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ABSTRACT

EQUALIZATION AND DETECTION FOR DIGITAL

COMMUNICATION OVER NONLINEAR BANDLIMITED

SATELLITE COMMUNICATION CHANNELS

BY

ALBERTO GUTIERREZ, JR.

Doctor of Philosophy, Engineering

Specialization in Electrical Engineering

New Mexico State University

Las Cruces, New Mexico, 1995

Dr. William E. Ryan, Chair

This dissertation evaluates receiver-based methods for mitigating the effects

due to nonlinear bandlimited signal distortion present in high data rate satellite

channels. The effects of the nonlinear ha.nH1imit.pH distortion is illustrated for

digitally modulated signals. A lucid development of the low-pass Volterra discrete-

time model for a nonlinear communication channel is presented. In addition,

finite-state machine models are explicitly developed for a nonlinear bandlimited
j

satellite channel.

A nonlinear fixed equalizer based on Volterra series has previously been stud-

ied for compensation of noiseless signal distortion due to a nonlinear satellite chan-

vi



nel. This dissertation studies adaptive Volterra equalizers on a downlink-limited

nonlinear bandlimited satellite channel. We employ as figure of merits perfor-

mance in the mean-square error and probability of error senses. In addition, a

receiver consisting of a fractionally-spaced equalizer (FSE) followed by a Volterra

equalizer (FSE-Volterra) is found to give improvement beyond that gained by the

Volterra equalizer. Significant probability of error performance improvement is

found for multilevel modulation schemes. Also, it is found that probability of er-

ror improvement is more significant for modulation schemes, constant amplitude

and multilevel, which require higher signal to noise ratios (i.e., higher modulation

orders) for reliable operation.

The maximum likelihood sequence detection (MLSD) receiver for a nonlinear

satellite channel, a bank of matched filters followed by a Viterbi detector, serves

as a probability of error lower bound for the Volterra and FSE-Volterra equalizers.

However, this receiver has not been evaluated for a specific satellite channel. In

this work, an MLSD receiver is evaluated for a specific downlink-limited satellite

channel. Because of the bank of matched filters, the MLSD receiver may be high in

complexity. Consequently, the probability of error performance of a more practical

suboptimal MLSD receiver, requiring only a single receive filter, is evaluated.
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Chapter 1

INTRODUCTION

As the 20th century comes to a close, the field of telecommunications is

coming of age with voice, video, and data communication systems operating over

copper, cable, fiber, and wireless media. Today it is common for a person to turn

on a television, tune to a cable channel, and get a weather report at any time

of the day based on video obtained from weather satellites. University students,

industry personnel, and computer enthusiasts needing information on practically

any subject matter can connect to the Internet and download images, programs,

and data for their research or enjoyment. The medical community commonly

monitors patients and receives vital information remotely via medical telemetry.

Law enforcement officers often have CB radios, pagers, computers connected to

a central data base, and cellular telephones operating simultaneously from their

mobile squad cars. Because of this recent "information explosion," communication

systems are being pushed to their capacity. In order to meet these demands, it

is essential to design communication systems which make the most efficient use

of the precious bandwidth resource. Meeting these demands coupled with the

mature theory of modern communication systems makes it an exciting time to be

working on almost any aspect of communication systems.
!

In particular, satellites provide unique capabilities not available from other

forms of communication systems. First, is the capability of global coverage for

commercial communications use such as in the INTELSAT satellites [1], remote



sensing as in EOS (earth observing system) satellites [2], and surveillance as in

IDCSP (Initial Defense Satellite Communication Program) satellites [1]. Second,

satellites are capable of providing bandwidth second only to fiber. Currently,

satellite systems are being designed to support data rates in the tens of gigabits

per second. In order to provide sufficient link margin, satellite channels employ a

high power amplifier (HPA) often in the form of a traveling wave tube (TWT).1

However, the increasing demand for bandwidth and the desire to minimize satellite

power consumption often means the TWT is driven at or near saturation. The

end result is the introduction of nonlinear bandlimited signal distortion yielding

nonlinear ISI (intersymbol interference).

This dissertation evaluates receiver-based methods for mitigating the effects

due to nonlinear bandlimited signal distortion. Specifically, Volterra equalizers,

FSE-Volterra equalizers, maximum likelihood sequence detection (MLSD), and

suboptimal MLSD receivers are evaluated. The results of this dissertation will

serve as a baseline for the evaluation of more complex structures based on these.

In addition, these results will help gauge the performance of hardware implemen-

tations of these structures.

The following section presents a simplified communication subsystem for a

typical communications satellite. The communication subsystem is then reduced

1 Recently solid state amplifiers have become available which will likely replace the TWT as the

HPA in new satellites. Since many existing satellites use TWT amplifiers, in this work TWT amplifiers

will be considered. However, the equalization and detection methods discussed will be equally valid for

solid state amplifiers.



to a model suitable for evaluating the performance of a satellite communication

channel. Next, the effects of the nonlinearity and satellite bandlimiting filters on

digitally modulated signals is illustrated. A literature review of existing compen-

sation techniques for mitigating the effects of nonlinear bandlimited signal dis-

tortion in various types of communication systems is then presented. The last

section gives an overview of the chapters in this dissertation.

1.1 Satellite Communication Background

The idea of satellite communication systems was introduced by Arthur C.

Clarke in his famous paper, published in 1945, entitled "Extra Terrestrial Relays"

[3]. Although this paper was generally regarded as science fiction [4], within 25

years Clarke's ideas materialized into a mature technology. Satellites were first

placed in orbit in the late 1950's a few hundred kilometers above the earth. These

satellites were known as LEO (low earth orbit) satellites and have continued to

be used for remote sensing applications. However, GEO (geostationary equato-

rial orbit) satellites have been preferred for commercial communications. Placing

a GEO satellite in orbit (approximately 22,000 miles above the earth) has been

preferred to the expensive tracking and control systems required for LEO satel-

lites. However, by the 1990's, the availability of powerful computing and signal
f

processing devices has made LEO satellites attractive for providing communica-

tion services [4]. In this work we will not consider the special issues of tracking



and synchronization presented by LEO satellites, however the methods developed

herein may very well be useful for the LEO scenario.

1.1.1 A Satellite's Communication Subsystem

A simplified block diagram of a communication and antenna subsystem for

a typical "bent pipe" (transparent repeater) FDMA (frequency division multiple

access) satellite is depicted in Fig. 1.1, [4, 5]. Each antenna may operate in both

a transmit and receive mode. A diplexer separates the received antenna energy

from the transmit energy. The received energy is routed to the satellite input filter

which limits the uplink noise into the satellite. The output of the input filter then

enters the receiver which consists of an LNA (low noise amplifier), a downconverter

(e.g., converts from 6 to 4 gigahertz), and a receiver output filter which removes

unwanted frequency components due to the downconversion operation. The signal

then enters input multiplexer filters each-of which selects the frequencies entering

a particular channel. The signal is then amplified by a TWT amplifier.

After amplification, a transmit beam switch then selects the channels which

will form the transmit beam of a particular antenna. The output multiplexer

filters restrict the TWT output for each channel to the pre-assigned frequencies.

The resulting signal is then sent to the output filter, diplexer, and antenna. The
»

output filter assures that the aggregate signal (including all the satellite channels

for a particular antenna) lies within the preassigned satellite bandwidth.
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Figure 1.1. Simplified communication subsystem for typical communications
satellite.

The bandwidth is typically divided into channels of 36 to 40 MHz, where each

channel is handled by a different transponder. A transponder consists of the subset

of the communications subsystem responsible for receiving and transmitting a

single satellite channel for a bent pipe satellite. For example, a typical 6/4 satellite

transponder is depicted hi Fig. 1.2. The transponder receives the signal centered

at 6 GHz from the receive antenna and subsequently downconverts it to 3.775

GHz (approximately 4 GHz). The RF bandpass filters preceding and following

the TWT amplifier represent the input and output multiplexer filters, respectively.

1.1.2 A Satellite Communication System Model

In order to determine the effectiveness of the various equalization and detec-

tion methods, it is necessary to reduce the transponder model of Fig. 1.2 to one

suitable for evaluation and analysis. In this work the focus is on the communi-

cation system performance for an individual user so an individual transponder is
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Figure 1.2. Simplified 6/4 transponder.

considered rather than the entire communication subsystem. Only the non-ideal

effects due to the nonlinear bandlimiting are considered. Other affects such as ICI

(inter-channel interference) are not considered.

Fig. 1.3 represents a low-pass equivalent block diagram of a single-hop

transponder communications link which accounts for the dominant performance-

limiting components. A single-hop satellite link consists of an uplink from a

transmitting earth station to the satellite and a downlink from the satellite to

a receiving earth station. The figure contains transmitter, satellite channel, and

receiver. Since the modulators, downconverters, diplexers, and demodulators nor-

mally present at the transmitter, satellite, and receiver are assumed ideal, it is

not necessary to account for them in the model.

The data-bearing waveform 5Dn dn&(t — nT)', where T is the symbol interval,

8(t) is the Dirac delta function [6], and dn is complex data, is filtered by the

transmit filter hr(t}. The satellite model consists of a pre-filter, hpre(t), a TWT
i

high powered amplifier, and post-filter, hp3t(t). As mentioned, the pre- and post-

filters represent the input multiplexing and output multiplexing filters. Although

in general the signal entering the satellite is subject to thermal noise, only the
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Figure 1.3. Low-pass equivalent communication system model,

noise at the receiver is assumed to be significant. Because the noise at the receiver

is dominant, the system is referred to as a downhnk-Umited satellite system. The

output of the receive filter is then sampled, equalized, and detected. Finally, the

detector outputs estimates dn of the transmitted symbols dn.

1.2 Nonlinear Distortion in Satellite Channels

Before discussing the effects of the nonlinear bandlimited satellite channel on

digitally modulated signals, a brief discussion of digital modulation formats for

satellite communication systems is presented. The combined effect of the TWT

nonlinearity and filtering is then illustrated for 8-PSK and 16-QAM systems.

Next, a literature review of existing nonlinear distortion compensation methods is

presented. The literature review distinguishes between ISI compensation methods

based at the transmitter and receiver.



1.2.1 Digital Modulation Formats

A typical modulation format for satellite communications is M-PSK. Because

of power limitations and the nonlinear TWT amplifier, bandwidth efficient modu-

lation formats, such as M-QAM, are not commonly employed for satellites. How-

ever, 16-QAM has recently been considered for satellite communication [7]. Also,

variations to the rectangular 16-QAM signal constellation have recently been con-

sidered for satellite communication . In particular (4,12) with an inner circle of 4

signal points and an outer circle of 12 signal points has been considered. In con-

trast to 16-QAM the (4,12) signal points lie on concentric circles rather than on

a square grid [8]. Other more sophisticated modulation methods, such as contin-

uous phase frequency shift keying (CPFSK), will not be considered in this work.

However, the equalization and detection techniques studied in this dissertation

may also be useful for these modulation methods.

1.2.2 Effects of Nonlinear Distortion

The bandlimited nonlinearity in the transponder results from the pre-filter,

TWT, post-filter combination. In this work the TWT is modeled, following Saleh

[9], as a frequency-independent memoryless bandpass function. It is completely

characterized by its AM/ AM and AM/PM conversions given by

A(r) = , (AM/AM) (1.1)

. (AM/PM) (1.2)

8



where r is the amplitude of the input waveform, and the parameters a0, /3a, a^,

and /3<j, are obtained by a minimum mean-square error curve fitting procedure to

experimental TWT data . If r(t) and 0(t) are the instantaneous input modulus

and phase, respectively, of the TWT, then A [r(t)} and 0 [r(i)] + #(£) represent the

instantaneous amplitude and phase, respectively, of the TWT output. For large

r, the AM/AM term becomes proportional to l/r by the proportionality constant

ota-}Pa- Also, for large r the AM/PM term becomes the constant o^//^.

An amplitude (magnitude, volts) and phase (radians) plot of the functions

(1.1) and (1.2) with the parameters aa = 1.9638, /3a = 0.9945, a<p = 2.5293, 0V =

2.8168, is shown in Fig. 1.4. As is evident from the figure, the output amplitude

given by (1.1) is normalized such that it is saturated at an input amplitude of

unity. For small values of r (input magnitude, volts) the output magnitude (volts)

and phase appear to be linear functions. However, as r approaches 1 the output

voltage and phase begin to saturate. For r > 1 the output voltage begins to

decrease and behaves as l/r. Because the TWT is between two linear filters, the

overall channel is a nonlinear system with memory.

The effects of the nonlinear distortion have been studied extensively for digital

radio links [10]. Fig. 1.5 illustrates an 8-PSK scatter plot of noiseless detector

samples for the satellite channel of Fig. 1.3. In this case, the pre- and post-filters

are 6th order butterworth with 3-dB bandwidths of 0.75/?s. The transmit filter

is rectangular, hr(t) = 1, 0 < t < T, and the receive filter is matched to the

transmitter. The TWT is driven at 0-dB input backoff. Here, input backoff is
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Figure 1.4. TWT amplitude and phase plot.

defined as in [11]. Referring to Fig. 1.4, an input backoff of X indicates that the

average input signal power is decreased by X-dB with respect to the input signal

power that causes saturation at the output. The scatter plot resembles an 8-PSK

constellation with noise, however the clustering about the ideal signal point is due

to linear and nonlinear ISI, not thermal noise. Also, the scatter plot resembles

the effects of a ha.nH1imit.eH linear channel. However, as will be demonstrated in

Chapter 2 the distortion is due to both linear and nonlinear components.

Fig. 1.6 illustrates a 16-QAM scatter plot of noiseless detector samples for

the channel model of Fig. 1.3. Other than the 16-QAM modulation an'd the fact

that-the TWT is driven at 6-dB input backoff, the channel is identical to that for

Fig. 1.5. It is evident that the inner constellation points are subject to different

10



0.5

-0.5

-1

-tfep-

-1 -0.5

«•*•"

0.5 1

Figure 1.5. 8-PSK Clustering.

amounts of phase shift by the TWT than the outer points. Also the outer corner

points receive less amplification by the TWT than the other outer signal points

so that the outer constellation points appear to be on a circle. These effects are

known as warping [10]. Thus, in addition to clustering, the 16-QAM constellation

is subject to warping.

1.2.3 Compensation Methods for Nonlinear ISI

The predominant method of compensation for ISI in satellite channels is lin-

ear adaptive equalization in the form of a tapped delay line filter. Several new

methods of compensating for nonlinear distortion have been developed for digital

radio, magnetic recording, telephony, as well as satellites. These methods can be

separated into those which operate at the transmitter and at the receiver.

11
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1.2.3.1 Transmitter-Based Methods

Transmitter-based methods for nonlinear digital radio systems include analog

signal pre-distortion [10], data pre-distortion [12], and data pre-distortion with

memory [13]. When these methods are made adaptive they require a feedback

path from the output of the nonlinearity (at the transmitter) to the pre-distortion

circuit. An adaptive data pre-distortion algorithm was first developed by Saleh

and Salz [12], and later utilized by Karam and Sari for data pre-distortion with

memory [13]. In this algorithm, the radial and phase error after the nonlinear-

ity is measured and the pre-distorter is adjusted so as to decrease these errors. A

pre-distorter (memoryless) can be implemented with a look-up table where the in-

formation symbol serves as the address of the pre-distorted value. A pre-distorter

with memory is implemented in much the same way except a concatenation of

12



past and present information symbols serve as the address to a memory which

holds pre-distorted values. For systems with large modulation orders and many

symbols of memory, the size of the predistortion memory device may become pro-

hibitively large. However in [13], Karam and Sari have suggested methods for

reducing the pre-distorter memory size.

Another issue with pre-distortion with memory is that adaption may be slow

sincte for each memory location several cycles of adaption may be necessary. This is

an issue because of the large memory size and adaption for each memory location

depends on the frequency of occurrence of each symbol sequence. Despite the

practical issues, pre-distortion with memory was found to give the best overall

performance improvement for a nonlinear digital radio system when compared to

other methods based both at the transmitter and receiver. Unfortunately, this

method is not directly applicable to satellite systems since the adaption method

requires a feedback path at the output of the nonlinearity.

1.2.3.2 Receiver-Based Methods

There are an abundance of compensation methods which are based at, the

receiver. These include the well known adaptive tapped delay line equalizer,

decision feedback equalizer (DFE), fractionally-spaced equalizer (FSE), Volterra

nonlinear equalizer, ISI cancellation, and MLSD. The performance of all of these

methods for digital radio systems, with the exception of the FSE and MLSD,

were studied by Karam and Sari [11]. A brief description of each of these methods

13



will be discussed below. In addition to these methods, neural network equalizers

have generated some recent interest as nonlinear adaptive equalizers for magnetic

recording [14], and satellite communication systems [15]. Because a neural network

is very complex and is susceptible to convergence at local minima, the practicality

of neural networks as adaptive equalizers is uncertain.

Tapped Delay Line Equalizers - The symbol-spaced (synchronous) tapped

delay line equalizer [16] is well known and is discussed in detail in Chapter 3.

This device consists of a tapped delay line, with one tap per symbol, and the

output is a linear combination of the taps. The tapped delay line equalizer is very

effective in reducing the performance degradation due to linear ISI. However, it

is not capable of eliminating nonlinear distortion even in the absence of noise.

Also, the output spectrum of the symbol-spaced tapped delay line may be aliased

due to symbol rate sampling. The FSE is similar to the symbol-spaced equalizer,

however it has multiple taps per symbol. The FSE inputs are sampled values of

the channel output, where the channel is sampled at greater than twice the highest

frequency component (after demodulation). Thus, the FSE does not suffer from

aliasing. Also, an adaptive FSE can compensate for sample timing offset and

minimizes the mean-square error at the output of the equalizer by matching to

the channel and reducing ISI.

T

Decision Feedback Equalizers - A DFE is an extension of the tapped delay

line. In addition to the tapped delay line equalizer preceding the decision device, a

DFE equalizer also includes a tapped delay line following the decision device. The
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intention is to subtract ISI from the current symbol due to previously detected

symbols. In the case of severe amplitude distortion, the DFE is very effective in

removing ISI from previously detected symbols without enhancing the noise and

offers a performance improvement (in the probability of error sense) compared to

the tapped delay line equalizer [17, ch. 6]. This is because the previously detected

symbols are no longer noisy. However, the DFE suffers from error propagation

due to incorrectly detected symbols.

ISI Cancellers - An ISI canceller is an extension to the DFE equalizer. The

intention is to estimate and subtract from the current symbol ISI due to precursor

symbols in addition to postcursor ISI. This is accomplished in two stages. First,

preliminary decisions are made from which an estimate of precursor ISI is made.

The precursor ISI estimate is then subtracted from an input to the final decision

device. Second, as in the case of a DFE, postcursor ISI is estimated from final

decisions and also subtracted from the input to the final decision device. This

device is significantly more complicated than a DFE in that it requires an addi-

tional decision device and several tapped delay lines. Wesolowski [18] has found

that the cancellers do not always achieve a significant improvement over DFE's

of similar complexity.

Volterra Equalizers - All of the equalizer structures described thus far are
t

based on a linear combination of taps from a tapped delay line. These structures

can be generalized to devices based on nonlinear combinations of taps from a

tapped delay line. These nonlinear devices are founded in the Volterra series
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structure for a nonlinear communications channel. The modeling of nonlinear

satellite links based on Volterra series was performed by Benedetto, Biglieri, and

Daffara [19]. Benedetto and Biglieri [20] studied the performance of a Volterra

series based nonlinear equalizer for a satellite channel. The equalizer was not

adaptive and the performance was measured in improvement of signal to distortion

ratio and did not account for noise.

- MLSD Receivers - MLSD structures for nonlinear satellite channels were stud-

ied by Mesiya, McLane, and Campbell [21] for binary sequences over a nonlinear

satellite channel. Also, an MLSD receiver structure for nonlinear satellite chan-

nels of higher order modulation formats (i.e., M > 2) was proposed by Benedetto,

Biglieri, and Castellani [22]. However, the performance was not analyzed for a

specific satellite channel.

1.3 Overview of Chapters

A satellite communication system is a bandpass system. However, for simula-

tion and analysis it is efficient to model such a system as a low-pass discrete-time

equivalent. The low-pass discrete-time equivalent model for a linear system with

ISI is easily derived [17, 23]. The generalization of this model for a nonlinear

bandpass system with memory is given by the low-pass discrete-time equivalent
r

Volterra series characterization [19]. It has also been suggested by several authors

that a nonlinear satellite channel may be described as a finite-state machine [22,

24]. Chapter 2 presents a lucid explanation of the low-pass discrete-time equiva-
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lent model for a nonlinear bandlirnited satellite channel. In addition, an explicit

development of the finite-state machine (FSM) model is given including two spe-

cial cases. First, a receiver with a single receive filter and detector is considered.

Second, the receiver consists of a bank of matched filters and detector. For each

of these special cases the FSM model yields a state table which may be used to

analyze the performance of the nonlinear channel.

.. As previously discussed, a fixed Volterra equalizer, following the receive filter,

for a noiseless satellite communication channel was introduced by Benedetto and

Biglieri [20]. In addition, it has been suggested [22] that this structure may be

adapted with the LMS (least mean-square) algorithm. However, the performance

of this structure was not studied for a specific satellite channel. In Chapter 3, the

probability of error and mean-square error performance of this structure is studied

for various PSK and QAM modulation formats for a downlink limited nonlinear

bandlirnited satellite channel. When the receive filter is matched to the transmit-

ter (as is typical in satellite systems) and the transmission bandwidth approaches

the satellite bandwidth, then this configuration is no longer optimal in the sense

of optimizing the signal to noise ratio. For this case, an adaptive FSE is useful in

compromising between optimizing the signal to noise ratio and minimizing the ISI

[25]. Chapter 3 demonstrates that an FSE followed by a Volterra equalizer gives

improved performance beyond that obtained from a Volterra equalizer. Also, it

is found that a receive filter matched to the received pulse shape, ignoring the

TWT, followed by a symbol spaced equalizer may replace the FSE with a small
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loss in performance. In addition to evaluating the performance of Volterra and

FSE-Volterra equalizers, Chapter 3 reviews the necessary background on symbol-

spaced and fractionally spaced adaptive linear equalizers.

