
NASA Contractor Report 4673

I Formal Methods and Their Role in Digital
~

SY stems Validation for Airborne Systems

~ JohnRushby

Unclas

H 1 1 6 1 0063224

Contract NAS1-18969
Prepared for Langley Research Center

August 1995

NASA Contractor Report 4673

Formal Methods and Their Role in Digital
Systems Validation for Airborne Systems
John Rushby
SRI International 0 Menlo Park, California

National Aeronautics and Space Administration
Langley Research Center Harnpton, Virginia 23681 -0001

Prepared for Langley Research Center
under Contract NAS1-18969

August 1995

Printed copies available from the following:

NASA Center for Aerospace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934
(301) 621-0390 (703) 487-4650

National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161-2171

Abstract

This report is based on one prepared as a chapter for the FAA Digital Sys-
tems Validation Handbook (a guide to assist FAA Certification Specialists with
Advanced Technology Issues).l Its purpose is to explain the use of formal meth-
ods in the specification and verification of software and hardware requirements,
designs, and implementations, to identify the benefits, weaknesses, and difficul-
ties in applying these methods to digital systems used in critical applications,
and to suggest factors for consideration when formal methods are offered in
support of certification.

The presentation concentrates on the rationale for formal methods and on
their contribution to assurance for critical applications within a context such
as that provided by DO-178B (the guidelines for software used on board civil
aircraft)2; it is intended as an introduction for those to whom these topics are
new. A more technical discussion of formal methods is provided in a companion
rep01-t.~

Digital Systems Validation Handbook-Volume ID. Federal Aviation Administration Technical
Center, Atlantic City, NJ. Forthcoming.

2Software Considerations in Airborne Systems and Equipment Certification. Requirements and
Technical Concepts for Aviation (RTCA), Washington, DC, December 1992.

3John Rushby, Formal Methods and the Certification of Critical Systems, Technical Report
SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA. Also NASA
Contractor Report 4551.

...
Ill

Contents
Glossary 1

Introduction

1 The Rationale for Formal Methods
1.1 The Problem With Software and Its Assurance

1.1.1 Complexity and Design Faults
The Discontinuous Behavior of Software Systems

1.2 Formal Methods .
1.2.1 Analytic Formal Methods .
1.2.2 Descriptive Formal Methods

1.1.2

2 Issues and Choices in Formal Methods
2.1 Selection and Abstraction in Applications of Formal Methods

2.1.1 Levels of Formality .
2.1.2 Selected Components .
2.1.3 Selected Properties .
2.1.4 Lifecycle Stages .
2.1.5 Abstraction .

2.2 The Varieties of Formal Specifications
2.2.1 Model-Oriented Specifications
2.2.2 Property-Oriented Specifications
2.2.3 Specifications for Concurrent Systems

2.3 The Varieties of Formal Analysis .
2.3.1 Consistency Analysis and Typechecking
2.3.2 Validating Formal Specifications
2.3.3 Predicting Behavior and Verifying Refinement

3 Formal Methods and Certification
3.1 General Recommendations .
3.2 Interpretation for DO-178B .
3.3 Conclusion .

Acknowledgments

References

Index

V

5

5
5
6
9

12
12
15

19
19
19
23
25
25
26
28
28
29
30
31
31
33
34

39
39
40
48

49

51

57

1

Glossary

These explanations are provided to help the nonspecialist. They are intended to
reflect the technical uses of the terms considered, but do not attempt to incorporate
subtleties that concern the specialist.

Abstraction: the process of simplifying certain details of a system description or
model so that the main issues are exposed. Abstraction is the key to gaining
intellectual mastery of any complex system, and a prerequisite to effective use
of formal methods. It requires great skill and experience to use abstraction to
best effect.
In formal methods, abstraction is part of the process of developing a math-
ematical model that is a simplification or approximation of reality but that
retains the properties of interest. In physics, for example, it is customary to
model a moving object as a point mass, and to ignore its shape. Similarly
in the case of a flight-control system, one can analyze properties of, say, the
clock synchronization algorithm or the redundancy management mechanisms
by abstracting these away from the larger and more complex system in which
they are embedded.

Correctness: the property that a system does what it is expected and required to
do. Formal methods cannot establish correctness in this most general sense
because they deal with formal models of the system that may be inaccurate or
incomplete, and with formal statements of requirements that may not capture
all expectations. The difference between the real and modeled worlds is a
potential source of error that attends all uses of mathematical modeling in
engineering (e.g., in numerical aerodynamics or stress calculations) and that
must be controlled by validating the models concerned. The difference between
expectations and documented requirements is another problem that attends all
engineering activities. Formal methods provide ways to make the specifications
of assumptions and requirements precise; formal validation (q.v.) can then be
used to ensure that the specifications are adequately complete and correct.
Correctness does not ensure safety or other critical properties, since the system
requirements and expectations may not address these issues (correctly or at
completely). System requirements usually describe functional properties (i.e.,
what the system is to do); it is necessary to establish nonfunctional properties
such as safety and security (which often describe what the system is not to
do) by separate scrutiny (based, e.g., on hazard analysis, or threat analysis).
Formal methods can be used in these processes.

Design Faults: mistakes in the design of the system, or in the understanding of
its requirements and assumptions, that cause it to do the wrong thing or to

2 GLOSSARY

fail in certain circumstances. Also called generic faults. Modular redundancy
provides no protection against these faults.

Formal logic: symbolic notation equipped with rules for constructing formal proofs
(q-v.). Formal logic consists of a language for writing statements and syntactic
rules of inference for constructing proofs using these statements. Formal logic
supports a form of reasoning that does not rely on the subjective interpretation
of the symbols used. For example, “All Os are #; this 0 is a 0; therefore, this
0 is #” is sound reasoning, no matter what the symbols mean. Because they
do not depend on intuition, formal proofs can be developed or checked by
computer (see theorem proving).
There are many formal logics; they differ in what concepts they can express,
and in how difficult it is to discover or check proofs. Propositional logic, first-
order logic, higher-order logic, the simple theory of types, and temporal logic
are all examples of formal logics that find application in formal methods. These
logics are generally augmented with certain theories defined within them that
provide definitions or axiomatizations for useful mathematical concepts, such
as sets, numbers, state machines, etc.

Formal Proof and formal deduction. Formal deduction is the process of deriv-
ing a sentence expressed in a formal logic from others through application of
one or more rules of inference. In the example above, formal deduction allows
us to derive the sentence “this 0 is #” from the two sentences “All Os are #”
and “this 0 is a 0.”
A formal proof is a demonstration that a given sentence (the theorem) follows
by formal deduction from given (i.e., assumed) sentences called premises.

Formal methods: methods that use ideas and techniques from mathematical or
formal logic (q.v.) to specify and reason about computational systems (both
hardware and software).

Formal specification: a description of some computational system expressed in
a notation based on formal logic. Generally, the specification states certain
assumptions about the context in which the system is to operate (e.g., laws of
physics, properties of subsystems and of systems with which the given system
is to interact), and certain properties required of the system. A requirements
specification need specify no more than this; a design specification will specify
some elements of how the desired properties are to be achieved-e.g., algo-
rithms and decomposition into subsystems.

Formal validation: a process for gaining confidence that top-level formal spec-
ifications of requirements and assumptions are correct. Formal verification

3

(q-v.) cannot be applied at these levels because there are no higher-level re-
quirements or more basic assumptions against which to verify them: processes
of review and examination must be used instead. Formal validation consists
of challenging the formal specifications by proposing and attempting to prove
theorems that ought to follow from them (i.e., “if I’ve got this right, then this
ought to follow.”)

Formal verification: the process of showing, by means of formal deduction, that a
formal design specification satisfies its formal requirements specification. The
formal description of a design and its assumptions supply the premises, and the
requirements supply the theorem to be proved. In hierarchical developments,
assumptions and designs at one level become requirements at another, so the
formal verification process can be repeated through many levels of design and
abstraction. At the topmost level, validation (q.v.) must be employed.

