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Abstract

We consider the nonlinear stabihty of a fully three-dimensional boundary layer
flow 1n an incompressible fluid and derive an equation governing the nonlinear de-
velopment of a stationary cross-flow vortex The amplitude equation is a2 novel
integro-differential equation which has spatial derivatives of the amphtude occur-
ring 1n the kernal function. It is shown that the evolution of the cross-flow vortex is
strongly coupled to the properties of an unsteady wall layer which is in fact driven
by an unknown shp velocity, proportional to the amplitude of the cross-flow vor-
tex. The work 1s extended to obtain the corresponding equation for rotating disk
flow. A number of special cases are examined and the numerical solution for one
of cases, and further analysis, demonstrates the existence of finite-distance as well
as focussing type singularities. The numerical solutions also indicate the presence
of a new type of nonlinear wave solution for a certain set of parameter values.



1 Introduction

One of the earlest experimental and theoretical investigations of the stability of thiee-
dimensional (3D) boundary layers was conducted by Giegory. Stuart & Walker (1935).
(hereafter referred to as GSW). The boundary layer flows studied were the flow over a
rotating disk, and the flow over swept wings. Using a china-clay visualisation technique
they were able to demonstrate the presence of a highly 1egular, stationary, pattern of
vortices spaced equally around the disk, or along the surface of the wing In addition.
with the aid of a microphone probe, they were able to detect travelling waves close
to the surface of the disk. Stuart in GSW suggested that the instabilities could be
explained 1n terms of the inflexional character of the effective mean velocity profile 1n
certain directions, ( the term effective mean velocity profile refers to a certain hnear
combination of the streamwise and spanwise velocity components) According to his
suggestion the stationary pattern was that associated with the inviscid instability of the
velocity profile which had a zero at a point of inflexion. The non-stationary, or travelling
wave pattern, could also be explained in terms of the inviscid instabilty of the mean flow.
These instabilities are now commonly referred to as cross-flow instabilities and their
importance stems from the fact that they arise naturally in many fully three-dimensional
boundary layer flows of practical importance, such as in the flow past swept aircraft
wings, rotating flows, and so on.

The experimental observations of GSW have been confirmed in many subsequent
experiments on rotating disk flow, see for instance Malik ef al. (1981), Kohama (1984).
Kobayashi et al. (1980), Kohama et al. (1991), as well in experiments on swept wings
and cylinders, Poll (1985), Michel et al. (1985), Mulle: & Bippes (1988), Saric el. (1989).
An extensive review of many aspects of the instability of 3D boundary layers including
cross-flow instability, and covering many of the early investigations, may be found 1n
Reed & Saric (1989), see also Arnal (1986).

The more recent experiments on cross-flow instability have considered nonlinear effects
and 1n Kohama (1984), Kohama et al (1991) an explosive secondary nstability, which
takes the form of ring-like vortices wrapped around the primary cross-flow vortex, has
been observed. In the experiments of Muller & Bippes (1988) 1t has been found that
the stationary as well as the non-stationary vortices attained a nonlinear saturation
amphtude. A similar phenomenon has been observed in the direct numerical simulations
of Meyer & Kleiser (1988), and also Malik (1986), Malik & L1 (1992), Malik et. al. (1994).
using more approximate methods based on the parabolised stability equations approach

There are very few self-consistent theoretical investigations of the stability of cross-
flow vortices. Hall (1986) extended Stuart’s analysis to compute correction terms for
the number of vortices as well as the inclination of the stationary vortices in the limit
of large Reynolds numbers. He was able to explain the existence of another branch
of the neutral curve, calculated previously by Malik (1986). as being associated with a
mode with zero shear stress. Mackerrel (1987) extended Hall's work to derive a weakly
nonlinear amplitude equation for the zero shear stress mode. Bassom & Gajjar (1989)
studied the linear and nonlinear neutral stability properties of long wavelength non-
stationary cross-flow vortices using scalings appropriate to the upper-branch stabihity of
a two-dimensional boundary layer. Recently Gajjair (1994). (1995), has extended the
Bassom & Gajjar (1989) work to compressible flows and looked at non-neutral modes

The main objective of this paper 1s to present a self-consistent theoretical description
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of the nonlinear evolution of a stationary cross-flow voitex. In companion papers Gajjar
& Areb: (1995) this woik 1s extended to the non-stationaiy case and 1n Gajjar & Sibanda
(1995) to compressible flows We study a general 3D boundaiy layer flow and consider
a flow dizection in which the effective veloaity profile has a zero at a point of inflexion.
giving rise to the stationary cross-flow vortex. and include modulation 1n time and space.
The stability analysis leads to a novel integro-differential equation for the amplitude of
the cross-flow vortex with spatial derivatives of the amplitude occurring in the kernal
function.

The starting point for the analysis 1s to consider a stationary cross-flow vortex 1n a
neutral or near neutral state Thus with small growth rates, and since the basic instabilty
mechanism 1s Rayleigh instability, GSW (1955), we may appeal to the 1deas of unsteady
nonlinear critical layer theory used successfully in many studies of the instabilities of
planar shear and boundary layer flows, see for example Hickernell (1984), Goldstemn &
Leib (1989), Letb(1991), Goldstein & Choi (1989), Wu(1992), Wu (1994). The application
of unsteady nonlinear critical layer theory to shear flow and boundary layer instabilities,
and a discussion of the properties of some of the integro-differential amplitude equations
which arise in this type of work, may be found in the excellent reviews by Cowley & Wu
(1994) and Goldstein (1994)

Our analysis is similar to that of Wu (1994) who investigated the stability of a two-
dimensional Stokes-Layer to 3D disturbances and studied the effect of slow temporal
and spanwise modulation The major difference in the present work and that of Wu
(1994) arises from the three-dimensionality of the basic flow used here This leads to
a different amplitude equation with single spatial derivatives of the amplitude in the
integro-differential operator and the kernal function, as opposed to the double derivatives
in Wu’s work. Another important aspect of the current work 1s the coupling of the
evolution of the disturbance amplitude with the properties of an unsteady wall layer. This
extra new feature arises primarily because of the scalings associated with a stationary
cross-flow vortex.

The basic scaling used 1n the analysis below may be derived using an argument similar
to that first used by Hickernell (1984), see also Wu (1994). We piesent some of the details
of this argument as there are a number of important differences from those given in Wu
(1994). Consider a cross-flow vortex of amplitude §. We need to determine the size of
6 such that critical layer nonlinearity affects the amplitude of the cross-flow vortex. We
allow for slow temporal and spatial modulation with respective 1elative scales A, Az.
The suffix Z here denotes variations in the direction normal to the Squire direction Since
the wavenumbers are of magmtude O(R?%), R beng the Reynolds number, a balance of
the inertial and viscous terms shows that the thickness of the ciitical layer at Y, is given
by Y — Y, = O(e) where Y denotes the O(1) boundary layer coordinate, and € = R~%.
Thus the spanwise component of the disturbance velocity, w, has a pole singulanty of
size

6
= O(———7)- 1.1
w = O(e=55) (1)
In Wu (1994) the equivalent w 1s much smaller since
2 A,
= -—Z—— = —_—
“ O((}'—Yc)) 0((1'—1;))

there. The relation (1 1) stems from a different balance Fiom the continuty equation

3



the Squire component of velocity u 1s then of size

8.

u=0(wz)= O(ﬁ

) (1.2)

Again an important difference between the analysis here and 1n Wu (1994) 1s noted, since
the equivalent expression theie 1s

IV - SENEDE ).y 3
v=0g ) =%y

This 1s the reason why the final amplitude equation in Wu's work 1involves double deriva-
tives in Z whereas here there are single derivatives in Z

The remainder of the argument follows closely that given in Hickernell (1984) and Wu
(1994), and shows that

Ar=Az=0(Y - Y.) = O(e), (1.3)

for unsteadiness and spanwise modulation to produce a non-equilibrium effect 1n the
critical layer. Interactions inside the critical layer give rise to a Squire component of
veloaity of order

$Az )
AR(Y — Y )37
and this affects the outer flow provided

Az
AR(Y - Yo)?