Forney [23] has shown that the optimum receiver for a linear channel with

ISI is a whitened matched filter followed by a nonlinear processor known as the

Viterbi algorithm [26]. Benedetto et al. [22] has shown that the MLSD receiver for

a -nonlinear bandlimited satellite channel is a bank of matched filters followed by

a Viterbi detector, however, the performance of this structure was not evaluated

for a specific satellite channel. This MLSD receiver is optimum in the probabil-

ity of error sense and serves as a lower bound to the Volterra and FSE-Volterra

equalizers. In Chapter 4, the probability of error performance of the MLSD re-

ceiver is studied for a specific down link limited satellite channel. Also, the rela-

tionship between the matched filter bank outputs and the Viterbi algorithm path

metrics is clearly delineated. Because of the matched filter bank, the MLSD re-

ceiver may be high in complexity. Consequently the performance of a suboptimal,

single receive filter receiver, is also studied. The finite-state machine models of a

nonlinear communication channel are utilized for evaluating the performance of

both MLSD receivers. In addition, background and justification for the MLSD

receivers is presented.
T

A summary of the dissertation results is presented in Chapter 5. Also, the rel-

ative performance of the Volterra, FSE-Volterra, MLSD, and suboptimal MLSD,
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structures is discussed. Many variations to these receiver structures merit further

study, these will be suggested in Chapter 5.

This dissertation has been focused on the evaluation of receiver structures

which effectively compensate for the nonlinear distortion caused by nonlinear ban-

dlimited satellite channels. This endeavor has required a large effort in develop-

ment of software tools for computer simulation of the various nonlinear effects

arid compensation methods. Many of the programs are software implementations

of fundamental digital communications concepts. The more advanced programs,

however, are listed in Appendix A.
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Chapter 2

COMMUNICATION SYSTEM MODELS

A satellite communication system is a bandpass system. However, for simula-

tion and analysis, it is efficient to model such a system as a low-pass discrete-time

equivalent. .The low-pass discrete-time equivalent model for a linear system with

ISI is easily derived [17, 23]. The generalization of this model for a nonlinear

bandpass system with memory is given by the low-pass discrete-time equivalent

Volterra series characterization [19]. It has also been suggested by several authors

that a nonlinear satellite channel may be described as a finite-state machine [22,

24]."

This chapter first reviews the low-pass discrete-tune equivalent model for a

linear communication system. Then, a lucid explanation of the low-pass equivalent

model for a nonlinear bandlimited satellite channel is given. Finally, the finite-

state machine (FSM) model for a nonlinear bandhmited communication system

is explicitly developed, including two special cases: one with a single receive filter

and one whose receiver contains a bank of matched filters. For each of these cases,

the FSM model yields a state table which may be used to analyze the performance

of the nonlinear channel.

i

2.1 Low-Pass Discrete-Time Equivalent Model For a Linear System

A low-pass equivalent communication system is illustrated in Fig. 2.1. The

transmit sequence dn is complex. The transmit signal s(t) has a pulse shape
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hR(t) detectorI
w(t)

Figure 2.1. Low-pass equivalent communication system.

defined by for(£) and is subsequently filtered by the channel hc(t). The input to

the receiver r(t) is the sum of the channel output x(i) and an AWGN noise process

w(t}. The receive filter outputs the signal y(t) which is sampled at the symbol

rate 1/T. The output of the detector is the estimate (decision) dn of the complex

information symbol dn.

As derived in [23], the discrete-time output of the receive filter is a weighted

sum of past and present input symbols plus noise. The analog filters may be

replaced with discrete-time filters which yield an identical set of inputs yn = y(nT]

to the detector and thus identical detector outputs. Also, the noise process may

be moved to the detector input by an appropriate transformation.

The input to the sampler may be written as .

y(t) = ^dkh(t-kT) + r1(t), (2.1)
k

where h(t] is the combined signaling waveform

h(t) = hT(t) * hc(t) * hR(t), (2.2)

and * indicates convolution. The signal rj(t} represents the noise at the'output of

the receive filter given by

= w(t) * hR(t). (2.3)
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The sampled input to the detector is given by

yn = y(nT] = £ dfc/in-fc + rjn, (2.4)
fc

where the noise samples, r]n, into the detector are given by r](riT), and hn^k =

h[(n — k)T}. Equation (2.4) indicates that the input to the detector is a linear

combination of past, present, and future discrete-time channel inputs with the

addition of noise samples.

- The noise samples at the output of the receive filter r)n are in general colored.

That is, in general the expectation E fonV] IS nonzero for n ^ n . For the case

of colored noise samples it is difficult to evaluate the performance of the given

communication system. Consequently, it is desirable to whiten the noise samples

via a noise whitening filter [23]. In this dissertation, the receive filter is either

square-root raised cosine, or rectangular (i.e., h(t) = 1, 0 < t < T). Consequently,

the noise samples are uncorrelated, so that a noise whitening filter is not required.

The discrete-time equivalent channel model is described by equation (2.4).

The summation over k is in general infinite, however for practical channels it is

finite, so that hk ~ 0 for \k\ > L , where L is a positive integer. The equiva-

lent discrete time model for the system of Fig. 2.1 is shown in Fig. 2.2, with

the exception that the detector is not included in the figure. The input to the

communication system is the finite sequence of information symbols {ck-fc} for
T

|fc| < L. Each information symbol dn_k is then multiplied by weight hk and input

to a summing device. The output of the channel model at discrete-tune n is the

sum of the weighted input symbols and noise samples r\n.
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Figure 2.2. Discrete-time channel model for a linear system.

2.2 Low-Pass Discrete-Time Equivalent Model For a Nonlinear System

First, following [22], a continuous-time low-pass equivalent representation of

a nonlinear downlink-limited transponder communications link is derived using a

low-pass equivalent Volterra series. Next, as in the case of a linear system, the

continuous-time low-pass equivalent representation is sampled to form the low-

pass discrete-time model.

2.2.1 Low-Pass Equivalent Volterra Series For a Bandlimited Nonlinear
Channel

The low-pass equivalent Volterra expansion for a general nonlinear channel

with memory is given by [19, 22]

/

~ 00

-oo m m '

+1
(2.5)

m+1n *(*-•*) n ** (*-•»!),
l=m+2
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Figure 2.3. Low-pass equivalent nonlinear transponder communication system,

where the input x (t) and output y (t) are low-pass equivalent signals, * denotes

complex conjugate, and kg (r\, ...,T2m+i) is the baseband equivalent Volterra ker-

nel, as denned in [22, ch. 2]. The low-pass equivalent Volterra expansion will now

be developed for the specific case of the low-pass equivalent nonlinear transponder

model of Fig. 2.3.

As indicated in the figure, the transmitted signal x(t) is defined in terms of

the complex data symbols dn. The baseband equivalent linear filter hup(t) rep-

resents the cascade of linear filters preceding the nonlinearity g(-) (i.e., uplink

filters), including the transmit filter and input multiplexing filter of the transpon-

der. The nonlinear function g(-) represents the memoryless nonlinearity of the

TWT amplifier, and will be denned in more detail below. The cascade of linear

filters following the nonlinearity is represented by the linear filter hdwn(t) (i.e.,

downlink filters), including the transponder output multiplexing filter and receive

filter. As hi the case of the linear channel, in general, including the receive filter

in the model causes the noise process rj(t) to be colored. However, as indicated

previously, the receive filters used in this dissertation are such that the noise sam-

ples at the output of the receive filter are uncorrelated. The baseband equivalent
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Figure 2.4. Memoryless quadrature nonlinearity.

noise source preceding the detector, n(t) as in Fig. 2.3, is obtained by convolving

the noise source preceding the receive filter with the impulse response of the re-

ceive filter. The detector, which may include an equalizer, provides a decision on

complex data symbol dn at discrete-time n.

The AM/ AM and AM/PM conversions of the TWT amplifier is represented

by the function #(•), which consists of the in-phase and quadrature functions #;(•)

and gq(-), given by [9]

ft = P(r) cos fe(r)] , (2.6)

^ = ^(r)sin[0(r)], (2.7)

as shown in Fig. 2.4, [19, 9], where A(r) and 0(r) are given by (1.1) and (1.2),

respectively. The parameters 72m+i are obtained from a Taylor series expansion

of the nonlinearity g(-):

m=0

The parameters 72^+1 consist of the in-phase and quadrature terms:

72m+l = 7i,2m+l
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where 7^2™+!, and, 7gi2m+i, are the coefficients obtained from a Taylor series ex-

pansion of gi(-) and gq(-), respectively. As is shown in [22], the presence of only

odd orders in (2.8) is due to the bandpass nature of the communication system.

Furthermore, for the low-pass equivalent communication system, application of

(2.8) results in the following relationship between the input v(t) and output z(t)

of the nonlinearity

m=0

The input to the nonlinearity v(t) and output of the channel y(t) (including

the effect of the receive filter) are obtained by applying straightforward linear

system theory concepts:

v(t) = r hup(r)x(t - r)dr, (2.11)
J—oo

and

y(t) = f°° hdwn(r}z(t - r)dr. (2.12)
J—oo

Substituting (2.11) into (2.10) and then the result into (2.12) yields after simpli-

fication

£ roo
dr-im+i I dr • hdwn(r]

1 J—OO

oo rOO fOO

—oo —oo —oo

m+1 2m+l m+1• n M^V - r) n KP^ - T) n *(* - ^
r=l r=m+2 i=l
2m+l

• I] **(<-rO (2.13)
f=m+2

The low-pass equivalent Volterra kernels are obtained by comparing (2.13) to (2.5):
2m+l

dr-hdwn(r}- JJ ^(TV-T) [] h*up(rs-r] (2.14)
r=l s=m+2
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Furthermore, accounting for the form of the input x(t) = £n dn8(t — nT), the

Volterra series expansion of (2.5) simplifies to
oo oo

»(*) = E E - E M*-"i7V..,i-n2m+1T)
m=0ni=—oo n2m+i=—oo

•dnldn2...dnm+ld^m+2...d*n2m+l, (2.15)

where d^ are the data inputs at discrete time n^

Expressions (2.14) and (2.15) define the low-pass continuous-time Volterra

series for the transponder model of Fig. 2.3. Equation (2.15) expresses the time-

domain transponder output as a nonlinear combination of past, present, and future

Information symbols dni. Each nonlinear combination of input symbols is scaled

by the respective Volterra kernel, A^m+i (* ~ niT, ...,t — n2m+iT).

2.2.2 Discrete-Time Equivalent Model For a Bandlimited Nonlinear
Transponder

The low-pass equivalent discrete-time model for a nonlinear system is ob-

tained by sampling (2.15) at time nT. Thus, the baseband equivalent discrete-

time nonlinear channel model is described by

oo oo

y» = E E - E KB (ni, ...,n2m+l)
m=0ni=— oo n2m+i=-oo

where KB (n\, ...,n2m+'i) is the low-pass equivalent discrete-tune
t

Volterra kernel given by

n2m+1T). (2.17)
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Equation (2.16) represents the entire nonlinear channel including receive filter.

In practice all channels have finite memory and nonlinearity of finite degree so

that the summations in (2.16) are finite.

2.3 Finite-State Machine Model

A downlink-limited nonlinear communications channel with finite memory

may be modeled with a finite-state machine (FSM) [22, ch. 10], [24]. In contrast to

the low-pass discrete time Volterra characterization of a communications channel,

the FSM model of a communications channel is easily obtained. However, it may

require a large amount of storage. The model is useful in deriving the channel

statistics as in [24] or for deriving a state table which may be employed directly by

a Viterbi detector. The FSM model consists of a nonlinear transmitter in the form

of a FSM and a receiver. The following section explicitly develops the nonlinear

FSM transmitter. Then, two special cases of this model will be considered. The

state tables obtained from both of these cases are employed in Chapter 4 for

studying the performance of nonlinear bandlimited satellite channels.

First, the discrete-time detector inputs will be derived for a receiver consisting

of a single receive filter. A state table description of the channel is then obtained

from the FSM model, where the state table contains a listing of each channel input,
r

state, and discrete-time detector input. Although for a nonlinear bandlimited

satellite channel the single receive filter is suboptimal, it is the typical case. Thus,

this case is useful for analyzing the performance of a typical receiver.
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Second, a receiver with a bank of matched filters is considered. As in the

previous case, a state table description of the channel is obtained. However, in

this case the state table listing contains the channel input, state, and oversampled

outputs from the channel. If, as in the previous case, the state table were to

contain the receive filter outputs for each input-state combination, the state table

would become prohibitively large. Therefore, in this case the state table listing

contains the oversampled outputs of the channel. The oversampled output of

the channel is the output of the channel, over the time interval [nT, (n + 1)T),

sampled at a rate greater than twice the highest frequency. In this case, the task

of calculating the discrete-time filter outputs is left to the receiver. The method

of obtaining the discrete time outputs for each filter in the filter bank is then

discussed. A receiver consisting of a matched filter bank followed by a Viterbi

detector is the optimal detector for this channel. Therefore, this case is useful for

analyzing the performance of the optimum receiver. The relationship between the

filter bank and the Viterbi algorithm path metrics will be discussed in Chapter 4.

2.3.1 Nonlinear FSM Transmitter

A FSM model useful for modeling a downlink-Umited satellite channel is

shown in Fig. 2.5. In this model, the transmitter and satellite channel (i.e., as in

Fig. 2.3) are modeled as a nonlinear transmitter in the form of a FSM. The input

to the FSM is the discrete-time data sequence {an} , o^ € {0, 1, . . . , M — 1}, and

the output are the chips h(t — nT, an, crn), where each chip is zero outside the m-
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Figure 2.5. FSM model of a communication system.

terval [nT, (n + 1)T"), an is the state, and M is the symbol set size. Therefore, the

output.signal s(t) of the nonlinear transmitter is the sum of nonoverlapping chips:

n

The input to the receiver is the signal s(t) plus noise w(t). The receiver filters,

samples, and detects the signal to produce an estimate dn of the information

symbol.

Assuming that the communications system has a memory of L symbols, the

state an of the FSM is the set of L previous channel inputs {an-i, an_2i ..., an_£,}.

Therefore, the nonlinear transmitter has ML unique states and M unique inputs.

Consequently, the FSM can generate up to ML+l distinct chips.

The output signal of the nonlinear transmitter s(t) of Fig. 2.5 corresponds

to the signal s(£) of Fig. 2.6. Assume the system of Fig. 2.6 has a memory of

Lp past and Lf future symbols, thus a total memory of L = Lp + L/. Then, the

rath symbol interval at the output of the post-filter occurs over the time interval

[nT + Lp, (n + l)T + Lp). Therefore, the output s(£) of the FSM transmitter is
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Figure 2.6. Low-pass nonlinear system for development of FSM models.

written with respect to the signals from Fig. 2.6 as

< t< (n + 1)T 4- Lp

(2.19)

2.3.2. Case I: Single Receive Filter

The FSM model with a single receive filter is shown in Fig. 2.7. The output

of the receive filter i(t) is sampled and detected to provide the estimated data

symbol an. The discrete time data inputs to the detector are expressed as

7n = 7(nT) = sn + 7jn, (2.20)

The noiseless detector inputs are given by

sn = r h(r - nT, On, <Tn)hR(nT - r)dr, . (2.21)
J— CO

and the discrete-tune noise samples by

w(r)hR(nT - r)dr. (2.22)

The noiseless discrete-time data inputs together with the input and state of

the FSM may be listed in a state table. For example, suppose Fig. 2.7 models

a QPSK satellite system with memory L = L/ + Lp, where the memory consists
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Figure 2.7. FSM model with a single receive filter.

of one past symbol, L/ = 1, and one future symbol, Lp = 1. A state table for

this case contains ML+1 = 64 input-state combinations, and is listed in table 2.1.

The first column lists the input On and the next two columns list the state an

(i.e., the two previous inputs a^, and an_i). The last column lists the noiseless

complex discrete-time receive filter outputs sn (i.e., the noiseless detector inputs).

The symbol On_i is defined as the "punctual symbol," since it determines in which

quadrant the output resides. In the absence of distortion, the mapping from the

punctual symbol to constellation point is defined in Table 2.2.

Since the FSM model transmitter consists of a shift register, then the state

transition statistics can be modeled by a Markov process. Also, the present-

to-next state transitions are implicit. For example, with present state an =

{on_i, On-2} and input a^ the next state is given by an+i = {on, On-i}-

This state table may be employed to derive the noiseless discrete time outputs
f

of a nonlinear transmitter. In such a case, the inputs On are obtained randomly

from the set {0, 1, ..., M-l} . Noise samples ??n may then be added to sn to form

the input to the detector. The state table may then be used to derive the path

32



Table 2.1. State table for single receive filter receiver

On

0

1

2
3
0
1
2
3

On Sn

I D "
0
0
0
i
i
i
i

0
0
0
0
0
0
0
0

-0.7059 - 0.7059z
-0.7577 - 0.7059i
-.7059 - 0.7577i
-0.7577 - 0.7577*
0.5178 - 0.7577i
0.4660 - 0.7079*
0.5178 - 0.7577z
0.4660 - 0.7577i

\
0
1
2
2

3
3
3
3

3
3
3
3

0.7146 + 0.7146i
0.6628 + 0.7146z
0.7146 + 0.6628i
0.6628 + 0.6628z

Table 2.2. Punctual symbol to constellation point mapping

1 1 I

1 1 t
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Figure 2.8. FSM model with a matched-filter bank receiver,

metrics for detection of the sequence of input symbols {on}. Alternatively, other

information such as channel statistics or minimum distance may be derived from

the state table. These topics will be discussed further in chapter 4.

2.3.3 Case II: Filter Bank Receiver

Fig 2.8 shows a communication system with a finite-state machine transmitter

where the receiver consists of a bank of matched filters. The bank of matched fil-

ters consists of a filter hi matched to each of the ML+1 waveforms h(t, a*, crn) gen-

erated by the transmitter. For example, the filter /i, corresponding to h(t,an,(Tn}

has the response h*(T — t, On, an).

As in the previous case, suppose the FSM model of Fig. 2.8 represents a

QPSK satellite system with a memory of one past and one future symbol. As

before there are ML+l = 64 chips h(t, On, an}. Consequently, the filter bank has

64 matched filters. If, as in the previous case, the state table were to contain

the receive filter outputs for each input-state combination, the state table would
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Table 2.3. State table for matched filter bank receiver

an

0
1
2
3

On V

0
0
0
0

0
0
0
0

-0.39 - 0.36z
-0.09 - 0.47z
-0.49 + 0.04z
-0.02 - O.Oz

tf
-0.37 - 0.38z
-0.37 - 0.38i
-0.37 - 0.38z
-0.37 - 0.38z

h6

-0.35 - 0.39*
-0.38 - 0.35i
-0.31 - 0.41i
-0.32 - 0.39?

h4

-0.37 - 0.38z
-0.37 - 0.38z
-0.37-0.38z
-0.37-0.38z

\

become prohibitively large (64 matched filters for the present example). Therefore,

in this^case the state table listing contains the oversampled outputs of the channel.

For each input-state combination (an, crn), the oversampled output of the channel

is the chip h(t,an,an) sampled at a rate greater than twice its highest frequency

component. Table 2.3 contains a partial state table listing for this case, where

the sampling rate is four times the symbol rate. The punctual symbol is On_i,

and the punctual symbol to constellation point mapping is the same as for case

I. Thus, the table lists only input state combinations corresponding to the third

quadrant. The first column contains the input and the next two columns contain

the state. The next four columns contain the four samples of the chip h(t, an, an}-

As mentioned previously, a receiver consisting of a matched filter bank fol-

lowed by a Viterbi detector is the optimal detector for this channel. In this case,

however, it is necessary for the receiver to compute the discrete-time filter outputs

during each signaling interval. Given that the chip h(t,an,an) was transmitted
f

over the nth time interval, the output of the zth filter is given by

n] + %n, (2-23)
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where Sj(an,crn) is the noiseless output for the zth filter, given by

Si(on, <rn) = / h(r, a,,, <7n)/i;(T - r}dr. (2.24)
o

The discrete-time noise samples for the ith filter are given by

/•(n+ijr
% , „ = / to(T-nT)/iiCr-T)dT, (2.25)

7nT

where w(t) is the noise process at the input to the filter bank, as in Fig. 2.6. For

the case of w(t) an AWGN process, then rji>n is a Gaussian random variable with

variance

^"^rW)!2*. (2-26)z Jo

Since the state table contains the chip samples sampled at a rate greater than

twice the highest frequency, the state table (e.g., table 2.3) contains the necessary

information to optimally detect the input signal. Given the chip h(r, a^, crn) was

transmitted, then the sampled input to the filter bank is given by the sequence

{r7 (an, crn)} , where j=l, 2 ... 7VSS, and Nas is an integer representing the number

of samples per signal. Because of practicality considerations, here we restrict Nss

to an integer. The received samples are given by rj (an,crn) = hj(an,crn) + wj
n,

where hj(an, an] is the jth sample of the chip h(t, On, crn), and w]
n is the jth sample

of the noise process io(t) over the nth tune Interval. Thus, given that the chip

h(t, On, crn) was transmitted, the output of the zth filter is given by

(2.27)

where h{ is the jth sample of the filter hi(t). Note that the filter samples may

be obtained from the chip samples contained in the state table. This equation

may also be decomposed into a form corresponding to the signal and noise as in
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(2.24) and (2.25), respectively. Therefore, given the sampled received sequence,

the discrete-time output for each filter may be computed from the chip samples

in the state table.

2.4 Chapter Summary

This chapter has reviewed the low-pass discrete-time equivalent model for

a linear passband communication system. Next, beginning with the low-pass

equivalent Volterra series, a lucid development of the low-pass Volterra discrete-

time model for a nonlinear satellite communications channel was presented. The

resulting model is a polynomial expression relating an output symbol at discrete

time n to the past, present, and future, input symbols. Deriving this model for a

particular channel is computationally intensive.