Theorem proving and proof checking. Given a putative theorem and its
premises, a theorem prover attempts to discover a proof that the theorem
follows from the premises; on the other hand, a proof checker simply checks
that a given proof is valid according to the rules of deduction for the logic
concerned. Both these processes can be automated. A theorem prover is a
computer program that uses search, heuristics, and user-supplied hints to guide
its attempt to discover a proof. A proof checker is a computer program that
is used interactively: a human user proposes proof steps and the proof checker
checks they are valid and carries them out. The most effective automated
assistance for formal methods is generally obtained by a hybrid combination
of these approaches: the user proposes fairly big steps and the proof checker
uses theorem proving techniques to fill in the gaps and take care of the de-
tails. Examples of theorem provers include Otter, Nqthm, PTTP, RRL, and
TPS. Examples of proof checkers include Automath, Cog, HOL, Isabelle, and
Nuprl. Hybrids include Eves, IMPS, PC-Nqthm, and PVS. Other forms of
automated analysis that can be applied to formal specifications include model
checking, language inclusion, and state exploration; examples of systems that
perform these analysis are SMV, COSPAN, and Murq5.

5

Introduction

This report is based on one prepared as a chapter for the FAA Digital Systems Val-
idation Handbook (a guide for aircraft certifiers) [FAA89]. Its purpose is to outline
what is meant by “formal methods” and to explain their rationale and suggest tech-
niques for their use in providing assurance for critical applications. The report is
intended as an introduction for those to whom these topics are new and assumes no
background beyond some exposure to software engineering and to safety-critical sys-
tems. A more technical examination of formal methods is provided in a companion
report [Rus93].

The presentation is in three sections: the first outlines the general rationale for
formal methods; the second considers the different kinds of formal methods, and
some of the issues in their selection and application; the third considers their contri-
bution to assurance and certification for critical applications, using the requirements
concerning software in civil aircraft for concrete illustration.

1 The Rationale for Formal Methods

Formal methods are a very different approach to software development and assur-
ance than traditional methods. In order to describe why formal methods can be
worthwhile, I begin by explaining why the assurance problem is so hard for soft-
ware.

1.1 The Problem With Software and Its Assurance

Software is notorious for being late, expensive, and wrong. Exasperated technical
managers often ask “what’s so different about software engineering-why can’t we
(or, less generously, you) do it right?” The unstated implication is that the tra-
ditional engineering disciplines-in which technical managers usually received their
training-do things better.

In my opinion, this unflattering comparison of software with other engineering
endeavors is somewhat justified; in particular, the traditional disciplines are founded
on science and mathematics and are able to model and predict the characteristics and
properties of their designs quite accurately, whereas software engineering is more of
a craft activity, based on trial and error rather than calculation and prediction. The
comparison is too glib, however, in that it fails to acknowledge that in two important
respects software is different. These respects are the complexity of behavior that is
achieved by software, and its lack of continuity. These are discussed in the next two
sections.

P

PAGE

6 THE RATIONALE FOR FORMAL METHODS

1.1.1 Complexity and Design Faults

Software provides much of the functionality of modern systems, and software there-
fore directly expresses the scale and complexity of these systems. Complexity is a
source of design faults, by which I mean faults in the intellectual construction of the
system-faults that will cause the system to do the wrong thing in some circum-
stances. Design faults can occur in any system, independently of the technologies
used in its construction (see, for example, [BJ94]) but, because design faults are
often due to a failure to anticipate certain interactions among the components of
the system, or between the system and its environment, they become more likely as
the number and complexity of possible behaviors and interactions increases.

Individual software components perform complex functions in modern systems,
and collectively they provide the focus for interaction among all parts of the system,
and between the system and its environment and operators. Furthermore, software,
because of its mutability, is also the target for most of the changes that are generated
in requirements and constraints as the overall design for a system evolves. Thus,
software carries the burden of overall system complexity and volatility, and it is to
be expected that design faults will most commonly be expressed in software.

The Need for Correctness. Because software is found in active control systems,
it is usually infeasible to compensate for possible faults or uncertainties in its design
by “overengineering” it to provide a “design margin” in the same way as physical
systems: whereas a wing spar may be constructed to withstand loads far greater
than any it should encounter in normal flight, the software in an autoland system,
for example, has to do exactly the right thing.

I
An Aside on Defensive Programming. A plausible counterpart to over-
engineering in software may be defensive programming, whereby each software
component explicitly checks for “impossible” conditions and tries to do some-
thing sensible if they arise. The problem is that if the impossible happens, then
some failure of design must have already occurred, and there is no telling what
impact an autonomous decision to do something locally “sensible” may have on
overall system behavior. This is the central problem with complex, interacting
systems: local actions can have highly nonlocal consequences.

Another technique whose protection does not extend from physical to design
faults is simple modular redundancy. There is always the possibility that physical
components may fail-either through manufacturing defects, fatigue and wear-out,
improper maintenance, physical damage (e.g., shrapnel from a disintegrating engine,
or crushing from a collapsing floor), or environmental effects (e.g., heavy ions from

1.1 The Problem With Software and Its Assurance 7

cosmic rays, or excessive moisture and heat following loss of air-conditioning)-so it
is a good idea to have spares and backups to provide fault tolerance. A fault-tolerant
system must be designed to avoid common mode failures in which all its redundant
components are brought down by a single cause. An example of a common mode
failure is the loss of all hydraulic systems in the Sioux City DC-10 crash: the separate
hydraulic systems were routed through a single space near the tail engine and all
were severed when that engine di~integrated.~

Design faults are the quintessential source of common mode failures, so simple
replication can provide no protection against them. It is, of course, possible to pro-
vide redundant components based on different designs-so-called multiple-version
dissimilar (or diverse) software-but this is not a fully satisfactory solution. I give
a very brief summary why this is so in an aside on page 8.

Evidence for Correctness and the Need to Consider All Behaviors. Al-
though defensive programming and software diversity provide paUiatives in some
circumstances, for most critical software systems there is no alternative to the daunt-
ing task of eliminating all design faults-or at least those that could have serious
consequences. And it is also necessary to provide evidence that this has been done
successfully. This evidence is usually in two parts: one is concerned with the pro-
cess of design and construction-it seeks to show through evidence of good practice
that everything has been done to prevent serious design faults being introduced and
remaining undetected and uneradicated; the second seeks to demonstrate directly,
through examination of the system in operation and under test, and through an
analysis of its design and supporting rationale, that it is free of serious faults. The
first of these forms of evidence concerns quality control, the second provides quality
assurance.

Assurance for a safety-critical system must, at least in principle, consider all
possible behaviors of the system under all the circumstances it might encounter.
Since “all possible” behaviors may be too many to examine, two complementary
approaches have evolved that attempt to reduce the number of behaviors that must
be considered. One way tries to show that the system always does the right thing,
the other tries to show that it never does a seriously wrong thing.

For the first approach, we use a combination of analysis and empirical testing to
examine those behaviors that are considered most likely to harbor serious faults-for
example, those that are close to boundary conditions, or that represent “off nominal”
conditions, such as those where some subsystems or redundant components have .
failed. Examples of this approach are fault injection (an empirical method) and
failure modes, effects and criticality analysis (FMECA, an analytical method).

4For a critical examination of ethical and regulatory issues concerning the DC-10, see the com-
pendium edited by Fielder and Busch [FB92].

8 THE RATIONALE FOR FORMAL METHODS

A n Aside on Multipleversion Software. The topic of constructing systems
that can tolerate faults in their own design using multiple-version software is controver-
sial. The main questions are whether this approach provides any significant additional
assurance of safety, and whether that assurance is quantifiable. Answers to these ques-
tions hinge on “how much” dissimilarity of design can be achieved in the different
versions, and on the extent to which any failures of dissimilar designs will be indepen-
dent.

