER 931377] p 604 A95-93656

A subsystem integration technology concept
[SAE PAPER 931382] p 604 A95-93658

A design trade study using CFD modeling of reaction
jets for aerodynamic control
[SAE PAPER 931384] p 586 A95-93660

Hybrid laminar flow over wings enhanced by continuous
boundary layer suction
[SAE PAPER 931386] p 587 A95-93662

A detailed power inverter design for a 250 kW switched
reluctance aircraft engine starter/generator
[SAE PAPER 931388] p 613 A95-93664

Detailed design of a 250-kW switched reluctance
starter/generator for an aircraft engine
[SAE PAPER 931389] p 613 A95-93665

Modelling and analysis of a dual-wheel nosegear:
Shimmy instability and impact motions
[SAE PAPER 931402] p 605 A95-93672

Dissolved gas - the hidden saboteur
[SAE PAPER 931404] p 628 A95-93674

Modular avionics: Tackling today’s aircraft into tomorrow
[SAE PAPER 931416] p 610 A95-93681

Integrated test system single point control of aircraft
checkout
[SAE PAPER 931417] p 583 A95-93682

Fiber optic hardware for transport aircraft
[SAE PAPER 931439] p 680 A95-93691

Lightweight high-temperature fuel metering valves
[SAE PAPER 931444] p 635 A95-93693

Lean manufacturing for lean times
[BTN-95-EX95032735038] p 583 A95-94036

Airfoil leading-edge suction and energy conservation for
compressible flow
[BTN-95-EX95032735008] p 637 A95-94187
Typical Contract Number Index Listing