The last section of this chapter presented a FSM model, where two special

cases were considered. The discrete-time detector inputs were derived for the

single receive filter receiver. Although this receiver is suboptimal, this case is

useful for evaluating the performance of the typical receiver. In contrast to the

low-pass discrete-time Volterra model, the FSM model is easily derived, however it

may require a large amount of memory for storing the state machine. Despite the

possibly large memory requirement, the model is more efficient, computationally,
r

than the Volterra model. In this case, the FSM model is simply a lookup table

containing the discrete-time detector inputs whereas the Volterra model requires

evaluation of a polynomial expression.
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Finally, a state table listing appropriate for a receiver with a matched fil-

ter bank was described. This state table listing contains samples of the chips

h(t, On,an} sampled at a rate greater than twice the highest frequency compo-

nent. Also, a method of computing the matched filter bank outputs from the

state table entries was described. This state table may be used for evaluating the

performance of the optimal receiver for the nonlinear bandlimited satellite chan-

nel consisting of a matched filter bank followed by a Viterbi detector. As in the

previous case, the state table is easily derived and the model is still more effi-

cient than the Volterra model. Although in this case the filter bank outputs must

be computed for each symbol interval, this additional computational requirement

also exists for the Volterra model.
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Chapter 3

ADAPTIVE VOLTERRA EQUALIZERS FOR NONLINEAR

SATELLITE CHANNELS

A fixed Volterra equalizer for compensation of ISI due to a noiseless satellite

communication channel has previously been studied [20]. In addition, it has been

suggested [22] that this structure may be adapted with the LMS (least mean-

square) algorithm. However, the performance of this structure has not been stud-

ied for a specific satellite channel, as is done here. In addition, here a multiple-step

size algorithm is used to improve the convergence characteristics of the equalizer.

Since many of the concepts of linear adaptive filters apply to adaptive Volterra

equalizers, first this chapter briefly reviews the related concepts from adaptive lin-

ear filter theory. Next, the adaptive Volterra equalizer is introduced, and the con-

ditions for convergence are analyzed. Then, the mean-square error and probability

of error performance is studied for various PSK and QAM modulation formats.

Because of the aliased frequency spectrum into the detector, due to symbol

rate sampling, a symbol spaced adaptive equalizer can only act to modify this

aliased (i.e., folded) spectrum, and is thus limited in its ability to compensate for

ISI. In this case, an adaptive FSE followed by a Volterra equalizer is shown to give

improved performance beyond that obtained from a T-spaced Volterra equalizer

following the receive filter. Also, the ability of an FSE to adaptively realize the

optimum linear receive filter is reviewed.
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Figure 3.1. Low-pass equivalent satellite communications channel.

3.1 Linear Equalizer Background

The linear equalizer is developed according to the linear communications

system model shown in Fig. 3.1. For this discussion, the channel is represented

by the linear filter hc(t). The input to the equalizer yn is the sampled output

of the receive filter hfi(t), and the equalizer output is zn. In the absence of

a nonlinearity, the combined signaling pulse h(t) is obtained by a convolution

h(t) = hT(t)*hc(t)*hR(t). The discrete-tune equalizer inputs yn may be expressed

as

2/n = 52 dn-khk + Tin, (3-1)
k

where hk = h(kT), and rjn = "n(nT) is the discrete-time noise process at the output

of the receive filter. The noise process r)(t) is given by the convolution w(t) *h,R(t).

It has been shown that for every reasonable optimization criterion that the

optimum receive filter is a matched filter followed by a tapped delay line [27]. The

transversal equalizer (i.e., tapped delay line) is shown in Fig. 3.2. Its output zn

is a linear combination of the input sequence {yn} given by
K

Zn= (3-2)

where the c* are complex weights.

k=-K
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Figure 3.2. Transversal filter.

The optimum, in the MSB sense, tap settings for the infinite length transversal

equalizer are found according to the inverse z-transform of [17, ch. 6]

- (3-3)

where H(z) is the z-transform of the discrete time signaling pulse hk and No/2

is the spectral density of the noise process w(t). If TVo is sufficiently small, then

equation (3.3) indicates that C(z) approaches the inverse of the signaling pulse

H(z).

For the case of a finite length transversal filter, the optimum tap weights,

Copt, are expressed by the matrix form of the Wiener-Hopf equation [28, ch. 5]

CV = R-V, (3-4)

where R is the (2K+1) X (2K+1) correlation matrix E[yny$\, p is the (2K+1)

element cross-correlation vector .E[y2£], and yn is the tapped delay line input

vector at discrete-time n.
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3.1.1 The LMS Algorithm

As indicated by (3.3) and (3.4), the optimum MSB tap settings for the

transversal equalizer are a function of the channel characteristics. Often these are

not known a priori. An algorithm capable of adapting the equalizer coefficients

such that the mean-square error is minimized without knowledge of the channel

statistics is the LMS algorithm. This algorithm is simple yet very effective.
4.

The instantaneous error at the output of the equalizer is given by

en = dn-zn , (3.5)

where dn is the desired response at time n. In the LMS algorithm, the update to

weight Ck at time n + 1 is obtained from the negative gradient of en with respect

to ck:

ck(n + 1) = Cfc(n) - -j^ (ene*n), (3.6)

where ft is the step size and * denotes complex conjugation. Since the tap weight

updates are obtained from the instantaneous square error (as opposed to MSE

used in a true gradient search algorithm), the tap updates are noisy and result in

an excess mean-square error beyond that obtained by the optimum tap weights

given by (3.4). However, a small step size has the effect of averaging the updates.

Conversely, the larger the step size the faster the equalizer convergence, however

this results in a larger excess mean-square error. Evaluating (3.6) with en given

by (3.5) and Zn given by (3.2) yields the well known form of the LMS update

equation [29, 31]

ck(n + 1) = c*(n) + /iCn^fc. (3.7)
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Equation (3.7) may be expressed in vector form

cn+i = Cn + //eny;, (3.8)

where cn is the tap weight vector at time n.

The desired response dn in the expression for en, equation (3.5), may be

replaced by the receiver output dn if decisions are correct with moderate to high

probability. Usually, this substitution can be made if the probability of error is

leSs than 0.1. This mode of operation is known as decision-directed training and

was invented by Lucky [32]. In this mode, the equalizer can track slow variations

in the channel characteristics.

3.1.2 MSE Performance of the LMS algorithm

The MSE performance of the LMS algorithm is described as

= Jmin + J^ (3.9)

where Jmin is the MSE obtained from the optimum tap settings, (3.4), and J& is

the excess MSE described above. The excess mean-square error JA is difficult to

evaluate mathematically, however the analysis can by simplified with certain as-

sumptions [17, ch. 6]. First, it is assumed that the mean values of the equalizer

coefficients Cn have converged to their optimum values Copt- Second, the instanta-

neous square error \en \2 is assumed to be uncorrelated with the tap input vector.2

Under these assumptions, it is found that the excess mean-square error may be

2This assumption is not strictly true. However, it is noted by Proakis [17] that it simplifies the

derivation and yields useful results.
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expressed as
K

where A* is the fcth eigenvalue of the tap input correlation matrix. This expression

explicitly shows the dependence of the mean-square error on the step size.

3.1.3 Convergence of the LMS algorithm

- Two types of convergence will be discussed: convergence in the mean and

convergence of the excess mean-square error. Convergence in the mean refers to

convergence of the mean tap vector E[c] to the optimum tap vector C^t as the

number of iterations n approaches infinity. By an appropriate change of basis [28,

ch. 9], it is shown that the condition for convergence in the mean is for the step

size to satisfy

0 <»<-?-, (3.11)
Amax

where Amax is the largest eigenvalue of the tap input correlation matrix. Also,

in examining convergence in the mean it is found that the convergence rate (i.e.,

of E[c] to Copt) is limited by the eigenvalue spread Amax/Amin, where Amin is the

smallest eigenvalue of the tap input correlation matrix.

Unfortunately, expression (3.11) does not assure good mean-square error per-

formance. Thus, it is useful to establish the conditions for which the excess mean-

square error converges. Under the assumption that the sequence of tap input

vectors yn are independent (independence assumption) and that the error en<opt

(obtained by evaluating (3.5) with C^t) is independent of all tap inputs, the fol-
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lowing condition for convergence of the excess mean square error is obtained [33,

ch. 8].3

0 < » < (2K+ vx • (3-12)(2 K + ljAmax

This expression indicates that for convergence of the excess MSE, the maximum

step size is inversely proportional to the number of taps as well as Amax.

3.2 Adaptive Volterra Equalizer

In this section, the structure of a Volterra equalizer is described. Next, the

method of adaption is discussed including convergence and a multiple-step size

adaption method. With methods similar to [35], the mean-square error and prob-

ability of error performance of the adaptive equalizer is then evaluated via Monte-

Carlo computer simulations.

As discussed in chapter 2, the Volterra series characterization of a nonlinear

communication channel provides a relationship between the discrete-time input

symbols and the discrete-time channel output symbols. Recall, that equation

(2.15) expresses the time-domain transponder output as a nonlinear combination

of past, present, and future information symbols d^.

The Volterra series equalizer is motivated by the theory of the pth-order

inverse for nonlinear Systems [20 - 37]. The pth-order inverse K~l, of a system

H, consisting of a pth order Volterra series is defined as a system for which the

3In practice, results predicted by the independence assumption hold over a wide range of step values

[33]. Other researchers have analyzed the LMS convergence without the independence assumption [34].
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Volterra series of the system Q, formed by the tandem connection of Kp
 l and H,

is such that the 2nd through the pth-order Volterra operators of Q are zero. Also,

the pth-order pre-inverse is identical to the pth-order post-inverse. Thus, a pth

order Volterra series with properly selected coefficients can remove the nonlinearity

of a nonlinear system up to pth order. However, the theorem also states that

the tandem connection of H and Q may produce nonlinear terms of higher-order

(i.e., p+l, p-f-2, ...). These higher order terms, however, are negligible in weakly

nonlinear systems.

In light of the discussion on pth-order inverse, the discrete-time low-pass

equivalent Volterra series characterization of a nonlinear communications channel

(2.16) suggests the form of the nonlinear Volterra equalizer. The output of the

equalizer, zn, consists of a linear combination of all linear terms and all possible

combinations of nonlinear terms of yn of odd degree and is given by [20]

zn =
k fcj

fci A:a fca £4 k$

This expression consists of infinite summations of linear ISI terms and non-

linear ISI terms of odd degrees. In practice, any channel has a finite memory and

nonlinearity of finite degree, so that the summations in (3.13) are finite.

Fig. 3.3 illustrates a block diagram of a 3-tap 3rd-order Volterra equalizer,

where yo in the figure corresponds to the yn in (3.13). The samples from a tapped

delay line are the inputs to a nonlinear combiner. The nonlinear combiner then

outputs all single taps and all combinations of three taps. Each output from the
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Figure 3.3. 3-tap 3rd-order Volterra equalizer.

nonlinear combiner is then scaled by a weight Ck to form an input to the summing

device.

In [20], a significant reduction in complexity is proposed for M-PSK systems

by eliminating terms from the nonlinear combiner of the form 7/tJ/j2/fc = Hi for

i = k (and similarly for j = k), assuming yn is of modulus one. However, because

yn contains a noise term, this reduced complexity equalizer suffers a performance

degradation. This will be discussed further in the mean-square error performance

section, Section 3.2.2.

As indicated by equation (3.13), for each order ra greater than one, the non-

linear combinations consist of (m + l)/2 terms times (m — l)/2 terms which are

conjugated. For example, for m = 3 the nonlinear combinations take the form

2/n-fci2/n-fc22/n-fc3- This suggests that for m = 3 there are 18 unique 3rd order

terms, N$. Therefore, the total number of terms in a nonlinear Volterra equalizer
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Figure 3.4. Scatter plots: (a) no equalization, (b) 7-tap linear, (c) 7-tap linear,
3-tap 3rd-order, (d) 7-tap 3rd-order.

is given by

(3.14)

m odd
where <£ is the highest nonlinear term in the equalizer, and Nm is the number of

terms of order m. For the Volterra equalizer of Fig. 3.3, the total number of terms

is 21. It is also possible to have a nonlinear equalizer with AT-tap linear compen-

sation, but with a subset, NS, of the N taps forming nonlinear combinations.

The ability of the Volterra equalizer to mitigate the effects of nonlinear ISI

are illustrated in the' 8-PSK scatter plots of Fig. 3.4. For this example, the

transmit filter has a rectangular pulse shape and the receive filter is matched to

the transmit pulse shape. The satellite pre- and post-filters are 6th order low-pass
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butterworth with a 3 dB cutoff frequency of Q.75RS. The noise signal at the input

to the receiver is set to zero (i.e., w(t) — 0) and the TWT is driven at 0 dB backoff.

For Fig. 3.4, the Volterra equalizers contained redundant terms and the total

number of terms is given by

' L' = £ Nm. (3.15)
m=l
m odd

In this case, the number of terms for each nonlinear order is Nm where all possible

terms of a particular order are included including redundant terms. This is the

case for all of the Volterra equalizers evaluated via computer simulation in Sections

3.2.3 and 3.2.4. This will affect the rate of convergence since in effect the step size

is increased for the redundant terms. However, the converged mean-square error

and probability of error results are not affected. Including the redundant terms

simplified the software implementation of the Volterra equalizer.

Fig. 3.4 (a) shows a scatter plot of the receive filter output without equaliza-

tion. In Fig. 3.4 (b), the receiver output is equalized with a 7-tap linear equalizer.

Figs. 3.4 (c) and (d) illustrate the equalizer output of a 7-tap linear, 3-tap 3rd-

order equalizer (7 linear and 27 3rd-order terms) and a 7-tap 3rd-order equalizer

(7 linear and 343 3rd-order terms), respectively. As is evident in Fig. 3.4, the

Volterra equalizers reduce the signal distortion beyond that of the linear equalizer.

Also, the 7-tap 3rd-order equalizer reduces the nonlinear distortion beyond that

of the 7-tap linear, 3-tap 3rd-order device. In the following sections, 3.2.3 and

3.2.4, the performance of these devices will be evaluated in the presence of noise.
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3.2.1 Volterra Equalizer Adaption.

In the following discussion, the method of adaption and associated conver-

gence for the nonlinear Volterra equalizer are discussed. First, the form of the

MSB at the output of the equalizer is described. Then, the LMS weight update

algorithm is described hi terms of the nonlinear Volterra equalizer. The conver-

gence of the equalizer is then studied and compared to the linear equalizer. The

nonlinear Volterra equalizer convergence is found to be slower than that of a lin-

ear equalizer with the same number of taps. Consequently, a multiple-step size

LMS algorithm which improves the convergence characteristics is described.

3.2.1.1 MSE Output of the Nonlinear Volterra Equalizer

Denote the output of the nonlinear combiner at time n by the complex vector

un = [uo(n) u^n) ••• UL-i(n)]T, where T denotes transpose, u,(n) is the iih

nonlinear combiner output at time n, L is given by (3.14), and each Ui (i =

0,1,..., L — 1) is an output of the nonlinear combiner. Denote the complex weight

vector at time n by cn = [c0(n) Cj(n) • • • C£,_i(n)]r , where Ci(n), is the weight

multiplying Ui(n). Then, the output Zn of the Volterra equalizer at time n is given

by

Zn = c£un, (3.16)

Define the nonlinear combiner output correlation matrix as

(3.17)
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where E[x] denotes the expectation of x, and H denotes Hermitian transpose. As

for the linear case, we define the error en at the output of the equalizer as

en = dn - zn, (3.18)

where dn is the desired response at time n. The cost function or MSB at time n

is defined as

Jn = E[ene*n] (3.19)

By substituting (3.18) and into (3.19) and with straightforward manipulations the

following expression for the MSE is obtained

Jn = a\ - c£p - p"< + c^RC;, (3.20)

where v\ is the variance of the desired response, p = E[unc^] is the correlation

of the tap input vector and desired response, and * denotes complex conjugate.

Thus, the MSE varies with time, and is a quadratic function of the tap weights as

it was for the linear equalizer. Thus, the LMS algorithm may be used for adaption

as we now discuss.

3.2.1.2 The LMS Algorithm in Relation to the Nonlinear Volterra
Equalizer

Since the nonlinear combining occurs before the tap weights, the outputs of

the nonlinear combiner may be considered inputs to a linear adaptive filter. Also,

since the MSE is a quadratic function of the tap weights, the LMS algorithm may

be employed for adaption. The weight update equation is given by

Cn-f 1 = Cn + /zenli;. (3.21)
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Thus, the weight update equation is the same as for the linear equalizer. However,

in the case of the nonlinear Volterra equalizer weights for nonlinear terms are

included.

3.2.1.3 Convergence of the Nonlinear Volterra Equalizer

Define the correlation matrix of the inputs to the N-tap delay line whose

outputs are inputs to the nonlinear combiner as (e.g., as in Fig. 3.3)

R = E[yny»], (3.22)

where yn is the tap input vector at time n. Denote the eigenvalues of R as Aj and

the eigenvalues of R as or,. From [28, ch. 4] we have the following two expressions

for the maximum and miriimuni eigenvalues of R.

= max — rj— : x € CL, x =£ 0 (3.23)
xnx

and

z-^Rx
am* = mui : x € CL , x ^ 0 (3.24)

Ju X

where CL is complex vector space of dimension L.

Equation (3.23) states that the largest eigenvalue of R is obtained by the

largest amount by which any vector is amplified by vector multiplication. Since

from (3.14) L > N, R is a submatrix of R , and C^ C CL, we may conclude

that ctmax > Aniax and amin < Amjn. Furthermore, considering (3.12) with IK + 1

replaced by L or N, we have that

Mmax < Mmax, (3-25)
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where fimax is the maximum allowable step size for the Volterra equalizer and

is the maximum step size for the corresponding linear equalizer. Note that

is smaller than /zmax by at least the proportion of weights in the nonlinear

equalizer (L) to the number of linear weights (N). In addition to the maximum

step size being smaller for the nonlinear Volterra equalizer, the eigenvalue spread is

potentially greater for the nonlinear Volterra equalizer as indicated above. Thus,

the convergence rate is likely to be much slower for the Volterra equalizer.

3.2.1.4 Multiple-Step Size Algorithm

In the next section, the sensitivity to the step size is illustrated with an

example. However, before considering such an example, it is useful to investigate

a method for improving the convergence characteristics of the nonlinear equalizer.

This can be done with the multiple-step size LMS algorithm [38-41]. With this

algorithm each weight may be updated with a unique step size. This leads to the

update equation

<Wi = cn + MDenu;. (3.26)

where MD is a diagonal matrix with the step sizes /z, (corresponding to weight

Ci(ri)} along the main diagonal and zeros elsewhere. With the nonlinear equalizer,

it has been found useful to choose a larger step size for linear terms and smaller

step sizes for the nonlinear terms.

As shown hi [38], for any positive choice of MD, the mean-square error will

converge if the values of M.& are sufficiently small. However, if all the diagonal

53



s Linear and 3rd-order reduced, lOdB

3rd-order, 10 dB

linear, 100 dB

3rd-order reduced, lOOdB

3rd-order, 100 dB

Figure 3.5. 3-tap reduced and non-reduced MSE performance for a QPSK sys-
tem.

elements of M/? are equal then the conditions for convergence are given by (3.11)

and (3.12) for convergence of the mean tap vector and excess mean-square error,

respectively. Alternatively, as in the linear filtering case [41], the update constant

may be replaced with p, R so that all the eigenvalues become unity and all modes

decay at the same rate.

3.2.2 MSE Performance

In this section, the MSE performance results obtained from computer simu-

lation are presented. The parameters for the systems simulated are the same as

that for Fig. 3.4.

Fig. 3.5 plots the mean-square error versus adaption time in symbols for

various 3-tap equalizers for a QPSK system. The equalizers are a 3-tap linear, 3-
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tap 3rd-order, and 3-tap Srd-order reduced complexity. The reduced complexity

equalizer has the tap weights of the terms i/j ?/,•?/£ set to zero for i = k or j = k, as

discussed previously. In all cases /z =1(T3. The MSE estimate is obtained by ap-

propriately scaling a 512-symbol running sum of the squared error at the output

of the equalizer. This method gives a quick but biased estimate of the MSE espe-

cially before the equalizer has converged. After the equalizer has converged, the

method gives a good estimate of the MSE. Although ensemble averaging of learn-

ing curves is the proper method for estimating MSE, the computer time necessary

for such an approach was prohibitive. The figure illustrates that for Eb/No = 10

dB the reduced equalizer has performance (in MSE) comparable to that of the

linear equalizer. As the Eb/No increases, the reduced equalizer performance ap-

proaches that of the non-reduced equalizer but still has a performance loss even

at very high -E&/JV0. The figure also illustrates that the convergence time for the

3rd-order equalizer is on the order of 100,000 symbols, although most of the MSE

reduction is achieved in about 10,000 symbols.4

Fig. 3.6 illustrates the advantage of multiple-step size adaption for a QPSK

system with an Eh/No of 9 dB. The curve illustrating large jumps and higher

overall mean-square error is for a 3-tap 5th-order equalizer with a single step size

of 10~3. The lower curve is for a 3-tap 5th-order equalizer with multiple-step size

adaption and step sizes of 10~3, 10~4, and 10~5, for the linear, 3rd-order, and 5th-

order terms, respectively. The single step size equalizer is evidently unstable at
4 As noted previously, these equalizers contain redundant terms, where the total number of terms

is given by (3.15). The redundant terms are expected to affect the convergence rate.
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Figure 3.6. Multiple-step size adaption for a QPSK system,

this adaption rate. In order to stabilize the single step size equalizer, the step size

may be reduced but at the expense of a much slower convergence time. The figure

illustrates that the multiple-step size algorithm lessens the penalty of a slower

convergence rate while improving performance in MSE.

Fig. 3.7 illustrates .the noiseless MSE performance of the 7-tap linear, 7-tap

3rd-order, and 7-tap linear with 3-tap 3rd-order equalizers. As is clear from Fig.

3.4, the 7-tap 3rd-order equalizer gives the best MSE performance with greater

than'5 dB improvement compared to the linear equalizer. The 7-tap linear with

3-tap 3rd-order equalizer obtains approximately 1.5 dB improvement compared

to the linear equalizer.
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Figure 3.7. Noiseless MSE performance for a QPSK system.

3.2.3 Probability of Error Performance

The probability of bit error (P&) performance for QPSK and 8-PSK systems

is shown in Fig. 3.8. The system parameters are the same as for Fig. 3.4. For the

QPSK system, the equalizers are a 5-tap linear, and 5-tap 3rd order. For the 8-

PSK system the equalizers are a 7-tap linear, 7-tap 3rd-order, and 7-tap linear with

3-tap 3rd-order. Although according to Figs. 3.5 and 3.7, the MSE performance

for a 3rd-order equalizer is significantly better than for a linear device, there is no

improvement in Pb for QPSK.

