








































the current Z locatIOn IS calculated from a knowledge of A. at posItIons ahead of Z, m 
contrast to the case when Jio IS posItIOn when the calculatIon of A( Z) mvolves history 
dependent effects ThIs apparent dIfficulty can howevel be lesoh·ed by redefining () used 
m (2 2), (by for example addmg a multIple of ±1r as tlllS does not affect the subsequent 
criterIa used to fix ()) SImIlar comments apply also to the lotatmg dIsk flow and the 
approprIate choice for 110 there, see (A6), (A 7), IS to take Jlo to be negatIve. 

EquatIOn (6.3) was solved numerIcally usmg a 5th Oldel Adams Bashforth predlctor­
corrector scheme. The mtegrals were truncated to those oyer a timte domam and eval­
uated using a trapezOIdal rule One novel feature of the present ImplementatIOn of the 
method worth mentIOnmg IS that the computations were performed on a masSIvely par­
allel computer, the Maspar MP-ll04 whIch has 4096 proceSSOlS arranged m a (64x64) 
square matrIx. The bulk of the computational tIme m solvmg (6.3) numerIcally arises 
from the evaluatIOn of the integrals especially when the nonhnear terms become signif­
icant. Integrals of the type occurring m (6.3) can be evaluated extremely efficiently in 
paralleL Further detaIls of the algOrIthm used may be obtamed from the author. 

Some solutIons of (6.3) obtained numerIcally are shown In Figures 4-6. In Figure 
4( a-c) results are presented for the case with arg( K:) = 0 and arg( q») = -1r /2 for values 
of u = 0, 0.5, and 5 In these figures the dashed line IS obtained from the asymptotic 
solution (6.6). The computations show that the locatIOn of the singularity is delayed 
with increasing U. As the singular point is approached there is a sharp reduction in 
the wavenumber, FIgure 4(b), accompanIed by a very lalge mcrease in the growth rate, 
Figure 4( c). The main solution characteristics for thIS set of parameters IS broadly in 
line with those found by other Investigators in theIr studIes of related Integro-differentIal 
equations. 

The solutIOns presented m FIgures 5( a-f) , WIth arg( 1\) = 0, arg( 4» = -1r / 4 and u = 
0, 0.5 and 5, however, show a number of new and mtelestmg plOperties, some of which 
have not been found before. The results for u = 0 and 0.5 are similar to those in Figure 
4(a-c) and show again that the smgularIty IS delayed WIth mcreasIng U. For 0- = 5 on the 
other hand, our results, up to the largest Z value that we haye been able to compute, 
mdicate that the SIngularIty has been elimInated in favour of a large amplitude nonhnear 
oscillation. Figure 5d shows that the wavenumber fluctuates and contams a large high 
frequency component causmg the wavenumber to peak at specific locations. The growth 
rate is seen in Figures 5(a), 5(e), to oscillate about zero, with agam very large peaks 
near speCIfic locatIOns. In Figure 5(f) we show IAI agamst Z and this shows clearly the 
development of the nonlinear OSCIllatIOns after an mltIally exponentIally growmg linear 
phase. This type of solutIOn has not been found m studIes of other related integra­
differentIal equatIOns. 

In Figure 6(a-c) we present results for the case arg(K) = 0, and arg(4)) = 1r/4 for 0- = 
1 and 5. The solutIOn propertIes are broadly SImIlar to those for the case WIth 4> = -1r /4, 
except that the wavenumber has large negatIve peaks at certam locatIOns. The real part 
of the growth rate for 0- = 5 is exactly the same as that in Figure See). 