The extent of dissimilarity depends on how much of the overall design is developed
in multiple versions. If dissimilar design is limited to multiple versions of low-level mod-
ules, then no protection is provided against design faults above that level; in particular,
the system is fully exposed to faults in the modules’ requirements. Furthermore, the
degree of design freedom, and hence the scope for diversity, is limited when small com-
ponents are built to a common set of requirements, and there is some evidence that
different designers or implementers do tend to make similar mistakes [ECK+91, KL861.
If dissimilarity is at the level of whole systems or subsystems (e.g., an independent
backup to a digital flight control system), then there is the question whether the dis-
similar system should have the full capability and assurance of the primary system: if
it does, then development and maintenance costs will be at least doubled (and that
money could have been spent improving the quality, or the assurance, of the primary
system); if not, there is concern whether the secondary system can be relied on in an
emergency (e.g., the control envelope of an analog backup system is often less than
that of the primary flight control system).

In all cases, there is the critical problem of designing and implementing redundancy
management across the dissimilar versions: that is, how to decide when one version has
failed and another should be given control (in the case of backup systems), or how to
resolve voter disagreements in the case of parallel systems. (Dissimilar designs cannot
be expected to produce bit-for-bit identical behavior, so threshold voting has to be
used.) Like other problems involving synchronization and coordination of concurrently
active distributed components, redundancy management-whether of identical or dis-
similar components-is among the most difficult and fault-prone aspects of software
design. Redundancy management does not lend itself to diversity (e.g., you cannot
vote the voters ad infinitum; ultimately a decision must be made and the algorithm
by which that decision is accomplished represents a single design), and can be made
more complex and fault prone by the need to manage diversity in other components.
For example, when, on test flight 44, disagreements among the threshold voters in
the AFTI-F16 digital flight control system caused each computer to declare the others
failed, the analog backup was not selected because simultaneous failure of two or more
digital channels had not been anticipated in design of the redundancy management
system [Mac88, p. 441.

For these and other reasons, the guidelines for certification of airborne software state
that the degree of protection provided by software diversity “is not usually measurable”
and dissimilar software versions do not provide a means for achieving safety-critical
requirements, but “are usually used as a means of providing additional protection
after the software verification process objectives for the software level.. .have been
met” [RTCA92, Subsection 2.3.21.

1.1 The Problem With Software and Its Assurance 9

The general idea behind the second approach to quality assurance is to hypoth-
esize that the system has done something bad and then to analyze all the circum-
stances that could cause this to come about and to show that the design prevents
them from happening. This approach is inspired by hazard analysis, which is a
central concept in safety-critical systems; one particular method for doing it that
has been adapted to software is fault-tree analysis (FTA) [Lev95, Section 14.31.

The property that is common to the different assurance techniques is that they
provide ways to group “essentially similar” behaviors together so that fewer cases
need to be considered while still providing effectively complete coverage of all possi-
ble behaviors. These techniques are very effective with systems based on mechanical,
hydraulic, electrical, and other physical components: these have relatively few “es-
sentially different” behaviors, so that relatively straightforward analysis combined
with a modest number of empirical tests is sufficient to cover all possibilities. These
familiar techniques are far less effective, however, with complex systems that can
exhibit extremely large numbers of essentially different behaviors.

Because the complexity in modern systems is expressed in software, it follows
that the software will exhibit a large number of different behaviors and that assur-
ance will be difficult for this reason. In fact, this difficulty is compounded by another
attribute of software that distinguishes it from physical systems. This attribute is
considered next.

1.1.2 The Discontinuous Behavior of Software Systems

The reason that software is the focus for most of the design complexity in modern
systems is its versatility: a software system can provide many different behaviors and
can be programmed to respond appropriately to many different circumstances. The
source of these different behaviors and responses is in the many discrete decisions
that are made as software executes: each decision is discrete in that the subsequent
course of execution switches from one path to another according to whether or not
some condition is true. Because the relationship between the inputs and the outputs
of a piece of software is the cumulative effect of these many discrete decisions, it
follows that overall input/output relationship must itself be discretized, or discon-
tinuous: small changes in inputs can change the outcomes at certain decision points,
resulting in radically changed execution paths and correspondingly large changes in
output behavior. This discontinuous relationship between inputs and outputs is the
second major respect in which software differs from the physical processes considered
by other engineering disciplines.

In physical systems, there is usually a (piecewise) continuous relationship be-
tween inputs and outputs: smooth changes in the inputs produce correspondingly
smooth changes in the outputs. This allows the complete behavior of a physical
system to be extrapolated from a finite number of tests: the continuous character

10 THE RATIONALE FOR FORMAL METHODS

of the system ensures that responses to untested input configurations will be es-
sentially similar to those of nearby cases that have been tested. Departures from
continuity are usually catastrophic breakdowns in response to inputs beyond the
operating range.

An Aside on Hardware. Although this report speaks only of software, ex-
actly the same concerns apply to many hardware components, especially cus-
tom ASICs (application-specific integrated circuits). These share all the im-
portant properties of software-notably, design complexity and discontinuity of
behavior-and differ only in the technology of their implementation. Whereas
software design is ultimately expressed in a programming language such as Ada
and then compiled into code that is interpreted by a processor, ASIC designs
are expressed in a hardware design language such as VHDL or Verilog and then
transformed into hardware structures, or to gate-array configurations. The
considerations for assurance described in standards and guidelines such as DO-
178B should apply to ASICs as they do to software. Similarly, the techniques of
formal methods can be applied to ASICs and other complex hardware designs.

But with software, this method of inferring properties of the totality of possible
behaviors from tests on a selected sample is much less secure: without continuity,
we cannot assume that neighboring cases are essentially similar to one another, so
there is little justification for extrapolating from tested to untested cases. Now, it
can be argued that although less than exhaustive testing does not allow definitive
statements to be made about complex software, it does permit statistical statements
of its reliability, and that such quantification of reliability is both necessary and
sufficient for the certification of safety-critical systems. Sometimes this is countered
by the argument that talk of reliability is meaningless when we are dealing with
design faults: if design faults are present, they will cause the system to fail in
specific circumstances, and the failure is certain whenever those circumstances arise.
However, we must recognize that occurrence of those circumstances is associated
with a random process-namely, the sequence of inputs to the system (or, more
generally, the sequence and timing of its interactions with its environment). Thus,
the manifestations of design faults behave as stochastic processes and can be treated
probabilistically: to talk about a piece of software having a failure rate of less than,
say, per hour is to say that the probability of encountering a sequence of inputs
that will cause a design fault to lead to failure is less than lo-’ per hour.

The problem with the experimental statistical approach to assurance for complex
software is that the smallest failure rates that can be determined in this way are
typically several orders of magnitude greater than those required for safety-critical
systems. I explain this in somewhat more detail in the box on page 11.

1.1 The Problem With Software and Its Assurance 11

An Aside on The Infeasibility of Experimental Quantification of the
Reliability of Critical Software. It is perfectly reasonable to state require-
ments for safety-critical systems in statistical terms. For example, catastrophic failure
conditions in aircraft (“those which would prevent continued safe flight and landing”)
must be “extremely improbable.” That is, “so unlikely that they are not anticipated to
occur during the entire operational life of all airplanes of one type” [FAA88, paragraphs
6.h(3) and 9.e(3)]. A little arithmetic suggests lo7 hours as the operational lifetime of
an aircraft fleet, and hazard analysis might typically reveal ten potentially catastrophic
failure conditions in each of ten systems on board the aircraft, so that the maximum al-
lowable failure rate for each is about per hour [LT82, page 371. This is indeed the
number suggested as an “aid to engineering judgment to help determine compliance”
with the requirement for extremely improbable failure conditions [FAA88, paragraph
10. b] .a

For a simple physical system where breakdown or wearout is the only potential
cause for a catastrophic failure condition, experience with similar systems together
with testing and analysis, may yield data that can substantiate a claimed failure rate
as low as lo-’. Software, however, generally interacts with its environment in such
a complex manner that prior experience of its behavior in similar applications may
provide relatively little assurance in a new one.* Furthermore, most software has
significant elements of novelty from one application or version to another, so that
experimental determination of software reliability must examine the actual software in
the context of its actual application. Furthermore, the test scenarios used to derived
reliability estimates must closely approximate in type and frequency the distribution
of inputs that will be encountered in operation (this is called the operational profile).
For required failure rates on the order of this means that it will be necessary to
construct many millions of the very rare scenarios that will each be encountered only
one time in a billion. (Catastrophic failures usually arise in situations compounded
by several rare events [Hec93].) Divergence between the test and operational profiles
in these remote regions can lead to inaccurate estimates of reliability and spurious
assurance of safety.

