
NASA-CR-199399

Visualization of
Unsteady Computational Ruid Dynamics

Final Techincal Report
for

Grant # NAG2-884

Submittted

by

Robert Haimes

Computational Aerospace Sciences Laboratory
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
Cambridge, MA 02139

October 1995

(NASA-CR-199399) VISUALIZATION OF N96-15971
UNSTEADY COMPUTATIONAL FLUID
DYNAMICS Final Technical Report, 1
Jan. - 31 Dec. 1995 (MIT) 16 p Unclas

G3/34 0067511

Introduction
rx, -

The current compute environment that most researchers are using for the calculation of 3D
unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The
Massively Parallel Processors (MPPs) such as the 160 node IBM SP2 at NAS and clusters of
workstations acting as a single MPP (like NAS's SGI Power-Challenge array) provide the
required computation bandwidth for CFD calculations of transient problems.

If we follow the traditional computational analysis steps for CFD (and we wish to construct an
interactive visualizer) we need to be aware of the following:

• Disk space requirements
A single snap-shot must contain at least the values (primitive variables) stored at the
appropriate locations within the mesh. For most simple 3D Euler solvers that means 5
floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-
variables. The number can increase with the modeling of multi-phase flows, chemistry and/or
electo-magnetic systems. If we examine a 5 equation system with 1 million nodes (with the
field variables stored at the nodes) a single snap-shot will require 20 Megabytes. If 1000
time-steps are needed for the simulation (and the grid is not moving), 20 Gigabytes are
required to record the entire simulation. This means that the workstation performing the
visualization of this simulation requires vast amounts of disk space.

• Disk speed vs. Computational speeds
The time required to read the complete solution of a saved time frame from disk is now
longer than the compute time for a set number of iterations from an explicit solver.
Depending on the hardware and solver an iteration of an implicit code may also take less
time than reading the solution from disk. If one examines the performance improvements in
the last decade or two, it is easy to see that depending on disk performance (vs. CPU
improvement) may not be the best method for enhancing interactivity. Workstation
performance continues to double every 18 months. The performance of commodity drives
has gone from about 1 Megabyte/sec in 1985 to about 5 Megabytes/sec in 1995.

• Cluster and Parallel Machine I/O problems
Disk access time is much worse within current parallel machines and cluster of workstations
that are acting in concert to solve a single problem. In this case we are not trying to read the
volume of data, but are running the solver and the solver outputs the solution. I/O is the
bottleneck for a parallel machine with a front-end. The machine probably has the ability to
compute in the GigaFLOP range but all this data has to be funneled to a single machine and
put on disk by that machine. Clusters of workstations usually depend upon distributed file
systems. In this case the disk access time is usually not the bottleneck, but the network
becomes the pacing hardware. An IBM SP2 is a prime example of the difficulties of writing
the solution out every iteration. The machine has a high-speed interconnect, but it is not
currently used by the distributed file system. There are other access points into each node.
Most SP2s have an Ethernet port for every node, some also have FDDI connections. These
traditional network interfaces must be used for the file system.

• Numerics of particle traces
Most visualization tools can work upon a single snap shot of the data but some visualization
tools for transient problems require dealing with time. One such tool is the integration of

particle paths through a changing vector field. After a careful numerical stability and
accuracy analysis of integration schemes (funded by previous NAS contracts) it has been
shown that there exist certain time-step limitations to insure that the path calculated is
correct. Even for higher order integration methods, the limitation is on the order of the time
step used for the CFD calculation. This is because of a physical limit, the time-scale of the
flow. What this means (for the visualization system) is that in order to get accurate particle
traces, the velocity field must be examined close to every time step the solver takes.

Because of the disk space requirements and the time to write the solution to disk, the authors of
unsteady flow solvers perform some sort of sub-sampling. This sub-sampling can either be
spatial or temporal. Because the traditional approach is to deal with the data as if it were many
steady-state solutions, this sub-sampling I/O is almost always temporal. The individual running
the simulation figures the frequency to write the complete solution based on the available disk
space. In many cases, important transitions are missed. Also since the solution is coarsely
sampled in time, streaklines (unsteady particle paths as discussed above) almost always produces
erroneous results. The problem with sub-sampling is that the time-step selected for the
visualization becomes based on the available disk space and not the physical problem.

pV3 Status

Work is in progress on a set of software tools designed specifically to address visualizing 3D
unsteady CFD results in these super-computer-like environments. The above issues are resolved
by co-processing the visualization. The visualization is concurrently executed with the CFD
solver. The parallel version of VisualS, pV3 required splitting up the unsteady visualization task
to allow execution across a network of workstation(s) and compute servers. In this computing
model, the network is almost always the bottleneck so much of the effort involved techniques to
reduce the size of the data transferred between machines.