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Page Number</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>N00014-82-K-0185</td>
<td>p 22</td>
<td>N95-10231</td>
</tr>
<tr>
<td>AF PROJ. 3027</td>
<td>p 617</td>
<td>NAS-51191</td>
</tr>
<tr>
<td>AF PROJECT 2310CP</td>
<td>p 673</td>
<td>NAS-93543</td>
</tr>
<tr>
<td>AF-PROJECT 2310G7</td>
<td>p 673</td>
<td>NAS-93543</td>
</tr>
<tr>
<td>AF-APSG-OSV-0191-91</td>
<td>p 656</td>
<td>NAS-51602</td>
</tr>
<tr>
<td>AF-APSG-0256-81</td>
<td>p 676</td>
<td>NAS-50962</td>
</tr>
<tr>
<td>AF-APGSR-0410-91</td>
<td>p 648</td>
<td>NAS-51443</td>
</tr>
<tr>
<td>BREU-0066-C(M2)</td>
<td>p 583</td>
<td>NAS-50617</td>
</tr>
<tr>
<td>DA. PROJ. 1L1-1102-AH-45</td>
<td>p 618</td>
<td>NAS-51985</td>
</tr>
<tr>
<td>DAJ02-93-C-0021</td>
<td>p 648</td>
<td>NAS-51475</td>
</tr>
<tr>
<td>DAAL03-92-C-0013</td>
<td>p 620</td>
<td>NAS-51400</td>
</tr>
<tr>
<td>DAAL03-92-C-0016</td>
<td>p 647</td>
<td>NAS-51374</td>
</tr>
<tr>
<td>DE-AOG-1700-A0000</td>
<td>p 629</td>
<td>NAS-50765</td>
</tr>
<tr>
<td>DE-AC04-94-A05000</td>
<td>p 648</td>
<td>NAS-51614</td>
</tr>
<tr>
<td>DE-AC21-93MC-29257</td>
<td>p 650</td>
<td>NAS-32163</td>
</tr>
<tr>
<td>DNA01-02-C-0078</td>
<td>p 576</td>
<td>NAS-93556</td>
</tr>
<tr>
<td>DRET-68-520</td>
<td>p 644</td>
<td>NAS-50495</td>
</tr>
<tr>
<td>DRET-90-34-162</td>
<td>p 640</td>
<td>NAS-95443</td>
</tr>
<tr>
<td>DTF/A01-91-Z-02035</td>
<td>p 677</td>
<td>NAS-31465</td>
</tr>
<tr>
<td>DTF/A01-93-C-0001</td>
<td>p 602</td>
<td>NAS-51521</td>
</tr>
<tr>
<td>DTF/A02-92-C-0101</td>
<td>p 599</td>
<td>NAS-51687</td>
</tr>
<tr>
<td>DTF/A02-92-C-0103</td>
<td>p 602</td>
<td>NAS-51865</td>
</tr>
<tr>
<td>DTR557-58-C-0078</td>
<td>p 601</td>
<td>NAS-51520</td>
</tr>
<tr>
<td>EEC-AERO-0016-CHR</td>
<td>p 643</td>
<td>NAS-95472</td>
</tr>
<tr>
<td>F16608-85-C-0002</td>
<td>p 677</td>
<td>NAS-31465</td>
</tr>
<tr>
<td>F20602-92-C-0004</td>
<td>p 679</td>
<td>NAS-31455</td>
</tr>
<tr>
<td>F20618-89-C-0006</td>
<td>p 679</td>
<td>NAS-51688</td>
</tr>
<tr>
<td>F20619-90-C-0052</td>
<td>p 613</td>
<td>NAS-93664</td>
</tr>
<tr>
<td>F20619-92-C-0052</td>
<td>p 613</td>
<td>NAS-93665</td>
</tr>
<tr>
<td>F20619-92-C-0052</td>
<td>p 634</td>
<td>NAS-93669</td>
</tr>
<tr>
<td>F20619-92-C-0052</td>
<td>p 547</td>
<td>NAS-50932</td>
</tr>
<tr>
<td>F20619-92-C-3405</td>
<td>p 630</td>
<td>NAS-31471</td>
</tr>
<tr>
<td>F20619-92-C-3601</td>
<td>p 612</td>
<td>NAS-31655</td>
</tr>
<tr>
<td>F20619-92-C-3601</td>
<td>p 612</td>
<td>NAS-31856</td>
</tr>
<tr>
<td>F20619-92-C-3601</td>
<td>p 593</td>
<td>NAS-50885</td>
</tr>
<tr>
<td>F49620-06-C-0027</td>
<td>p 643</td>
<td>NAS-95477</td>
</tr>
<tr>
<td>F49620-91-C-0059</td>
<td>p 639</td>
<td>NAS-95283</td>
</tr>
<tr>
<td>F49620-92-J-0078</td>
<td>p 608</td>
<td>NAS-51451</td>
</tr>
<tr>
<td>F49620-92-J-0127</td>
<td>p 671</td>
<td>NAS-50861</td>
</tr>
<tr>
<td>F49620-92-J-3368</td>
<td>p 619</td>
<td>NAS-50937</td>
</tr>
<tr>
<td>F49620-94-1-0275</td>
<td>p 601</td>
<td>NAS-51433</td>
</tr>
<tr>