Some insight may.be obtained by looking at a scatter plot of the equalizer

output, Fig. 3.9. For this case it has been determined that the signal to distortion

ratio Is approximately 15 dB whereas the symbol energy to noise spectral density

ratio is 13 dB (i.e., Eb/N0 =10 dB). With the distortion below or at a comparable
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Figure 3.8. QPSK and 8-PSK probability of error performance,

level to the noise, the equalizer can significantly reduce the mean-square error by

reducing the component of the noise in the radial direction, however, this noise

reduction is orthogonal to the direction which leads to a decision error. Thus,

although the mean-square error is significantly reduced, the probability of error is

not improved. This result is unique to M-PSK when the distortion is comparable

to or below the noise level.

In the 8-PSK case, the noise level is below the distortion level at Pb =10~5

(see Fig. 3.8) and the 3rd-order nonlinear equalizers give a 0.5 dB improvement in

Pb compared to the linear equalizer. The 7-tap 3rd-order equalizer (343 3rd-order

terms) shows a slightly degraded performance compared to the linear equalizer at

58



-0.5

-1

-1 -0.5 0.5

Figure 3.9. Scatter plot of 7-tap 3rd-order equalizer output,

low Eb/No due to noise enhancement at the nonlinear equalizer output. The 7-tap

linear, 3-tap 3rd-order equalizer (27 3rd-order terms) gives the same performance

improvement at high E^/NQ at a much lower complexity compared to the former.

Thus fax only constant modulus systems have been considered. Fig. 3.10

illustrates the performance in Pb for a 16-QAM system. For this case the satellite

parameters are the same as for Fig. 3.4, however the transmitter and receiver

differ. The transmitter has a square root raised cosine pulse shape with 100%

excess bandwidth and the receiver is matched to the transmitter. In the case of

PSK, in order to rninirnize the nonlinear distortion, it is desirable to transmit

constant modulus signals, so it is typical to transmit with a rectangular pulse

shape. However, since QAM employs multi-level signals, they are not constant

modulus. Since the modulation is not constant modulus, a square root raised
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Figure 3.10. 16-QAM probability of bit error performance,

cosine pulse shape is employed at the transmitter and receiver as is usual for this

scheme.

Several equalizer configurations are considered: 9-tap linear, 9-tap 3rd-order

(9 linear and 729 3rd-order terms), and 9-tap linear with 3-tap 3rd-order (9 linear,

and 27 3rd-order terms). For the linear equalizer, the 16-QAM system must be

operated at a large backoff for low Pb. However, the 3rd-order nonlinear equalizers

can operate at 6 dB backoff and still maintain a low P^

The 9-tap 3rd-order equalizer has approximately a 0.5 dB better performance

than the 9-tap linear with 3-tap 3rd-order equalizer, however the former is an

impractical device. The significant improvement for the nonlinear equalizers is in

link margin.5 The Eb/No for the curves in Fig. 3.10 is measured at the receiver.

5Link margin is defined as the energy in the received signal above a pre-defined level.
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Consequently, a system with X dB backoff will have X dB less Eb/NQ at the

receiver than a system with 0 dB backoff. Therefore, the 9-tap linear, 3-tap 3rd-

order equalizer at 6 dB backoff gives approximately a 3.5 dB improvement in link

margin compared to the 9-tap linear device at 10 dB backoff.

The nonlinear equalizer improvement in Pf, for 16-QAM versus PSK systems

is attributed to two dominant factors: 16-QAM operates at a higher Eb/No than

the^PSK systems and QAM is subject to constellation warping [10] so that the

nonlinear effects of the HPA are more significant. In contrast to constellation

warping, PSK suffers only a constellation rotation which is reversed by the phase

synchronizer. Note also that the link penalty for the PSK systems considered is

not nearly as severe compared to the QAM system.

3.3 FSE-Volterra Equalizer

Fig. 3.11 illustrates the noiseless received signal spectrum and receive filter

response for a QPSK system as in Fig. 3.1. The receive filter is matched to

the transmitter which has a rectangular impulse response, and the remaining

system parameters are identical to those for the systems of the previous section.

As is evident from the figure, the receive filters of the previous section, which

were matched to the transmitter, are severely mismatched to the channel due to

presence of the pre-filter, TWT, and post-filter. Thus, the signal to noise ratio at

the output of the rectangular receive filter is suboptimal. Biglieri et al. [42] have

derived the optimal linear receive filter for nonlinear channels. Unfortunately, the
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Figure 3.11. Received signal spectrum, rectangular filter response, and
pseudo-matched filter response for QPSK.

channel statistics including state transition probabilities must be known and are

not easily obtained.

Also shown in Fig. 3.11 is the response of a filter equivalent to the combined

response of the pre-filter, post-filter, and transmit filter ( in this case the filters

are Butterworth, Butterworth, and rectangular, respectively). This filter will be

called the pseudo-matched filter. As is evident, the pseudo-matched filter matches

the received signal spectrum much better than the rectangular receive filter. In

Section 3.3.3, the performance of the pseudo-matched filter followed by a T-spaced

equalizer and Volterra equalizer is compared to that of the FSE-Volterra equalizer

for 16-PSK.
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Alternatively, an FSE has the capability of an analog filter so that it may

be configured as the best linear receiver [25]. Also, the FSE can compensate

for sample timing offset. Konstantinides and Yao [24], using a state machine

description, have developed a method for obtaining the correlation matrix R' and

cross correlation vector p' of a nonlinear satellite communications channel. The

optimum FSE tap weights may then be obtained from (3.4). For the case of

unknown channel statistics an adaptive FSE can adaptively realize the optimum

linear filter [25]. The FSE is equivalent to a matched filter followed by a T-spaced

tapped delay line.

The following section discusses in greater detail the salient features of FSE

equalizers. Next, the receive filter is replaced with an FSE so that the satellite

receiver consists of an FSE followed by a Volterra equalizer. The operation of this

structure is then discussed. Finally, the performance of the FSE-Volterra receiver

is evaluated for various M-PSK scenarios.

3.3.1 FSE Background

The following FSE discussion follows that of [25]. First, consider the symbol-

spaced (synchronous) equalizer with noiseless input samples x(nT + r) and taps

Cfc, where r represents sample timing error. The output spectrum of the equalizer

is given by

( l\ \ f l\ '
V 11\ ~^~^ „—]2irfT \~^ v" / t i I ,*,~. • I t i IZT(J ) = / Cte > A I t + — I exp —7 I / + — Tk I \ T) [ \ T) .

= CT(f)XT(f), (3.27)

63



where Xr(f) is the folded (aliased) spectrum of the input signal, and CT(J] is

the frequency response of the equalizer tap weights. Since the spectrum of the

equalizer filter is periodic, CT(/) = CT(/ + l/T], the synchronous equalizer can

only act to modify the folded spectrum A/r(/), as opposed to directly modifying

X(f)e~j2^fT. Thus, if, because of severe phase distortion and a poor choice of

T, a null is created in the aliased part of the spectrum then the equalizer can

only synthesize a large gain in the region. Unfortunately, this leads to a severe

performance degradation because of noise enhancement.

The fractionally-spaced equalizer is similar to the transversal filter; however

the- tap spacing is given by T" < T such that the input signal x(t) into the

FSE is sampled at greater than twice the highest frequency component. For

practical purposes, T' is chosen to be a rational fraction of T (it is typical to

choose T' = T/2). Since data decisions are made at the symbol intervals, the

output of the FSE is sampled at the rate 1/T. The output spectrum of the FSE

prior to symbol-rate sampling is given by

(3.29)

As in the previous case, the equalizer spectrum is periodic, CT>(f] = CT>(f -f

Z/T1'). However, the sample rate 1/T* is greater than twice the highest frequency

component in X(f). Consequently, only the I — 0 term in (3.28) is nonzero in the

interval |/| < 1/(22V)." Thus, the FSE output spectrum becomes

(3.30)
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Figure 3.12. FSE-Volterra receiver.

From (3.30) it is clear that C?(f) modifies X(f}e~:i'2irf'r before abasing and CT> (/)

can compensate for sample timing offset.

After sampling the equalizer output at the rate 1/T the periodic spectrum is

given by

• Zr(f) = EC^(f + ^]X(f + ̂ } e*P \-3 (f + ̂  VI ' (3-31)
/ V J / V J / L V J / J

It is evident that (3.31) is the sum of equalized components while (3.27) is the

sum of equalized aliased components. Thus, the FSE has the capabilities of an

analog filter and can be configured as the optimum linear receiver.

3.3.2 FSE-Volterra Receiver

The FSE-Volterra receiver is shown in Fig. 3.12. The input signal x(t) to the

receiver is the output of the channel plus noise and is sampled at the rate 1/T".

The receive filter (e.g., as in Fig. 3.1) is replaced with an FSE. The output of the

FSE y(n'T'} is sampled at the symbol rate and is input to the Volterra equalizer.

f*.

The detector then outputs an estimate dn of the transmitted symbol dn.

Adaptive setting of the FSE weights is obtained via the LMS algorithm where

tap updates occur at the rate 1/T. Since the FSE is a linear adaptive filter, and

the nonlinear channel output characteristics can be expressed in the form of a
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correlation matrix R' and cross-correlation vector p', then the previous discussions

on the LMS convergence apply.

The adaption strategy is as follows. First the Volterra tap weights are initial-

ized to an impulse function (i.e., the center linear tap is set to unity and all others

set to zero). The initial FSE tap weights are set such that the FSE is matched

to the transmit filter. The FSE is then adapted via the LMS algorithm until the

MSE, at its output, is no longer decreasing. The FSE adaption is then turned

off. Finally, the Volterra equalizer is adapted until the MSE, at its output, is no

longer decreasing.

3.3.3 FSE-Volterra Receiver Probability of Error Performance

Probability of bit error performance curves for the FSE-Volterra receiver of

Fig. 3.12 is shown in Figs. 3.13-3.15. For each of the curves, the number of

equalizer taps was chosen such that increasing the number of taps did not provide

performance improvement. Also, the performance of the FSE-Volterra equalizer

is compared to the synchronous equalizer and FSE. The system parameters are

the same as for Fig. 3.4.

The computer simulations which evaluated the following systems used discrete-

time signals, where the sample rate was four samples per symbol. In the case of

rectangular transmit and receive filters, this resulted in a sampling-phase error

at the detector causing a loss of approximately 0.15 dB. That is, the optimum

*sampling point at the receive filter output was in error such that the signal to
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Figure 3.13. FSE-Volterra QPSK probability of bit error performance.

Figure 3.14. FSE-Volterra 8-PSK probability of bit error performance.
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Figure 3.15. 16-PSK FSE-Volterra and pseudo-matched filter probability of er-
ror performance.

noise ratio was decreased by 0.15 dB. For the case of the pseudo-matched filter

the sampling error loss was approximately 0.18 dB. The curves in Figs. 3.13-3.15

show.the error rates obtained directly from computer simulation and have not

been adjusted for sampling phase error. '

Fig. 3.13 summarizes the QPSK probability of bit error performance. The

FSE-Volterra equalizer shows a small gain in performance relative to the FSE,

approximately 0.2 dB at Pb = 10~5. Also it is evident that the FSE and FSE-

Volterra obtain a significant improvement in performance (~1 dB at Pb = 10~5)

compared to the 5-tap linear equalizer following the receive filter. In this case,

the FSE-Volterra PJ, performance is approximately 0.3 dB away from theory.

For 8-PSK, Fig. 3.14 shows that the FSE-Volterra equalizer gain relative to

the FSE is better than for the QPSK case. The FSE-Volterra Pb performance is
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within 1 dB from theory and improves upon the FSE by 0.5 dB. The FSE gains

1 dB relative to the synchronous equalizer.

Fig. 3.15 illustrates that the FSE-Volterra Pb performance for 16-PSK is im-

proved approximately 3-dB relative to the FSE equalizer and is 2-dB away from

theory. The FSE gains over 1 dB relative to the synchronous equalizer. For this

case, it was found that the communications link was incapable of providing error-

less -communication, even without noise. Thus, linear equalization provided a sig-

nificant performance improvement. In addition, the noise level was low enough

such that Volterra equalizer could effectively remove some of the nonlinear distor-

tion without severely enhancing the noise.

Also, the pseudo-matched filter followed by a 9-tap T-spaced equalizer and

3-tap 3rd-order Volterra equalizer gives performance within 0.4 dB of the FSE-

Volterra equalizer. When the pseudo-matched filter curve is adjusted in order

to compensate for sampling-phase error, the difference in performance is approx-

imately 0.2dB. This illustrates that when the response of the channel filters is

known in advance, the FSE equalizer is not necessary (i.e., a pseudo-matched fil-

ter with a T-spaced equalizer gives similar performance).

3.4 Chapter Summary

This chapter has reviewed adaptive linear filter theory relevant to the un-

derstanding of the adaptive Volterra equalizer. The convergence of the adaptive

(LMS algorithm) Volterra equalizer was analyzed. It was found that the conver-
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gence rate is slower for the Volterra equalizer than for a linear device with an

equivalent length tapped delay line. Consequently, a multiple-step size adaption

method was employed which improved the convergence rate while maintaining

good MSE performance.

The MSE and probability of bit error performance was characterized for the

adaptive Volterra equalizer. It was found that a significant improvement in MSE

did not necessarily translate to a commensurate improvement in probability of

error. Also, an FSE-Volterra equalizer gives improved performance relative to

the Volterra equalizer when the receive filter is not matched to the channel. The

Volterra and FSE-Volterra equalizers give significant performance improvement

for multi-level (i.e., QAM) and modulation schemes which require high signal to

noise ratios. Also, the pseudo-matched filter followed by a T-spaced equalizer and

Volterra equalizer gives similar performance to the FSE-Volterra equalizer.
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Chapter 4

MLSD RECEIVERS FOR NONLINEAR SATELLITE CHANNELS

Forney [23] has shown that the optimum receiver for a linear channel with

ISI is a whitened matched filter followed by a nonlinear processor known as the

Viterbi algorithm [26]. A maximum-hkehhood receiver for binary sequences over

bandlimited nonlinear channels was derived by Campbell [21]. Benedetto et al.

[22] derived the optimal receiver for a nonlinear bandlimited satellite channel and

arbitrary modulation formats. Although the approach for deriving the receivers

in [22] and [21] differed, both have a similar structure; a bank of matched filters

followed by a Viterbi detector. In [21] a performance analysis was performed

for a typical satellite system. It was found, for binary sequences, the MLSD

receiver required an excess of approximately 1 dB of downlink SNR to equal the

performance of binary transmission over an AWGN channel. The performance

of the receiver derived in [22], however, was not evaluated for a specific satellite

channel. In this chapter, the performance of a matched filter bank Viterbi detector

(MFB-MLSD) receiver, as in [22], is evaluated for QPSK and 8-PSK satellite

channels.

Because of the matched filter bank, the MFB-MLSD receiver may be high

in complexity. Consequently, the performance of a suboptimal receiver, a single

receive filter followed by Viterbi detector (SF-MLSD), is also studied. The SF-

MLSD receiver represents the typical receiver where there is a single receive filter.

Since the channels of the previous chapter employed a single receive filter, the
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SF-MLSD probability of error performance serves as a lower bound to that of the

Volterra and linear equalizers, where the linear equalizers follow a fixed receive

filter. Furthermore, the MFB-MLSD lower bounds the probability of error perfor-

mance of the SF-MLSD receiver and the FSE-Volterra equalizers of the previous

chapter.

In order to minimize the effects of nonlinear distortion, it is typical to trans-

mit rectangular pulse shapes through satellite channels. However, because of the

satellite filters, this may result in a net signal loss. It may be advantageous to

transmit bandlimited signals, such as signals with a square root raised-cosine pulse

shape. It is found that a nonlinear bandlimited satellite channel which employs

square root raised-cosine pulse shapes with a SF-MLSD receiver gives little per-

formance loss relative to the same system with an MFB-MLSD receiver. Also, the

performance of the MFB-MLSD receiver for the case of square root raised-cosine

signals indicates that non-constant envelope signals through nonlinear satellite

channels are capable of giving performance close to that of the AWGN channel.

The complexity of the MFB-MLSD receiver, specifically the filter bank, grows

exponentially with the memory of the communications channel. Consequently,

both rectangular and square root raised-cosine pulse shapes are considered, with

the goal of minimizing the channel memory. It is found that for high excess

bandwidth (i.e., 100%) the square-root raised cosine pulse shape results in minimal

channel memory. Lower amounts of excess bandwidth result in larger memory.
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The organization of this chapter is as follows. First, two representative nonlin-

ear satellite channels and associated parameters are described. These systems will

be referenced throughout this chapter. Next, an SF-MLSD receiver is described

followed by a brief description of the Viterbi algorithm. The Viterbi algorithm

discussion will be useful when describing the relationship between the Viterbi al-

gorithm path metric calculations and the matched filter bank of the MFB-MLSD

receiver. Pulse shaping and its effect on channel memory is then discussed. Next,

a log-likelihood development of the MFB-MLSD receiver, as in [22], is reviewed.

Next, the probability of error performance of these MLSD receivers is evaluated

via computer simulation and calculation of dmin. The method of calculating dmin,

as in [22], is also described. The calculation of d^n and the computer simula-

tion employ state machine models of the communications channels as described

in Chapter 2.

4.1 Satellite Channel Configurations

The discussion and analysis in this chapter will reference two representative

nonlinear satellite communication systems. The first system is similar to those of

the previous chapter which employed rectangular transmit and receive filters. The

second system employs square root raised-cosine filters. The first system has the

disadvantage of signal loss due to the satellite filters. For the second system, it is

assumed that the transmitted signal spectrum fits sufficiently inside the satellite's

filters. Thus, for this case the signal is unaffected by the pre- and post-filters and
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there is no signal loss. For both systems, when an SF-MLSD receiver is employed,

the receive filter is matched to the transmitter. The systems are described in more

detail in the following paragraphs.

System I is identical to the channel studied in the previous chapter. That

is, the satellite pre- and post-filters are 6th order butterworth with a 3 dB cutoff

frequency of 0.75 Rs, where the symbol r Rs = 1/T , and T is the symbol interval.

The TWT is driven at 0 dB backoff. The transmit filter has a rectangular pulse

shape (i.e., hr(t] — 1, 0 < t < T). The study of this system is interesting since the

performance results of the SF-MLSD and MFB-MLSD receivers may be compared

to the performance results of the previous chapter.

System II employs a square root raised-cosine pulse shape at the transmitter

with 100% excess bandwidth. For this channel, the satellite pre- and post-filters

are replaced with wires. The TWT is driven at 0 dB backoff. System II is

unrelated to System I. For example, it is not assumed that a signal of 100% excess

bandwidth is unaffected by filters with a 3 dB cutoff frequency of 0.75 Rs. It is

interesting to study this system since the performance of the MFB-MLSD receiver

will indicate the performance of an optimum receiver for non-constant modulus

signals through a nonlinear satellite channel. The performance of the SF-MLSD

receiver for this channel will indicate the performance of a practical receiver for

this system configuration.
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Figure 4.1. Satellite communication system with SF-MLSD receiver.

4.2 Single Filter MLSD Receiver

The SF-MLSD receiver is shown in Fig. 4.1. The input to the transmit-

ter is the information sequence {an}, where an. € {0,1,..., M ~ 1} , and M is

the symbol set size. The waveforms h(t,0n,crn} are defined as in Section 2.3.

The inputs to the detector {7^} are the sampled outputs of the receive filter

hji(t). The noise w(t) is assumed to be an AWGN process. Also, the receive

filter /i/j(i) is matched to the transmitter, as is typical in satellite communica-

tion systems. If the information sequence ajy = {o;n]an_i,... ,an_Ar+i} is de-

termined to be the maximum-likelihood transmitted sequence given that the se-

quence 7^ = {7n,7n-i, • • • ,7n-AH-i} was received, then the output of the Viterbi

detector is an-d = &n-d, where d is the decoding delay.

The following subsections discuss two important elements associated with

the SF-MLSD receiver of Fig. 4.1. First, the Viterbi algorithm is discussed with

respect to the nonlinear satellite channel. The complexity of the Viterbi algorithm

is determined by the number of states assumed by the communications channel

and the path memory. However, the path memory is directly proportional to the

memory of the communications channel. Consequently, the effect of the pulse
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shape on the communications system memory is then discussed. This includes

evaluating the communication system memory for rectangular and raised-cosine

pulse shapes.

4.2.1 The Viterbi Algorithm

The Viterbi algorithm [26] was developed for decoding of convolutional codes

arid later employed for detecting of ISI sequences [23, 43, 44]. Here, the Viterbi

algorithm is discussed in the context of the satellite communications model of Fig.

4.1.

Suppose that the sequence 7^ of N (N large) detector inputs is received and

the communication system has a memory of L symbols. The receive filter output

sample is given by

7n = Sn + 77n (4-1)

where sn is the output of the satellite channel filtered by the receive filter and

sampled at time nT. The noise sample r]n is obtained by filtering the noise process

w(t) and sampling. Since in this work /&#(£) is either a rectangular filter or a

square root raised-cosine filter, the noise samples rjn at the output of the receive

filter are independent.

The objective of the MLSD receiver is to choose the sequence

a = {onion_1, ..., on-jv+i} (4.2)

which maximizes the conditional probability density (or likelihood) function

= P[7n, 7n-li • • • i 7n-JV+l|On, On-1, • • • , On-AH-l] (4-3)
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Figure 4.2. Trellis diagram for communications system with M = 2 and L = 2.

which is the probability of the receive filter output sequence conditioned on the

input sequence. This is known as the maximum-likelihood criterion. Because the

noise samples at the output of the receive filter are independent, the likelihood

function (4.3) can be expressed as a product of marginal densities
N-l

= II P(7n-fcK-fc, On-fc-1, . . - , On-fc-Z,) (4-4)

N-l

II
fc=0

Since the noise process w(t) is assumed to be AWGN, the objective of the de-

tector reduces to choosing the sequence a which minimizes the Euclidean distance

to the received sequence 7. That is, choose a such that the squared Euclidean

distance

d2(7, s) = JTfrn-* - *(an_fc, Vn-k}? (4-5)

is minimized, where s(on, (fn] is the noiseless input to the detector given that the

data sequence a was transmitted and the state of the channel is an with input On,

and an = {an_i, On_2, . . . , On-iJ-

As discussed in Section 2.3 (FSM model), a communications channel with a

memory of L symbols has ML states. Such a system may be described as a trellis
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with M paths entering and leaving each state. For example, Fig. 4.2 illustrates

a 4-state trellis with M = 2 and L = 2. The labels on each branch of the trellis

indicate the output of the satellite channel followed by the input. For example,

the label on the branch from state 00 to state 10 indicates that when the system

is in state 00 and an input symbol 1 is transmitted, the system goes to state 10

with an output -0.9 volts.