The following design goals for pV3 have been met:
• High Performance

Take advantage of the proper hardware to get the best performance out of the entire compute
arena. pV3 requires graphics hardware so that scene rendering time is not a limitation and the
data presented to the investigator is of high quality and timely. Also, most visualization
techniques are embarrassingly parallel (based on elements within the computational volume).
The execution of these tools is done within the partitioning performed to parallelize the CFD
solver.

• Interactive
The goal of any scientific visualization package should be to allow the assimilation of the
vast amounts of data produced by the models and solvers in order to better understand the
underlying physics. The ultimate goal, with this new knowledge, is to affect design and
produce a better car, aircraft, gas-turbine engine, etc. This can only be done by interactively
poking and probing into the data to interrogate areas of interest.

• Co-processing
An important part of pV3 is the ability to visualize the data as the solver or model progresses
in time. It is also designed to allow the solver to run as independently as possible. If the
solution procedure takes hours to days, pV3 can plug-into the calculation, allow viewing of
the data as it changes, then can unplug with the worst side-effect being the temporary
allocation of memory and a possible load imbalance.

• VisuaB functionality and programming
pV3 provides the same kind of functionality as VisuaB with the same suite of tools and
probes. The data represented to the investigator (the 3D, 2D and ID windows with cursor
mapping) is the same. Also the same Graphical User Interface (GUI) is used.

For the desired flexibility and the merging of the visualization with the solver, some
programming is required. The coding is simple; like VisuaB, all that is required of the
programmer is the knowledge of the data. Learning the details of the underlying graphics,
data extraction, and movement (for the visualization) is not needed. If the data is distributed
in a cluster of machines, pV3 deals with this, resulting in few complications to the user.

pV3 Rev 1.05 was released in April. It is anticipated that Rev 1.10 will be released before the
end of the current contract. This port will include support the 'Batch' system described in the
Status Section. The following machines are (and will be) supported as 'clients' (the computers
containing the volume of data and performing the solver):

• CONVEX
• DEC Alphas running OSF/1
• DEC Stations (MIPS) running ULTRIX
• HP 9000/700 series at HP-UX 9.0 (or higher)
• IBM RS/6000s including the SPls and SP2s
• SGI 4D Series, PI, Indigo, Indy, Power Series, Crimson, Onyx or Challenge running IRIX

5.x
• SGI Powerlndigo, PowerOnyx or PowerChallenge (all R8000 processors) running IRIX 6.x
• SUN running SunOS or Solaris

At Rev 1.05, the only machines supported as the pV3 server were SGI workstations with 3D
graphics support. Rev 1.10 will also include a server for IBM RS/6000s (at AIX 4.1) with 3D
graphics adapters and OpenGL.

Presentations
An Analysis of 3-D Particle Path Integration Algorithms (with D. Darmofal), AIAA 95-1713
AIAA Computational Fluid Dynamics Conference, San Diego CA, June 1995.

Identification of Swirling Flow in 3-D Vector Fields (with D. Sujudi), AIAA 95-1715
AIAA Computational Fluid Dynamics Conference, San Diego CA, June 1995.

Concurrent Distributed Visualization and Solution Steering (Invited talk).
Parallel CFD '95, Pasadena CA, June 1995.

Unsteady Visualization of Grand Challenge Size CFD Problems: Traditional Post-Processing vs.
Co-Processing.
ICASE/LaRC Symposium on Visualizing Time-Varying Data, Williamsburg, VA, Sept. 1995.

Demonstrations
AIAA Aerospace Sciences Meeting & Exhibit, Reno, January 1995.
ICASE/LaRC Symposium on Visualizing Time-Varying Data, Williamsburg, VA, Sept. 1995.
Supercomputing '95, San Diego, December 1995 (planned).