<td>F49620-94-1-0292</td>
<td>p 648</td>
<td>NAS-51432</td>
</tr>
<tr>
<td>NAGW-674</td>
<td>p 586</td>
<td>NAS-93286</td>
</tr>
<tr>
<td>NAG-1410</td>
<td>p 605</td>
<td>NAS-93673</td>
</tr>
<tr>
<td>NAG-2733</td>
<td>p 588</td>
<td>NAS-93756</td>
</tr>
<tr>
<td>NAG-3-1294</td>
<td>p 551</td>
<td>NAS-32025</td>
</tr>
<tr>
<td>NAS-18662</td>
<td>p 630</td>
<td>NAS-51421</td>
</tr>
<tr>
<td>NAS-18685</td>
<td>p 633</td>
<td>NAS-93216</td>
</tr>
<tr>
<td>NAS-10-11844</td>
<td>p 670</td>
<td>NAS-93529</td>
</tr>
<tr>
<td>NAS-18686</td>
<td>p 671</td>
<td>NAS-93531</td>
</tr>
<tr>
<td>NAS-25266</td>
<td>p 649</td>
<td>NAS-51738</td>
</tr>
<tr>
<td>NAS-25266</td>
<td>p 592</td>
<td>NAS-30611</td>
</tr>
<tr>
<td>NAS-25266</td>
<td>p 592</td>
<td>NAS-31423</td>
</tr>
<tr>
<td>NAS-26501</td>
<td>p 629</td>
<td>NAS-30787</td>
</tr>
<tr>
<td>NAS-26618</td>
<td>p 616</td>
<td>NAS-30779</td>
</tr>
<tr>
<td>NAS-27186</td>
<td>p 628</td>
<td>NAS-30925</td>
</tr>
<tr>
<td>N00140-85-C-9434</td>
<td>p 635</td>
<td>NAS-93698</td>
</tr>
<tr>
<td>N00600-90-C-2983</td>
<td>p 670</td>
<td>NAS-30923</td>
</tr>
<tr>
<td>N00600-90-C-2987</td>
<td>p 608</td>
<td>NAS-31525</td>
</tr>
<tr>
<td>N00600-90-C-3087</td>
<td>p 607</td>
<td>NAS-30923</td>
</tr>
<tr>
<td>PROJ. FFE/633/131.1</td>
<td>p 601</td>
<td>NAS-30597</td>
</tr>
<tr>
<td>PROJ. SCFIA</td>
<td>p 680</td>
<td>NAS-32187</td>
</tr>
<tr>
<td>RTOP 242-80-01-01</td>
<td>p 646</td>
<td>NAS-30783</td>
</tr>
<tr>
<td>RTOP 505-59-10-31</td>
<td>p 627</td>
<td>NAS-32217</td>
</tr>
<tr>
<td>RTOP 505-59-30-04</td>
<td>p 594</td>
<td>NAS-31984</td>
</tr>
<tr>
<td>RTOP 505-59-53</td>
<td>p 594</td>
<td>NAS-32188</td>
</tr>
<tr>
<td>RTOP 505-62-10</td>
<td>p 592</td>
<td>NAS-30611</td>
</tr>
<tr>
<td>RTOP 505-62-50</td>
<td>p 645</td>
<td>NAS-30587</td>
</tr>
<tr>
<td>RTOP 505-62-52</td>
<td>p 615</td>
<td>NAS-30617</td>
</tr>
<tr>
<td>RTOP 505-62-52</td>
<td>p 604</td>
<td>NAS-30524</td>
</tr>
<tr>
<td>RTOP 505-62-82</td>
<td>p 627</td>
<td>NAS-31653</td>
</tr>
<tr>
<td>RTOP 505-62-84</td>
<td>p 626</td>
<td>NAS-30592</td>
</tr>
<tr>
<td>RTOP 505-62-15</td>
<td>p 593</td>
<td>NAS-30787</td>
</tr>
<tr>
<td>RTOP 505-64-13</td>
<td>p 620</td>
<td>NAS-31646</td>
</tr>
<tr>
<td>RTOP 505-68-00</td>
<td>p 606</td>
<td>NAS-30646</td>
</tr>
<tr>
<td>RTOP 505-69-50</td>
<td>p 615</td>
<td>NAS-30594</td>
</tr>
<tr>
<td>RTOP 505-90-58</td>
<td>p 615</td>
<td>NAS-30517</td>
</tr>
<tr>
<td>RTOP 510-02-11-08</td>
<td>p 630</td>
<td>NAS-31421</td>
</tr>
<tr>
<td>RTOP 533-02-03</td>
<td>p 617</td>
<td>NAS-31425</td>
</tr>
<tr>
<td>RTOP 533-02-20</td>
<td>p 592</td>
<td>NAS-30704</td>
</tr>
<tr>
<td>RTOP 537-02-20</td>
<td>p 616</td>
<td>NAS-30853</td>
</tr>
<tr>
<td>RTOP 537-02-21</td>
<td>p 616</td>
<td>NAS-30859</td>
</tr>
<tr>
<td>RTOP 537-02-22</td>
<td>p 617</td>
<td>NAS-30861</td>
</tr>
<tr>
<td>RTOP 537-06-21-09</td>
<td>p 645</td>
<td>NAS-30392</td>
</tr>
<tr>
<td>RTOP 538-02-11</td>
<td>p 616</td>
<td>NAS-30778</td>
</tr>
<tr>
<td>RTOP 538-06-14</td>
<td>p 651</td>