The difficulty in reproducing the operational profile for rare events, and the time
required to perform fault injections and to configure other elements of “all-up” test
scenarios limit the feasible failure rates that can be determined empirically to or

[BF93]-nowhere near the that is required.

=The probability lo-’ is applied to complete (sub)system failure, not to any software the
system may contain. Numerical estimates of reliability are not assigned to airborne soft-
ware [RTCA92, Subsection 2.2.31, but the figure gives an idea of the quality required.

*In fight tests of the X31, the control system “went into a reversionary mode four times in
the first nine fights, usually due to disagreement between the two air-data sources. The air
data logic dates back to the mid-1960s and had a divide-by-zero that occurred briefly. This was
not a problem in its previous application, but the X31 fight-control system would not tolerate
it” [DorSl]. Similarly, much of the software in the Therac 25 medical electron accelerator,
which led to massive overdoses of radiation and the subsequent deaths of six patients, had
been used in an earlier machine without accident [LT93].

12 THE RATIONALE FOR FORMAL METHODS

The infeasibility of experimental quantification of reliability for safety-critical
software means that its assurance must chiefly be provided by other means. Now,
experimental evaluation is not the only means for providing assurance about the
behaviors of physically engineered systems. The engineering field concerned nor-
mally provides well-validated mathematical models that allow the properties and
behavior of a given design to be predicted through calculation-for example, struc-
tural engineers can calculate the behavior of a wing spar before it is built. It is one
of the distinctions between engineering and craft activities that engineering uses
mathematical modeling to predict behavior, whereas crafts use trial and error.

In the next section, I introduce formal methods, which provide a way to move
the construction and validation of software away from experiment and adjustment,
and towards prediction and calculation.

1.2 Formal Methods

The term formal methods refers to the use of mathematical modeling, calculation,
and prediction in the specification, design, analysis, construction, and assurance of
computer systems and software. The reason it is called “formal methods” rather
than “mathematical modeling of software” is to highlight the character of the math-
ematics involved.

1.2.1 Analytic Formal Methods

Each engineering discipline develops a body of mathematical techniques that are
particularly appropriate for modeling and predicting the phenomena relevant to its
field. In many cases, the relevant applied mathematics uses partial differential equa-
tions to model the variations in continuous physical quantities over time or space.
For software, however, the familiar methods of calculus and differential equations
are inapplicable because, as noted above, we have to model discrete, rather than
continuous quantit ie~.~ Instead of differential equations, the properties and behav-
iors we are concerned with are best described in terms of concepts from discrete
mathematics: “sets,” “graphs,” “partial orders,” “finite-state machines,” and so on.
“Calculation” in these finite domains is based on the methods of formal (or math-
ematical) logic rather than numerical computation. This is because the results we
are interested in are logical properties, such as “this system can tolerate any single
fault in any component ,” rather than numerical estimates for some parameter such
as lift or drag. To deduce whether a certain logical property follows from descrip-
tions of certain discrete mathematical structures, we have to start from the axioms
describing those structures and manipulate their symbols according to certain rules

5We have to be careful here to distinguish the mathematics of the domain to which the software
is applied (which may, as in the case of control applications, require the evaluation of expressions
derived from differential equations) from the mathematics that describes its own operation.

1.2 Formal Methods 13

of deduction. This process is more akin to proving theorems in Euclidean geometry
than to ordinary numerical calculation, but it shares with calculation the charac-
teristic that it is performed according to strict rules, so that one person can check
the work of another and computers can be used to automate some of the steps.
The process of manipulating symbols according to certain rules is called “formal
deduction” because the legitimacy of the process depends only on the form of the
symbolic expressions concerned and not on what they are supposed to mean. For
example, the transformation of an expression of the form z2 - y2 into one of the
form (z + y) x (z - y) is legitimate whenever z and y are numbers, independently
of whether they represent the mass of planets or the debts of nations.

The particular importance of formal methods to safety-critical systems is that
they, uniquely, though subject to caveats I will come to shortly, permit analysis
of abb the behaviors of a software system, This total exploration is the only way
to provide assurance that catastrophic failure does not lie hidden among the vast
number of possible behaviors. How is total exploration possible? We have already
seen that in the absence of continuity there is no basis for extrapolating from tested
to untested cases, so how is it that a finite procedure based on formal methods can
provide assurance for all the (possibly infinite) behaviors of a software system?

Part of the explanation is that formal methods provide us with powerful tools for
identifying and grouping “essentially similar” pieces of behavior together so that all
members of a group can be dealt with at a single shot. In empirical testing, we ex-
amine only the external manifestations of the system, and our ability to assign these
to groups that are essenti&y similar is very limited because of their discontinuous
nature. But in formal methods we examine the internal design of the system, where
the sources of discontinuity are visible, and we can group little “pieces” of behavior
together-all those that result from following a certain path through a certain part
of the design, for example. We can then characterize the properties of those pieces
by mathematical expressions (Le., formal specifications), and can deduce the prop-
erties of larger pieces of behavior by applying formal deduction to the expressions
describing their component pieces. By composing small pieces of behavior together
to yield larger and larger parts of the complete behavior, we eventually cover all
possible end-to-end behaviors without having to enumerate them explicitly.

Another way of saying this is that formal methods let us calculate the reasons
why a software design does its job. Software is a designed artifact, consciously
constructed to achieve some goal: if we can write down what that goal is, and
how the design accomplishes it, then we should be able to construct an argument
that explains why we believe the software does its job. Formal methods allow this
argument to be reduced to the certainty of calculation.

The “certainty of calculation” needs qualification: for example, the rules of
arithmetic reduce addition to the certainty of calculation, but it is easy to make
mistakes when adding a long column of figures. The calculations underlying formal

14 THE RATIONALE FOR FORMAL METHODS

An Aside on Finite Analysis of Infinite Systems. Mathematical logic
provides ways to reason about the properties of large or infinite collections of
related things in a finite manner: instead of reasoning about the behavior of a
system when given the input 1, or the input 2, or . . . , logic provides us with
methods to reason about its behavior on the symbolic input n, thereby collaps-
ing all the separate cases into one. One method allows us to draw conclusions
for all values of a given variable by reasoning about a single representative sym-
bolic constant (this process is called Skolemization). Another method allows
us to deduce properties for all values of some ordered domain (e.g., the natural
numbers, 0, 1, 2,. . .) by showing (a) that the property is true for the least ele-
ment(s) of the domain (e.g., 0), and (b) that when it is true for all members up
to some point (e.g., n), then it is also true for the next point (e.g., n + 1) (this
process is called mathematical induction). Formal deduction allows properties
of a complete system to be deduced by combining basic steps such as these:
steps that are required to follow certain rules, and can therefore be checked by
others, or by machine.

methods are similarly tedious and error-prone when done by hand, so it is often
desirable to automate them. Unfortunately, these kinds of calculations are not so
easily mechanized as numerical ones. Whereas the steps of a numerical calculation
can be programmed as a deterministic algorithm, selection of the steps in a formal
deduction requires either insight, or a heuristically guided trial-and-error search.
Theorem provers are computer programs that attempt to automate formal deduc-
tions through a combination of heuristics and brute-force search; proof checkers are
programs that leave selection of the steps to an insightful human and simply check
that each one is carried out correctly. The most effective automated reasoning tools
for formal methods generally combine elements from both theorem provers and proof
checkers. For simplicity, the term “theorem prover” is generally used in the following
sections to cover all forms of automated deduction.