Status of Current Work

There were three major parts to the work performed within the period of this contract. One was
the continued development of pV3. This also requires the second; addressing new and proposed
standards for graphics and message passing software. And finally, continued work on feature
extraction and identification for transient applications.

pV3 enhancements and development:

• Batch server
The problem with pV3 in a production environment or for batch execution is that the user
may not be around to fire-up the server and view the results. An important part of this years'
work was the design and implementation of a 'batch' server for pV3. The client side remains
unchanged. The CFD solver need not know if the results are currently being viewed or to be
viewed at some later time.

Therefore, when a 'batch' job starts, the 'batch' pV3 server is also started. Data is read on
where and what tools and probes are to be active and their locations. The results (tool
extracts) are collected and written to disk for play-back later. This is different from the
normal post-processing in that the entire volume of data is not written to disk every iteration.

The end result is something that is not interactive in the placement of tools, but can be
thought of as analogous to a wind-tunnel experiment. You have to be smart in where you
place probes to extract data of interest. If you miss an important area (or only find it after
viewing these results) you will have to re-run the tunnel adding (or changing the location) of
the probes. A post-processing viewer has also been developed to read and display the
extracts. This viewer is highly interactive in dealing with time, in that the amount of data has
been reduced by orders-of-magnitude.

• Visualization Extract Data System (VEDS)
During the development of elVis at NASA Ames a new API for data extraction has been
constructed. It was originally proposed to use fGL (the underlying disk structure that is
handled by the API) for the basis of the pV3 'batch' system. Because of the constantly
changing definition of fGL, it was not used as the disk representation of the co-processing
extracts. The file format VEDS has been defined and is used for the disk resident objects.
This format has been reviewed by NASA Ames, CEI (developers of EnSight), Intelligent
Light (FieldView) and Untied Technologies. This file specification has been appended to this
document.

New Software Standards:

• MPI - A Message Passing Interface
pV3 currently uses PVM for all message passing a network related activities. A new message
passing standard has emerged. The Message Passing Interface, MPI, is an attempt to deal
with the MPP environment and shows much better efficiencies than PVM with die same
level of message passing functionality. It has been shown (on NASA Ames' IBM SP2) that
PVM and MPI can be used on the same task (MPI for the solver and PVM for the
visualization). But because of the added complexity in using a mixed environment and the
potential increase in performance, a pure MPI version of pV3 was proposed.

For MPI to be used as the pV3 low-level message passing protocol, the following points
were addressed:
(1) Heterogeneous machines. The 'interactive' server currently requires a workstation off any
MPP. The clients can be any machine, but specifically the IBM SP2 is of interest.
(2) Peer-to-peer. The pV3 server must be started from the graphics workstation where the
visualization session is to run. This may not be known a priori.
(3) Receive a message without knowing (before hand) that a message of this type will be
sent.
(4) The ability to pull specific messages off a message queue and be able to select the next
message based on a prioritized scheme.

After a complete assessment it was found that an MPI port is not possible. Point (1) above, is
not handled. MPI on the SP2 does not support heterogeneous clusters, only nodes on the
high-speed interconnect may be used. Also, MPI has no job control. The assumption is that
all tasks that are running have started at the initial time. There is no mechanism to add the
pV3 server to an executing session, point (2) above. To reduce the complexity of a mixed
PVM and MPI environment, pV3's client-side API has been modified to remove all
references to PVM IDs.

• OpenGL
Two OpenGL ports of the pV3 server were written during this contract. The first was to SGI
equipment running IRIX 6. This also required that all code be '64-bit clean'. The second
server port was to IBM RS/6000s. This port required ATX 4.1 for multi-threading and a
machine with graphics hardware that supports OpenGL.

Feature Extraction and Identification:

In the past, feature extraction and identification were interesting concepts, but not required to
understand the underlying physics of a steady flow field. This is because the results of the
more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily
abstracted so they could be represented to the investigator. These tools worked and properly
conveyed the collected information at the expense of much user interaction. For unsteady
flow-fields, the investigator does not have the luxury of spending much time scanning only
one 'snap-shot' in the simulation. Automated assistance is required in pointing out areas of
potential interest in the flow. This must not require a heavy compute burden (the
visualization should not significantly slow down the solution procedure). And methods must
be developed to abstract the feature and display it in a manner that makes sense physically.