O(

o( ) = O(6A7).

Thus using (1.2), (1.3) we find that § = O(e?).

In section 2 below the problem 1s formulated The details of the outer inviscid flow
are considered 1n section 3 where a solvability condition, which leads to the amphitude
equation, is derived. The solvability condition shows that the amplitude of the cross-flow
vortex depends on the displacement induced by the wall layer as well as the jump across
the critical layer In sections 4 and 5 the solutions inside the critical layer are obtained
and these are then used to determine the nonlinear jump conditions which appear in
the solvability condition. The amplitude equation 1s obtained in section 5. In section 6
the properties of this amplitude equation are discussed and some results are presented
Finally we conclude with additional comments in section 7. In Appendix A the analysis s
extended to the obtain the corresponding amplitude equation for a stationary cross-flow
vortex in the flow over a rotating disk

Throughout this work the fluid 1s taken to be incompressible and the Reynolds number
to be large.



2 Problem formulation

Consider cartesian coordinates (7, y.Z) non-dimensionalised with respect to a lengthscale
L and where z 15 1n the streamwise ditection, = is 1n the spanwise direction and y 1s normal
to the body The corresponding non-dimensional velocity components are (T, v, w). It 1s
convenient to work 1n terms of Squire coordinates defined by

r=aT+PB3, z=-BT+aZ (21)
with corresponding velocities
u=au+ fw, w=-Fu+aw (22)

where a = cos 6, B = sinf and the angle § will be fixed subsequently.
In terms of z, z the Navier-Stokes equations are

divu=0, (2 3a)

u+u YVu=-Vp+ %Vzu (2.3b)

Here u = (u,v,w), t is the non-dimensional time, p is the non-dimensional pressure,
R = UgL/v 1s the Reynolds number, Uc is a characteristic velocity scale, and v 1s
the kinematic viscosity The Reynolds number R 1s assumed to be large, and we set
€= R/,

2.1 Basic Flow

The basic flow 1s taken to be a fully three-dimensional boundary layer flow given by

(u,v,w) = (Up, Vs, Wg, )(z,Y,2) +.... (2.4a)

p=pp(z,z)+..., (2.4b)

where Y = ¢73y 1s the boundary layer coordinate. The basic flow satisfies the boundary
layer equations

Up: + Vpy + Wg, =0,
UpUs: + VaUpy + WpUp: = —ppz + Upyy-
UpWp; + VeWgy + WgWg, = —pp: + Wayy,
with the boundary conditions
Ug=Vg=Wg=0 on Y =0.
and
Us — Upeo, Wg — Wgeo as 1" — oo.

Following the discussion in the Introduction, the basic flow Up 1s such that 1t has a zero
at a point of inflexion Thus near Y = Y, where Ug(z, 1%, z) = 0 we can expand the basic-
flow quantities as

Usg = enn+eilan®+ (2.52)
Ve = Vi +eVign+.... (2.5b)
Wg = po+emn+eium’+ (2 5¢c)
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where " = Y}, 4+ ¢n and A, As. VBS%),VL(;IO), Ho, i1- [t2,. and all functions of 2 and =.

After substituting (2 3) into the basic flow equations and equating powers of = the
following relations are easily derived.

Vaoh — HoYo: A1 = —pa: (2.6a)

VEg A + pods — MYoz — pada Yo = 6)a, (2.6b)
Vg})) + po- — Yoz A\ — Yo = 0, (2 6¢c)
Vo 1 + Hoptos — proYozpth = —pa: + 22 (2 6d)

These relations are used later 1n section 4. The properties of the basic flow near the wall
are also needed later and for Y small we have

Us = MY + .., (2.7a)
W = LY +. .. (2.7b)

Since the velocity profile Ugis zero at the wall and has a zero somewhere 1n the flow, it
is clear that A, and A, have opposite signs.

Next we consider a stationary cross-flow vortex with a wavenumber v (scaled with
respect to boundary-layer thickness), in the = direction. and introduce additional coor-
dinates X, Z,T to allow for modulation such that,

ad 3|0 0 %]

™ — [56- + 63}‘,} + 72 (2.82)
19} 2 0 0 0 2 0
-a—z'—h‘: 3_Z+5;’ 'a—t—*c T (2.8b)

The £3 factors above account for the scaling with respect to boundary layer thickness

and the %, 56; variations are needed to account for the local vanations of the mean flow

in the z and z coordinate directions.

3 Solution outside the critical layers

3.1 Main part of the boundary layer

We first consider the solution 1n the main part of the boundary layer where Y = e~3y is
O(1) In this region the expansions for the flow quantities are

u= Up+ 6(Wo+emm+ ) (3.1a)
v= 6(To+€v1+ ) (3 1b)
w= Wp+ é§(Wo+ecwi+ .) (3 1c)
p= pp+ b&(F+ep+ ) (31d)

where the disturbance size § will be taken to be O(£%/2) subsequently, but since the prop-
erties outside the critical layers are largely dictated by linear dynamics, 1t 1s convenient

to work with é



After substituting (3 1) into the Nawvier-Stokes equations (2 3) and using (2.8), the
leading order disturbance equations are found to be

'1705 + 50)' = 0, (3 Za)
Upoe + WoUpy = —Pp» (3 2b)
Ug®Woe + ToWpy =0 (3.2¢)

The problem (3.2) 1s just that for the stationary cioss-flow vortex, Giegory, Stuait &
Walker (1955), and if we set

Uy = Afl'o(Y, z,z)e™ +cec.., (3 3a)
To = —zAf/b(Y, z,z)e +ce.., (3.3b)
W = AWo(Y,z,2)e™ +cec.., (3.3¢)
o = APy (Y,z,z)e" +c.c., (3.3d)

where c.c.. denotes the complex conjugate, then V; satisfies Ravleigh’s equation

Vory — (¥ + Ug::, W =0, (3.4a)

with the boundary conditions
Vo=0 on Y =0, (3 4b)
Vo] <00 as Y — o0 (3.4¢)

In (3.3) A(X,T, Z) 1s the normalised amplitude of the cross-flow vortex and dependent
on the slow scales X,T and Z. The eigenfunctions® 1n (3 3) depend on z and z because
of the basic flow Ug The problem (3.4) has to solved with the additional constraints

Us=0=Upyy at Y =V, (3.4d)

so that the pont ¥ = Y, 1s a regular point of (3 4a). The conditions (3.4d) fix the angle
# and Y. since _ .
Ug =cos@Up + sinWp.