The comparIsons between the asymptotIC and the numerIcal results m FIgures 4-6 are 
qUIte good and thIS indIcates that the correct smgularIty structure has been captured. 
In plotting the asymptotic predictIOns, for a gIven value of alg(D(To)/T) the value of TO 
and a were obtamed flOm (63), WIth the value of Zs extrapolated from the numerIcal 
results 

The numerIcal solutIOns take an extlemely long tllne to compute. expecially when the 
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nonlmear terms become sIgmficant PUl ther more extenc;1\ e calculatlOns are currently m 
progress to explole a wider range of parameter values. and to see whether the nonlinear 
waveform fOlm found for some parameter values, persIst& 01 IS damped out for large Z 

7 Further discussion and conclusions 

In thIS paper we have obtamed a novel mtegro-differentIal equation whIch describes the 
nonlmear evolutIOn of statlOnary cross-flow vortIces m tlnee-chmenslonal mcompressIble 
boundary layer flows. It has been shown that the evolutlOn of the vortex depends crucIally 
on the dynamIcs of the unsteady critical layer as well as the dynamics of an unsteady 
wall layer. In compamon papers the work presented here IS extended to non-stationary 
cross-flow vortrces, Gajjar &. ArebI (1985), and to complesslble flows Gajjar & Sibanda 
(1985). In Gajjar & Arebi (1985) it IS found that the amplitude of the non-stationary 
vortex satisfies a SImIlar equation but without the wall couplIng present. In addition thIS 
equation has an addItional Hickernell (1984) type term whose coefficient depends on the 
curvature of the effective velocity profile at the crItrcal layer. The influence of the wall 
layer in the current problem dimimshes as the the magnitude of the scaled frequency 
increases as was shown in the prevlOUS sectlOn. 

The amplitude equation has a number of interesting plOperties some of which have 
been discussed already. The full problem (5.4) is of conSIderable interest and merIts 
further study both analytrcally and numerIcally. As m many related problems it has been 
shown that solutlOns to the amplItude equatlOn can develop fimte-distance singularities. 
A prelimmary analysis of (5.4) suggests that focussmg type smgularlties of the form 

may also exist. The functlOn F(X) satIsfies a nonlinear first order integro-differential 
equatlOn which can be WrItten down, see also Vvu(1994) 

The couplIng WIth the wall layer found here is ImpOl tant m another context, namely 
the study of the receptrvlty of statlOnary cross-flow vortIces to sUlface mounted obstacles. 
Experimentally it has been observed that even minute roughness elements can act as a 
trIgger for statlOnary vortices: see WIlkinson et al (1983), Reed & Saric (1989). It IS 
suggested that the close couplIng WIth the wall layer and the manner m whIch this affects 
the evolution of a cross-flow vortex, may m fact prOVIde a simple explanatlOn for this 
phenomenon. The scales and structure presented here may be used to study thIS aspect 
m more detaIl. 

SolutlOns of the amplitude equation m wInch the finite-dIstance, or focussing type, 
smgularitIes form, although mathematIcally mterestmg do not however tie m with the 
observations m some expenments and numencal SImulatIOns of a nonhnear saturatIOn 
of stationary and non-statlOnary cross-flow vortIces In thIS repect some of the other 
solutIons shown m the preVIOUS sec:tIOn, m whIch a nonlInear wave develops, may have 
more relevance. Other pOSSIble eqUIlIbrium solutIOns of the equatlOn are currently bemg 
mvestigated. \Vith other scalmgs, see GaJjar (1994), It has been shown that the evolutIOn 
of long wavelength cross-flow vortIces IS governed by the full unsteady nonlmear critical 
layers equatlOns In many related problems where sImIlal equatlOns arIse. It is tYPIcally 
found that the growth rate of the dIsturbances IS dn"en to zero Thus thIS type of 
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cntIcal layer nonlmeanty may also PIO\·lde an explanatIOn fO! the nonlmear saturatIOn 
of the \'ortIces 

Stuart m GS\V (1955) found that the number of \"01 tlces predIcted by the lInear 
mviscld theory was much greater than that obser\"ed III then expenments. Although a 
number of suggestions have been made to account for tlus dlsclepancy, our computations 
show that nonlInearity provIdes a wavelength mcreasmg/decleasing mechamsm. On the 
other hand the flow m the neIghbourhood of the smgulanty, \yhere the wavenumber 
is changed by an 0(1) amount, IS no longer governed by lmear dynamics, but rather 
the full Euler equatIOns. A detaIled companson WIth expenmental and other data IS 
clearly desirable but reqUIres substantIal further work A SImple evaluation of some 
of the constants arising from the linear m\'iscid eigenvalue problem (3.4) is clearly not 
sufficient. 
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