I said that the ability to represent values symbolically, and hence to group related
behaviors together is part of the reason why formal methods allow us to consider
all the vast numbers of behaviors of a complex software system, and I also said that
this claim is subject to certain caveats. Both points concern the fact that formal
methods are a modeling activity: formal methods do not deal with actual software
running on electronic computers interacting with the real environment but with
mathematical models of these artifacts. This is exactly similar to the mathematical
methods used in other engineering disciplines: a finite-element calculation does not
calculate the stress in wing spar, it calculates a representation of the stress in a
mathematical model of a wing spar.

1.2 Formal Methods 15

Modeling is a source of both weakness and strength. Because a model is not
the same as reality, predictions made with its aid may be incorrect. This can be
because the model is insufficiently detailed, or because it is plain wrong. It is nec-
essary to guard against these potential weaknesses by carefully validating models
before trusting to their predictions. The fear of imprecision or inaccuracy sometimes
leads to the development of complicated, highly detailed models, but this can vitiate
the main purpose for developing a model in the first place: its ability to support
tractable analysis. The great opportunity offered by modeling is the freedom to
select and simplify the aspects of reality that are to be considered; Newtonian me-
chanics achieves its effectiveness because it selects for attention just a few properties
of bodies and their motions: the mass of a body is considered, but not its volume,
or its color. In the same way, formal methods can achieve great effectiveness by
focusing on just certain parts of a complex system (e.g., those that give most diE-
culty, such as redundancy management), and by excluding details that are judged
irrelevant (e.g., we may focus on the algorithms for redundancy management, and
ignore the details of their execution as programs). It requires great skill, judgment,
and taste to perform the abstraction necessary to create formal models that are sim-
ple enough to be computationally tractable, yet realistic enough to provide accurate
predictions and credible assurance.

1.2.2 Descriptive Formal Methods

In the previous discussion, I introduced formal methods by analogy with engineering
mathematics, and stated that the purpose of formal methods is to make predictions
about the properties and behavior of software, based on calculations performed on a
mathematical model of its design. But engineering mathematics is not used only for
calculation and analysis: it also provides a vocabulary for describing and document-
ing designs, and a framework for thinking about them. Thus, aeronautical engineers
may speak of “drag divergence” or “flow separation” as concepts independently of
particular sets of equations. Formal methods can serve a similar descriptive func-
tion for software. That is to say, concepts such as “relations,” “functions,” “finite
state machines,” and “universal quantification” can supplement or replace the En-
glish prose, pseudocode, and various kinds of diagrams that are traditionally used
in documenting requirements, specifications, and designs for software systems. Two
benefits can follow from this use of mathematical notation: it can improve the qual-
ity of documentation and lead to better communication among those working on
the system, and it can supply better ways of thinking about software.

There are two aspects to a software system: control and data. Control is con-
cerned with the selection, timing, and sequencing of the operations performed in a
software system. Data is concerned with how information is represented within the
computer system and manipulated by its software. The problem with traditional

16 THE RATIONALE FOR FORMAL METHODS

ways of documenting and thinking about both aspects of software is that they are
almost entirely operational: software is understood by mentally “executing” it; sim-
ilarly specifications all too often describe how the software works, rather than what
goals it is to accomplish.

For the control aspect, traditional operational methods can be quite effective for
systems composed of a single sequential program: with practice and determination
it is often possible to think through the consequences of each alternative at a branch
point, and the behavior of loops can largely be understood by mentally considering
the cases where each is executed zero, one, and many times. For large, or reactive,
or parallel systems, however, these methods become very unreliable: it is hard to
comprehend all the possibilities when external events can have an impact at almost
any point and we have to consider scenarios such as “what happens if a timer
interrupt occurs here, and suppose the other processor is in fault-recovery mode,
so that it could post a ‘need-service’ flag at just the instant that. . . .” The box on
page 17 describes an example of the difficulties caused when one of the possible
scenarios is overlooked.

As with control, the traditional way of documenting and thinking about the
data aspect of software is largely in terms of its concrete representations. Thus,
much software documentation is composed of pictures or programming-like notation
describing how certain information is recorded in the bits of a computer word,
how collections of similar items are represented in “arrays” of computer words,
and how more complex structures are represented by “pointers” linking “records”
together. More modern notations, derived from programming languages like Ada
and ideas from object-oriented design [RBP+91], have significantly raised the level of
abstraction and improved the organization of data descriptions, but the orientation
is still that of implementation.

In contrast to these very operational ways of describing and understanding soft-
ware systems, formal methods provide ways to document and think about data and
control that depend less on mentally tracing execution paths, and more on iden-
tifying properties that are to be assumed, established, or preserved. In addition,
the mathematical concepts employed in formal methods assist in the construction
of more abstract descriptions that state more clearly what is to be accomplished
without getting caught up in premature details of how it is to be done.

Although the main purpose of descriptive formal methods is to improve com-
munications among those working on a software project, and to facilitate informal
quality control activities such as reviews and inspections, these methods are not
antithetic to the analytical purposes described earlier. Rather, there is a continuum
of formal methods ranging from those that are primarily intended to support me-
chanically checked analysis to those that are primarily intended for documentation.

1.2 Formal Methods 17

An Example of the Kind of Fault That Is Hard to Find. While in orbit
around Venus, the Magellan spacecraft broke contact with Earth and entered
“safing” modes-preempting its scientific mission-on a number of occasions.
Extensive efforts were undertaken to find the source of the problem and, after
eight months, the most likely cause was identified [KP93]. Two flags determine
whether a background task should be run in the otherwise unused time after the
end of all the foreground tasks in the current frame and before the end-of-frame
interrupt. The “scheduled” flag determines whether a particular task should be
run as the background task, and the “active” flag indicates whether this task
is an uncompleted activity that should be resumed at an address stored on the
stack, or a new one that should start at its entry point. On very rare occasions,
the end-of-frame timer interrupt would occur in the instant after one flag had
been set to a new value but before the other had been. In particular, a sequence
that was invoked when a background task completed could be interrupted after
the “scheduled” flag had been turned off, but before the “active” flag could

~ be turned off also. Next time this task was scheduled, the background task
’ manager would mistakenly think it was active and would pop the stack to

obtain the address at which to continue its execution. Since the task had, in
fact, completed, there was no restart address on the stack, so the value that
was popped and used was some random piece of data. As luck would have
it, this random address sent the processor to a piece of code where it sat in a
tight loop that continually reset the watchdog timer, thereby disabling the very
mechanism that was intended to thwart such runaways COO^^, pp. 209-221].a

’ Computer scientists are thoroughly familiar with the dangers of being in-
~ terrupted while adjusting critical data structures and will normally arrange
~ for such actions to take place inside a “critical section” that cannot be inter-
~ rupted. These incur overhead, however, and the Magellan designers thought

that in their particular circumstance it was safe to do without this protection.
Cooper’s book, cited above, aptly conveys the monumental task of trying to
diagnose a very rare but devastating misbehavior in a reactive, real-time, par-
allel software system operating in the presence of faults, when the ody way to
understand the system is to mentally (or actually) simulate its execution under
as many circumstances as possible.

~

aFortunately, Magellan had multiple levels of redundancy and, although these were in-
tended to cope with hardware, not design, problems, they saved the spacecraft. Specifically,
the design fault described above was in the software of the attitude and articulation control
system (AACS) computer and although the runaway execution reset the watchdog timer, it did
not modulate the “heartbeat” pattern that is placed in memory shared with the command
and data subsystem (CDS) computer. When the CDS computer saw the AACS heartbeat
cease, it reconfigured the AACS systems, eventually leading to a reboot of the errant AACS
computer.