-The Viterbi decoder utilizes the trellis structure to efficiently provide a max-

imum-likelihood estimate a of the transmitted sequence from which an estimate

On-d of the transmitted symbol is derived. At each stage k of the trellis, a branch

metric

6(an_fc, <pn-k) = (7n-fc - S(0n-fc, <f>n-k))2 (4.6)

is calculated for each branch exiting a particular state at stage k of the trellis.

The branch metric is then added to the path metric pm^ corresponding to state

m and stage fc. Next, the path entering each state with the smallest path metric

is retained and the remaining paths are discarded. Since for two or more paths

entering a particular state the paths will be identical from that point forward,

a maximum-likelihood decoder may discard all paths entering a state, except

the path with the smallest metric, without loss in performance. The number of

decoding stages, d, required for near optimum performance is approximately 5L

[17]. After d decoding stages the path with the minimum path metric determines

the maximum likelihood estimate dn_d .
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Table 4.4. State table for System I with rectangular receive filter.

On

0

0

0
0
0
0
0
0
0
0
0
1
0
0

0"n

0
0
0
0
0
0
0
0
0
0
1
0
0
0

0
0
0
0
1
2
3
0
0
0
0
0
0
0

0
1
2
3
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
2
3
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1

output real
-0.735
0.487
-0.804
0.517
-0.849
-0.689
-0.787
-0.434
-0.840
-0.461
-0.701
-0.737
-0.730
-0.744

output imag.
-0.756
-0.809
0.534
0.515
-0.743
-0.857
-0.810
-0.841
-0.371
-0.421
-0.775
-0.748
-0.761
-0.747

4.2.2 Pulse Shaping and Channel Memory

Because the satellite channel is bandlimited, this leads to a communication

system with memory. The channel memory may be assessed by looking at the

state table description of the communications channel. Table 4.4 contains a par-

tial listing of the state table for a satellite channel with rectangular receive and

transmit filters as in System I. Since this table is for QPSK modulation, the sym-

bols, Ojj, and state, <rn={an_i, 0^2, . . . , On-e} , entries are elements from the set

{0,1,2,3} . The last two columns indicate the real and imaginary discrete-time

outputs for the given state and input.

This table illustrates the effects of the three past and three future symbols on

the center symbol, an_3. The symbol 0^3 determines the quadrant for the output

of the particular input-state combination, and as in section 2.3.2 it will be called
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the "punctual symbol." It is evident from the table that the input-state entries

in the table with 0^-3 = 0, 1, 2, 3, map to quadrants III, IV, II, I, respectively.

The first row indicates that the output for an information symbol 0 preceded by

three information symbols of 0 and followed by three information symbols of 0 is

—0.735 — j'0.756. Row number five illustrates that the output for an information

symbol 0 immediately preceded by an information symbol 1 is —0.849 — jO.743.

The distance between these points is 0.115. Using the first row as a reference,

then the preceding information symbol of 1 affected the 0 .input-state (row no. 1)

by 101og10 O.IIS/V^J = -18.8 dB, where the symbol energy Et = l .

Studying the complete state table, the worst case effect of past and present

symbols may be determined. Table 4.5 lists the worst case effect for past and

future symbols, where Lp indicates a symbol Lp symbols in the past and L/ is

defined similarly for future symbols. To measure the effect of a given symbol o.j on

the punctual symbol Op, we fix the values of the symbols surrounding aj (including

Op), then vary Oi over all possible symbols, {0, 1, . . . , M — 1}. As we vary Oj, we

measure the maximum difference, m^, between all possible pairs of the M output

levels corresponding to the Cj's. Then, the effect £// on the punctual symbol is

defined as

(4.7)

The largest effect (i.e., worst case effect) is then obtained by considering all pos-

sible combinations of surrounding symbols, and choosing the maximum m^. This
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Table 4.5. Channel memory for System I.

LPI
2
3

Lf
1
2

£//
< -10.6 dB
< -16.2 dB
< -26.6 dB

£ft
< -3.72 dB
< -29.1 dB

Table 4.6. State table for raised-cosine filtering

in
0
0
0
0
0
0
0
0
0
0
1
0

state
0
0
0
0
1
2
3
0
0
0
0
0

0
1
2
3
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
2
3
0
0

0
0
0
0
0
0
0
0
0
0
0
1

output real
-0.735
0.621
-0.774
0.538
-0.715
-0.745
-0.686
-0.721
-0.747
-0.681
-0.732
-0.738

output imag.
-0.749
-0.710
0.640
0.624
-0.768
-0.709
-0.697
-0.769
-0.709
-0.696
-0.759
-0.754
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table illustrates that the significant channel memory is approximately two past

symbols and one future symbol.

Table 4.6 contains a partial state table listing for a satellite communication

system where the receive and transmit filters are square root raised-cosine as in

System II. In this case, the punctual symbol is On-i- A lesser amount of excess

bandwidth results in increasing the channel memory. For example, the square

root raised cosine pulse shape is illustrated hi Fig. 4.3. Because of the higher side

lobes, a pulse with a smaller amount of excess bandwidth is affected more strongly

by the nonlinearity and consequently influences neighboring symbols by a greater

amount. Table 4.7 lists the worst case effect for past and future symbols for this

channel. The significant channel memory is one past and one future symbol. In a

similar fashion, it has been determined that the memory for a system using pulses

with excess bandwidth of 50% is two past and two future symbols.

State tables similar to Tables 4.4 and 4.6 with L/ = 1, Lp = 2, and L/ = 1,

Lp = 1, respectively, are used to simulate the performance of System I and System

II hi Section 4.4. This will be discussed further hi Section 4.4.

4.3 Matched Filter Bank MLSD Receiver

The MFB-MLSD receiver is shown hi Fig. 4.4. As in the SF-MLSD case, the

input to the transmitter is the information sequence {on}, where On € {0,1,...,

M — 1} and M is the symbol set size. The receiver consists of a filter bank with

a filter matched to each chip h(t, On, an) out of the satellite channel.
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Figure 4.3. Square root raised-cosine pulse shapes.

Table 4.7. Channel memory for raised cosine filtering

Lp

1
2

Lf
1
2

£ff
< -16.6 dB
< -24.8 dB

£ff
< -16.6 dB
< -24.8 dB
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Figure 4.4. Satellite communication system with MFB-MLSD receiver.

Below, the MFB-MLSD receiver is developed using log-likelihood functions.

Next, the relationship between the Viterbi algorithm path metrics and matched

filter bank is described.

4.3.1 The Matched Filter Bank MLSD Receiver Derivation

The log-likelihood development of the MFB-MLSD receiver follows that of

[22, ch. 10]. The objective is the maximum-likelihood detection of the finite

sequence of symbols

a = {ayy-i, a;v-2, . . . , OQ} , (4.8)

where in order to simplify the notation in the following development, n as in (4.2)

corresponds to N — 1. The detection process is based on the observation of the

waveform
N-l

- nT, ̂  an] + w(t} (4.9)
n=0

where N » L, L is the symbol memory, the state <jn = {on-i, • • •, OH-L}, and

w(t) is an AWGN process. The chips h(t, On, crn) are defined as in Section 2.3.
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The log-likelihood function, may be derived with methods similar to those in [45,

ch. 4] for the "M-hypothesis" case and is given by [22]6

2 ( rNT 1 1 rN?
li = W n \ L 8*® r® d t \ -wL M*)!*' (4-1Q)./Vo [JQ J 1\Q JQ

where Si(t] is the noiseless transmitted waveform given that the sequence a; =

a .̂! aiv_2 , . • • , OQ\ was sent, and is given by
N-l

n=0

Tfie decision rule involves setting a = a^ whenever the log-likelihood function k

is maximum for i = k. Recalling that h(t, an, an] is nonzero only over the interval

[0,T), substituting (4.11) in (4.10), and after straightforward manipulations, the

likelihood function becomes

2 (N

A/oM;
(n+l)T

n dt .(4.12)

Denning the functions

/•(n+l)T , . . .
Z«, <) = J^ h* (t - nT, <, <) r (t) A, and (4. 13)

£«,*i) = jf |M*X,*n)|2*, (4.14)

and substituting uito (4.12) yields

,<). (4-15)-
0 n=0 0 71=0

5(ajj, cr^) is the energy hi the chips h(t, al
n, cr^). Z(at

n,crl
n) can be obtained as

the response, sampled at tune (n + 1)T, of a filter matched to h (t, a^, al
n}. This

6The M in "M-hypotheses" is not related to the signal set size.

85



implies that the number of matched filters required is ML+l, which is the number

chips h(t,an,an).

Multiplying k by —No, we obtain a new likelihood function

It = -
n=0 n=0

The decision rule involves setting a = a^ whenever the log-likelihood function

/t, given by equation (4.16), is minimum for i = k. A brute force method for

minimization of (4.16) would require evaluating all MN choices for the sequence

aj. Alternatively, since the relationship between the elements of the sequence a,

may be described by a finite-state machine, the Viterbi algorithm can efficiently

provide the maximum-likelihood estimate a. A program which calculates the

path metrics according to equation (4.16) based on a state table description of

the channel is listed in Appendix A.

4.3.2 The Matched Filter Bank and Viterbi Algorithm

As indicated above, the Viterbi algorithm can efficiently provide a maximum-

likelihood estimate of the transmitted sequence a. Also, the Viterbi algorithm was

previously described in the context of the SF-MLSD receiver. In the case of the

MFB-MLSD receiver, in order for the Viterbi algorithm to properly detect the

sequence a, it is necessary for the appropriate matched filter output sample to be

used in the calculation of the path metrics. From the previous discussion of the

Viterbi algorithm the branch metrics were given by equation (4.6). In this case,

the branch metric for the branch leaving state crl
n_k with input al

n_k is given by a
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Figure 4.5. Communication system simulation model.

similar expression

£«-*,<-*), (4-17)

where Z(al
n_k, ol

n_k) is the output of the filter, sampled at time (n + 1)T, matched

to h(t, dn_k, <Tn-k)- That is, the metric for the branch leaving state a£_fc with input

a^_fc uses the output of the filter matched to the corresponding chip.

4.4 Probability of Error Performance

The probability of error (Pe) performance for the SF-MLSD and MFB-MLSD

receivers is evaluated by calculating the minimum distance between channel se-

quences (c^min) and by computer simulation. The minimum distance between chan-

nel sequences is derived from the state table description of the channel. For the

MFB-MLSD receiver a program which reads the state table and calculates dmin is

listed in Appendix A.

Fig. 4.5 illustrates the simulation model. For the systems with an SF-MLSD

receiver, the FSM model, as described in section 2.3.2, is used to generate the

channel outputs. Discrete noise samples are then added to the channel outputs.

Since in the SF-MLSD case the output of the channel consists of one sample per
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symbol, n = n in the figure. The MLSD receiver uses the same state table, as

in the transmitter, for calculating the path metrics. The receiver then provides

the maximum-likelihood estimates an-d- For the systems with an MFB-MLSD

receiver, the FSM model, as described in section 2.3.3, generates the oversampled

channel outputs. Discrete tune noise samples r]ni axe then added to the channel

outputs. The MFB-MLSD receiver then updates the matched filter bank output

at^the end of each symbol period, calculates the path metrics, and provides the

estimate &„_<*. As in the previous case, the MFB-MLSD receiver uses the same

state description of the channel as the transmitter. A program for simulating

the nonlinear bandlimited satellite channel, as in Fig. 4.5, with an MFB-MLSD

receiver is listed in Appendix A.

4.4.1 Calculation of dmin

An upper bound for the probability of symbol of error may be obtained using

dm\n, defined as the minimum Euclidean distance between channel sequences. The

nonlinear satellite channel is equivalent to a nonlinear transmitter with memory.

This nonlinear transmitter nonlinearily encodes the information sequence, and

the distance between the resulting "codewords" determines the probability of er-

roneously detecting a received sequence. As in the case of error control codes, the

probability of error for the nonlinear ISI channel is bounded above by the proba-

bility of choosing an incorrect sequence that lies at the minimum distance away



from the correct sequence:7

where a2 is the variance of the noise at the input to the detector. Also, (4.19)

assumes independent Gaussian noise samples at the input to the detector.

For the nonlinear satellite channel with memory, finding rfmin requires exhaus-

tive search between all pairs of received symbol sequences. The distance structure

from an all zeros path is not sufficient because, unlike the linear situation, the dis-

tance spectrum is not identical for every sequence. Since for the typical satellite

channel the memory is short (e.g., Tables 4.6 and 4.7), a brute force approach to

calculating rfmin may be possible. With higher order modulations (i.e., large M),

however, the brute force method may still be prohibitive.

An efficient algorithm for calculating dmjn is given by Saxena [46] and Mulligan

and Wilson [47], and a step by step description is given in [22, ch. 10]. A

brief description of the algorithm is given here. For a communication system

with modulation order M and memory L, the algorithm requires updating of

an ML by ML matrix D(n\ The elements $f of the matrix D(n) represent the

squared minimum distance between all pairs of paths diverging from some initial

7The bound is precisely given by

**£"'«(£)• (418)
d

where Nd is the average number of sequences at a distance d. For large values of signal to noise ratio,

the dominant error term is the one containing dmin • We conjecture that Ndmin is on the order of 1 and

possibly 2 as for M-PSK modulation, where -/Vdmin is the average number of sequences at a distance

"min •
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Table 4.8. Dmin values.

System
SF-MLSD QPSK

MFB-MLSD QPSK
SF-MLSD 8-PSK

MFB-MLSD 8-PSK

4un (ret)
1.125
1.222
0.566
0.639

cUn (sqrc)
1.327
1.39

0.684
0.747

state and passing at the nth tune instant through states Si and Sj. The main

diagonal represents paths which have merged, and the off diagonal terms represent

rnuiimum distances between diverged paths which have not yet merged.

The elements 6^ of D^ are set to the minimum distance between all pairs

of paths (Si, Sj) which have diverged from the same initial state and reaching the

states Si and Sj in one step. The algorithm then proceeds iteratively where at

each step (i.e., n = 2, 3, . . .) the elements of D^ are updated according to the

minimum distances of paths which have diverged and have reached states Si and

Sj at time n. The entry 8\j is obtained by finding the predecessor path from the

M2 paths at the (n — l)th time instant which pass through the states Si and

Sj at the nth time instant, tfj™ is then the minimum squared distance obtained

by accumulating the incremental distance from the predecessor states to states

Si and Sj. When the off diagonal terms are all greater than the main diagonal

terms then there are no paths which can merge which have a smaller muiimum

distance than the already merged paths. This is where the algorithm stops and

the minimum distance is set to the smallest diagonal entry

The minimum distances were calculated for systems with SF-MLSD and

MFB-MLSD receivers and are listed hi Table 4.8 with rectangular (ret) and square

= tnin
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root raised-cosine (sqrc) filters. As expected the MFB-MLSD receivers have dm-m

greater than the corresponding SF-MLSD receivers. Also, the systems with square

root raised-cosine filters have larger dmin than the corresponding systems with

rectangular filters.

4.4.2 Computer Simulation Results

' Figs. 4.6 and 4.7 illustrate the performance of SF-MLSD and MFB-MLSD

receivers for System I, respectively. The symbol error performance for Q-PSK and

8-PSK are plotted and compared to the upper bound obtained by evaluating (4.19)

using the appropriate entry from Table 4.8. For System I with QPSK and 8-PSK

modulation, the SF-MLSD receiver is approximately 0.75 dB and 1 dB below the

upper bound and 1 dB and 1.5 dB above theory at Pe = 10~5, respectively. For

System I with the MFB-MLSD receiver, the performance is approximately 0.5 dB

above theory for both QPSK and 8-PSK modulation.

Fig. 4.8 compares the performance of the SF-MLSD receiver to the perfor-

mance obtained from an adaptive equalizer followed by a symbol by symbol de-

tector for System I. Other than the receiver (the receiver includes the receive filter

and detector), the systems are identical, however they both have rectangular re-

ceive filters. Recall that the 5-tap linear equalizer was the best performing equal-

izer (i.e., in the probability of error sense) for the systems of Fig. 4.8 and, of the

8-PSK equalizers, the 7-tap linear with 3-tap 3rd-order equalizer gave the best per-

formance. In this case, the SF-MLSD receiver provides the maximum-likelihood
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Figure 4.6. Performance of SF-MLSD receiver for System I.
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Figure 4.7. Performance of MFB-MLSD receivers for System I.
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Figure 4.8. Performance of SF-MLSD receiver compared to adaptive equalizers
for System I.

estimate and therefore a lower bound. For QPSK and 8-PSK, Pe = 10~5, the

performance of a T-spaced adaptive equalizer is above the lower bound by ap-

proximately 0.75 dB.

Fig. 4.9 compares the performance of the MFB-MLSD receiver to the FSE-

Volterra equalizers for System I. For QPSK modulation the FSE Volterra equal-

izer, 10-tap T/2 FSE followed by 3-tap 3rd-order Volterra, gives performance ap-

proximately 0.1 dB above the lower bound provided by the MFB-MLSD receiver.

The lower bound is approximately 0.5 dB above theory. For 8-PSK, the FSE-

Volterra equalizer, 14-tap T/2 FSE followed by 3-tap 3rd-order Volterra, gives

performance approximately 0.75 dB above the lower bound which is 0.5 dB above

theory. Although the MFB-MLSD receiver may be unpractical (i.e., the 8-PSK
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Figure 4.10. Performance of SF-MLSD and MFB-MLSD receivers for System II.
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Figure 4.11. The affect of Viterbi detector path memory on probability of sym-
bol error performance.

MFB-MLSD receiver has 4,096 matched filters), these results illustrate the useful-

ness of the MFB-MLSD receiver for bounding the performance of other receivers.

Fig. 4.10 compares the performance of SF-MLSD and MFB-MLSD receivers

for System II. In the case of QPSK, the MFB-MLSD receiver gives performance

approximately 0.25 dB away from theory. For this case, the SF-MLSD receiver has

a performance loss of approximately 0.3 dB relative to the MFB-MLSD receiver.

In the case of 8-PSK, the MFB-MLSD receiver gives performance approximately

0.3 dB above theory, and the SF-MLSD receiver has a performance loss approx-

imately 0.4 dB relative to the MFB-MLSD receiver. The MFB-MLSD receiver

results for System II illustrate that it is possible to obtain probability of symbol
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error performance very close to theory for non-constant modulus signals through

a nonlinear satellite channel.

Fig. 4.11 compares the performance of Viterbi detector path memory length

for SF-MLSD and MFB-MLSD receivers. The curves hi the figure are for System

II. For QPSK modulation and the MFB-MLSD receiver there is a small perfor-

mance loss for a path memory of 2 compared to a path memory of 10. The results

are ^he same for &-PSK and the SF-MLSD receiver. Similar results have been

noticed for the other system-receiver combinations. This may be useful for sim-

plifying the receiver implementation.

4.5 Chapter Summary

This chapter has described the SF-MLSD and MFB-MLSD receivers and

their performance. The Viterbi algorithm, which efficiently provides a MLSD

estimate, was discussed in the context of the nonlinear satellite channel with

memory. Next, the symbol memory was characterized for a bandlimited satellite

channel using rectangular and raised-cosine filtering. It was found that the symbol

memory increased for systems using raised-cosine filtering with small amounts of

excess bandwidth. Next, a log-likelihood development of the MFB-MLSD receiver,

as in [22], was presented. Also, for the MFB-MLSD receiver, the relationship

between the matched-filter bank and calculation of the path metrics for the Viterbi

algorithm was described.
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The probability of error performance of the MFB-MLSD and SF-MLSD re-

ceivers was then analyzed. First, a method of deriving the minimum distance

between ISI code sequences was described. Next, the minimum distance calcula-

tions for QPSK and 8-PSK systems which employed SF-MLSD and MFB-MLSD

receivers were reported. As expected, the systems with MFB-MLSD receivers had

a smaller minimum distance. Also, the systems with square root raised-cosine ni-

ters had larger dmin than the corresponding systems with rectangular filters.

The probability of error for the receivers was then obtained via Monte-Carlo

computer simulation. First, it was verified that the performance obtained from

computer simulations was below the upper bound calculated from dm{n. Next,

the performance of the MLSD receivers was compared to systems with adaptive

equalizers. The MLSD receivers provided a lower bound for the probability of

error performance of the adaptive equalizers, and helped gauge the performance

of the adaptive equalizers. Finally, the performance of the MFB-MLSD receiver

for System II indicate that it is possible to obtain performance near theory for

non-constant modulus signals through nonlinear satellite channels.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

This dissertation has evaluated the performance of several receiver-based

methods for mitigating the effects due to nonlinear bandlimited signal distortion

present in high data rate satellite channels. The results of this dissertation may

serve as a baseline for the evaluation of more complex structures based on the

receiver structures evaluated in the dissertation. In addition, the performance re-

sults can help gauge the performance of hardware implementations of the receivers

evaluated in the dissertation . Below, the results of each chapter are summarized

and suggestions for future work are given.

5.1 Summary and Conclusions

Chapter 1 gave an overview of the dissertation and the necessary background

regarding communications by satellite. Included was a discussion of a satellite's

communication subsystem for a typical communications satellite. The communi-

cation subsystem was then simplified and a baseband equivalent model for evalua-

tion of a satellite communications channel was presented. Next, the effects of the

nonlinearity and bandlirniting on the digitally modulated data was demonstrated.

Finally, a literature review of compensation methods for nonlinear distortion in

various types of communication systems was presented.

In Chapter 2, various discrete-time equivalent models for efficiently evaluat-

ing the performance of the nonlinear bandlimited satellite channel were discussed.
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First, the low-pass discrete-time equivalent model for a passband communication

system was reviewed. Next, beginning with the low-pass equivalent Volterra series,

a lucid development of the low-pass Volterra discrete-time model for a nonlinear

satellite communications channel was presented. The resulting model is a polyno-

mial expression relating an output symbol at discrete time n to the input symbols.