<td>NAS-32205</td>
</tr>
<tr>
<td>W-7405-ENG=48</td>
<td>p 644</td>
<td>NAS-30587</td>
</tr>
<tr>
<td>W-7405-ENG=48</td>
<td>p 644</td>
<td>NAS-30587</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by contract number. Under each contract number the accession numbers denoting documents that have been produced as a result of research done under the contract are shown. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.
<table>
<thead>
<tr>
<th>REPORT NUMBER INDEX</th>
<th>WL-TR-95-3026</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-TM-11074</td>
<td>p 681 N95-31975</td>
</tr>
<tr>
<td>NASA-TM-4664</td>
<td>p 627 N95-32317</td>
</tr>
<tr>
<td>NASA-TM-4704</td>
<td>p 620 N95-31846</td>
</tr>
<tr>
<td>NASA-TM-4705</td>
<td>p 617 N95-31425</td>
</tr>
<tr>
<td>NASA-TP-5209</td>
<td>p 594 N66-31984</td>
</tr>
<tr>
<td>NASA-TP-5327</td>
<td>p 618 N95-31985</td>
</tr>
<tr>
<td>NAWCADWAR-95014-43</td>
<td>p 629 N95-31124</td>
</tr>
<tr>
<td>NEAR-TR-482</td>
<td>p 620 N95-31400</td>
</tr>
<tr>
<td>NRL-CR-93570L</td>
<td>p 593 N95-30885</td>
</tr>
<tr>
<td>NRL-TP-93301-U</td>
<td>p 593 N95-30814</td>
</tr>
<tr>
<td>NRL-TP-93348-U</td>
<td>p 601 N95-30815</td>
</tr>
<tr>
<td>NRL-TP-93418-U</td>
<td>p 607 N95-30836</td>
</tr>
<tr>
<td>NRL-TP-93511-U</td>
<td>p 593 N95-30857</td>
</tr>
<tr>
<td>NRL-MR/7543-93-T218</td>
<td>p 588 N95-31454</td>
</tr>
<tr>
<td>NSWCDD/TR-94/06</td>
<td>p 594 N95-30929</td>
</tr>
<tr>
<td>NTSB/ARG-95/01</td>
<td>p 599 N95-31712</td>
</tr>
<tr>
<td>PB95-196408</td>
<td>p 645 N95-30521</td>
</tr>
<tr>
<td>PB95-198024</td>
<td>p 593 N95-30837</td>
</tr>
<tr>
<td>PB95-198040</td>
<td>p 607 N95-30838</td>
</tr>
<tr>
<td>PB95-198081</td>
<td>p 593 N95-30814</td>
</tr>
<tr>
<td>PB95-198123</td>
<td>p 601 N95-30815</td>
</tr>
<tr>
<td>PB95-206447</td>
<td>p 677 N95-31157</td>
</tr>
<tr>
<td>PB95-206991</td>
<td>p 647 N95-30856</td>
</tr>
<tr>
<td>PB95-207015</td>
<td>p 647 N95-30857</td>
</tr>
<tr>
<td>PB95-211355</td>
<td>p 601 N95-30597</td>
</tr>
<tr>
<td>PB95-212031</td>
<td>p 644 N95-30502</td>
</tr>
<tr>
<td>PB95-214193</td>
<td>p 592 N95-30638</td>
</tr>
<tr>
<td>PB95-215826</td>
<td>p 599 N95-31712</td>
</tr>
<tr>
<td>RL-TR-94-218</td>
<td>p 679 N95-31455</td>
</tr>
<tr>
<td>RS9-970293</td>
<td>p 592 N95-30611</td>
</tr>
<tr>
<td>SAE PAPER 931256</td>
<td>p 634 A95-93640</td>
</tr>
<tr>
<td>SAE PAPER 931290</td>
<td>p 610 A95-93642</td>
</tr>
<tr>
<td>SAE PAPER 931266</td>
<td>p 634 A95-93646</td>
</tr>
<tr>
<td>SAE PAPER 931266</td>
<td>p 586 A95-93647</td>
</tr>
<tr>
<td>SAE PAPER 931267</td>
<td>p 566 A95-93648</td>
</tr>
<tr>
<td>SAE PAPER 931268</td>
<td>p 586 A95-93649</td>
</tr>
<tr>
<td>SAE PAPER 931270</td>
<td>p 604 A95-93660</td>
</tr>
<tr>
<td>SAE PAPER 931275</td>
<td>p 618 A95-93655</td>
</tr>
<tr>
<td>SAE PAPER 931277</td>
<td>p 604 A95-93656</td>
</tr>
<tr>
<td>SAE PAPER 931281</td>
<td>p 604 A95-93657</td>
</tr>
<tr>
<td>SAE PAPER 931282</td>
<td>p 604 A95-93658</td>
</tr>
<tr>
<td>SAE PAPER 931283</td>
<td>p 618 A95-93659</td>
</tr>