Some success has been made within the scope of previous years work. A method that finds
the core of vortices has been developed and was presented at the AIAA CFD conference this
year. This is important for flow regimes that are vortex dominated (most of these are
unsteady) such as flow over delta wings and flow in turbomachinery. Tracking the core can
give insight into controlling unsteady lift and fluctuating loadings due to core/surface
interactions.

It is hoped that a technique that finds regions of re-circulation will be complete within the
time frame of this contract.

File Specification for Visualization Objects

The goal of this document is to specify a disk file structure, at the byte
level, to be used by visualization systems in dealing with transient data. For
these applications, the entire flow field is not written, but the results of
the visualization extraction techniques are put on disk. The file spec must be
flexible, since it is not known at this time all of the objects that need to
be written. Therefore the file must be self-describing. Readers (viewers) that
do not understand particular objects can ignore them (and optionally output a
warning). This specification is being driven by the requirement to put pV3
extracts on disk, and therefore it will handle objects that have been
spatially decomposed.

Primitives: There are basically 4 primitives used in this spec. IEEE 32-bit
reals [R], IEEE 32-bit integers [I], 32 character titles [T] and 8 character
markers are the primitives. Some records will have vectors of either R and/or
I. The markers are only used to delimit entries in the file and not for data.
All data is written as a binary stream using the non-DEC byte ordering (this
includes HP, IBM, SUN and SGI). DEC and Intel machines must perform byte
swapping during IO.

Notation: [X], [Xvar] or [countX] defines a (number of) primitive(s) within a
record, where X = {R, I, T}. var - defines a variable (named var) of that
type. The value assigned is taken from within the file and will be used later
within the file definition, count - used to specify a number of primitives of
the specified type within the record. The brackets are not part of the data
stream and are only for ease of reading this document, count may be a
constant, previously defined integer variable, or a simple predefined integer
expression.

Multi-discipline: This file spec will handle multi-disciplinary cases. For
this document, the definition of multi-discipline means that there are objects
within the file that refer to data (either in the same volume, or from a
different volumes/simulations) that have different field data (scalar, vector
or state vectors).

Partitions: As previously mentioned, this spec supports and maintains the
partitioning within a discipline. It is the responsibility of the reader to
put together the pieces of an object for viewing.

Entities: An entity is a visualization object such as a geometric cut, iso-
surface, streamline, etc. Entities may have many sub-entities, each defines a
part of the entity (disjoint tris, disjoint quads, cell indices, field
variables, etc). There may be as many sub-entities of each type as there are
partitions. Sub-entities do not depend on the discipline.

Field Variables: As mentioned above, field variables are discipline dependent.
These include scalars, vectors, tensors and state vectors. All field variables
are associated with entities, and are treated like sub-entities.

Groups and Instances: There may be many entities of the same type (within the
same discipline), in a single time frame, (i.e. 3 iso-surfaces of Mach Number
at different values) each with a separate instance number. The instance number
may be used to track an entity from one time frame to the next (the instance
number should not change over time). Entities of a type may be grouped
together (using a group index). For example, a line of streamlines will each
be an entity, all having the same group number. This can be used for changing
the viewing attributes of the entire group.

The file structure:

Markers Comments

S*FILE**[Rspec_rev]
S*HEAD**

Start file
Start header

E*HEAD**
S*FRAME*[Rtime]

E*FRAME*[Rtime]
S*FRAME*[Rtime]

E*FRAME*[Rtime]

Header records

End header
Data frame w/ time

Data records

Data frame w/ time

Data records

S*FRAME*[Rtime] Data frame w/ time

Data records

E*FRAME*[Rtime]
E*FILE** End file

As can be seen from this file skeleton, there is a header and then blocks of
data. Each block contains all the information for the specified time. The
header is used to predefine the types of information to be encountered within
the time blocks and allows the data viewer to set-up titles and scaling for
the data.

Blocks of data are delimited with start (S*) and end (E*) records. There is
enough common information in both records that simple consistency checking is
possible during reading. Only certain records are allowable within HEAD, FRAME
and ENTIT blocks. These are described below.

The spec_rev field defines the revision level that this file conforms to.