Deriving this model for a particular channel is computationally intensive.

- A FSM has previously been suggested for modeling a nonlinear satellite chan-

nel. The last Section of Chapter 2 specifically developed a FSM model for the

nonlinear bandlimited satellite channel. Two special cases were considered: SF-

MLSD and MFB-MLSD receivers. In contrast to the discrete-time Volterra model,

the FSM model is easily derived. However, it may require a large amount of mem-

ory for storing the state machine. Despite the possibly large memory requirement,

the FSM models are more efficient (i.e., computationally) than the Volterra model.

Nonlinear Volterra equalizers have previously been studied for equalization

of nonlinear bandlimited signal distortion due to a noiseless satellite channel.

However, the performance of adaptive Volterra equalizers has not been evaluated

for a specific satellite channel. In Chapter 3, performance of nonlinear adaptive

Volterra equalizers for mitigating the effects of nonlinear bandlimited signal dis-

tortion were studied for a nonlinear bandlimited satellite communications channel.

First, the chapter reviewed adaptive linear filter theory which is important to the

understanding of the adaptive Volterra equalizer. The convergence of the adaptive

Volterra equalizer, which used the LMS algorithm for weight adaption, was then
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analyzed. It was found that the convergence rate is slower for the Volterra equal-

izer than for a linear device with an equivalent length tapped delay line. Con-

sequently, a multiple-step size adaption method was employed which improved

the convergence rate while maintaining good MSE performance. Also, the MSE

and probability of error performance was characterized for the adaptive Volterra

equalizer. It was found that a significant improvement in MSE did not necessarily

translate to a commensurate improvement in probability of error.

Also in Chapter 3, the salient characteristics of an FSE were reviewed and

contrasted to those of the synchronous equalizer. Because of aliasing in the fre-

quency spectrum, a synchronous equalizer is limited in its ability to mitigate the

effects of nonlinear ISI. However, the FSE acts as an analog filter and can perform

the combined functions of the receive filter and equalizer. It was found that an

FSE-Volterra equalizer gave improved performance relative to the Volterra equal-

izer when the receive filter is not matched to the channel. The Volterra and FSE-

Volterra equalizers give significant performance improvement for multi-level (i.e.,

QAM) and modulation schemes which require high signal to noise ratios. Also, it

was found that the pseudo-matched filter followed by a T-spaced linear equalizer

and Volterra equalizer gave similar probability of error performance as compared

to the FSE-Volterra equalizer. This latter result indicates that when the channel

niters are known a priori the FSE equalizer is not necessary.

In Chapter 4, the SF-MLSD and MFB-MLSD receivers were described and

their probability of error performance was characterized for two representative
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satellite channels. First, the Viterbi algorithm, which efficiently provides a MLSD

estimate, was discussed in the context of the nonlinear satellite channel with

memory. Next, the symbol memory was characterized for a bandlimited satellite

channel using rectangular and raised-cosine filtering. It was found that the symbol

memory increased for systems using raised-cosine filtering with small amounts of

excess bandwidth. A log-likelihood development of the MFB-MLSD receiver, as

nx[22, ch. 10], was presented. Also, for the MFB-MLSD receiver, the relationship

between the filter bank and the Viterbi algorithm path metric calculations was

described.

Next, in Chapter 4, a method of deriving the minimum distance between

ISI channel sequences was described. The minimum distance for SF-MLSD and

MFB-MLSD receivers was then calculated. As expected, the systems with MFB-

MLSD receivers had a larger minimum distance relative to the corresponding SF-

MLSD system. Also, the systems with square root raised-cosine filters had larger

dmin than the corresponding systems with rectangular filters. The probability of

error for the receivers was then obtained via Monte-Carlo computer simulation.

First, it was verified that the performance obtained from computer simulations

was below the upper bound calculated from dmin. Next, the performance of the

MLSD receivers was compared to systems with adaptive equalizers. The MLSD

receivers provide a lower bound for the probability of error performance of the

adaptive equalizers, and helped gauge the performance of the adaptive equalizers.

Finally, the performance of the MFB-MLSD receivers for systems with square
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root raised-cosine filters indicate that it is possible to obtain performance close to

that of the AWGN.channel for non-constant modulus signals through nonlinear

satellite channels.

5.2 Suggestions for Further Research

The results presented in this dissertation were derived from computer sim-

ulation. In some cases, the performance of a particular receiver may justify a

hardware implementation. In the case of the Volterra equalizers, issues such as

precision and dynamic range would need to be studied before undertaking a hard-

ware development. In the case of the MLSD receivers, a hardware implementation

would require obtaining an accurate FSM model for an existing physical system.

In such a case, further research involving modeling an actual nonlinear bandlim-

ited satellite channel may be necessary.

Several areas of research are possible as an extension to the equalizers of

Chapter 3. Straightforward extensions to the adaptive Volterra equalizers are

possible. For example, nonlinear decision feedback and ISI cancellers have not

been studied for a satellite channel. However, these latter structures have been

considered for voiceband and magnetic recording channels [48 - 50]. The perfor-

mance results of the Volterra equalizer and FSE-Volterra equalizer can serve as a

baseline for comparison of the performance of decision feedback and ISI canceller

structures. Also, the MFB-MLSD receivers provide a lower bound on probability

of error performance.
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The MLSD receivers of Chapter 4 showed very good performance when used

with rectangular and raised-cosine filtering. However, for the nonlinear satellite

channel with memory, in order to implement an MLSD receiver a FSM model

of the channel (or an equivalent channel description) is necessary. For an actual

channel, obtaining such a description may not be possible. In such a case, an

adaptive MLSD receiver as in [51, .52] for linear channels may be useful. The

structure and performance of these receivers for the nonlinear channel would need

to be developed.

The methods discussed in this dissertation have been focused on the receiver.

However, methods which combine equalization and coding as hi [53] have recently

been studied for magnetic recording channels. These methods may also give sig-

nificant probability of error improvement for the nonlinear satellite channel. Also,

adaptive inverse modeling where the adaptive inverse filter is placed forward of

plant (i.e., pre-equalization) as in the filtered-x LMS algorithm [54, ch. 11] may

be useful for the nonlinear bandlimited satellite channel.

103



REFERENCES

[I] D. H. Martin, Communication Satellites 1958-1992, The Aerospace Corpo-
ration, El Segundo, CA 90245, 1991.

[2] G. Zorpette, "Sensing Climate Change," IEEE Spectrum, pp. 20-27, July
1993.

[3] A. C. Clarke, "Extraterrestrial Relays," Wireless World, pp. 305-308, Oct.
- 1945.

[4] M. J. Miller, B. Vucetic, and L. Berry, Satellite Communications Mobile and
Fixed Services, Kluwer Academic Publishers, Norwell, Mass. 1993.

[5] T. Pratt and C. W. Bostian, Satellite Communications, Wiley, New York,
NY, 1986.

[6] R. J. Schwarz and B. Friedland, Linear Systems, McGraw-Hill, New York,
NY, 1965.

[7] H. Stewart, "16-QAM Modems in Satellites," Communication Systems De-
sign, pp. 36-40, July 1995.

[8] M. Thomas, M. Y. Weidner, and S. H. Durrani, "Digital Amplitude-Phase
Keying with M-ary Alphabets," IEEE Trans. Commun., vol. COM-2, no. 2,
Feb. 1974.

[9] A. A. M. Saleh, "Frequency-Independent and Frequency-Dependent Nonlin-
ear Models of TWT Amplifiers," IEEE Trans. Commun., vol. COM-29, pp.
1715-1720, Nov. 1981.

[10] S. Pupolin and L. J. Greenstein, "Performance Analysis of Digital Radio
Links with Nonlinear Transmit Amplifiers," IEEE Journal on Selected Areas
in Commun,, vol. SAC-5, pp. 534-546, Apr. 1987.

[II] G. Karam and H. Sari, "Analysis of Predistortion, Equalization, and ISI
Cancellation Techniques hi Digital Radio Systems with Nonlinear Transmit
Amplifiers," IEEE Trans. Commun., vol. 37, no. 12, pp. 1245-1252, Dec.
1989.

[12] A. A. M. Saleh and J. Salz, "Adaptive Linearization of Power Amplifiers in
Digital Radio Systems," Bell Syst. Tech. Journal, vol. 62, no. 4, pp. 1019-
1033, April 1983.

[13] G- Karam and K. Sari, "A Data Predistortion Technique with Memory,"
IEEE Trans, on Commun, vol. 39, no. 2, pp. 336-344, Feb. 1991.

104



[14] S. K. Nair and J. Moon, "Nonlinear Equalization for Data Storage Channels,"
in Proc. of Int. Comm. Conf., pp. 250-254, 1994.

[15] M. Ibnkahla, F. Castanie, "Vector Neural Networks for Digital Satellite Com-
munications," in Proc. of Int. Comm. Conf., Seattle, WA, pp. 1865-1869,
June 1995.

[16] S. U. H. Quereshi, "Adaptive Equalization," Proceedings of the IEEE, vol.
73, no. 9, Sept. 1985.

[17] J.G. Proakis, Digital Communications, 2nd Ed., New York, NY, McGraw-Hill
1989.

[18] K. Wesolowski, "On the Performance and Convergence of the Adaptive Can-
- celler of Intersymbol Interference in Data Transmission," IEEE Trans, on

Commun., vol. COM-33, no. 5, pp. 425-432, May 1985.

[19] S. Benedetto, E. Biglieri, and R. Daffara, "Modeling and Performance Evalu-
ation of Nonlinear Satellite Links - A Volterra Series Approach," IEEE Trans,
on Aerospace and Electronic Systems, vol. AES-15, no. 4, pp. 494-507, July
1979.

[20] S. Benedetto and E. Biglieri, "Nonlinear Equalization of Digital Satellite
Channels," IEEE Journal on Selected Areas in Commun., vol. SAC-1, no. 1,
pp. 57-62, Jan. 1983.

[21] M. F. Mesiya, P. J. McLane, and L. L. Campbell, "Maximum Likelihood
Sequence Estimation of Binary Sequences Transmitted Over Bandlimited
Nonlinear Channels," IEEE Trans, on Commun., vol. COM-25, no. 7, pp.
633-643, July 1977.

[22] S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory.
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[23] G. D. Forney, Jr., "Maximum-Likelihood Sequence Estimation of Digital Se-
quences in the Presence of Intersymbol Interference," IEEE Trans, on Infor-
mation Theory, vol. IT-18, no. 3, May 1972.

[24] K. Konstantinides and K. Yao, "Modelling and Computationally Efficient
Time Domain Linear Equalisation of Bandlimited QPSK Satellite Channels,"
IEE Proceedings, vol. 137, pt. I. no. 6, pp. 438-442, Dec. 1990.

[25] R. D. Gitlin and S. B. Weinstein, "Fractionally-Spaced Equalization: An
Improved Digital Transversal Equalizer," Bell Syst. Tech. J., vol. 18, pp.
275-296, Feb. 1981.

[26] A: J. Viterbi, "Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm," IEEE Trans, on Information Theory, vol.
IT-13, pp. 260-269, Apr. 1967.

[27] T. Ericson, "Structure of Optimum Receiving Filters in Data Transmission

105



Systems," IEEE Trans, on Information Theory, vol. IT-17, pp. 352-353, May
1971.

[28] S. Haykin, Adaptive Filter Theory, 2nd Ed., Englewood Cliffs, NJ, Prentice-
Hall, 1991.

[29] B. Widrow, "Adaptive Filters," in Aspects of Network and System Theory,
ed. R.E. Kalman and N. DeClaris, Holt, Rinehart and Winston, 1970.

[30] B. Widrow and M. E. Hoff, Jr., "Adaptive Switching Circuits," IRE WESCON
Conv. Rec., pt. 4, pp. 96-104, Aug. 1960.

[31] B. Widrow, J. McCool, and M. Ball, "The complex LMS algorithm," Proc.
IEEE, vol. 63, pp. 719-720, April 1975.

[32]" R. W. Lucky, "Automatic Equalization for Digital Communications," Bell
Syst. Tech. J., vol. 44, pp. 547-588, April, 1965.

[33] R. D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communication Prin-
ciples, Plenum Press, New York, NY, 1992.

[34] J. E. Mazo, "On the Independence Theory of Equalizer Convergence," Bell
Syst. Tech. J., vol. 58, pp. 963-993, May-June 1978.

[35] M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Commu-
nication Systems, New York, NY, Plenum Press, 1992..

[36] M. Schetzen, "Theory of pth-Order Inverses of Nonlinear Systems," IEEE
Trans, on Circuits and Systems, vol CAS-23, no. 5, pp. 503-507, May 1975.

[37] W. G. Jeon, J. S. Son, Y. S. Cho, Y H. Lim, and D. H. Youn, "Nonlinear
Equalization for Reduction of Nonlinear Distortion in High-Density Record-
ing Channels.", in Proc. of Int. Comm. Conf., Seattle, WA, pp. 1865-1869,
June 1995.

[38] C. S. Modlin and J. M. Cioffi, "A Fast Decision Feedback LMS Algorithm
Using Multiple Step Sizes," in Proc. IEEE Int. Conf. on Comm., pp. 1201-
1205, May 1993.

[39] R. W. Harris, D. M. Chabries, and F. A Bishop, "A Variable Step (VS) Adap-
tive Algorithm," IEEE Trans, on Acoustics, Speech, and Signal Processing,
pp. 309-316, April 1986.

[40] W. B. Mikhael, F. H. Wu, L. G. Kazavsky, G. S. Kang, and L. J. Fransen,
"Adaptive Filters with Individual Adaption of Parameters," IEEE Trans, on
Circuits and Systems, vol. CAS-33, pp. 677-686, July 1986.

[41] Kr-H. Mueller, "A New, Fast Converging MS algorithm for Adaptive Equal-
izers with Partial Response Signaling," Bell Syst. Tech. J., Jan. 1975.

[42] E. Biglieri, M. Elia, and L. Lopresti, "The Optimal Linear Receiving Filter
for Digital Transmission Over Nonlinear Channels," IEEE Trans, on Infor-

106



mation Theory, vol. 35, no. 3, May 1989

[43] H. Kobayashi, "Application of Probabilistic Decoding to Digital Magnetic
Recording Systems," IBM J. Res. Develop., vol. 15, pp. 64-74, Jan. 1971.

[44] J. K. Omura, "Optimal Receiver Design For Convolutional Codes and Chan-
nels with Memory via Control Theoretical Concepts," Inform. Sci., vol. 3,
pp. 243-266, July 1971.

[45] H. L. Van Trees, Detection, Estimation, and Modulation Theory, part I,
Wiley, New York, NY, 1968.

[46] R. C. P. Saxena, Optimum Encoding in Finite State Coded Modulation, Re-
port TR83-2, Department of Electrical, Computer and Systems Engineering,

- Rensselaer Polytechnic Institue, Troy, N.Y., 1983.

[47] M. G. Mulligan and S. G. Wilson, "An improved algorithm for evaluating
trellis phase codes," IEEE Trans, on Information Theory, vol. IT-30, pp.
846-851, Nov. 1984.

[48] E. Biglieri, A. Gersho, R. D. Gitlin, T. L. Lim, "Adaptive Cancellation of
Nonlinear Intersymbol Interference for Voiceband Data Transmission," IEEE
Journal on Selected Areas in Commun., vol. SAC-2, no. 5, pp. 765-777, Sept.
1984.

[49] J.-H. Lin and C.-H. Wei, "Adaptive Nonlinear Decision Feedback Equal-
ization with Channel Estimation and Timing Recovery in Digital Magnetic
Recording Systems," IEEE Trans, on Circuits and Systems, vol. 42, no. 3,
pp. 196-205, March 1985.

[50] E. Biglieri, E. Chiaberto, G. P. Maccone, and E. Viterbo, "Compensation of
Nonlinearities in High-Density Magnetic Recording Channels, IEEE Trans,
on Magnetics, vol. 30, no. 6, pp. 5079-5086, Nov. 1994.

[51] G. Ungerboeck, "Adaptive Maximum-Likelihood Receiver for Carrier-
Modulated Data-Transmission Systems," IEEE Trans, on Commun., vol.
COM-22, no. 5, pp. 624-636, May 1974.

[52] F. R. Magee, Jr. and J. G. Proakis, "Adaptive Maximum-Likelihood Se-
quence Estimation for Digital Signaling in the Presence of Intersymbol Inter-
ference," IEEE Trans, on Information Theory, vol. IT-19, pp. 120-124, Jan.
1973.

[53] W. L. Abbott and J. M. Cioffi, "Combined Equalization and Coding for High-
Density Saturation Recording Channels," IEEE Journal on Selected Areas in
Commun., vol. 10, no. 1, pp. 168-181. Jan. 1992.

[54] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs,
NJ, Prentice-Hall, 1985.

107



A. Computer Program Listings

A.I. Volterra Equalizer Program

/* pskvltre.c - A C-program which interfaces with MATLAB */
/* for simulating a passband Volterra equalizer */
/* in baseband. MATLAB interfaces with this */
/* program via the GATEWAY routine. The */
/* GATEWAY routine then calls the computational */
/* ~ routine. */

#include <math.h>
înclude <stdio.h>
#include "c : \matlab\extern\include\mex .h"
#define pi 3.141593

/**** COMPUTATIONAL ROUTINE ****/
void pskvltre(

Matrix *x, Matrix *wi, int K,
Matrix *mssize, int M, int nltaps.char *aflag,
Matrix **y, Matrix **wo, Matrix **d, Matrix **s)

/*********************/
/* declare variables */
/*********************/

double X,Xr,Xi,Xtemp; /* misc variables */
int carry; /* variable for calc. weight idx */ .
int wrow.wcol; /* weight row and column var. */
int fig; /* flag all weights updated */
int Mw; /* number of rows in weight matrix */
int i, j ,k,l, dummy, NX, Neq.Ny; /* misc counters and max counts */
int nsymbol; /* samples per symbol*/
double *wPr,*wPi; /* output weight pointers */
double *dPr,*dPi; /* decision pointers */
double *xPr,*xPi; /* input pointer */
double *yPr,*yPi; /* output pointer */
double *wiPr,*wiPi; /* input weight pointer */
double *sPr; /* symbol pointer */
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double *mssizePr; /* step sizes pointer */
double err_r,err_i,err; /* error variables */
int *nidx; /* nl term index array */
double ssize; /* current step size */
int log2M; /* log2(M) */
int xidx; /* nl comb out matrix idx */
int nlwflag; /* no. of non lin weights */
int hinltap; /* hi index of non lin weights */
int lonltap; /* lo index of non lin weights */
double *Xr_mat; /* real NL comb output matrix */
double *Xi_mat; /* imag NL comb output matrix */
int order; /* current order variable */
double alphar[16],alphai[16] ; /* symbol real and imag */
int betal[16],beta2[16] ; /* bit assignment variables */
int betaS[16] ,beta4[16] ; /* bit assignment variables */

void pskdecnCint M,double yr,double yi,
double *alphar, double *alphai,
int *betal, int *beta2, int *beta3, int *beta4,
double *dr, double *di,
double *s);

/*************************************/

/* Prepare for Decision Making */
/* define symbol and bit assignments */
/*************************************/

if (M==4) {
alphar10]=l/sqrt(2.0);alphai[0]=l/sqrt(2.0); /* data=ll */
alphar[l]=-l/sqrt(2.0); alphai[l]=l/sqrt(2.0); /* 01 */
alphar[2]=-l/sqrt(2.0);alphai[2]=-l/sqrt(2.0);/* 00 */
alphar[3]=l/sqrt(2.0);alphai[3]=-l/sqrt(2.0); /* 10 */

. betal [0]=l;beta2[0]=l;
betal[1]=0;beta2[1]=1;
betal[2]=0;beta2[3] =0;
betal[3]=1;beta2[2]=0;
>
if (M==8) {
alphar[0]=0.9239;alphai[0] =0.3827;

- alphar[1]=0.3827;alphai[1] =0.9239;
alphar [2]=-0.3827;alphai[2] =0.9239;
alphar[3]=-0.9239;alphai[3]=0.3827;
alphar[4]=-0.9239;alphai[4]=-0.3827;
alphar[5]=-0.3827;alphai[5] =-0.9239;
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alphar[6]=0.3827;alpha![6]=-0.9239;
alphar[7]=0.9239; alpha![7]=-0.3827;
betal [0] =0; beta2 [0] =0; betaS [0] =0;
betal[1]=0;beta2 [1]=0;beta3[1]=1;
betal[2]=0;beta2[2]=1;betaS[2]=1;
betal[3]=0;beta2 [3]=1;betaS[3]=0;
betal [4] =1; beta2 [4] =1 ;beta3 [4] =0;
betal [5] =l;beta2 [5]=1; betaS [5] =1;
betal[6]=1;beta2 [6]=0;betaS[6]=1;
betal[7]=1;beta2[7]=0;betaS[7] =0;
>
if (M==16) {

alphar[0]=0.9808;alpha![0] =0.1951;
alphar [1]=0.8315;alpha![1]=0.5556;
alphar[2]=0.5556;alpha![2]=0.8315;
alphar[3]=0.1951; alpha![3]=0.9808;
alphar[4]=-0.1951;alpha![4]=0.9808;
alphar[5]=-0.5556;alpha![5]=0.8315;
alphar[6]=-0.8315;alpha![6]=0.5556;
alphar[7]=-0.9808; alpha![7]=0.1951;
alphar[8]=-0.9808;alpha![8]=-0.1951;
alphar [9] =-0.8315; alpha! [9] =-0.5556;
alphar [10] =-0.5556; alpha! [10] =-0.8315;
alphar [11] =-0.1951; alpha! [11] =-0.9808;
alphar [12] =0.1951; alpha! [12] =-0.9808 ;
alphar [13] =0.5556; alpha! [13] =-0.8315;
alphar [14] =0.8315; alpha! [14] =-0.5556;
alphar[15]=0.9808;alpha![15]=-0.1951;

betal [0] =0; beta2 [0] =0; betaS [0] =0;beta4 [0] =0;
betal [1] =1; beta2 [1] =0; betaS [1] =0; beta4 [1] =0;
betal [2] =1; beta2 [2] =1; betaS [2] =0; beta4 [2] =0;
betal [3] =0 ;beta2 [3] =1 ;beta3 [3] =0 ;beta4 [3] =0;
betal [4] =0; beta2 [4] =1; betaS [4] =0; beta4 [4] =1;
betal [5] =1; beta2 [5] =1; betaS [5] =0; beta4 [5] =1;
betal [6] =1; beta2 [6] =0; beta3 [6] =0; beta4 [6] =1;
betal [7] =0; beta2 [7] =0; betaS [7] =0; beta4 [7] =1;
betal [8] =0; beta2 [8] =0 ;beta3 [8] =1; beta4 [8] =1;
betal [9] =1; beta2 [9] =0; betaS [9] =1; beta4 [9] =1;
-betal [10] =1 ;beta2 [10] =1 ;beta3 [10] =1;beta4[10] =1;
betal[11]=0;beta2 [11]=1;beta3 [11]=1;beta4[11]=1;
betal[12]=0;beta2 [12]=1;betaS[12]=1;beta4[12]=0;
betal[13]=l;beta2[13]=l;beta3[13]*l;beta4[133=0;
betal[14] =1;bet a2 [14]=0;betaS [14]=1;beta4[14]=0;
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betal [15] =0 ; beta2 [15] =0 ; betaS [15] =1 ; beta4 [15] =0 ;