<tr>
<td>SAE PAPER 931294</td>
<td>p 586 A95-93660</td>
</tr>
<tr>
<td>SAE PAPER 931295</td>
<td>p 587 A95-93662</td>
</tr>
<tr>
<td>SAE PAPER 931368</td>
<td>p 613 A95-93663</td>
</tr>
<tr>
<td>SAE PAPER 931359</td>
<td>p 613 A95-93665</td>
</tr>
<tr>
<td>SAE PAPER 931391</td>
<td>p 613 A95-93667</td>
</tr>
<tr>
<td>SAE PAPER 931393</td>
<td>p 613 A95-93669</td>
</tr>
<tr>
<td>SAE PAPER 931397</td>
<td>p 604 A95-93669</td>
</tr>
<tr>
<td>SAE PAPER 931400</td>
<td>p 604 A95-93670</td>
</tr>
<tr>
<td>SAE PAPER 931401</td>
<td>p 628 A95-93671</td>
</tr>
<tr>
<td>SAE PAPER 931402</td>
<td>p 605 A95-93672</td>
</tr>
<tr>
<td>SAE PAPER 931403</td>
<td>p 605 A95-93673</td>
</tr>
<tr>
<td>SAE PAPER 931404</td>
<td>p 628 A95-93674</td>
</tr>
<tr>
<td>SAE PAPER 931406</td>
<td>p 613 A95-93675</td>
</tr>
<tr>
<td>SAE PAPER 931410</td>
<td>p 625 A95-93676</td>
</tr>
<tr>
<td>SAE PAPER 931411</td>
<td>p 614 A95-93677</td>
</tr>
<tr>
<td>SAE PAPER 931412</td>
<td>p 614 A95-93678</td>
</tr>
<tr>
<td>SAE PAPER 931416</td>
<td>p 610 A95-93681</td>
</tr>
<tr>
<td>SAE PAPER 931417</td>
<td>p 583 A95-93682</td>
</tr>
<tr>
<td>SAE PAPER 931439</td>
<td>p 680 A95-93691</td>
</tr>
<tr>
<td>SAE PAPER 931442</td>
<td>p 614 A95-93692</td>
</tr>
<tr>
<td>SAE PAPER 931444</td>
<td>p 625 A95-93693</td>
</tr>
<tr>
<td>SAE PAPER 931449</td>
<td>p 625 A95-93695</td>
</tr>
<tr>
<td>SAND-94-2302C</td>
<td>p 648 N95-31614</td>
</tr>
<tr>
<td>SKS/95/1</td>
<td>p 648 N95-31443</td>
</tr>
<tr>
<td>STFT75-S95041</td>
<td>p 645 N95-30521</td>
</tr>
<tr>
<td>TARDEC-TR-13841</td>
<td>p 630 N95-31398</td>
</tr>
<tr>
<td>UCRL-JC-118213</td>
<td>p 644 N95-30507</td>
</tr>
<tr>
<td>UCRL-JC-120546</td>
<td>p 584 N95-32164</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-094683</td>
<td>p 611 N95-31180</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-125715</td>
<td>p 629 N95-30749</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-126499</td>
<td>p 646 N95-30727</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-874403</td>
<td>p 629 N95-30750</td>
</tr>
<tr>
<td>US-PATENT-CLASS-348-117</td>
<td>p 611 N95-31180</td>
</tr>
<tr>
<td>US-PATENT-CLASS-428-34</td>
<td>p 629 N95-30749</td>
</tr>
<tr>
<td>Accession Number</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>N95-30787</td>
<td>629</td>
</tr>
<tr>
<td>N95-30788</td>
<td>583</td>
</tr>
<tr>
<td>N95-30614</td>
<td>593</td>
</tr>
<tr>
<td>N95-30915</td>
<td>601</td>
</tr>
<tr>
<td>N95-30827</td>
<td>607</td>
</tr>
<tr>
<td>N95-30837</td>
<td>593</td>
</tr>
<tr>
<td>N95-30838</td>
<td>607</td>
</tr>
<tr>
<td>N95-30945</td>
<td>593</td>
</tr>
<tr>
<td>N95-30851</td>
<td>646</td>
</tr>
<tr>
<td>N95-30852</td>
<td>616</td>
</tr>
<tr>
<td>N95-30681</td>
<td>617</td>
</tr>
<tr>
<td>N95-30865</td>
<td>593</td>
</tr>
<tr>
<td>N95-30869</td>
<td>678</td>
</tr>
<tr>
<td>N95-30902</td>
<td>646</td>
</tr>
<tr>
<td>N95-30906</td>
<td>646</td>
</tr>
<tr>
<td>N95-30922</td>
<td>646</td>
</tr>
<tr>
<td>N95-30923</td>
<td>607</td>
</tr>
<tr>
<td>N95-30927</td>