Given 6 and Y, (3 4a,b,c) then determines the wavenumber + of the stationary cross-flow
vortex and the eigenfunction V4. and Up, Wy are obtained fiom

.1
Uo = =V, (3 52)
v
;,  WeyVW
Vo = =2 (3.5b)

In general the problem for V} has to be solved numencally but the solution properties
near Y = Y, can be obtained using a Frobenius expansion. Thus near ¥ = Y, the solution
for V; can be expressed as

o = C*8, + B[y + p;da In [7] (3 6a)

1The amplitude A also depends on z and = as can be seen from the amplitude equation 1n section 5
below, but since the dependence 1s only parametric 1t 1s not shown exphcitly for the sake of clarity
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where |
Q=T+ 507+ -, (3.6b)

¢ =14¢,7° +. (3.6¢)
are two linearly independent solutions of Rayleigh’s equation and 7 =Y — },

Note that
2, 1, 3)s

PJ—/\I—, QJ=§7 Al.

The constants? C* — C~, B* — B~ will later be shown to be equal to zero
From (3.5b) it follows that W, has a pole singulanity near 1; 1f uy # 0.
The second order problem for the flow quantities leads to the equations

Uye + Tox + D1y + Woz = 0. (3.72)
Tor + Us(W¢ + %ox) + %1Usy + Uplloz = —Fy¢ — Doy, (3.7b)
Tor + Us(Tie + Vox)+ WaToz = —Py - (3.7¢)
Wor + Us(Wie + Wox) + 51 Way + Waloz = —Pyz- (3.7d)
Thus using (3.7) 1t 1s found that the e"¢ component of 7. 17 satisfies the equation
. - - 10Byy ~ 0A
Vivy — V) = VWUpyy = ——— 14—
Us(Vivy —7"V1) = ViUpny S Ts °aT
10A (Wgyy WaUpgyy - JA -
- —— — UsWo — 29 =—=WUp. 3.
762( Us UZ BYom g 0T (3.8)

The solution for \71 near Y = Y. is easily obtained and takes the form

~ Bi 6#0)\3 2[12 aA GAsBi ()A
/ ~ — — e e — —_— —_—
Vi g:f:¢u+f:|:¢b+[1 ( 3 " 37+ X T (n(lnfp|=1)+...  (39)

Note that since V; satisfies the same equation as Vj but with a different right hand side,
a solution exists only provided a certain solvability condition is satisfied The solvability
condition 1s obtained by multiplying (3.8) by V;, and integrating from Y =0to Y = co
and using (3 4) This gives

e e e v s LA L JA dA

Wor Vi — VoViy )bt + [Voy Valy=o = ?lﬁ + Tza_z +rlgs (3.10)
where wll
I = 5‘;” 24y, (3 11a)
B
_ © (Wpyy WaUsyy \ ¢15 ;-

I = -][0 ( o 0z )\Od}, (3 11b)
I = =2 /0  Y2ay (3.11¢)

The equation (3 10) 1s the amphitude equation for the cross-flow vortex and the first
term 1nvolving the jumps 1s obtained from an analysis of the critical layer The Vi|y—o
contribution to the amplitude equation 1s determined from an analysis of the wall layer,
and this 1s considered next

2These are again functions of = and = but since the dependence on z = 1s parametric we will use the
term constants



3.2 'Wall layer analysis

From (2.7), (3.1), (3 2), 1t follows that in the wall layer wheie y = ¥} the expansions
are

u = MY 4+ . +6(T+ ). (3 12a)
v = §(eTo+ ), (3.12b)
p = pe+6(ePy+- ), (3 12¢)
w = €EY +. .+6W@o+ . ). (3 12d)
Substitution into the Navier-Stokes equations then leads to
ﬂog + -‘50? = 0, (3 13a)
Uor + MY Uog + Do = —Pog + Uy, 0= —Por, (3 13b)
Wor + MY Woe + TofEy; = Toyy - (3.13¢)
These equations have to be solved subject to the no slip conditions
T=%=w=0 on Y =0 (3 14a)
and AX, Z,T
Ty — —(—;—)‘7{)}'(}, =0 +cc. as Y — oo, (3 14b)
7
Wy — fl—(A—’XZ—ZL);TIVOy(Y =0)e"+cc. as Y — oo. (3.14¢)
TM

The displacement from the wall layer provides a contribution to the amplitude equation
and this 1s given by the finite part of Ty as ¥ — oc. Hence the required matching
condition is
V(Y =0) = Jm [Fo + TRAX, Z,T) oy (¥ = 0)e +c.c)] . (3.14d)
" —00

The solution of the unsteady wall layer equations (3.13) together with the non-shp bound-
ary conditions (3.14a) and ship velocity (3.14b) determune (3.14d). However these equa-
tions cannot be solved 1n 1solation because of the unknown ship velocity (3.14b) and in fact
the wall layer equations are directly coupled to the nonlinear evolution of the cross-flow
vortex amphitude via (3.10).

We consider next the details of the critical layer which determine the unknown jumps
n (3.10)

4 Solutions inside the critical layers

In the critical layer we set y = €31, + €%y and the outer solutions. with 6 = £%/2, imply
the expansions

u=¢€eM\n+ e g + e +uy) + sy + .., (4 1a)

v =e"u_y + VL) + 7 %00 + €2 (vy + Vi) + 2200 + ., (4.1b)
w = po + e + € 2wo + €2 (pan? + wy) + g + ., (4 1c)
p=pa+epo+ e + ¥ pr + s+ .. (4 1d)
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After substituting (4 1) into the Naviei-Stokes equations and using the relations (2.6) we
obtain the following sequence of equations:

/\lv—l = —Dog¢, (4 23.)

0= Pons (4.2b)

ug¢ + von + woz = 0, (4.3a)
Kuo + vor1 = ~(p1¢ + poz), (4 3b)
’C‘wo + V= 0, (4.3C)

0= P1n, (4.3d)

where the operator K is defined by
0 0 3} 9?

K=—+M=— — - 4.4
oT + 1"65 + bogz on? (4.4)
The equations for the second and third order disturbance quantities are
Ure + v1n +wnz =0, (4.5a)
K;U]. + ‘UlAl -+ V_jUgy = —Pa- (45b)
Kw; + v_qwe, =0, (4.5¢)
and
Uge + Uox + Von + Waz — Yoswo, = 0, (4.6a)
Kuz + Mnuox + v2h1 + voruiy + anuoz
+ Viouon + Voi3han® = —(ps¢ + prx). (4.6b)
Kwy + Mnwox + v_1wi, + vop1 + 1Moz,
+ 01282 + ViDwo, — poYezwon = —poz, (4.6¢)
]\:U_l = —D3p- (4.6d)

The solutions to (4 2)-(4.6) together with matching with the outer flow determine the
jumps required for the amplitude equation. These equations are solved n sertatum using
the well established Fourier-Transform technique of Hickernell (1984) It is convenient to
introduce a change of variables with

" Z=u'Z , T=pT-2Z (47)

so that the operator K becomes

+ )\177& - 33 (48)



First from (4 2) we obtain
vy = —1A(X,T,2)eg +cc (4 9)
where we have defined
AX,T,Z) = AX 13T+ Z, m02) = AN, T. 2), (4 10)
and g; 1s a constant. Matching with the outer solution (3 3b), (3 6a) shows that

g1=Bt=5B" (4.11)

3 If we put Vo, = —zf{(X, T, Z)gl, wo = Woe +cc . up = Upe™ + c.C., vy =
Voe™ + c.c., then from (4 3) using (4 10), we find that