Header records (order within the HEAD delimiters depends on record):

WRITER**[T][R]
Specifies the program that produced this file and its version number.

DATETIM*[T]
Specifies the start date and time that the file was created.

NDSCPLN*[Indisc]
Sets the number of disciplines to ndisc. If this record is not in the

header, it is assumed that there is 1 discipline.

DSCPLNE*[T][Idisc][Inpart]
Specifies a discipline, gives it a name, an index and specifies the

number of partitions. The index should run from 0 to ndisc - 1. If there are
no records of this type, ndisc must be 1, the discipline will have no name, it
has an index of 0, and there is 1 partition. The NDSCPLN* record must precede
this entry (if the number of disciplines is greater than one).

PARTNUM*[T][Idisc][Ipart]
This defines a partition, gives it a name, associates it with a

discipline and sets an index. The partition index should run from 0 to npart -
1. This record is not needed if there is only 1 partition. In this case the
partition would not have a name and the partition index is 0. This record must
come after any the DSCPLNE* description for this discipline.

SCALAR**[T][Idisc][Ifield][R][R] Field Item Specification
The SCALAR** record defines a title and field index for a scalar field

variable within a particular discipline. The field index must be unique
(positive and non-zero) for all field items defined within the discipline
(scalars, vectors, tensors and state vectors). The 2 reals specify the default
color range limits for startup. This record must come after any the DSCPLNE*
description for this discipline, slen = 1.

VECTOR**[T][Idisc][Ifield][R] Field Item Specification
The VECTOR** record defines a title and field index for a vector field

within a particular discipline. The field index must be unique for all field
items defined within the discipline. The real specifies the default scaling
for startup. This record must come after any the DSCPLNE* description for this
discipline, slen = 3.

TENSOR**[T][Idisc][Ifield] Field Item Specification
The TENSOR** record defines a title and field index for a tensor field

within a particular discipline. The field index must be unique for all data
items defined within the discipline. This record must come after any the
DSCPLNE* description for this discipline. It is assumed that all tensors are
3x3, therefore slen = 9.

STATE*V*[T][Idisc][Islen] Field Item Specification
The STATE*V* record defines a title with an implicit field index of zero

for the disciplines state vector. The integer specifies the length of the
state vector. This record must come after any the DSCPLNE* description for
this discipline.
NOTE: when using state vectors the viewer needs to be given information on how
to translate the state vector into scalar, vector and tensor field variables.

SURFACE*[T][Idisc][Isurfi]
This defines a bounding surface for a discipline. The title can be used

by the viewer for selection and changing attributes. The index must be unique
for each surface within the discipline.

ENTITY**[T][lenti][Inint][Inreal][Insubs]
This record defines an entity (such as a geometric cut, iso-surface and

etc). The entity is given a title and an index (that must be unique for all
entities). The additional integers define the number of entity specific
integer and real data items as well as the number of sub-entities.
NOTE: implementors need to standardize on entity definitions (based on title)
and sub-entities, suggestions are described within this document.

SENTITY*[T][lenti][Inint][Inreal][Insubs][Ifactor]
This record defines a special entity (such as a streamline) where the

number of partition entries may be greater than the number of partitions. The
entity is given a title and an index (that must be unique for all entities).
The additional integers define the number of entity specific integer and real
data items as well as the number of sub-entities. The factor limits the total
number of segments to factor * npart. ENTITY** definitions have an implicit
factor of 1.
NOTE: implementors need to standardize on entity definitions (based on title)
and sub-entities, suggestions are described within this document.

DATADEF*[T][lenti][Isubi][Iranki][Irankr]
This record specifies the title and index for a sub-entity associated

with the entity index. The sub index must be between 0 and nsubs-1. ranki
defines the number of integer entries for each count of the sub-entity, rankr
defines the same for reals. Either ranki or rankr must be zero (all data
entries are either integer or real). This record must come after the entity
has been described via the ENTITY** or SENTIT* entry. For example, the
definition of disjoint triangles based on indices would have ranki = 3 (3
nodes/tri) and rankr = 0.