<td>607</td>
</tr>
<tr>
<td>N95-30929</td>
<td>594</td>
</tr>
<tr>
<td>N95-30937</td>
<td>594</td>
</tr>
<tr>
<td>N95-31000</td>
<td>679</td>
</tr>
<tr>
<td>N95-30992</td>
<td>647</td>
</tr>
<tr>
<td>N95-31013</td>
<td>621</td>
</tr>
<tr>
<td>N95-31061</td>
<td>597</td>
</tr>
<tr>
<td>N95-31062</td>
<td>597</td>
</tr>
<tr>
<td>N95-31063</td>
<td>597</td>
</tr>
<tr>
<td>N95-31064</td>
<td>597</td>
</tr>
<tr>
<td>N95-31065</td>
<td>607</td>
</tr>
<tr>
<td>N95-31066</td>
<td>597</td>
</tr>
<tr>
<td>N95-31067</td>
<td>597</td>
</tr>
<tr>
<td>N95-31068</td>
<td>598</td>
</tr>
<tr>
<td>N95-31069</td>
<td>598</td>
</tr>
<tr>
<td>N95-31070</td>
<td>589</td>
</tr>
<tr>
<td>N95-31071</td>
<td>616</td>
</tr>
<tr>
<td>N95-31072</td>
<td>588</td>
</tr>
<tr>
<td>N95-31098</td>
<td>647</td>
</tr>
<tr>
<td>N95-31124</td>
<td>620</td>
</tr>
<tr>
<td>N95-31157</td>
<td>677</td>
</tr>
<tr>
<td>N95-31180</td>
<td>611</td>
</tr>
<tr>
<td>N95-31191</td>
<td>617</td>
</tr>
<tr>
<td>N95-31199</td>
<td>617</td>
</tr>
<tr>
<td>N95-31201</td>
<td>617</td>
</tr>
<tr>
<td>N95-31203</td>
<td>629</td>
</tr>
<tr>
<td>N95-31208</td>
<td>629</td>
</tr>
<tr>
<td>N95-31258</td>
<td>630</td>
</tr>
<tr>
<td>N95-31355</td>
<td>647</td>
</tr>
<tr>
<td>N95-31356</td>
<td>630</td>
</tr>
<tr>
<td>N95-31374</td>
<td>647</td>
</tr>
<tr>
<td>N95-31406</td>
<td>620</td>
</tr>
<tr>
<td>N95-31416</td>
<td>607</td>
</tr>
<tr>
<td>N95-31421</td>
<td>650</td>
</tr>
<tr>
<td>N95-31423</td>
<td>645</td>
</tr>
<tr>
<td>N95-31425</td>
<td>645</td>
</tr>
<tr>
<td>N95-31428</td>
<td>598</td>
</tr>
<tr>
<td>N95-31432</td>
<td>648</td>
</tr>
<tr>
<td>N95-31433</td>
<td>601</td>
</tr>
<tr>
<td>N95-31443</td>
<td>648</td>
</tr>
<tr>
<td>N95-31451</td>
<td>608</td>
</tr>
<tr>
<td>N95-31454</td>
<td>598</td>
</tr>
<tr>
<td>N95-31455</td>
<td>679</td>
</tr>
<tr>
<td>N95-31465</td>
<td>677</td>
</tr>
<tr>
<td>N95-31466</td>
<td>626</td>
</tr>
<tr>
<td>N95-31471</td>
<td>630</td>
</tr>
<tr>
<td>N95-31475</td>
<td>648</td>
</tr>
<tr>
<td>N95-31512</td>
<td>599</td>
</tr>
<tr>
<td>N95-31520</td>
<td>601</td>
</tr>
<tr>
<td>N95-31521</td>
<td>602</td>
</tr>
<tr>
<td>N95-31525</td>
<td>608</td>
</tr>
<tr>
<td>N95-31544</td>
<td>608</td>
</tr>
<tr>
<td>N95-31569</td>
<td>599</td>
</tr>
<tr>
<td>N95-31572</td>
<td>602</td>
</tr>
<tr>
<td>N95-31576</td>
<td>608</td>
</tr>
<tr>
<td>N95-31579</td>
<td>608</td>
</tr>
<tr>
<td>N95-31581</td>
<td>602</td>
</tr>
<tr>
<td>N95-31584</td>
<td>611</td>
</tr>
<tr>
<td>N95-31687</td>
<td>677</td>
</tr>
<tr>
<td>N95-31686</td>
<td>687</td>
</tr>
<tr>
<td>N95-31698</td>
<td>684</td>
</tr>
<tr>
<td>N95-31699</td>
<td>608</td>
</tr>
<tr>
<td>N95-31713</td>
<td>648</td>
</tr>
<tr>
<td>N95-31715</td>
<td>594</td>
</tr>
<tr>
<td>N95-31728</td>
<td>649</td>
</tr>
<tr>
<td>N95-31736</td>
<td>649</td>
</tr>
<tr>
<td>N95-31767</td>
<td>630</td>
</tr>
<tr>
<td>N95-31768</td>
<td>631</td>
</tr>
<tr>
<td>N95-31773</td>
<td>631</td>
</tr>
<tr>
<td>N95-31775</td>
<td>631</td>
</tr>
</tbody>
</table>
AVAILABILITY OF CITED PUBLICATIONS