‘;Vo = dol/ Aoo Z(X, T, Z - S)e"”‘z—zusﬂdn’ (412)
where )
_ _? _ i
v=>XANy, o= 3 do " (4.13)
Also )
Uy = _EWOZ + Uoo(T, 2), (4.14a)
Vo = —1ynUo0 + Voo(T, Z), (4.14b)

where Ugo, Voo may be determined through matching In fact from (3.1), (3.3), (3.6),
(4.14b) we see that :
ACt = AC™ = yUx (4.15)

We next consider the solutions of the second order problem (4.5). The forcing terms
1n the equation for W) indicate a solution of the form

‘/Vl = "i’lo + ﬂ/‘me?i“lﬁ +cc
where Wyo, Wy, are independent of ¢. From (4 5¢) the equation for Wi 1s

. - () OWp
Vi = _V(C) viteo
‘EO‘ 10 -1 677 ]

where the operator £, 1s defined by

0 0?
=—+42 iy
b=z 121~ o

The equation for Wi may be solved to give

~/' — (c) 2 > oo_(c) ro 5 _ VA R e -(0) —uzr;sd
Wio = —g, 'dov ds A A X T,Z —)AX,T,Z — s —s1)shg '(s,s1|0)e s
0
(4.16)
where the notation A(°) denotes the complex conjugate of A and

K (51, 82]0) = e7oleit3sie2) (4.17)

11



The equation for 175 1s . .
L2117, = =V_; 1%,

This 1s solved to obtain

- (] o0 -— ~ —_ “ o~
Wi = d; / ds, / $1AX.T,Z — s1)A(X, T, Z — 51 — 53) K\ (51. 89)e72s1%22) g,
0 0
(4 18)
where
K{D(s1,89) = e~0(eit3s 2t 4455) (4.19)
and
dy =gl M7

Next 1f we differentiate (4.5b) with respect to 7 and use the continuity equation (4.5a)

this gives
KQl = /\1wlz - ‘0_190,7, (420)

and we have defined Q, = aaUn . The right hand side of (4.20) suggests that
Ql = QIO + (‘.')12621"'6 +c.c (4.21)

The mean flow component of ;, Q10 satisfies the equation

AN d

Lollyo = —VIOZ2 4 ),
0thio oy Th K 5z~ oF

9 )i

Using (4 14a). (4.18) 1t is found that 40 1s given by
. do 3 [ [® yHv s r
Qo = —g§°)7°u3/ dS/O X\ )(X. T,Z — s)K{0(s, 55) x
0

0
e~y —lﬁ_ ?—)_f)A(X T,Z —sq — s)ds,

—g1 Aldov/ ds/ ng/ st4 (8,81 + s2lo)e™™™ x

L,
8z of

The €2 component of §; satisfies the equation

w2~ DA T2 = 51— AKX, T. 2 — 53— 51— )] dsy (4 22)

Ly, = —V-lﬂon + M Whaz.
Thus using the solutions for Qo, /12, 1t 1s found that
% F s [T 2
Q2 = —2d2u4/ ds/ 2K (5.81)em(2nts)
0 0

AX,T,Z - sl)a%(Z(X, T,Z — sy —s))ds,

oo oo = 1)
+4d31/4/ ds/ d31/ 311\,‘2 (31,3 + Sz)e—mu(sx+2s+2sz) X
0 0 0

12
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%[X(‘Y.T Z —5— 32)2(};, T. Z — &g — &1 — s)] dsy, (4 23)

where the constants are defined by

g1do & = dogs
3 —
4uy

We turn our attention next to the third order problem defined by (4 6a-d) which deter-
mines the nonlinear jump. It 1s only necessary to calculate the et components of 17,
and U, Wa; and Uy respectively From (4.6c¢) is is seen that

£1 ﬁle = R] + Rz + R3, (4.24)
where ) i X )
Ry = —n[MWox + 2u2 Vo1 + i1 Wo. — 27141Us0), (4.25a)
Ry = —poz — t1Veo — V5 Way + poYe: Won, (4.25b)
and o L )
Ry = —[V_1Whay + Voq (Wio, + W) (4.25¢)
Writing

Wa = W) + W + W
with £, Wy, = R,, then it can be shown that

4 1 = 2 ~ #1 a -~ 2 ~
W = 1—7'[77‘/‘/077)\' = 5,5 Wornx] + 252 [1Won — 2 Wonn]
2#2 ~ 1 7 1
+ —[nWo — —Wopn] + ty11[nFo — — Fonn), (4.26)
751 w w
where o o .
Fo= / Uoo(X, T, Z — s)e=o**=wms ds.
0
Similarly the solution to £, W2 = R, is given by
W5 = — Woz - ELFy + —R(Vég) — oY ex) oy, (4.27)
Y Ho 2y

where

F = / ‘./OO(X, T,Z - s)e‘”s"””sds
0
Next, using (4 9), (4.16), (4 18), the solution to L, W) = Rs 1s found to be
57(3) 3 [® 0 X 2Ty B =)y A 5
W = —dw / d52/ d31/ SAX, T, Z — s+ 8) AV X.T.Z — s + 55— 51) %
[ [ s2
AX,T,Z-s- sl)e"””’Kiz)(s, §1. 82) ds
+d51/3/0 d52/0 ds, /_52 s%Z(X, T,Z — 5 — 89)X

A(X, T,Z2 —s— sy — sl)Z‘”(_\', T, 7 —s— 28, — sl)e"””’I\'§3)(s, $1,82)ds
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._.(76]/4 /x (182 /"\_ ds /52 stl_A—(C)(.\—. T Z -~ 4+ ﬂ-_;)X
0 §2 0

IV P A 1 VR G A 1 -(3
AX,T,Z - 5(2s —ss—s1))AXN.T, Z - 5(2s + &1 — )N (5.5, 80)e™ dsy, (4 28)
where
KP(s, 51, 89) = e0Bu153+5"), (4.29a)
K®)(s,51,5) = e~o253435a145%) (4.29b)

» e84
Ixi )(8,31,32) =e€ o(s+-5 ).

dy = |g1|%do, ds = g2dY), de=

(4.29c¢)
I |2d0_

2v

Finally, one other quantity which 1s required for the calculation of the jump 1s 21, the
e"’* component of {5 which satisfies

L1Q = Q1+ Q2+ Q3+ Qy,
with . . . .
Q1 = —1(MQox + 6A3V_1 + p1Qoz + ¥ M Vo1).
Q2 = —patioz + 2’7‘7 12 — VB!?))QOn + Al ﬁ'.Ovr
Qs = ~V_1(Son + 2Fn) — V9
Qs = M Waz.