19

2 Issues and Choices in Formal Methods

I have sketched the rationale for using formal methods in software development and
assurance. In this section I describe some of the different varieties of formal methods
and some considerations for their selection and use.

2.1 Selection and Abstraction in Applications of Formal Methods

Expertise in formal methods is not widespread, and can be costly to acquire. Fur-
thermore, the resources available for any project are limited, so that effort expended
on formal methods may reduce that available for other methods of analysis and as-
surance. For these reasons, formal methods need to be applied selectively. There
are several dimensions in the use of formal methods that permit selective or partial
application. I list five of the most important.

0 The amount of formality can vary between occasional use of ideas and notation
from discrete mathematics in a “pencil and paper” manner to “fully formal”
treatments that are checked with a mechanical theorem prover.

0 Formal methods can be applied to all, or only to selected, components of the
system.

0 Formal methods can be applied to selected properties of the system (e.g.,
absence of deadlock) rather than to its full functionality.

0 Formal methods can be applied to all, or merely to some, of the stages of the
development lifecycle. If the latter, we can choose whether to favor the earlier,
or the later stages of the lifecycle.

0 In all cases it is possible to include more or less detail and to choose the level
of abstraction at which the formal treatment is conducted.

I examine each of these in more detail below.

2.1.1 Levels of Formality

The very notion “formal” can have different interpretations, and methods differ in
the “amount” of formality they employ. An example may help explain this.

Suppose we are to produce a program that will compute the exponential nm
where n and m are integers, and m is nonnegative. One way to do this is by repeated
multiplication; it is not a very efficient method, but will serve our purpose. I claim
that the following program, written in a generic high-level language, computes the
value nm and leaves it in the variable T :

PRE

ISSUES AND CHOICES IN FORMAL METHODS

r := 1;
i := m;
while i # 0 do
r := r * n;
i i z i - 1

endwhile

To justify my claim, I present the following proof:

0 Each time in the while loop, at the point just before the i f 0 test, the
following relationship is true among the variables:

T x n2 = nm.

To prove this I consider two cases:

First time into the loop. We have initialized T to 1 and i to m, so P x n2
is 1 x nm and the desired relationship is true.

Other times around the loop. Assume the previous iteration left T x n2 =
nm; after going round the loop once more, we have replaced T by T x n
and i by i - 1, so we need to prove (P x n) x ni-l = nm. By arithmetic,
the left side equals T x ni and the result follows.

0 We exit the while loop when i = 0. Since we know that T x n2 = nm at this
point, it follows by arithmetic that ni is 1, and so T = nm as required.

0 To see that the program does always terminates, note that i is initialized to
m, which is a nonnegative integer. The value of i is reduced by one each time
round the loop, so eventually it will reach zero and the loop will exit.

Although I used a proof here, the process was not particularly formal: I presented
the argument in fairly ordinary English, and relied on our intuitive understanding
of how the program executes.

A more formal approach would use logical axioms to describe the behavior of
the program without requiring us to mentally execute it. As an example, I will
use a method that manipulates Houre sentences, which are constructs of the form
{P}S{Q}, where P and Q are expressions describing the relationships among the
program variables, and S is a piece of program text; the interpretation is that if
the relationship P is true before execution of S , and if S terminates, then the
relationship Q will be true afterward.

The behavior of a while loop is specified by the following axiom?

{ P A BWPI
{P} while B do S endwhile {P A lB} ’

61n this formula, the symbol A means “and,” and 7 means “not.”

2.1 Selection and Abstraction in Applications of Formal Methods 21

This says if the Hoare sentence above the line is true, then the Hoare sen-
tence below the line will be true also. If we substitute “i # 0” for B,
“r := r * n; i := i - 1” for S, and “T x ni = nm” for P , then we obtain

{r x ni = nm ~i # O}r := r * n; i := i - i{r x ni = nm}

Now the expression T x ni = nm A i = 0 at the bottom right gives us T = nm, which
is what we want to prove, so the next step is to prove the Hoare sentence above the
line, which involves the sequential composition of two assignment statements.

The axiom for sequential composition is the following, where both Hoare sen-
tences above the line must be true in order to conclude the one below the line.

We substitute “T x ni = nm A i # 0” for P, “1: : = r * n” for SI, “r x ni = n x nm”
for Q , “i := i - 1” for 5’2, and “T x n’ = nm” for R to obtain

{ r X n 2 = n m A i # O } r := r * n { r X n i = n x n m } ,
{ r x n 2 = n x n m) i := i - i { r x n i = n m }

{Txn i=nm/ \ i#O) r := r * n; i := i - 1 {rxni=nm}‘

I won’t go into the details, but the axioms that specify assignment statements
do aJow us to prove the two Hoare sentences above the line. To complete the proof
of our program, we need to establish that the initialization statements establish the
relationship assumed at the start of the while loop, that is

{m>_O}r := 1; i := m { r x n Z = n m } .

This follows from the axioms for sequential composition and assignment in a man-
ner similar to that of the previous step, thereby completing the proof of partial
correctness for our program. Partial correctness establishes that the program gives
the right result, provided that it terminates. To establish total correctness, we must
show that the program does indeed terminate; a formal version of the argument €or
termination can be based on the informal argument that i is decremented each time
round the loop, so that the loop termination condition must eventually be satisifed.

This second way to analyze our program using Hoare logic was much more formal
than the first: instead of appealing to intuition about how a program executes, we
used axioms and substituted program text and mathematical expressions into them.
Although we used insight and intuition to decide which axioms to use and what to
substitute into them, the subsequent manipulations were quite mechanical and it
should be clear that each of the steps we performed could have been checked by
computer.

22 ISSUES AND CHOICES IN FORMAL METHODS

There are advantages and disadvantages to the different levels of formality em-
ployed in these two treatments of our example program. In discussing them, it is
useful to have a simple scale for identifying levels of formality. I use a three-point
scale as follows.

Level 1 formal methods use ideas and notation from discrete mathematics and
logic, but within a loose framework, where mathematics, English, diagrams,
and other notations are used together. Proofs are careful arguments that
are evaluated by whether they persuade reviewers. This is the way most
mathematics is done. My first treatment of the exponentiation program was
an example of Level 1 formalism.

Level 2 formal methods employ a fixed specification language for documenting
requirements and designs. A specification language generally blends concepts
from logic, discrete mathematics, and programming into a single notation.
Often, the language is supported by tools that check specifications for certain
types of errors, and that provide useful functions such as cross-referencing or
typesetting. Analyses and proofs are performed by hand and recorded with
pencil and paper, but make use of explicit axioms and proof rules that describe
the semantics of the languages and methods used. My second treatment of
the exponentiation program was an example of Level 2 formalism.

Level 3 formal methods stress mechanized analysis. Their specification languages
are generally closer to standard logic than those of type 2 formal methods,
and are supported by tools that include proof checkers, theorem provers, or
model checkers. The tools that support a Level 3 formal method are often re-
ferred to collectively as a verification system; such a system could mechanize
either the first or the second of the approaches I presented for the exponenti-
ation program. Most current systems use an approach closer to the first than
the second. Typically, a program verification system would require that the
program is annotated with assertions and a loop invariant as follows:

entry assertion m 2 0
r := I;
i := m;
while i # 0 do
loop invariant T x n2 = nm
r := r * n;
i Z z i - 1

endwhile
exit assertion r = nm

2.1 Selection and Abstraction in Applications of Formal Methods 23

Using the method of inductive assertions (the fully formal version of the
method I used in the first example), the verification system would then gener-
ate the following three verification conditions, which correspond to the paths
in the program from the entry assertion to the loop invariant, from the loop in-
variant around the loop and back to the invariant, and from the loop invariant
to the exit assertion, re~pectively.~

VC1: m 2 O A T = 1 A i = m 2 T x na = nm.
V C ~ : m 2 O A T x ni = nm A i # O A T ’ = T x n Ai’= i- 1 2 TI x nit = nm.
v c 3 : m 2 O A T X ?ti = nm A i = 0 2 T = nm.