OPEN LITERATURE ENTRIES (A95-60000 Series)

Inquiries and requests should be addressed to NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934. Orders are also taken by telephone, (301) 621-0390, e-mail, help@sti.nasa.gov, and fax, (301) 621-0134. Please refer to the accession number when requesting publications.

STAR ENTRIES (N95-10000 Series)

One or more sources from which a document announced in *STAR* is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below, and their addresses are listed on page APP-3. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: CASI. Sold by the NASA Center for AeroSpace Information. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code following the letters HC or MF in the *STAR* citation. Current values for the price codes are given in the tables on page APP-5.

NOTE ON ORDERING DOCUMENTS: When ordering publications from NASA CASI, use the N accession number or other report number. It is also advisable to cite the title and other bibliographic identification.

Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)

Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in *Energy Research Abstracts*. Services available from the DOE and its depositories are described in a booklet, *DOE Technical Information Center - Its Functions and Services* (TID-4660), which may be obtained without charge from the DOE Technical Information Center.

Avail: ESDU. Pricing information on specific data, computer programs, and details on Engineering Sciences Data Unit (ESDU) topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on page APP-3.

Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, CA. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.

Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration (JBD-4), Public Documents Room (Room 1H23), Washington, DC 20546-0001, or public document rooms located at NASA installations, and the NASA Pasadena Office at the Jet Propulsion Laboratory.
Avail: NTIS. Sold by the National Technical Information Service. Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) are available. For information concerning this service, consult the NTIS Subscription Section, Springfield, VA 22161.

Avail: Univ. Microfilms. Documents so indicated are dissertations selected from Dissertation Abstracts and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.

Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.

Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed on page APP-3. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.

FEDERAL DEPOSITORY LIBRARY PROGRAM
In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 53 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 53 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover of this issue. These libraries are not sales outlets. A local library can contact a regional depository to help locate specific reports, or direct contact may be made by an individual.

PUBLIC COLLECTION OF NASA DOCUMENTS
An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and * from FI2—Fachinformation Karlsruhe—Bibliographic Service, D-76344 Eggenstein-Leopoldshafen, Germany and TIB—Technische Informationsbibliothek, P.O. Box 60 80, D-30080 Hannover, Germany.

STANDING ORDER SUBSCRIPTIONS
NASA SP-7037 supplements and annual index are available from the NASA Center for AeroSpace Information (CASI) on standing order subscription. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.
ADDRESSES OF ORGANIZATIONS

British Library Lending Division
Boston Spa, Wetherby, Yorkshire
England

Commissioner of Patents and Trademarks
U.S. Patent and Trademark Office
Washington, DC 20231

Department of Energy
Technical Information Center
P.O. Box 62
Oak Ridge, TN 37830

European Space Agency-
Information Retrieval Service ESRIN
Via Galileo Galilei
00044 Frascati (Rome) Italy

Engineering Sciences Data Unit International
P.O. Box 1633
Manassas, VA 22110

Engineering Sciences Data Unit
International, Ltd.
251-259 Regent Street
London, W1R 7AD, England

Fachinformationszentrum Karlsruhe
Gesellschaft für wissenschaftlich-technische
Information mbH
76344 Eggenstein-Leopoldshafen, Germany

Her Majesty's Stationery Office
P.O. Box 569, S.E. 1
London, England

NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934

National Aeronautics and Space Administration
Scientific and Technical Information Office (JT)
Washington, DC 20546-0001

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Pendragon House, Inc.
899 Broadway Avenue
Redwood City, CA 94063

Superintendent of Documents
U.S. Government Printing Office
Washington, DC 20402

University Microfilms
A Xerox Company
300 North Zeeb Road
Ann Arbor, MI 48106

University Microfilms, Ltd.
Tylers Green
London, England

U.S. Geological Survey Library National Center
MS 950
12201 Sunrise Valley Drive
Reston, VA 22092

U.S. Geological Survey Library
2255 North Gemini Drive
Flagstaff, AZ 86001

U.S. Geological Survey
345 Middlefield Road
Menlo Park, CA 94025

U.S. Geological Survey Library
Box 25046
Denver Federal Center, MS914
Denver, CO 80225
NASA CASI PRICE CODE TABLE

(Effective January 1, 1995)

<table>
<thead>
<tr>
<th>CASI PRICE CODE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>$ 6.00</td>
<td>$ 12.00</td>
</tr>
<tr>
<td>A02</td>
<td>9.00</td>
<td>18.00</td>
</tr>
<tr>
<td>A03</td>
<td>17.50</td>
<td>35.00</td>
</tr>
<tr>
<td>A04-A05</td>
<td>19.50</td>
<td>39.00</td>
</tr>
<tr>
<td>A06-A09</td>
<td>27.00</td>
<td>54.00</td>
</tr>
<tr>
<td>A10-A13</td>
<td>36.50</td>
<td>73.00</td>
</tr>
<tr>
<td>A14-A17</td>
<td>44.50</td>
<td>89.00</td>
</tr>
<tr>
<td>A18-A21</td>
<td>52.00</td>
<td>104.00</td>
</tr>
<tr>
<td>A22-A25</td>
<td>61.00</td>
<td>122.00</td>
</tr>
<tr>
<td>A99</td>
<td>Call For Price</td>
<td>Call For Price</td>
</tr>
</tbody>
</table>

IMPORTANT NOTICE

For users not registered at the NASA CASI, prepayment is required. Additionally, a shipping and handling fee of $1.00 per document for delivery within the United States and $9.00 per document for delivery outside the United States is charged.

For users registered at the NASA CASI, document orders may be invoiced at the end of the month, charged against a deposit account, or paid by check or credit card. NASA CASI accepts American Express, Diners’ Club, MasterCard, and VISA credit cards. There are no shipping and handling charges. To register at the NASA CASI, please request a registration form through the NASA Access Help Desk at the numbers or addresses below.