/********/
/* MISC */
/*******#/

mssizePr=mxGetPr(mssize) ; /* step size vec pointer */
/* allocate nl comb */
/* real/imag matrics */

Xr_mat= (double *)mxCalloc(Mw*Neq*sizeof (double)) ;
Xi_mat= (double *)mxCalloc(Mw*Neq*sizeof (double)) ;
nidx=mxCalloc(2*K,sizeof (int)) ; /* allocate weight idx array*/
<Neq=mxGetN(wi) ; /* weight matrix col's */
Mw=mxGetM(wi) ; /* weight matrix rows */
Nx=mxGetN(x) ; /* input length */
Ny=Nx+Neq-l; /* output length */
log2M=log( (double) N)/log( (double) 2); /* log2(M) */
hinltap=(Neq-l)/2 + (nltaps-l)/2; /* hi nonl tap */
lonltap=(Neq-l)/2 - (nltaps-l)/2; /* lo nonl tap */

/*****************************/
/* Initialize Output Weights */
/*****************************/

*wo=mxCreateFull(Mw,Neq, COMPLEX);/* allocate output weights */
wiPr=mxGetPr(wi); /* real in weight pointer */
wiPi=mxGetPi(wi) ; /* imag in weight pointer */
wPr=mxGetPr(*wo) ; /* real out weight pointer */
wPi=mxGetPi(*wo) ; /* imag out weight pointer */
for (i=0;i<Neq;i++)
for (j=0;j<Mw;j++) { /* init out weights */
wPr[i*Mw+j]=wiPr[i*Mw+j] ; /* = in weights
wPi[i*Mw+j]=wiPi[i*Mw+j] ;

/****#***********#***********************/
/* Equalizer Output and Weight Update */
/*********#******************************/

*y=mxCreateFull (l,Ny, COMPLEX) ; /* create out vec */
*d=mxCreateFull(l,Ny, COMPLEX); /* create decision vec */
*s=mxCreateFull(log2M,Ny,REAL) ; /* create symbol vec */
yPr=mxGetPr(*y) ; /* real out vec pointer*/
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yPi=mxGetPi(*y); /* imag out vec pointer*/
dPr=mxGetPr(*d); /* real decision pointer*/
dPi=mxGetPi(*d); /* imag decision pointer*/
sPr=mxGetPr(*s); /* symbol pointer */
xPr=mxGetPr(x); /* real in vec pointer*/
xPi=mxGetPi(x); /* imag in vec pointer*/

for (i=Neq;i<=Nx;i++) { /* EQ Fully Loaded */
yPr[i-l]=0; yPi[i-l]=0; /* init i-th out to zero */
wrow=0;wcol=0; /* init weight matrix idx's*/
for(j=l; j<=2*K-l; j++) /* init weight idx to zero */

nidx[j]=0; /* init nl term idx array */
for(k=l;k<=K;k++){

flg=0;
xidx=0;
whileOflg) { /* for all lin and nl weights*/

Xr=1.0;Xi=0;nlwflag=l;
if (k>l){
f or (1=1 ; K=2*k-l ; 1++)
i f (nidx[2*k-l-l]<lonltap I I nidx[2*k-l-l]>hinltap)

nlwflag=0;}
if (nlwflag==l) { /* Is this NL term? */

for(j=l;j<=2*k-l;j++) { /* Combine NL Terms */

Xtemp=Xr*xPr [i-nidx [2*k-l-j]-l]
+Xi*xPi [i-nidx [2*k-l-j]-l] ;

. Xi=-Xr*xPi [i-nidx [2*k-l-j]-l]
+Xi*xPr [i-nidx [2*k-l-j]-l] ;

Xr=Xtemp ; }
else {

Xtemp=Xr*xPr [i-nidx [2*k-l-j] -1]
-Xi*xPi [i-nidx [2*k-l-j]-l] ;

Xi=Xr*xPi [i-nidx [2*k-l- j ] -1]
+Xi*xPr [i-nidx [2*k-l-j]-l] ;

Xr=Xtemp ; }}

Xr _mat [xidx] =Xr ; /* Save NL combiner output */
Xi_mat [xidx] =Xi ;
xidx-n- ;

/* Accumulate Output */
yPr [i-1] +=Xr*wPr [wrow+wcol*Mw] -Xi*wPi [wrow+wcol*Mw]
yPi [i-1] +=Xi*wPr [wrow+wcol*Mw] +Xr*wPi [wrow+wcol*Mw]
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/* update nl term idx */
/* update weight matrix idx's */

if (wcol < Neq-1) wcol++;
else {wcol=0; WTOW++;}
carry=l ;
for (l=0;K2*k-l;l++) { /*update nidx[] modulo Neq*/
nidx [1] +=carry ;

if (nidx [1] <Neq) carry=0;
else { if (nidx[2*k-2]==Neq)

flg=l; nidx[l]=0; carry=l;>
} /* end of for 1 */

} /* end of while !flg */
} /* end of for k */

/* make decision */
pskdecn(M,yPr[i-l] ,yPi[i-l] ,alphar,alphai,betal,beta2,

betaS, beta4, &dPr [i-1] ,&dPi[i-l] ,&sPr [log2M*(i-D] ) ;

/*******************/
/* WEIGHT ADAPTION */
/*******************/

if (!strcmp(aflag,"on")) {
err_r=dPr [i-1] -yPr [i-1] ;
err_i=dPi [i-1] -yPi [i-1] ;
wcol=0 ; wrow=0 ; xidx=0 ;
for(k=l;k<=K;k++){

order=2*k-l;
ssize=mssizePr[k-l] ; /* Step Size For This Order */
for(j=0;j<(int)pow((double)Neq,(double)order);j++){
Xr=Xr_mat [xidx] ;
Xi=Xi_mat [xidx] ;
wPr [wrow+wcol*Mw] +=ssize* (Xr*err_r+Xi*err_i) ;
wPi [wrow+wcol*Mw] +=ssize* (Xr*err_i-Xi*err_r ) ;
wcol++ ;
if (wcol==Neq) {WTOW++; wcol=0;}
xidx++ ; }}

}/* end if !strcmp(aflag, "on") */
}/* end for i */

} /** END COMPUTATION ROUTINE **/
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/*******************************/
/**** GATEWAY ROUTINE **********/
/*******************************/

void mexFunctionC
int nlhs , Matrix *plhs [] ,
int nrhs, Matrix *prhs[])

{
int Neq.flg;
int M; /* modulation order */
int i, j ,xcomplx,wcomplx; /* input signal and weight flags */
"double etrgt; /* error target */
int mcycle; /* maximum number of training cycles*/
char adpf lagi [4] ; /* adaption flag */
int "dummy; /* dummy variable */
int nx,nw; /* columns for input and weights */
int m; /* number of rows for weights */
int k; /* order of non-linearity is 2k-l*/
int nltaps;
Matrix *x , *win , *nsymbol , *af Ig , *mssize ;
double *apPr;
char aflag[10] ;
Matrix *ssizes ;

/*** PROCESS I/O ARGUMENTS ***/
if (nrhs !=6) mexErrMsgTxt("6 input arguments are required\n") ;
else
if (nlhs>4) mexErrMsgTxt ( "maximum of 4 output arguements\n") ;

if ((mxIsNumeric(prhs[0])==0) I I (mxGetM(prhs[0] )!=!))
mexErrMsgTxt ("input signal must be an 1 x n numeric vector\n");
if ( mxIsNumeric(prhs[l] )==0 )
mexErrMsgTxt ( "weights must be an m x n numeric vector \n") ;
m=mxGetM(prhs[l] ) ;
Neq=mxGetN(prhs [1] ) ;
i=3;j=l; k=0; flg=0;
while (!flg) {

if (m==j ) break ;
-j+=(int)pow((double)Neq, (double) (i-1)) ;
i+=2;
if (m<j)
{ mexErrMsgTxt ("cannot derive, k from input weights\n") ;}
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if ((mxIsNumeric(prhs[2])==0) I I (mxGetM(prhs[2]) != 1)
II (mxGetN(prhs[2]) !=!)){

mexErrMsgTxt("modulation order, M, must be a real scaler\n");}
if ( (*mxGetPr(prhs[2])!=2) && (*mxGetPr(prhs[2])!=4)

&& (*mxGetPr(prhs[2])!=8)&& (*mxGetPr(prhs[2])!=16) )
mexErrMsgTxt("modulation order, M, must be 2, 4, 8, or 16\n");

if ( mxGetN(prhs[3])!=k)
mexErrMsgTxt("number of step sizes must agree with order\n");

if (mxIsNumeric(prhs[4])==0 II mxGetN(prhs[4])!=1
I I mxGetM(prhs[4])!=l)

mexErrMsgTxt("No. of nltaps must be a numeric scaler\n");
nltaps=*mxGetPr(prhs[4]);
if (nltaps7.2!=l)
mexErrMsgTxt("No. of Nonlinear taps must be odd\n");

if (mx!sString(prhs[5])==0)
mexErrMsgTxt("adaption flag must be ascii\n");

/* CREATE OUTPUT VARIABLES and CALL COMP ROUTINE*/
x=prhs[0];
win=prhs[1];
M=*mxGetPr(prhs[2]);
ssizes=prhs[3];
mxGetString(prhs[5],aflag,10);
pskvltre(x,win,k,ssizes,M,nltaps,aflag,&plhs[0],

feplhs[1],feplhs[2],feplhs[3]);

void pskdecn(int M,double yr,double yi,
double *alphar, double *alphai,
int *betal, int *beta2, int *beta3,int *beta4,
double *dr, double *di,
double *s) {

double yangle;
int k;
if (M==2) {

if (yr > 0 ) {*dr=l;*s=l;}
else {*dr=-l;*s=0;}
>

else {
-if (yr==0 && yi==0) yangle=0;
else yangle=atan2(yi,yr);
if(yangle<0) yangle+=2*pi;
k=floor(yangle/(2*pi/M));
if (M==4) {
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*dr=alphar [k] ;
*di=alphai [k] ;
s[0]=betal[k] ;
s[l]=beta2[k] ;
}

if (M==8) {
*dr=alphar [k] ;
*di=alphai [k] ;
s[0]=betal[k];
s[l]=beta2[k] ;
s[2]=beta3[k];
>

if (M==16) {
*dr=alphar [k] ;
*di=alphai [k] ;
s[0]=betaUk];
s[l]=beta2[k];
s[2]=beta3[k];
s[3]=beta4[k];

} /* end pskdecn */
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A.2. State Table Generation Program

% srcfb: a MATLAB program for Generating
'/. State Table
7. Matched Filter Bank Rx
7. Nonlinear Satellite Channel
7, CHANNEL PARAMETERS
7o ~ - Tx = square root raised cosine
7. - Rx = Matched Filter Bank
7. - TWT 0 dB backoff
7, INSTRUCTIONS
7o - Change the System Parameters
7c - Indicate the file in which to store the state machine
7. - Execute from within MATLAB
7. COMM. SYS. COMPONENTS
7. Transmitter - square root raised cosine
7, Channel - TWT
7. Receiver - matched filter bank
7. STATE MACHINE FILE FORMAT
7. The file will have M~(L+1) entries (i.e., lines). The first
7. field of a line contains the input. The input is an integer
7. in the range 0, 1, 2, ... M-l. The next set of fields
7o contain the L previous inputs which correspond to the state.
% The next field contains the channel output (note the output
7o may be complex) . The number of outputs per line is 2*nsym,
7o where the nsym parameter, set below, indicates the number of
7. samples per symbol. The factor of 2 is because the outputs
7o are complex.
7. The following is a listing of the first few lines for
7. a system with modulation order M=4 memory L=2 and 1
7. sample per symbol.
7.
7, 000 -0.705858 -0.705858i
7, 100 -0.757653 -0.705858i
7. - 200 -0.705858 -0.757653i
7. 300 -0.757653 -0.757653i
7. 010 0.51781 -0.705858i
7, 110 0.466016 -0.705858i
% 210 0.51781 -0.757653i
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7. 310 0.466016 -0.7576531
7. 020 -0.705858 0.517811
7. 120 -0.757653 0.517811
7.
7. OTHER MATLAB PROGRAMS CALLED BY THIS PROGRAM
7, These are straightforward and are only summarized here
7.
'/, randbits - generate random bits
7. pskmd - bit to symbol mapping (i.e., baseband modulate)
7. rcff - raised cosine filter, square root raised cosine
7c with appropriate flag settings. Used here as
7, square root raised cosine filter.
7. " xltwt - low-pass equivalent TWT model, implementation
7. of Saleh's analytical model (IEEE Trans. Comm.
7. vol. COM-29. No. 11, pp. 1715-1720, Nov. 1981)
7. " symsync - find sample number which gives largest
70 correlation between two complex vectors. This
7. is used to synchronize the received signal with
7, the input signal. This way, a comparison of bit
7. errors may be made. This also generates the
7, phase offset between the two signals.
7, eavg - calculate the average energy in a signal given
7, the number of samples per symbol.
7. dec2bin - convert a decimal number to a binary number

7.7.7. SYSTEM Parameters

Rsym=l; 7. Sample Rate
nsym=4; % Samples Per Symbol
fs=nsym*Rsym; 7. Sample Rate
msm_flg=;onj; 7, make state machine flag
wsm_flg='on'; ' 7. write state machine flag
Lf=l; 7. Comm System Memory future
Lp=l; % Comm System Memory past
L=Lf+Lp; 7. Total Memory
M=8; 7. Modulation Order
K=log(M)/log(2); 7. log2(M)
beta=l; 7. Rolloff parameter
twtp=-£l-9638 0.9945 2.5293 2.8168]; 7. TWT Parameters
backoff=0; 7. TWT backoff
Nout=M"(L+l)-l; 7. no. of outputs <=M"(L+1)-1
'/. M~(L+1)-1 for entire state
7. machine
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% FILENAME.'.'!0/.
7//.7.7.7,7.7.7.7.7.7.7.7.7.
if msm_flg==Jon'

if wsm_flg=='on>

fid=fopen('frcl_811','w'); 7. indicate state table file here
end

end

7. tx and rx long sequence
good for eye and scatter

7,7,7, also determine sample offset 7.7,7,

clear tl xldlta xltx xlprf 7o clr variables avoid confusion
clear xltwt xlrx y xlpof
bl=randbits(K,512); 7o random bit sequence
bl= [zeros (K, 50) bl zeros (K, 50) ]; 7. new bit sequence pad with zeros
xldlta=pskmd(bl,nsym); 7o tx impulse sequence
xltx=rcff(xldlta,nsym,nsym*17,beta,1,0,0);Xraised cosine tx filter
xltwt=ltwt(xltx,twtp,backoff ,0); 7. TWT
e_avg=eavg(xltwt(10:length(xltwt)-10) ,nsym); 7o avg sym. energy
xltwt=xltwt/sqrt(e_avg) ; 7o normalize

7o correlate with tx seq
[xx smpofst phsofst]=symsync(xldlta,xltwt,nsym,100);
xltwt=xltwt*exp(-sqrt(-l)*phsofst); 7o phase sync
ofst=smpofst+(50+Lp)*nsym; 7o sample offset

o/o/o/o/
la la It It Create State Machine Model 7,7*7,

write oversampled ch. output 7,7,7,
to file

clear in_state b bits xdlta xtx 7, clr variables
clear xprf xtwt xpof xrx rxo rxs
if msm_flg=='on'
eav=0;
erx=0;

in_state=zeros(l,l+L) ; 7o initialize variables
b=zeros(K,l+L);
for(i=0:Nout)
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for(k=l:L+l)
b(:jk)=dec2bin(in_state(k),K)'; 7. input and state sequence
end
bits=[randbits(K,50) b randbits(K,50)] ; 7. tx sequence
xdlta=pskmd(bits,nsym); 7. modulate
xtx=rcff(xdlta,nsym,nsym*17,beta, 1,0,0) ;%sqr.root rais. cos.
xtwt=ltwt (xtx, twtp, backoff, 0) ; 7. TWT
xtwt=xtwt/sqrt(e_avg) ; 7. normalize energy
xtwt=xtwt*exp(-sqrt(-l)*phsofst); 7. phase sync
h=xtwt(ofst :of st+nsym-1) ; 7. channel output vec

7. WRITE TO FILE 7.
for(j=l:L+l)
fprintf (fid,'7.g ' ,in_state(j)); 7. write input_state

end
if (M>2) 7. complex
for j=l:nsym

'/. write ch. output
fprintf (fid,' 7.g 7.gi',real(h(j)) ,imag(h(j)));

end
else 7, real
for j=l:nsym
fprintf (fid,'7.g',real(h(j))); 7. write ch. out

end
end
fprintf(fid,'\n'); '/, done writing this

7. line
carry=l; 7. determine next
for(k=l:L+l) 7. input state sequence

if (carry==l) in_state(k)=in_state(k)+carry;,end
if (in_state(k)==M) in_state(k)=0; carry=l;
else carry=0;, end

end

fprintfC7.d ',i); 'I, some output to let
if (rem(i+l,10) == 0) fprintf C\nJ); ,end7. user know the prog.

7. is doing something
end
if wsm_flg=='on'
fclose(fid);

end
end
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A.3. Matched Filter Bank Receiver Program

/* cv2.c: A program for simulating the performance */
/* of a matched filter bank receiver followed */
/* by a Viterbi Detector. The program first */
/* reads in the state table description and */
/* " uses this to generate channel outputs and */
/* to derive Viterbi detector path metrics. */
/* The program assumes the state table */
/'* ' contains the oversampled outputs from */
/* the channel. */

#include <stdio.h>
#indude <math.h>
tfinclude <stdlib.h>

/**************************/
/*** TYPE DECELERATIONS ****/
/**************************/

typedef struct{
double re;
double im;

}cmplx_dbl;
typedef struct{
float re;
float im;

}cmplx_fIt;
typedef struct{
int *input;
int *state;
cmplx_flt *output;

} stable;
typedef struct{
int *input;
int *state;

}trnsmt;
typedef struct{
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int path_lgth;
int *prv_stbl_idx;
double *met_new;
double *met_old;
int *pmem;
int *pmem_old;
double *fb;
double *fbsig;

}trellis;

int mainO

/**************/
/*** MAIN ***/
/**************/

/* declare variables */

FILE *st_tbl_file;
FILE *st_tbl_file_tx;
int num_states;
int num_states_tx;
int M;
int L,L_tx;
int nsym;
float n;
float MaxSymbols;
float MaxErrs;
float EsNodb;
float EsAvg;
stable stbl;
stable stbl_tx;
trnsmt tx;
trellis trls;
int PathLgth;
cmplx_dbl noise;
cmplx_dbl *ch_output;
int tx_out_idx;
int i.j.k;
int sym_err_cntr;
int out;
int-ref;
int *ref_reg;
int cntrl=0;

/* state table file for receiver */
/* state table file for transmitter */
/* number of states in receiver */
/* number of states for transmitter */
/* modulation order */
/* memory length */
/* samples per symbol */
/* symbol number */
/* maximum number of tx'd symbols */
/* maximum number of errs */
/* symbol to noise spec dens ratio */
/* Average Signal Energy */
/* state table for receiver */
/* state table for transmitter */
/* transmitter structure */
/* trellis structure */
/* path memory length*/
/* noise variable */
/* channel output */

/* channel output index */
/* misc ints */
/* error counter */
/* detector output */
/* noiseless tx output */
/* ref delay register-for decoding delay*/
/* Number of symbols counter */
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/* declare functions */

void load_st_tbl_cmplx(FILE *st_tbl_file,
stable stbl,int M,int L.int nsym);

void print_st_tbl_cmplx(stable stbl,int M.int L.int nsym);
void updt_tx(trnsmt tx.int M,int L);
void updt_fb(stable stbl, cmplx_dbl *ch_output,

trellis trls, int M, int L, int nsym);
void updt_trls(stable stbl, trellis trls, int M, int L);
int get_stbl_idx(trnsmt tx, int M, int L);
int get_trls_out(trellis trls,int M.int L);
void add_awgn(double esavg, double esnodb,

cmplx_dbl *ch_output,int nsym);
char st_tbl_filename[100];
char st_tbl_filename_tx[100] ;
void get_ch_out(stable stbl_tx,int tx_out_idx,

cmplx_dbl *ch_output, int nsym);
void init_fbsig(stable stbl, trellis trls, int M,

int L, int nsym);