Data records (within FRAME delimiters):

S*ENTIT*[Idisc][lenti][linstance][T][Igroupi][nintl][nrealR]([factor*npartl])
The data for each entity is found between this record and the E*ENTIT*

record. The only allowable items between these two markers are the SUBDATA*,
FIELD***, PREVDAT*, and PREVFLD* records. The instance must be unique for each
entity of the same type within a discipline and time-frame. The instance index
should track across time. The title can be used by the viewer to give the
object a name and should also track across time-frames. For Special Entities
(fator not equal to 1) an additional field is required (factor*npart integers)
that hold the actual partition indices for each segment.

E*ENTIT*[Idisc][lenti][linstance]
This record marks the end of the data for this entity.

SUBDATA* [Ipart] [Isubi] [Hen] [len*rank Is or Rs]
This record defines the size and data of the sub-entity for this

partition index. There should only be, at most, 1 record for each partition
(except for special entities) and sub-entity index within the S*ENTIT* and
E*ENTIT* delimiters. For entities declared via the SENTITY* tag, part may
range from 0 to factor*npart-l (for the specific discipline).

FIELD*** [Ipart] [Ifield] [Hen] [len*slenR]
This record defines the size and field data associated with this

partition index, field must be 0 for state vectors. Again, there should only
be 1 record for each partition (except for special entities) and field index
within the S*ENTIT* and E*ENTIT* delimiters

PREVDAT*[Ipart][Isubi][Ifp]
The PREVDAT* record indicates that the sub-entity data already exists in

the file (it has been previously defined). fp points the the SUBDATA* record
that contains the definition, fp is the byte index (absolute, from the
beginning of the file) and can be used by fseek. This is very useful for
reducing the overall file size, in that some sub-entities may not be changing
in time. NOTE: For machines with 64 bit longs (DEC Alphas and SGI RSOOOs), the
high order bytes must be zero filled (this limits the file size to 2^31
bytes).

PREVFLD*[Ipart][Ifield][Ifp]
This has the same effect as PREVDAT* except for field variables, fp

points to the beginning of the proper FIELD*** record that contains the field
data.

Suggested Sub-entities and their meaning

This first set can not have Field Items associated because the coordinates are
part of the sub-entities:

[PolyLine] ranki: 0 rankr: 3
Defines a lines via the series of coordinate triads. The line length (len) is
the number of points.

[Disjoint Lines] ranki: 0 rankr: 3
Defines a series of line segments from these coordinate triads. The number of
segments is len/2 .

[Disjoint Triangles] ranki: 0 rankr: 3
Defines a series of triangles from these coordinate triads. The number of
triangles is len/3.

[Disjoint Quadrilaterals] ranki: 0 rankr: 3
Defines a series of quads from these coordinate triads. The number of
quadrilaterals is len/4.

These sub-entities may be associated with Field Items. This association is
done through the Coordinate sub-entity (which defines the node space to be
referenced through).

[Coordinates] ranki: 0 rankr: 3
Define the number and location of the nodes that support the following sub-
entities .

[Disjoint Tris] ranki: 3 rankr: 0
Each set of 3 integers index nodes within the Coordinates to specify a
disjoint triangle.

[Disjoint Tris w/ Cell Index] ranki: 4 rankr: 0
The first 3 integers index a nodes within the Coordinates to specify a
disjoint triangle. The fourth integer refers to the 3D cell that created the
triangle.

[Disjoint Quads] ranki: 4 rankr: 0
Each set of 4 integers index nodes within the Coordinates to specify a
disjoint quadrilateral.

[Disjoint Quads w/ Cell Index] ranki: 5 rankr: 0
The first 4 integers index a nodes within the Coordinates to specify a
disjoint quadrilateral. The fifth integer refers to the 3D cell that created
this facet.

[Mesh] ranki: 2 rankr: 0
This is a disjoint line definition where each of the two integers are indices
into the Coordinates to define the line segments. These lines display the
intersection of 3D cell faces and a cut surface (or bounding surface).

[Outline] ranki: 2 rankr: 0
This is a disjoint line definition where each of the two integers are indices
into the Coordinates to define the line segments. These lines are the
intersection of bounding surfaces and a cut surface. They are useful for a
quick drawing mode.

[Outline w/ Surface Number] ranki: 3 rankr: 0
This is the same as Outline except for each line segment there is a tag to
indicate the bounding surface index that was intersected.

The following sub-entities are associated with the node space and therefore
must have the same length as Coordinates. This is also true for any Field
data.