If we write Qg = lel) + 9(2) + 9(3) + 9(4) with L',l.Qn = @,, then it is easy to show that

63 + 97X Wopn, 1 0 !
Qm_( 37 ‘)( Wo — —= )+ 57 1Wonn = 5—Wonnm)

P 24202
p 02 1 ..
+ 375 525 1Wom = 5= ommm). (4.30)

The solution to £1921 = @2 is using (4.3c), (4.12), (4.14). (4.26),

Y I OFy 1y W, x‘°’ MYe:
0 = D smWo) mmgg — 22+ 3 e By o = 5, Worn: (4:31)

Next flgi) satisfies
L0 = Q8 + Q5 + QF.

where
1 A 2 7 A 3 c
O = —Valon, QP =-7.08, 0P =-1190,,

The solution Q.E;’;) 1s decomposed 1nto

3
~(3 ~ (3,
05 = > ai”

1=1
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with £, Q(sj) Q(J) and each of the Q( 2 components aie sol ed for separately However

only the 921 ? term provides a non-zeio contuibution to the amplitude equation Using
(4.22), 1t 1s found that

Q'ﬁ'z) = —d6V4/0 dSa/o dsz/ SSAN.T,Z—s— $3) X
—s3

AXT,Z—sy—s— 33)Ix’£3)(s, So9,83)e” (\ T.Z —sp—s— 2s3)] ds

(A
a7
+d;3 /:o d33/0 dss /:o dsq /ou S§Z(X, T, Z—s5— 33)K§3)(s,sz + 51, 83) X

—s3

d — s YGCIR N,
o (AX T L = s 55— 53— s ANK T Z = s — sy — s = 2s3)]ds, (432)

where ©
2 4l
d6 — _9170 , d — gld(C)Al

Finally the equation for 4 1s

3
L0 = MWz = S0 W)

=1
Writing () = 33, 51?) where
L0857 = \ WY, (4.33)
from (4.26), (4.29a) we obtain
- 1 ? - 1 9?
Qg‘iyl) = +:)_2m[77u/0m7 2% ” Onnrm] W—GZ_OX-M/O"W"
m_ 0 1 w9
+ 972/\ 972 [771‘ Onn — 5;”’07777’777] - Gry? 52—2(” Ommr,)
— A v, — 2w,
M1 [ w aZ( Won = 3w‘ o) + 31207 orm)
0 2 1 0
- #1[%(77-%7; - 32—UF017177;] + aa—Z(FOnnn)], (4.34)
and
(4.2) _ _ 1 8 1 0 1 0
oy Y =W, ti 570 67V(VB0 polez) 5= (n o )- (4.35)

In (4.28) the solution for Wi (®) involves three triple integrals and only the second triple

integral generates a term in the solution for QS'” which contributes to the amplitude
equation The solution to (4 33) with just this term present 1s

oo oo oo
9(4 D= ’\1d5V3/0 dsz/O ds/ (s2+ s)s%lx’}z)(s.51.32)6‘“’”’x
—s2

0
0z

We turn our attention next to the calculation of jumps in (3.10)

[AX,T,Z — s — s2)A(X, T, 2 — s — 55 — 1) AN, T. Z — s — 25, — 5,)] ds. (4.36)
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5 Calculation of the jumps and the amplitude equa-
tion

From (3.1), (39), (4 1b), (4.11), (4.14), (4.16) it 1s clea:r that (‘."1)§:i' =0 In addition
these equations show that

=00

(Vi hsh = (g+ —9-) = —Z'r/ (Qa1)dn, (5.1)
n=—cc
where the notation [~ denotes the finite part of the integral The integral in (5.1) 1s now
evaluated using the solution for {2;; obtained in the previous section. First from (4.30)
we find that

> amg, - o 2 Vo m L A(X T 2 59
/_ _ Odn = (63 + 4" )sam AT, 2), (5.22)

where s, = sgn(A), and only the first term in (4.30) gives a nonzero contribution.
Next using (4 31) we have

/ = a@ gy = “11/” 8U°°(X T, 7) — s, 2077 00 AX,T,2). (5.2b)

1

Whereas (5.2a,b) are linear contributions, the Q( ?) terms gives a nonlinear jump From

(4.32) we find that
/ 8Py = —s,dev ’)7r/ d33/ AX,T,Z — s3)x
X(X, T, Z — S — 83)1\’£3)(0, 32,33)6—6Z'[X(C)(};, T. Z — 8§ — 233)] d82

+2s, wd7v? /oo ds3 /oo ds, /Oo sgz_{(X, 7,7 — 53).1\'§3)(0, S2 + 81, 53)
0 0 0

%[Z(X, T,Z —s3—58;— sl)z(c)(X, T,Z — sy — 51 — 2s3)] dsy. (5.2¢)
Next the contribution from the Qg'l) term is
O x(41) 5 ~#2d07f 0 - pw 9 RN 5
/_w iy = o0 2 ALK, T,2) + &S5 U, T, 2). (5.2d)

The 9(4 2) term gives zero contribution. The Q§‘§'3’ term gives a nonlinear jump term

/ Q(4 3)dn = s\ dsv?2% /oo dss /oo ds; s§I{§3’(o, 81, 82) X
0 0
%[X(X, T.Z — $)AX, T, 2 — 53 — 1) AKX, T. 2 — 255 — 5,)] (5.2¢)

Hence finally collecting all the terms (5 2a-e), restoring the variables X, Z,T, and sub-
stituting mnto the (3.10) gives the resulting amplitude equation as
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I, 0A 1204 0A

~art ez +1los = [Vos Vily=o

T 6 JA 76Az dA
182701 { )?172 (2 3H0 ) 3 }
1

o0 oo
+25, 772939121 A2 [-}-‘/; ds;;/(; dsy SSA(X,T — 83, Z — ;1033)I{§3)(0, S2,83) %X
a
A(X,T — 53 — 83,2 — po(s2 + $3)) 55

5z
+ /o dss /0 ds, /0 dsy 2A(X, T — 53, Z — pos3) K2(0, 50 + 51, 83)

A(C)(X, T - S — ...53, Z - [.Lo(Sg + 233))

9 tary
—Z[A(A,T'—S;g—Sz—SI, Z—/Lo(53+32 +51)A(C)(X,T—Sz—-$1 —233, Z—ﬂo(32+81 +2S3)]

oo oo . d .
+/0 dsz/o dsy 531&53)(0, 31,32)52[A(.X, T — 59.Z — pos2) X
AX,T — 53 — 51, Z — po(s2 + 1)) A X, T — 283 — 81, Z — po(252 + 51)) ] (5 3)

This can be written 1n a more compact form as

>l [Voy Valy=o + M(Jy + Jz + J5) (5.4)

where

T I‘ Vavd ~
M = 25,77’ g}|g2|u Al 11=/CU5’YV2dY I = —/( BYY WBUB”)

7 V24dY,

Jy = /0 * dss /0 " dsy SAX, T — 53, Z — posa) K (s3, salor) x
A(X,T — sy — 53,2 — po(sz + 53))3%A(°>(X, T — s2 — 283. Z — po(s2 + 2s3)),
I = /0 * dss /0 " ds2 8253 A(X, T — 83, Z — posa) K\ (s, s]or) x
%[A(X’ T — 53— 89,2 — po(s3 + s;))A(C)(X, T — s2 — 283.Z — po(s2 + 2s3)],

Jz = / dsz/ dsy s I&4 sl,Sgld)aZ[A(_\ T — $2.Z — posz) X

A(X,T — 89 — 87, Z -—_ /.10(52 -+ 81))A(C)(X, - 232 — 81, Z — ,U0(232 + 31)) ] ) (55)

and the path of integration C for I, I; is along the positive real axis with an indentation
below/above the point ¥ = Y, depending on whether A; is positive/negative.

Equation (5 4) is the main result of this paper. A generalisation of this equation for
the flow over a rotating disk 1s given in Appendix A. In the next section we consider a
few of the properties of this equation and the numerical solution of a special case.
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6 Special cases and results

The solution of the full equation (5.4) 1s 1n general quite difficult because of the cou-
pling with the wall layer and secondly because of the form of the nonlinearity. There
are however some special cases which can be considered further Below we have used the
normalisation Vpy(0) = 1 for the solution of the leading order eigenvalue problem (3 4).