/* get user input */

printf("Enter MaxSymbols, MaxErrs, Es/No(dB), EsAvg: ");
scanf("7.f '/.f */.f V.f ",&MaxSymbols,&MaxErrs,&EsNodb,&EsAvg);
printf("Enter Symbol Set Size, Samples/Symbol, Tx Mem.Rx Mem: ");
scanf C7.d %d */.d c/.d" ,&M,&nsym,&L_tx,&L) ;
printf ("Enter Viterbi Detector Pa,th Memory Length: ") ;
scanf ("7.d" ,&PathLgth);
printf("Enter Tx State Table Filename: ");
scanf("%s",st_tbl_filename_tx);
printf("Enter Rx State Table Filename: ");
scanf("%s",st_tbl_filename) ;

if ((st_tbl_file=fopen(st_tbl_f ilename, "r"))==NULL) {
printf ("ERROR: could not open V"/.s\" for reading\n" ,

st_tbl_f ilename) ;
exit(l);
}

if ^(st_tbl_file_tx=fopen(st_tbl_filename_tx,"r"))==NULL) {
printf ("ERROR: could not open V7.s\" for reading\n" ,

st_tbl_f ilename_tx) ;
exit(l);
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/* memory allocation */
num_states=pow((double)M,(double)L);
num_states_tx=pow((double)M,(double)L_tx);
stbl.input=(int *)malloc(M*num_states*sizeof(int));
stbl.state=(int *)malloc(M*L*num_states*sizeof(int));
stbl.output=(cmplx_fIt *)malloc(nsym*M*num_states*

sizeof(cmplx_fIt));
stbl_tx.input=(int *)malloc(M*num_states_tx*sizeof(int));
stbl_tx.state=(int *)malloc(M*L_tx*num_states_tx*sizeof(int));
stbl_tx.output=(cmplx_flt *)malloc(nsym*M*num_states_tx*

sizeof(cmplx_fIt));
tx.state=(int *)malloc(L_tx*sizeof(int));
tx.input=(int *)malloc(sizeof(int));
trls.met_new=(double *)malloc(num_states*sizeof(double));
trls.met_old=(double *)malloc(num_states*sizeof(double));
trls.pmem=(int *)malloc(num_states*PathLgth*sizeof(int));
trls.pmem_old=(int *)malloc(num_states*PathLgth*sizeof(int));
trls.prv_stbl_idx=(int *)malloc(num_states*sizeof(int));
trls.fb=(double *)malloc(M*num_states*sizeof(double));
trls.fbsig=(double *)malloc(M*num_states*sizeof(double));
ch_output=(cmplx_dbl *)malloc(ns3rm*sizeof(cmplx_dbl));
ref_reg=(int *)malloc(PathLgth*sizeof(int));

/* load rx and tx state table */

load_st_tbl_cmplx(st_tbl_file.stbl,M,L,nsym);
load_st_tbl_cmplx(st_tbl_file_tx,stbl_tx,M,L_tx,nsym)

/* initialize variables */

f or (i=0 ; i<L_tx ; i++) tx . state [i] =0 ;
*tx.input=0;
for(i=0;i< num_states*PathLgth;i++)

trls.pmem[i]=0;
for(i=0;i< num_states*PathLgth ; i++)

-trls . pmem_old [i] =0 ;
for(i=0;i< PathLgth;i++) ref _reg[i]=0;
*trls . met_new=0 ;
*trls .met_old=0;
trls . path_lgth=PathLgth ;
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init_fbsig(stbl,trls,M,L,nsym);

/* simulate the tx, channel, MLSE rx */

sym_err_cntr=0;
n=0;
while(n<MaxSymbols && sym_err_cntr<MaxErrs) {

/* use state table to */
updt_tx(tx,M,L); /* generate state table */
tx_out_idx=get_stbl_idx(tx,M,L); /* address for the next */

/* output */

get_ch_out(stbl_tx,tx_out_idx, /* get output from */
ch_output,nsym); /* state table and */

add_awgn(EsAvg,EsNodb,ch_output,nsym);/* add noise */

updt_fb(stbl,ch_output ,trls,M,L,nsym) ;/* update filter bank */

/* update trellis */
updt_trls(stbl,trls,M,L) ; /* including path met. */

/* get output with */
out=get_trls_out(trls,M,L) ; /* best metrics */

for(i=trls.path_lgth-l;i>0;i — ) /* delay inputs */
ref _reg[i]=ref_reg[i-l] ; /* so can compare */

ref_reg[0]=*tx. input; /* with outputs */
ref=ref _reg[trls.path_lgth-l] ;

if (out!=ref) { /* print and update */
sym_err_cntr++ ; /* stats on errors */
printf ("Symbol Error, n=°/.g, Detect='/.d,

Ref=7.d SymErrs='/.d SER=7.f \n" ,
n+1 , out , ref , sym_err_cntr ,
sym_err_cntr/(n+l)) ;

if (++cntrl==10000){ /* print stats every */
printf ("n=7.g, SymErrs=°/.d, SER=°/.f\n" ,n+l,/* 10K symbols */
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sym_err_cntr , sym_err_cntr/ (n+1) ) ;
cntrl=0;

/* print final stats */
printf ("n=7.g, SynErr s=7.d , SER=7.f\n",

n, sym_err_cntr , sym_err_cntr/n) ;

return(O) ;
}
/*** END of MAIN ***/

void load_st_tbl_cmplx(FILE *st_tbl_f ile, stable stbl,
int M.int L,int nsym) {

int num_ states;
int i,j;
num_states=pow((double)M, (double)L) ;
for(i=0;i< M*num_states ; i++) {

f scanf (st_tbl_f ile , "%d" ,&stbl . input [i] ) ;
for(j=0;j< L;j++) f scanf (st_tbl_f ile, '"/.d" ,&stbl. state [j+i*L]) ;
for(j=0;j<nsym;j++)
f scanf (st_tbl_f ile, "7.f 7.fi",

festbl. output [i*nsym+j] . re, ftstbl. output [i*nsym+j] . im) ;

void print_st_tbl_cmplx (stable stbl, int M.int L, int nsym) {
int num_states;
int i,j;
num_states=pow((double)M, (double)L) ;
f or (i=0;i<M*num_ states ;i++) {
printf ("7.d ", stbl . input [i] );
for(j=0;j<L;j++) printf ("7,d " ,stbl.state.[j+i*L] ) ;
for(j=0; j<nsym; j++)
printf (" 7.g 7.gi",

stbl. output [i*nsynn-j] . re , stbl . output [i*nsym+j] .im) ;
printf ("\n");

void updt_tx(trnsmt tx,int M,int L) {
int i;
for(i=L-l;i>0;i — ) tx. state [i]=tx. state [i-1] ;
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tx.state[0]=*tx.input;
*tx.input=ran

int get_stbl_idx(trnsmt tx, int M, int L) {
int i;
int stidx;
stidx=*tx . input ;
for (i=0;i<L;i++) stidx+=

tx. state [i]*pow((double)M, (double) (i+D) ;
return (stidx) ;

} ~
int get_snum(stable stbl, int stbl_idx,int M, int L) {

int i;
int snum=0;
for (i=0;i<L;i++)

snum+=stbl . state [i+stbl_idx*L] *pow( (double) M, (double) (i) ) ;
return (snum) ;

}
int get _trls_out( trellis trls, int M,int L){

int num_states;
int i,best_state;
double tmp;
num_states=pow( (double) M, (double) L) ;
best_state=0;
f or (i=0 ; i<num_states ; i++)

if (trls .met_new[i] <trls.met_new[best_state] ) best_state=i ;
if (trls. met _new[best_state]>le9) {

tmp=trls.met_new[best_state] ;
f or (i=0; i<num_states; i++){

trls . met _new [i] -=tmp ;
trls . met_old [i] -=tmp ;

return (trls . pmem [ (best_state+l) *trls . path_lgth-l] ) ;

void-updt_trls(stable stbl,trellis trls, int M, int L) {
int num_states;
int state;
int acs(int state,stable stbl, trellis trls, int M, int L);
void reg_xchg(stable stbl,trellis trls,int M, int L);
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num_states=pow((double)M,(double)L);
for (state=0;state<num_states;state++)

trls.prv_stbl_idx[state]=acs(state,stbl,trls, M , L ) ;
for (state=0;state<num_states;state++)

trls.met_old[state]=trls.met_new[state];
reg_xchg(stbl,trls,M,L) ;

}
int acs(int state,stable stbl, trellis trls, int M, int L) {

int num_states;
int i;
int pvst_idx,best_pvst_idx;
int prv_snum;
double br.metric;
double tmp_metric;
int get_snum(stable stbl,int stbl_idx,int M, int L);

for(i=0;i<M;i++) {
pvst_idx=state+i*pow((double)M,(double)(L));
br_metric=-2*trls. fb [pvst.idx] +trls. fbsig [pvst_idx] ;
prv_snum=get_snum(stbl,pvst_idx,M,L);
tmp_metric=br_inetric+trls .met_old [prv_snum] ;
if (i==0 ) {

trls.met_new[state]=tmp_metric;
best_pvst_idx=pvst_idx;
}

else if(tmp_metric<trls.met_new[state]) {
trls.met_new[state]=tmp_metric;
best_pvst_idx=pvst_idx;

return(best_pvst_idx);
}

void reg_xchg(stable stbl,trellis trls,int M, int L){
int i,state,num_states;
int prv_state;
int get_snum(stable stbl,int stbl_idx,int M, int L);

num_states=pow((double)M,(double)L);
for(state=0;state<num_states;state++) { /*** REGISTER XCHG ****/

prv_state=get_snum(stbl,trls.prv_stbl_idx[state],M,L);
for(i=0;i<trls.path_lgth;i++)

trls.pmem[i+state*trls.path_lgth]=
trls .pmem_old[i+prv_state*trls .path_lgth] ;
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for(state=0;state<num_states;state++) { /*** REGISTER SHFT ****/
prv_state=get_snum(stbl,trls.prv_stbl_idx[state] ,M,L) ;
f or (i=trls .path_lgth-l ; i>0; i — )

trls .pmem[i+state*trls .path_lgth] =
trls . pmem [i-l+st ate*trls . path_lgth] ;

trls .pmem[state*trls .path_lgth] =
stbl . input [trls . prv_stbl_idx [state] ] ;

f or(state=0;state<num_states;state-*-+) { /*** copy to old ****/
f or (i=0 ; Ktrls .path.lgth; i++)

trls . pmem_old [i+state*trls . path_lgth] =
trls . pmem [i+state*trls . path_lgth] ;

void init_fbsig (stable stbl, trellis trls, int M, int L, int nsym){
int i,j;
int num_ states;
num_states=pow( (double) M, (double)L) ;
f or(i=0;i<M*num_states;i++) {

trls.fbsig[i]=0;
for(j=0;j<nsym;j++) {

trls.fbsig[i]+=
s tbl. output [i*nsym+j] . re*stbl. output [i*nsym+j] .re

+stbl . output [i*nsym+j] . im*stbl . output [i*nsym+j] . im;

void updt_fb (stable stbl, cmplx_dbl *ch_output,
trellis trls, int M, int L, int nsym) {

int i ,j;
int num_ states;
num_states=pow( (double)M, (double)L) ;
f or (i=0;i<M*num_ states ;i++) {

trls.fb[i]=0;
for(j=0;j<nsym;j-n-) {

trls.fb[i]+=ch_output [j] . re*stbl. output [i*nsym+j] .re
+ch_ output [j] .im* stbl. out put [i*nsym+j] .im;

void get_ch_out (stable stbl_tx,int tx_out_idx,
cmplx_dbl *ch_output ,int nsym) {

int i;
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for(i=0;i<nsym;i++) {
ch_output [i] . re=stbl_tx . output [tx_out _idx*nsym+i] . re ;
ch_ output [i] . im=stbl_tx . output [tx_out_idx*nsynH-i] . im ;

void add_awgn( double esavg, double esnodb,
cmplx_dbl *ch_output, int nsym ) {

double ul,u2,nl,n2,No,esno;
int j;
esno=pow(10.0,esnodb/10.0) ;
No=esavg/esno ;
for(j=0; j<nsym; j++) {
ul= ( (double ) rand ())/ (RAND.MAX) ;
u2= ( (double)randO )/ (RAND.MAX) ;
if (ul < le-8) ul=le-8;
ch_6utput [ j] . re+=sqrt (No/2) *sqrt (-2*log(ul) ) *cos (2*3 . 141593*u2) ;
ch_output[j] .im+=sqrt(No/2)*sqrt(-2*log(ul))*sin(2*3.141593*u2);

130



A.4. Program for Calculating dr

/*****************************#**************************/
/* dmin2.c: A program for calculating the minimum */
/* Euclidean distance between channel */
/* sequences based on a state table */
/* description of the channel. The state */
/* " table is assumed to contain the */
/* oversampled outputs of the channel . */
/* The program is based on the algorithm */
/* " described in "Digital Transmission */
/* Theory," by Benedetto, Biglieri, and */
/* Castellani, Prentice Hall, 1987. */
/* chapter 10. */

#include <stdio.h>
tfinclude <math.h>
#include <stdlib.h>
typedef struct {
double re;
double im;

}cmplx_dbl ;
typedef struct {
float re;
float im;

}cmplx_f It ;
typedef struct {
int * input ;
int * state;
cmplx_f It *output ;

} stable;

int main () {
int M; /*symbol set size*/
int L; Achannel memory*/
int flag; /*misc flag */
int n; /*path length variable*/
int i,j; /*misc variables*/

131



FILE *st_tbl_file; /*state table filename */
int num_states; /*number of channel states */
int nsym; /*samples per symbol */
stable stbl; /*state table */
double *Dn,*Dn_old; /*matrix of min sqrd distances*/
int *PM; /*predecessor matrix*/
double dmin; /*minimum distance squared */
char st_tbl_filename[100];

void load_st_tbl_cmplx(FILE *st_tbl_file,
stable stbl,int M,int L.int nsym);

void print_st_tbl_cmplx(stable stbl,int M,int L.int nsym);

void build_PM(stable stbl, int *PM, int M, int L);
void init.Dn(double *Dn,int *PM,stable stbl,int M.int L.int nsym);
void updt_Dn(double *Dn,double *Dn_old,int *PM,

stable stbl,int M,int L.int nsym);
void stat_Dn(double *Dn,int M,int L.int *flag,double *dmin);

/****************/
/** User Input **/
/****************/

printf("Enter Symbol Set Size M: ");
scanf("e/.d",&M);
printf("Enter Samples per Symbol: ");
scanf("%d",&nsym);
printf("Enter Channel Memory L: ");
scanf C7.d",&L);
printf("Enter State Table Filename: ");
scanf ("7.3" ,st_tbl_f ilename) ;

if ((st_tbl_file=fopen(st_tbl_filename,"r"))==NULL) {
printf ("ERROR: could not open V7.s\" for reading\n",

st_tbl_filename);
exit(l);
}

/* memory allocation */
num_states=pow((double)M,(double)L);
stbl-. input=(int *)malloc (M*num_states*sizeof (int) ) ;
stbl.state=(int *)malloc(M*L*num_states*sizeof(int));
stbl.output=(cmplx_fIt *)malloc(nsym*M*num_states*

sizeof(cmplx_fIt));
PM=(int *)malloc(num_states*M*sizeof(int));
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Dn=(double *)malloc(num_states*num_states*sizeof(double));
Dn_old=(double *)malloc(num_states*num_states*sizeof(double));

/* load state table */
load_st_tbl_cmplx(st_tbl_file,stbl,M,L,nsym);

build_PM(stbl,PM,M,L); /* build Predecessor Matrix */
/* step la */

n=0; /* init seq. length variable */
/*. Initialize Squared Minimum */

init _Dn(Dn,PM,stbl,M,L, nsym) ; /* Distance Matrix "Dn" */
/* step Ib and step 2 */

flag=l;
while (flag>(» {

/* Update Distance Matrix */
updt_Dn(Dn,Dn_old,PM, stbl, M,L, nsym); /* step 3 */

/* Check if Done */
stat_Dn(Dn,M,L,&flag,&dmin) ; /* step 4 */

n++; /* update seq. length */

printf ("n=e/.d d=7.g\n",n,dmin) ; /* print stats */

printf ("\nn = «/.d, dmin"2 = 7.g\n" ,
n,dmin.);/* print final stats */

return (0) ;

void load_st_tbl_cmplx(FILE *st_tbl_f ile, stable stbl,
int M.int L.int nsym) {

int num_states;
int i,j;
num_states=pow( (double) M, (double)L) ;
for(i=0;i< M*num_states ; i++) {

f-scanf (st_tbl_f ile , "7,d" ,&stbl . input [i] ) ;
for(j=0;j< L; j++) f scanf (st_tbl_f ile, "7.d" ,&stbl. state [j+i*L] ) ;
f or ( j =0 ; j <nsym ; j ++)
f scanf (st_tbl_f ile , "V.f %f i" ,

&st bl. output [i*nsym+j] . re , festbl . output [i*nsym+j] .im) ;
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void print_st_tbl_cmplx (stable stbl, int M,int L, int nsym) {
int num_states;
int i,j;
num_states=pow((double)M, (double)L) ;
for(i=0;i<M*num_states;i++) {

printf("°/.d " , stbl . input [i] );
for(j=0;j<L;j++) printf("7.d ", stbl. state [j+i*L] );
for(j=0;j<nsym;j++)
"printfC" */,g */.gi", stbl. output [i*nsym+j] .re,

stbl . output [i*nsym+j] . im) ;
print f("\n");

void build_PM (stable stbl, int *PM, int M, int L) {
int pst at e_idx,pst ate, state, j ,num_states;
int get_snum (stable stbl, int stbl_idx,int M, int L) ;
num_states=pow((double)M, (double)L) ;

for(state=0;state<num_states;state++) {
for (j=0;j<M;j++) {
pstate_idx=state+j*pow((double)M, (double)L) ;

/*j-th predecessor of state i*/
PM[j+M*state]=get_snum(stbl,pstate_idx, M, L);

/* get state number from state table index */
int get_snum(stable stbl, int stbl_idx,int M, int L) {
int i;
int snum=0 ;
for (i=0;i<L;i++)
snum+=stbl. state [i+stbl_idx*L]*pow( (double) M, (double) (i)) ;

return(snum) ;

void init_Dn (double *Dn,int *PM, stable stbl, int M.int L,int nsjnn){
int num_states,i , j ,k;
int pj,pi; /* previous i and j */
int Spi,Spj; /* states pi and pj */
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int Spi_stbl_idx;
int Spj_stbl_idx;
double d2,dif_re,dif_im;
double dij_min=-l;
double dSpii_Spjj;
int flag;
int N;
num_states=pow( (double) M, (double)L) ;
N=num_states;
for(i=0;i<num_states;i++H /*step la*/
for(j=0; j<num_states; j++){

Dn [j+i*num_states] =-1 ;
' >}
for(i=0;i<num_states;i-H-) { /*step 2 */

f or(j=i+l; j<num_states; j++) {
flag=l;
for(pi=0;pi<M;pi++) {

Spi=PM[pi+i*M];
for(pj=0;pj<M;pj++) {

Spj=PM[pj-Hj*M];
if (Spi==Spj) {

Spi_stbl_idx=i+pi*N ;
Spj_stbl_idx=j+pj*N;
d2=0;
for(k=0;k<nsym;k++) {
dif _re=stbl . output [Spi_stbl_idx*nsym+k] . re

-stbl . output [Spj_stbl_idx*nsym+k] . re ;
dif _im=stbl . output [Spi_stbl_idx*nsym+k] . im

-stbl . output [Spj_stbl_idx*nsym+k] . im ;
d2+=dif_re*dif_re+dif_im*dif_im;
}

dSpii_Spjj=d2;
if (flag==l) {dij_min=dSpii_Spjj;flag=0;};
if (dSpii_Spjj<dij_min) dij_min=dSpii_Spj j ;

if (flag==0) {
Dn [ j +i*num_states] =di j _min ;
Dn [i+ j *num_states] =di j _min ;

/* Update Squared Minimum Distance Matrix, step 3 */
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void updt_Dn(double *Dn,double *Dn_old,int *PM,stable stbl,
int M.int L.int nsym) {

int num_st ates,i,j , k;
double pi.pj; /^predecessor i and j*/
int Spi.Spj; /* State pi and pj */
double dSpii_Spjj,dij_min; /*sqrd distance*/
double d2,dif_re,dif_im;
int Spi_stbl_idx;
int Spj_stbl_idx;
int N, flag;
N=pow((double)M,(double)L); /* number of states */
for (i=0;i<N;i+-»-) {
' for(j=0;j<N;j++) {

Dn_old[j+i*N]=Dn[j+i*N] ;

for(i=0;i<N;i++){

f lag=l ;
for(pi=0;pi<M;pi++){

Spi=PM[pi+i*M];
for(pj=0;pj<M;pj++) {

Spj=PM[pj+j*M] ;
if (Dn_old[Spj+Spi*N]>0) {

Spi_stbl_idx=i+pi*N ;
Spj _stbl_idx=j+pj *N ;
d2=0;
for(k=0;k<nsym;k++) {

dif_re=stbl. output [Spi_stbl_idx*nsym+k] .re
-stbl . output [Spj _stbl_idx*nsym+k] . re ;

dif _im=stbl . output [Spi_stbl_idx*nsym+k] . im
-stbl . output [Spj _stbl_idx*nsym+k] . im ;

d2+=dif_re*dif_re+dif_im*dif_im;
}

dSpii_Spjj=d2;
if (flag==l ) {

if (Dn_old[Spj+Spi*N]==-l) dij_min=dSpii_Spj j ;
else dij min=Dn old[Spj+Spi*N]+dSpii_Spjj ;f lag=0;
}

if (Dn_old[Spj+Spi*N]==-l) {
if( dSpii_Spjj <= dij.min ) dijlmin=dSpii_Spjj ;

else
if ((Dn_old[Spj+Spi*N]+dSpii_Spjj) <= dij_min)

dij_min=Dn_old[Sp3+Spi*N]+dLSpii_Spjj;
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if (i==j && flag==0) {
if (Dn[j+i*N]==-l) Dn[j+i*N]=dij_min;
else if (dij_min<Dn[j+i*N]) Dn[j+i*N]=dij_min;

if(flag==0 &
Dn [ j +i*N] =di j _min ;
Dn [i+ j *N] =di j _min ;

/* Status of Dn, step 4 */
void stat_Dn (double *Dn,int M,int L.int *f lag, double *dmin) {
int i, j ,num_states;
double dmin_tmp;
double flag_tmp=0;
num_states=pow( (double) M, (double)L) ;
dmin_tmp=Dn [0] ;
for (i=l;i<num_states;i++) {

if (Dn [i+i*num_states] < dmin_tmp) dmin_tmp=Dn[i+i*num_states] ;
}

*dmin=dmin_tmp ;
if (dmin_tmp>0) {

for (i=0;i<num_states;i++) {
for (j=0;j<num_ states; j++) {
if (Dn[i,j]<dmin_tmp) flag_tmp=l;

else flag_tmp=l;
* f 1 ag=f 1 ag_t mp ;
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