[Clip index] rakni: 1 rankr: 0
Used for planar cuts to indicate whether the node is viewable or not.

[2D Mapping] ranki: 0 rankr: 2
Define a mapping so the node (therefore surface) can be drawn in 2D.

[PseudoTime] ranki: 0 rankr: 1
Integration time for streaamlines. Note: the streamline is defined as a
polyline from the Coordinates.

[Cell Index] ranki: 1 rankr: 0
Defines the 3D cell index that contains the point in Coordinates.

[Divergence] ranki: 0 rankr: 1
The cross-flow divergence experienced by the streamline (or particle). This
allow streamtubes to be drawn.

[Angle] ranki: 0 rankr: 1
The angle of a streamribbon at the streamline position.

[Start Time] ranki: 0 rankr: 1
The seed time for the particle. Note: particles are individual points within
Coordinates.

[Particle Number] ranki: 1 rankr: 0
The unique number (instance) for each particle. May be used to track a
particle in time.

The following sub-entity exists as a catch all. The association with the
entity and some coding is required in the viewer to use the data in this sub-
entity.

[Generic Sub-Entity] rakni: ? rankr: ?

Entity and Sub-entities for some of the pV3 Extracts:

Title: Planar Cut Entity Index: 2

Title:

Title:

Title:

Title:

Title:

nints:
0
1
2
3
4
5

0
Tris w/ Cell
Quads w/ Cell
Coordinates
Mesh
Outline w/ Surf
Clip index

Geometric Cut
nints :
0
1
2
3
4
5

Domain
nints :
0
1
2
3
4
5

1 (cut index)
Tris w/ Cell
Quads w/ Cell
Coordinates
Mesh
Outline w/ Surf
2D Mapping

Surface
1 (surface index)
Tris w/ Cell
Quads w/ Cell
Coordinates
Mesh
Outline w/ Surf
2D Mapping

Iso-Surface
nints :
0
1
2
3
4

1 (field index)
Tris w/ Cell
Quads w/ Cell
Coordinates
Mesh
Outline w/ Surf

StreamLine
nints :
0
1
2
3
4

nreal :
ranki :
ranki :
ranki :
ranki :
ranki :
ranki :

Entity

ranki :
ranki :
ranki :
ranki :
ranki :
ranki :

Entity

ranki :
ranki :
ranki :
ranki :
ranki :
ranki :

Entity

ranki :
ranki :
ranki :
ranki :
ranki :

Entity

9 (3
4
5
0
2
3
1

Index:

4
5
0
2
3
0

Index:

4
5
0
2
3
0

Index:

4
5
0
2
3

Index:

of

4

5

7

18
1 (surface/volume flag)
Cell Index
PseudoTime
Coordinates
Divergence
Angle

Particles
nints :
0
1
2
3

0
Particle Number
Start Time
Coordinates
Divergence

ranki :
ranki :
ranki :
ranki :
ranki :

Entity
nreal :
ranki :
ranki :
ranki :
ranki :

1
0
0
0
0

Index:
0
1
0
0
0

19

nsubs: 6
4 corners in 3 space)
rankr :
rankr :
rankr :
rankr :
rankr :
rankr :

nsubs :
nreal :
rankr :
rankr :
rankr :
rankr :
rankr :
rankr :

nsubs :
nreal :
rankr :
rankr :
rankr :
rankr :
rankr :
rankr :

nsubs :
nreal :
rankr :
rankr :
rankr :
rankr :
rankr :

nsubs :
nreal :
rankr:
rankr :
rankr :
rankr :

0
0
3
0
0
0

6
1
0
0
3
0
0
2

6
0
0
0
3
0
0
2

5
1
0
0
3
0
0

5
3
0
1
3
1

(value)

(value)

(special)
(seed loc)

rankr: 1

nsubs: 4

rankr:
rankr:
rankr:

0
1
3

rankr: 1

A simple example:

In this example there is only one discipline and the results are from one
partition.