These verification conditions are expressions in ordinary logic (plus arith-
metic), and can be proved quite easily by the theorem provers of most verifi-
cation systems.

The advantage of Level 1 formal methods is the flexibility that is available:
notations and techniques can be selected, or invented, to suit the particular problem
at hand. These methods can be very effective when used by individuals or small
teams possessed of skill and judgment, but the lack of standardized notation and
methods can make communication and training difficult across larger groups.

Level 2 formal methods address the problems of communication and training by
providing fixed specification notations (Z [Spi93] and VDM [Jon901 are well-known
examples) and, usually, a methodology for using them. Individual Level 2 methods
are well suited to some types of applications (e.g., data processing), and less well
suited to others (e.g., concurrent systems); users must be careful not to stretch their
chosen method beyond its limits.

In general, the Level 2 notations are optimized for descriptive, rather than an-
alytic, purposes. If the goal is to use formal methods to calculate properties of a
design for the purpose of analysis, then a Level 3 method equipped with appropri-
ate tools will probably be more suitable. It generally requires considerable skill and
experience to use Level 3 tools effectively, but they can provide a very high degree
of assurance.

2.1.2 Selected Components

Formal methods are generally advocated because it is felt that they can improve
quality control and assurance for software. If this is so, then the greatest benefits
will be seen when formal methods are applied to the most critical components, and
to those for which traditional methods have been found least effective.

‘The symbol 3 in these formulas means “implies.” Also, a prime indicates the value of a variable
in the ‘new” state following execution of a path, and an unprimed name indicates the value in the
‘old” state at the beginning of the path.

24 ISSUES AND CHOICES IN FORMAL METHODS

An Aside on Practicality. baders who found their eyes glazing over at the
formulas used to verify the trivial exponentiation program may wonder whether these
formal techniques really are practical, and might ask “how am I going to get my
engineers to use this stuff?” Privately, they may also wonder “if this stuff is so good,
why isn’t it used more?”

Before we attribute the slow industrial takeup of formal methods to ineffectiveness,
we should remember the comparative youth of the field, and should recall the history
of other engineering subjects (see, for example, [Vi90]). Most of the disciplines that
we now regard as engineering started as crafts, practiced by experimentalists who
learned what would work and what would not by trial and error, and who passed
their lore on to their successors by on the job example. Gradually, methods based
on science and mathematics started to appear, but they did not immediately displace
the traditional methods. Among the reasons for the slow acceptance of mathematical
techniques were the conservatism of the traditional practioners” , the arcane difficulty
of the new methods (to those lacking the necessary training), and their initially narrow
range of application. The new methods displaced the old as concrete evidence of their
superiority accumulated, as good textbooks became available, and as new generations
of engineers, trained in the mathematical methods, joined the field. For example,
when Donald Douglas, then recently graduated from MIT, started work for the Martin
company in 1914, he found Glenn Martin bouncing up and down inside a seaplane
supported on wooden trestles “to see if it was strong enough.” Douglas noted that “this
didn’t represent any load that the plane bore in flight.” Aided by proper engineering
analysis, his first design (the Model S) had almost twice the range and payload of
Martin’s previous products [Bidgl, pp. 85, 861.

It is inconceivable today that an aeronautical engineer could be ignorant of aero-
dynamics or structural mechanics, still less argue that such mathematical modeling
is irrelevant to the practical business of designing airfoils. I expect formal methods
eventually to play a similar role in software engineering.

The practicality and cost/benefit of formal methods are heavily dependent on the
type of applications considered. Program verification of the kind illustrated in my
examples is undeniably tedious and expensive (see, for example the figures quoted
in [GH90]), and must compete with traditional methods that are quite effective. My
opinion is that the greatest benefits are likely to be found when formal methods are
applied to the hardest and most difficult problems-where traditional methods are
ineffective or unavailable. Examples of hard problems are those involving distributed
and concurrent execution and, especially, redundancy management [ORSvH95]. These
problems can be considered practical because, though hard, they are not large and can
therefore be undertaken by a few highly skilled people. It is not necessary to train
every programmer to get valuable returns from formal methods. Another opportunity
lies in problems where formal methods can be massively automated. Example include
certain kinds of protocols [HK90, CGH+95] and hardware designs [MS95].

”For example, Tesla quit Edison’s laboratory after less than a year complaining of Edison’s
preference for empirical methods “knowing that a little theory and calculation would have
saved him 90% of his labor” [Bur93].

2.1 Selection and Abstraction in Applications of Formal Methods 25

Standards and guidance documents for safety-critical systems generally rank
software components by criticality according to the severity of the consequences
that could result from their malfunction. For example, DO-178B identifies software
criticality levels A through E according to the severity of their potential failure condi-
tions (Le., Level A is software whose malfunction could contribute to a catastrophic
failure condition) [RTCA92, Subsection 2.2.27. Software criticality level determines
the amount of effort and evidence required to show compliance with certification
requirements. It provides a natural criterion for selecting components for which
formal methods should be considered.

Another criterion that should be considered is the likely effectiveness of formal
methods versus traditional methods for quality control and assurance. It is to be
expected, and there is some evidence to support the expectation [Lut93], that the
intrinsically hard design problems tend to be the most prone to faults, and the
most resistant to traditional means of assurance. These intrinsically hard problems
generally involve complex interactions, such as the coordination of distributed, con-
current, or real-time computations, and redundancy management. It requires great
skill to address these problems using formal methods, but the number and size of
these problems may not be large. Hence, as noted in the box on page 24, the greatest
return on formal methods may be obtained when relatively few, very highly skiied
people apply formal methods to the hardest and most critical problems.

2.1.3 Selected Properties

Just as some components of a system may be more suitable for formal methods
than others, so different properties of those components may be more suited than
others to formal treatment. As with components, suitability may be determined by
criticality or by the effectiveness of formal methods compared with other methods.
For example, the important property of a particular component may not be that
it does its job (there may be backups to accomplish that), but that it is free of
“specific anomalous behaviors’’ [RTCA92, Section 2.61. Negative properties such as
this (Le., properties that state what must not happen) are particularly difficult to
test and can be good candidates for formal analysis.

2.1.4 Lifecycle Stages

The example shown earlier involving the exponentiation program illustrated the use
of formal methods in the late lifecycle. That example was one of program verifi-
cation, where an executable program is proved to satisfy its detailed requirements.
Other applications of formal methods focus on activities of the early lifecycle, such
as the documentation and analysis of requirements, and on those of the interme-
diate lifecycle stages such as the documentation of interfaces and the systematic
refinement of requirements into designs, or designs into implementations.

26 ISSUES AND CHOICES IN FORMAL METHODS

Late-lifecycle applications of formal methods such as program verification were
among the earliest to be developed and are now widely known and well under-
stood. But precisely because this part of the lifecycle is well understood, informal
methods and engineering practice have achieved a considerable degree of practical
effectiveness: sequential programming and gate-level design are not major sources
of difficulty or faults today (at least, not in those industries that practice stringent
software quality control and assurance). For example, Lutz [Lut93] reports on 197
significant software faults detected during integration and system testing of the Voy-
ager and Galileo spacecraft. Only three of these faults were programming errors;
the vast majority were requirements problems. Similarly, Keutzer [KeuSl] reports
that fully half of all ASICs are faulty on first fabrication, and that these faults are
invariably due to errors in requirements or high-level design: no errors are reported
in implementation below the register-transfer level.