RETURN POLICY

Effective June 1, 1995, the NASA Center for AeroSpace Information will gladly replace or make full refund on items you have requested if we have made an error in your order, if the item is defective, or if it was received in damaged condition and you contact us within 30 days of your original request. Just contact our NASA Access Help Desk at the numbers or addresses listed below.

NASA Center for AeroSpace Information

800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934
Telephone: (301) 621-0390
E-mail: help@sti.nasa.gov
Fax: (301) 621-0134
This report lists 518 reports, articles and other documents recently announced in the NASA STI Database.
FEDERAL REGIONAL DEPOSITORY LIBRARIES

<table>
<thead>
<tr>
<th>State</th>
<th>Library Name</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>Auburn Univ. at Montgomery Library</td>
<td>Documents Dept., 7300 University Dr.</td>
<td>(205) 244-0360</td>
<td>(205) 244-0678</td>
</tr>
<tr>
<td></td>
<td>UNIV. of Alabama</td>
<td>Smokey Bailey Library, 3500 University Dr.</td>
<td>(205) 348-0364</td>
<td>(205) 348-0760</td>
</tr>
<tr>
<td></td>
<td>CALIFORNIA</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOUISIANA</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KENTUCKY</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAINE</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MARYLAND</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICHIGAN</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MISSOURI</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEVADA</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEBRASKA</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEW JERSEY</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEW MEXICO</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OHIO</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oklahoma</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OREGON</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAILROAD PUBLISHING CO.</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TENNESSEE</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEXAS</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utah</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIRGINIA</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WASHINGTON</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WISCONSIN</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WYOMING</td>
<td>State Library Service Section</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Address:

- **AUBURN UNIV. AT MONTGOMERY**
- **CALIFORNIA STATE LIBRARY**
- **ARIZONA DEPT. OF LIBRARY, ARCHIVES, AND PUBLIC RECORDS**
- **ARKANSAS STATE LIBRARY**
- **COLORADO UNIV. OF COLORADO - BOULDER**
- **CONNECTICUT CONNECTICUT STATE LIBRARY**
- **FLORIDA UNIV. OF FLORIDA LIBRARIES**
- **GEORGIA UNIV. OF GEORGIA LIBRARIES**
- **HAWAII UNIV. OF HAWAII**
- **IDAHO UNIV. OF IDAHO LIBRARY**
- **ILLINOIS ILLINOIS STATE LIBRARY**

Contact Information:

- **AUBURN UNIV. AT MONTGOMERY**
- **CALIFORNIA STATE LIBRARY**
- **ARIZONA DEPT. OF LIBRARY, ARCHIVES, AND PUBLIC RECORDS**
- **ARKANSAS STATE LIBRARY**
- **COLORADO UNIV. OF COLORADO - BOULDER**
- **CONNECTICUT CONNECTICUT STATE LIBRARY**
- **FLORIDA UNIV. OF FLORIDA LIBRARIES**
- **GEORGIA UNIV. OF GEORGIA LIBRARIES**
- **HAWAII UNIV. OF HAWAII**
- **IDAHO UNIV. OF IDAHO LIBRARY**
- **ILLINOIS ILLINOIS STATE LIBRARY**

Phone Numbers:

- **AUBURN UNIV. AT MONTGOMERY**
- **CALIFORNIA STATE LIBRARY**
- **ARIZONA DEPT. OF LIBRARY, ARCHIVES, AND PUBLIC RECORDS**
- **ARKANSAS STATE LIBRARY**
- **COLORADO UNIV. OF COLORADO - BOULDER**
- **CONNECTICUT CONNECTICUT STATE LIBRARY**
- **FLORIDA UNIV. OF FLORIDA LIBRARIES**
- **GEORGIA UNIV. OF GEORGIA LIBRARIES**
- **HAWAII UNIV. OF HAWAII**
- **IDAHO UNIV. OF IDAHO LIBRARY**
- **ILLINOIS ILLINOIS STATE LIBRARY**

Fax Numbers:

- **AUBURN UNIV. AT MONTGOMERY**
- **CALIFORNIA STATE LIBRARY**
- **ARIZONA DEPT. OF LIBRARY, ARCHIVES, AND PUBLIC RECORDS**
- **ARKANSAS STATE LIBRARY**
- **COLORADO UNIV. OF COLORADO - BOULDER**
- **CONNECTICUT CONNECTICUT STATE LIBRARY**
- **FLORIDA UNIV. OF FLORIDA LIBRARIES**
- **GEORGIA UNIV. OF GEORGIA LIBRARIES**
- **HAWAII UNIV. OF HAWAII**
- **IDAHO UNIV. OF IDAHO LIBRARY**
- **ILLINOIS ILLINOIS STATE LIBRARY**
National Aeronautics and Space Administration
Code JT
Washington, DC 20546-0001

Official Business
Penalty for Private Use $300