S*FILE**
S*HEAD**
WRITER**
DATETIM*
SURFACE*
SCALAR* *
STATE*V*
ENTITY**
DATADEF*
DATADEF*
DATADEF*
DATADEF*
DATADEF*
DATADEF*
ENTITY**
DATADEF*
DATADEF*
DATADEF*
DATADEF*
DATADEF*
E*HEAD**
S*FRAME*
S*ENTIT*
SUBDATA*
QTTT3nArPA *O U DLJn JL f\

SUBDATA*
FIELD***
SUBDATA*
QTTRnArPZi *O U 13 LJf\ J. f\

E*ENTIT*
S*ENTIT*
SUBDATA*
SUBDATA*
SUBDATA*
SUBDATA*
SUBDATA*
E*ENTIT*
S*ENTIT*
SUBDATA*
SUBDATA*
SUBDATA*
E*ENTIT*
E*FRAME*
S* FRAME*
S*ENTIT*
DDTT'unzi'T*

[1.00]

[pV3 Batch Server
[6Jul95 12:48:00
[Body
[Mach Number
[
[Domain Surface
[Disjoint Tris w/ Cell Index
[Disjoint Quads w/ Cell Index
[Coordinates
[Mesh
[Outline w/ Surface Number
[2D Mapping
[Iso-Surface
[Disjoint Tris w/ Cell Index
[Disjoint Quads w/ Cell Index
[Coordinates
[Mesh
[Outline w/ Surface Number

[0.0]
[0] [5] [1] [
rni rni r i n o i r 1 r\ Q •*• /i TT-.4-^«-^.-i-^ii ^*[UJ L U J L -L U o J l-Lwo *± lIlC.GCjGjrSJ "^

r n i f i i r i * 3 Q i r i * 3 Q ' * 1 ^ • \- i ^-
rni r?i r KKI \P.Z*->. ^ ®gersL U J [Z J L o o J L o o -J 3T63.J.SJ <

[0] [1] [66] [66 reals]
CHI f71 T9A1 f9/l*9 -i nt-£arTOT-c 1 <r-

rni TAT r i o i ri^*^ •jnt'tirfovai <?
[0] [5] [1]
[0] [1] [I] [Mach Iso-Surface
[0] [0] [100] [100*4 integers]
[0] [1] [150] [150*5 integers]
[0] [2] [64] [64*3 reals]
[0] [3] [36] [36*2 integers]
[0] [4] [10] [10*3 integers]
[0] [7] [1]
[0] [7] [2] [Mach Iso-Surface
[0] [0] [80] [80*4 integers]
[0] [1] [120] [120*5 integers]
[0] [2] [55] [55*3 reals]
[0] [7] [2]
[0.0]
[1.0]
[0] [5] [1] [
rni r AI PI-.I-T-

] [1.
]
] [0]
] [0]
] [0]
] [5]
] [5]
] [5]
] [5]
] [5]
] [5]
] [5]
] [7]
] [7]
] [7]
] [7]
] [7]
] [7]

20]

[1]
[1] [0.0] [1.0]
[5]
[1] [0] [6]
[0] [4] [0]
[1] [5] [0]
[2] [0] [3]
[3] [2] [0]
[4] [3] [0]
[5] [0] [2]
[1] [1] [5]
[0] [4] [0]
[1] [5] [0]
[2] [0] [3]
[3] [2] [0]
[4] [3] [0]

] [0] [1]

]

]

0]

0]

1]

1]

l.C

0.5

] [0] [1]
i

PREVDAT*[0] [3] [ptr |] | | |
FIELD***[0][1][66][66 reals] | | |
PREVDAT* [0] [2] [66] [ptr j] | |
PREVDAT*[0] [1] [24] [ptr j] j
PREVDAT* [0] [0] [12] [ptr |]
E*ENTIT*[0][5][1]
S*ENTIT*[0][7][1][Mach Iso-Surface][0][1][1.0]
SUBDATA*[0] [0] [102] [102*4 integers]
SUBDATA*[0] [1] [148] [148*5 integers]
SUBDATA*[0][2][62][62*3 reals]
SUBDATA*[0][3][34][34*2 integers]
SUBDATA*[0][4][12][12*3 integers]
E*ENTIT*[0][7][1]
S*ENTIT*[0][7][2][Mach Iso-Surface][0][1][0.5]
SUBDATA*[0][0][86][86*4 integers]
SUBDATA*[0] [1] [125] [125*5 integers]
SUBDATA*[0][2][65][65*3 reals]
E*ENTIT*[0] [7] [2]
E*FRAME*[1.0]
E*FILE**