(a) If we consider the plane wave A = Ae!(*1X+A2)=wnT oith o, B, w; all real, then the
contribution from the nonlinear terms J; + J2 + J3 1s 1dentically zero and (5.4) leads to
the linear dispersion relation for neutral waves as

2w, 1By 1e'E5n
- + +1yhay = ——G(&), 6.1
R s D
where A7(60) -
' (&o el s, wy
G =bo+ =77 Co=———7F—7—
(bo) = &o T Ai(t) di o I

The right hand side of (6.1) is obtained from the solution of the wall layer problem (3.13).
The real and imaginary parts of (6.1) gives two equations which can be solved to obtain
correction terms to the wavenumber and wave-angle for a given frequency w;. With w; set
to zero in (6.1) we obtain the linear neutral results of Hall (1985) for stationary cross-flow
vortices. The case w; # 0 case therefore is a generalisation of the Hall (1985) results to
‘almost’ stationary vortices. The function G(&) in (6.1) was calculated numerically and
1s shown in Figure 1. For large |w;| 1t is easy to show that

Gt i)}

G(&) ~ » I% as  Spw] — 00
1
518n§o("1’|/_\1|)%6“"§
G(o) - =L as  Spwy — —00

This implies that the influence of the wall layer on the cioss-flow vortex diminishes as
the scaled frequency increases.

(b) If we consider a disturbance of the form A = A(T)eeaX+812=wnT) with B, w, real
and «; complex, substitution into (6 1) shows that

wl Bl e%s"G(fo) 1
- = |—1— —|— 6 2
ror = [ ’ Y ’ (1 IM)E ]713 62)

Since I, I, are complex 1t can be seen that disturbances of this type are unstable with
the growth rate increasing indefinitely for-large |51 o1 ||

(c) Consider a disturbance of the form A = A(Z)e'X=1T) where a;,w; are real. This
form of disturbance could, for instance, represent a combination of waves of the type
considered 1n section (a) above. In addition this 1s a special case relevant to rotating disk
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flow, (for example if we take B = B(R)e®®=17T) \ith 4. 1eal. m (A6) of Appendix
A) The equation (6 1) then 1educes to

J (6 3)

dA©)
dZ

oo o0 R 5
J= Uo dss/o dsysSKO (5, 53|6)A(Z — 33)A(Z — 53 — $3) 5 (Z = 52 — 253)

o o0 3 .- d . - ’ -
+_/; ds;:,/o ds, sgsﬂxio)(sz,ss[a)A(Z - 53)E[A(Z — 83 — 83) AN Z — 55 — 253))

0 oo ; . d - . =
+ /0 dss /0 dsZSng?)(sZ,sa]a)ﬁ[A(z-ss)A(Z-s;,—sg,)A( (Z — s — 2s3)], (6 4)

and we have set

¥ szl e’gs”G(ﬁo) ¢ Tgl;lols - 2
k== |— —woyyh—1———2|, T =-"—"— 5= 65
L [ v TETTGRE Dk M |uof® (©9)

As 1n Goldstein & Leib (1989) it 1s found that the numerical solution of (6.3) points to
a singularity as Z — Z, A local asymptotic description of the singularity can be found

by writing
a

(2, -2y
with a,7 complex constants When (6 6) is substituted 1nto (6.3) 1t is seen that for a

balance of the dominant terms on the left and right hand sides of the equation we require
T = -g- + 279, where 79 1s real. This leads to

A= (6.6)

alaf?

j~ (Zs—-Z)?ﬁD(TO) (6.7)

where the function D(7) 1s given in Appendix B and D(7) satisfies the equation

Diro) ___¢

r —|a|2f;

(6.8)

In Figures 2,3 we show 79 and |a] as computed using (6 8) and (B1) as a function of
—arg(i:i) = a,rg(Qi:—")-) In Figures 2,3 we have taken |¢| = || = 1 since as in Goldstein
& Leib (1989) equation (6 3) 1s completely characterised by the arguments of ¢ and &

6.1 Numerical Solution of equation (6.3)

The equation (6 3) was solved with the imtial condition

A ~Z

A—e as Z — —oo.

Here we have assumed that pg 1s positive The form of the arguments in the kernal
function would suggest an apparent difficulty when g 1s negative It 1s seen that when
Lo 1s negative the nonlinear terms 1n equation (6 3), (6 4) imply that the amplitude at
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the current Z location 1s calculated from a knowledge of A at positions ahead of Z, 1n
contrast to the case when o 1s position when the calculation of A(Z) involves history
dependent effects This apparent difficulty can however be 1esolved by redefining 8 used
n (2 2), (by for example adding a multiple of £7 as this does not affect the subsequent
criteria used to fix §) Similar comments apply also to the 1otating disk flow and the
appropriate choice for yo there, see (AG), (A7), 1s to take o to be negative.

Equation (6.3) was solved numerically using a 5th o1der Adams Bashforth predictor-
corrector scheme. The integrals were truncated to those over a finite domain and eval-
uated using a trapezoidal rule One novel feature of the present implementation of the
method worth mentioning 1s that the computations were performed on a massively par-
allel computer, the Maspar MP-1104 which has 4096 processois arranged 1n a (64x64)
square matrx. The bulk of the computational time 1n solving (6.3) numerically arises
from the evaluation of the integrals especially when the nonlinear terms become signif-
icant. Integrals of the type occurring 1n (6.3) can be evaluated extremely efficiently in
parallel. Further details of the algorithm used may be obtained from the author.

Some solutions of (6.3) obtained numerically are shown 1n Figures 4-6. In Figure
4(a-c) results are presented for the case with arg(x) = 0 and arg(¢) = —=/2 for values
of 3 =0, 0.5, and 5 In these figures the dashed line i1s obtained from the asymptotic
solution (6.6). The computations show that the location of the singularity is delayed
with increasing &. As the singular point is approached there is a sharp reduction in
the wavenumber, Figure 4(b), accompanied by a very laige increase in the growth rate,
Figure 4(c). The main solution characteristics for this set of parameters 1s broadly in
line with those found by other investigators in their studies of related integro-differential
equations.

The solutions presented 1n Figures 5(a-f) , with arg(x) = 0,arg(¢) = —7/4 and & =
0, 0.5 and 5, however, show a number of new and interesting piroperties, some of which
have not been found before. The results for & = 0 and 0.5 are similar to those in Figure
4{a-c) and show again that the singularity 1s delayed with increasing 6. For & = 5 on the
other hand, our results, up to the largest Z value that we have been able to compute,
indicate that the singularity has been eliminated in favour of a large amplitude nonhinear
oscillation. Figure 5d shows that the wavenumber fluctuates and contains a large high
frequency component causing the wavenumber to peak at specific locations. The growth
rate is seen in Figures 5(a), 5(e), to oscillate about zero, with again very large peaks
near specific locations. In Figure 5(f) we show |A| against Z and this shows clearly the
development of the nonlinear oscillations after an initially exponentially growing linear
phase. This type of solution has not been found in studies of other related integro-
differential equations.

In Figure 6(a-c) we present results for the case arg(x) = 0, and arg(¢) = 7 /4 for & =
1 and 5. The solution properties are broadly similar to those for the case with ¢ = —= /4,
except that the wavenumber has large negative peaks at certain locations. The real part
of the growth rate for & = 5 is exactly the same as that in Figure 5(e).

The comparisons between the asymptotic and the numerical results in Figures 4-6 are
quite good and this indicates that the correct singulanty structure has been captured.
In plotting the asymptotic predictions, for a given value of aig(D(7o)/7) the value of 7o
and a were obtained fiom (6 3), with the value of Z; extrapolated from the numerical

results
The numerical solutions take an extiemely long time to compute. expecially when the
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nonhnear terms become significant Fuither more extensite calculations are currently 1in
progress to exploie a wider range of parameter values. and to see whether the nonlinear
waveform form found for some parameter values, persists o1 1s damped out for large Z

7 Further discussion and conclusions

In this paper we have obtained a novel integro-differential equation which describes the
nonhinear evolution of stationary cross-flow vortices in thiee-dimensional incompressible
boundary layer flows. It has been shown that the evolution of the vortex depends crucially
on the dynamics of the unsteady critical layer as well as the dynamics of an unsteady
wall layer. In companion papers the work presented here 1s extended to non-stationary
cross-flow vortices, Gajjar & Areb1 (1985), and to compiessible flows Gajjar & Sibanda
(1985). In Gajjar & Arebi (1985) it 1s found that the amplitude of the non-stationary
vortex satisfies a similar equation but without the wall coupling present. In addition this
equation has an additional Hickernell (1984) type term whose coefficient depends on the
curvature of the effective velocity profile at the critical layer. The influence of the wall
layer in the current problem diminishes as the the magnitude of the scaled frequency
increases as was shown in the previous section.

The amplitude equation has a number of interesting properties some of which have
been discussed already. The full problem (5.4) is of considerable interest and merits
further study both analytically and numerically. As in many related problems it has been
shown that solutions to the amplitude equation can develop finite-distance singularities.
A preliminary analysis of (5.4) suggests that focussing type singularities of the form

_ F(X) . (X -X)
A X, Z,T ~ € lwlT——————s s = ——,
( ) (Z,— Z2)i*+m (Z: - 2)

may also exist. The function F(X) satisfies a nonlinear first order integro-differential
equation which can be written down, see also Wu(1994)

The coupling with the wall layer found here is impoitant in another context, namely
the study of the receptivity of stationary cross-flow vortices to suiface mounted obstacles.
Experimentally it has been observed that even minute roughness elements can act as a
trigger for stationary vortices, see Wilkinson et al (1983), Reed & Saric (1989). It 1s
suggested that the close coupling with the wall layer and the manner 1n which this affects
the evolution of a cross-flow vortex, may in fact provide a simple explanation for this
phenomenon. The scales and structure presented here may be used to study this aspect
1n more detail.

Solutions of the amplitude equation 1n which the finite-distance, or focussing type,
singularities form, although mathematically interesting do not however tie 1n with the
observations 1n some experiments and numerical simulations of a nonlinear saturation
of stationary and non-stationary cross-flow vortices In this repect some of the other
solutions shown 1n the previous section, 1n which a nonlinear wave develops, may have
more relevance. Other possible equilibrium solutions of the equation are currently being
investigated. With other scalings, see Gajjar (1994), 1t has been shown that the evolution
of long wavelength cross-flow vortices 1s governed by the full unsteady nonhnear critical
layers equations In many related problems where similar equations arse. 1t is typically
found that the growth rate of the disturbances 1s driven to zero Thus this type of
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critical layer nonlinearity may also piovide an explanation for the nonlinear saturation
of the vortices

Stuart 1n GSW (1955) found that the number of voitices predicted by the linear
mviscid theory was much greater than that observed in then experiments. Although a
number of suggestions have been made to account for this disciepancy, our computations
show that nonlinearity provides a wavelength increasing/decieasing mechanism. On the
other hand the flow 1n the neighbourhood of the singulanty, where the wavenumber
is changed by an O(1) amount, 1s no longer governed by linear dynamics, but rather
the full Euler equations. A detailled comparison with experimental and other data 1s
clearly desirable but requires substantial further work A simple evaluation of some
of the constants arising from the linear inviscid eigenvalue problem (3.4) is clearly not
sufficient.
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Appendix A
In this appendix we consider the flow over a 10tating disk and derve the corresponding
amplitude equation for a stationary cross-flow vortex
Consider a disk which rotates about the = axis with angulai veloaity Q. Relative
to cylindrical polar corrdinates (r,0. =) which rotate with the disk, the continuity and
Navier-Stokes equations, suitably non-dimensionalised. aie

Vu=0, (Ala)

Ou
¥ +(uVju+2kxu)—rt=-Vp+ = 7

where u = (u,w,v) are the velocity components, p 1s the pressure, ¥ and k are unit

vectors in the r— and z— coordinate directions, and R 1s the Reynolds number. The
1

Reynolds number 1s taken to be large. With ¢ = R™¢ and = = €Y. the basic flow

is given by Von-Karman’s exact solution of the Navier-Stokes equation, (u,w,v) =
(@(Y),ro(Y),es(Y)),p = p(Y) where @,w, v, p satisfy

\_zu, (Alb)

-1

- (1+w)l+ado=a", 2u(1+®)+¢
?4+22=0, P+ -0"=0 (A2)
The boundary conditions for (@, w, ) are

=w=09=0 on Y =0,

]

4=0, w—=--1 as Y —

Next consider a stationary cross-flow vortex at a location (rp,6) and introduce a
multiple-scaling as 1n section 2 such that

2._,6-3 a_él_‘_e__a_ +_0_
0 oR| " ar’

or o€
9 _ s 4 9 9 _ 20
36 °a¢ g ‘90|’ &t T

Here ag = cos by, Bo/ro = sin 8o, and 8, 1s chosen such that (agii + (Bo/r0)w) has a zero
at a point of inflexion This also fixes the location of the cuitical level ¥ =Y, The
expansions for the flow quantities are similar to (3.1) with

a+6(Uo+euy +. ),

0 + &(Wo + ewy + . ),

€0 4+ 8(Vo + €01 + . ), (A3)
p = p+é(po+ep+ )

After substituting (A3) into (Al) we obtain

e B g
il

Qotiog + 5217)05 + oy =0, (Ada)
0
= = ﬂO = 1 = =
QoUyg + Uor + o + —~Woe +oy =0 (A4b)
0 0
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3

(C\o‘l-l + 'T—olf‘)flof -+ ‘f’o’l-l) = —(10[__706. (A4C)
0
3 - - Jo-
(Oo‘l_l. -+ 7_—°zZ*)zT~05 + ‘l_)o’tf)y = _7_01305' (A4d)
0 0
—_ 130 - =
(ol + r—w)vof = —Doy s (Ade)
()
= - /30 —\= - w: = _ = =
UoT + (aou + r—w)ulg + UUOR + r—Uo@ + tuy = —00[)15 — Pors (A4f)
0 ()
W - Bo - 1.
@or + (c0ott + ﬂ—w)wlg + @or + —Woo + vy = —/—oplg —DPoe> (Adg)
To To To
Sor + (a0 + 220)5uq + Gon + oot = —piv (Adh)
0 ()
Next if we define
X = O.’QR -+ ,80@, Z = ﬂoR + 0107‘0@ (A5)
Up = aoti + @w, Wa = — 4 4 agw.
To To
- = 0 = - 1[30 = =3
U = Qo + —Wg, Wi = ——1UL + QoW},
To To

then using (A4), (A5) 1t 1s found that the equations for (%o. o. wo), (@1, D1, Ww,) are 1den-
tical to (3.2) and (3.7). We can thus introduce a similar normal mode decomposition so

that for example, 3
Ug = A(.Y, T, Z)UQ(Y)CﬁE +cc

The expansions for the wall layer and critical layer follow analogously. Thus 1n the critical
layer where z = €Y, + €% we have
u = u+e?uo+e u1+62uz+e u3+e2u4+
rw+ezwo+e wl +e2w2+e w3+e2u4 + .y
€ v+62v_1 + +52v0+e 0 + 677.72 + ...
p = PrepotEht+eipt+eprteipi+.. .

w

v

If we define
Bo d 3o dF d* _
A = - N = |=2=2___ el
k= %0y k(u) To drs " Yoy Kk 10 drt +a0drku yey. ’
and
r- ~ ﬂo -~ _/ —- ,80 ~ -~ 7 -~ 2 N
k= Qolk + i, Wi = — +oxown. Vi=tk. Pr=p:
) )

then to the required order (Uy, Vi, Wi, P;) satisfy the same equations as the corresponding
variables in section 4 The amplitude equation, in terms of A. 1s therefore 1dentical to
(5.4). In terms of R, © variables however, if we define the scaled amplitude of the cross-
flow vortex as B(R,T,©) where

B(R,T,0) = A(X,T.Z)
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and use the defimitions of X' Z fiom (A3), then the amplitude equation 1s given by

]1 0B 12 ﬂo JB Qo JdB aB /30 OB .
To = 0+ + .
7 oT ( To dR + To 0@) ( 2 d@) Vo Vily =0+ M (J1 + T2+ J3)

(A6)

where

J1= /:o ds3 /oo ds; s3B(R + /3ou053,T — 53,0 — QOTM:E)I\"EO)(S%S:JU)X
0 0

7o

B(R+ ﬂoﬂo(82 +83), T — 82 ~ 83,0 — o
To To

ao(s2 + 53)) Bo O 93__3_ <
To ()R To a@

[B(c)(R + ll;)‘ﬂo (s2 +283). T — 59— 253,0 — #:OO(S2 + 233))] )
o )

Qollo

Jo = /°° dss /°° dss Sgsz B(R+ ﬁo#o 53, T — 53,0 — 33)1\’«50)(32’ s3lo)x

( fz 3R T 8%) [B(R+ Bot 0(52 +53), T — 53~ $2,0 — ao#o(s3 + 52))

B(R+ #Oﬁo( +283), T — 52 — 253,0 — 0ao(*z + ')33))]
To

o0 o 0o 0

To BR To 3@ To
B(R+ (s, 450),T — 63— 50,0 = 222, 4 1))
E%R+W%Ow+a)T %rwhe—?wuq+ﬁ»] (AT)
0



Appendix B
The function D(7p) 1s defined as follows with 7 = 5 + i1

D(r) = 27O 4+ 7(Kay + Kap) — 7N Rz + Noy) — (N3 + L32), (B1)

K= _/0°° dp/p” dqp"q’(p(i;i)gl)"”“’
K= [ [ do ] +—q1)21)f“”
-
Kz _/ dp/ 7 (p +_c111 1)+
o= _/ o / g (p +—q1) 1)’
K3 = / dp/ pers ,(p+2)_1),(c),

>~} oo — 1
K =/ d / d (p _
32 o p o qP.,.q.’.+1(p+ q _ 1)1-( )

These integrals can be evaluated as in Goldstein & Leib(1989) to give

where

I\’l—_—'z

© (—1)(nt1) 1 1 1 3
( ) [( — ?To)n — 4(— — 7T0)n+ 6(3 - Z'To)n

Zinn+1) (2+170) 2
7
—4(— - 110) + (',; —_ ZTo)n] N
1{21 = A%z)(To) - 3A(%2)(T0),
Ky = 3o —CD ol S o) — A(— % — o)t 6(5 — +70)
122 = 5 -5 " -5 n 5 n
2= L TN D B F e 2 ° °

3 5
—4(3 —170)n + (—)— - z*ro)n] ,

Kp=)

n=1 (n + 1) (2 + ZTO)'n,

1 3 5 7
[ = 70)a = 35 = 170)a +3(3 — 17)n = (5~ #70)u]

oo (_1)(n+1) - 1 1 3
“ ;n(n—l)(n+1)(%+zro)n 5~ 1T0)n = 4(5 — tTo)n+ 6(5 — 270)
3 T
~4(5 ~ 170)a + (5~ 170)a)

I\’31 ;2)( ) A(z (To
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_ (=7 1 3 L
A32-nz=;n(n+1)(’;‘+zm)n (=3 = 170)a = (=5 —170)at 6(5 — 270

where (1) 1
Al - — -
(o) ; n{n+1) (5 +70)n

= (-1 1

A® (1) = n(n +1) (£ +170) (2 + t70)n

n=1

and (a), denotes the function I'(a + n)/I'(a).

[(1—r—12m0)n — (1 4+ 7 —1270)s),

[(1 —_T — 270),, —_ (1 +r— z”-O)n] ’
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Figure 1.—{a) Real (soild line) and imaginary (dashed line)
parts of G(e™ 7” 69) against p. (b) Real (solid line) and
imaginary (dashed line) parts of Gie™ @6P) against p.
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Figure 4.—(a) A plot of log |ii| against Z as calulated numencally (solid line)
from the solution of (6.3) and from the asymptotic solution (dashed line) with
arg(i) = 0, arg($) = —n/2 The labels (i) and (i) on the graphs are for ¢ = 0, and
5 respectively. (b) Imagunary part of A/A agamnst Z, other parameters are as in
Figure 4(a). (c) Real part of A'/A against Z, other parameters are as in Figure 4(a).
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Figure 5.—(a) A plot of log |5.| against Z as calculated numencally (solid hine) from the solution of (6.3) and
from the asymptotic solution (dashed line) with arg(k) = 0 arg(¢) = -n/4. The labels (i), (i) and (jij) on the
graphs are for & = 0, 0.5 and 5 respectively. (b) Imaginary part of AYA aganist Z, other parameters are as _
in Figures 5(a). (c) Real part of AYA against Z, other parameters are in Figure 5(a). (d) Imaginary part of AVA
calculated numerically with & = 5, other parameters are as in Figure 5(a). () Real part of A'/A calculated
numencally with & = 5, other parameters are as in Figure 5(a). (f) A plot of |A| as calculated numencally
with & = 5, other parameters are as in Figure 5(a).
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Figure 5.—Concluded. (e) Real part of A'/A calculated
numencally with & = 5, other parameters are as in
Figure 5(a). (f) A plot of |A| as calculated numencally
with & = 5, other parameters are as in Figure 5(a)
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Figure 6.—(2) A plot of log W against Z as calculated
numencally (solid hine) from the solution of (6.3)
and from the asymptotic solution (dashed line) with
arg(x) = 0, arg($) = —n/4. The labels (i) and (i) on the
graphs are for o = 1 and 5 respectively. (b) Imaginary
part of A'/A against Z, other parameters are as n
Figures 6(a). (c) Real part of A'/A against Z, other
parameters are as in Figure 6(a).
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