It is now generally recognized that faults introduced in the early lifecycle are
among the most difficult and expensive to detect and eradicate later; furthermore,
the most serious failures are often traced to undetected faults that were introduced
early in the lifecycle. One explanation for the intractability and persistence of faults
introduced in the early stages of development is that there are few good methods for
validating the products of these stages: requirements and early design descriptions
do not lend themselves to execution and tests. Formal methods can help overcome
this difficulty by allowing early specifications to be challenged and explored through
theorem proving: a challenge of the form “if this specification says what it should,
then the following ought to follow” can be formulated as a putative theorem that
should be provable from the specification. Rapid prototyping can serve some of the
same ends, but it is not always straightforward to distinguish those properties that
are truly entailed by the requirements or design descriptions being validated from
those that are accidental to the prototype. Unlike a prototype, a formal requirements
specification can be validated experimentally without necessarily being executable.

2.1.5 Abstraction

Abstraction is one of the most powerful tools for gaining intellectual mastery of
complex systems: it allows us to ignore the irrelevant and simplify the relevant so
that the essential matter of concern is exposed to scrutiny in its clearest and most
tractable form. Abstraction is also a crucial factor in controlling the size of a formal
development, and the effort required for its analysis.

One example of abstraction considers the algorithms that underlie a design,
rather than their expression as programs. For example, the repeated multiplication
that underlies the exponentiation program considered earlier can be abstracted to

2.1 Selection and Abstraction in Applications of Formal Methods 27

an algorithm represented by the following recursive function.8

nm &f - if m = 0 then 1 else n x nm-l endif

This specification can be analyzed using ordinary logic (i.e., without the special ma-
chinery for program verification, such as Hoare sentences) and it is comparatively
easy to establish its properties, even when using Level 3 formal methods and mecha-
nized theorem proving. The transition from this abstract algorithm to the concrete
program can be justified either informally, or using formal methods of any of the
three levels.

When formal methods are applied to algorithms, there is further scope for ab-
straction in the choice of how much detail to include. For example, one of the
important algorithms in fault-tolerant systems is one for distributing sensor sam-
ples consistently in the presence of faults [LSP82]. This is a distributed algorithm,
and if we are concerned with issues of the timing and transfer of the messages that
are communicated in the algorithm, then it is necessary to model these mechanisms
in some detail, and the analysis will be correspondingly detailed and lengthy [LM94].
But if we are mainly concerned with the fault masking properties of the algorithm,
then the mechanisms of distributed computation and communication can be ignored
and the algorithm can be modeled as a recursive function, in which form its analysis
is quite straightforward. Certain details of behavior, and therefore the opportunity
to detect some potential faults, are missing in the more abstracted representation.
On the other hand, the economy provided by ignoring details of communication can
allow us to increase detail elsewhere, and this may be a useful tradeoff. In this
particular example, it is possible to increase the number of different types of faults
that are considered in the most abstracted representation, and this allows the fault
tolerance of the algorithm to be analyzed in greater detail (and reveals a bug in a
published algorithm) [LR93].

As this example makes clear, abstraction is closely related to the modeling ac-
tivity that is inherent in formal methods. The whole basis of formal methods is
to create mathematical models of certain physical and computational phenomena
and to make predictions about these phenomena through analysis of the models.
Abstraction is concerned with how much, and what, detail to include in the model,
and how to represent it. Validity of the predictions made through use of formal
methods requires that the abstraction retains all salient details and that their for-
mal representation is faithful to reality. Tractability of formal analysis, on the other
hand, requires that the abstraction is ruthless in expelling all irrelevant detail. Abil-
ity to resolve this tension between too much and too little abstraction is the most

'Actually, this specification is generally taken as the axiomatic definition of exponentiation and
is used to establish lemmas such as n1 = n and nml+m2 = nml x nm2 and the correctness of more
efficient algorithms.

28 ISSUES AND CHOICES IN FORMAL METHODS

important, and rarest, of the skil ls required to make effective use of formal methods.

2.2

Formal methods embrace a variety of approaches that differ considerably in tech-
niques, goals, claims, and philosophy. The previous section discussed some of the
important differences, such as whether formal methods are used primarily for de-
scriptive or for analytic purposes, the level of formality employed, and the stage(s)
of the software development lifecycle to which formal methods are applied. The
different approaches to formal methods tend to be associated with different kinds
of specification languages. Conversely, it is important to recognize that different
specification languages are often intended for very different purposes and therefore
cannot be compared directly to one another. Failure to appreciate this point is a
source of much misunderstanding. In this section I briefly introduce some of the
main varieties of specification languages and indicate their applications.

The Varieties of Formal Specifications

2.2.1 Model-Oriented Specifications

If specification or annotation of programs is the goal, then the formal notation
employed should generally be close to, though more abstract than, that of program-
ming, with operations changing values “stored” in an implicit system “state,” with
data structures described fairly concretely, and with control described in operational
terms.

Formal notations with these characteristics are often described as model oriented,
meaning that desired properties or behaviors are specified by giving a mathematical
model that has those properties. For data structures, these models are often con-
structed from the notions of set theory using sets, functions, relations, and so on.
A pushdown stack, for example, can be modeled by a pair consisting of a natural
number (the pointer) and a function (the stack) from natural numbers to the type
of value being stacked. (This can be thought of as an array with the contents of the
pushdown stack occupying positions 1.. .pointer; the empty stack is indicated by
pointer = 0.) The “top” of the stack is the value of the function at the argument
indicated by the pointer; the stack is “popped” by decrementing the pointer, and a
value z is “pushed” on to the stack by incrementing the pointer and modifying the
function so that it takes the value z at the argument indicated by the pointer.

To describe control, model-oriented notations for sequential programs generally
provide sequential composition and if-then-else selection. Explicit loop constructs
are not needed since their effects can usually be specified more abstractly using
quantification. For example, whereas in programming we would use a loop to search
for the least value stored in a pushdown stack, we can formally specify this value as
the 1 such that (a) for all (V) natural numbers up to the pointer, the value of the

2.2 The Varieties of Formal Specifications 29

An Aside on Notation. Representative notation for a model-oriented spec-
ification of a pushdown stack is the following, where a prime indicates the value
of a variable in the “new” state following the operation and an unprimed name
indicates the value in the “old” state prior to the operation. The @ operator
indicates function modification (also called “overriding”).

top is stack(pointer), provided pointer > 0
pop is pointer’ = pointer - 1, provided pointer > 0
push is pointer’ = pointer + 1 A stack’ = stack @ (pointer’ H x }

stack at that point is no less than I, and (b) there mists (3) a natural number less
than or equal to the pointer such that the value of the stack at that point equals 1.
Typical notation for specifying this is the following:

(Vp : 1 5 p 5 pointer stack(p) 2 Z) A (3p : 1 5 p 5 pointer stack(p) = I).

A disadvantage of model-oriented specifications is that they can be overly pre-
scriptive: suggesting how something is to be implemented, rather than just the
properties it is required to have. For example, even though the specification of the
least function does not prescribe an algorithm, it is stated in terms of the pointer and
array model, and so it would be fairly difficult to use this specification to establish
correctness of an implementation that used linked lists instead.

2.2.2 Property-Oriented Specifications

In contrast to the model-oriented style of specification that is often preferred for
program-level descriptions, specifications of early-lifecycle products such as require-
ments commonly use property-oriented notations. These notations use an axiomatic
style to state properties and relationships that are required to hold of the component
being described, without suggesting how it is to be achieved. To specify a pushdown
stack, for example, a property-oriented notation would state the relationships that
are required to hold among the operations “top,” “pop,” and “push”: namely, that
a push followed by a pop leaves the stack unchanged, and a top following a push
returns the value that was pushed onto the stack.

Sequential control in property-oriented specifications is generally modeled by
functional composition. For example, a push followed by a pop is specified by
pop(push(s, x)) rather than by the more operational push(x);pop (where the semi-
colon indicates sequential composition and the state of the stack is implicit in the
operational specification). Iteration is generally modeled by quantification or re-
cursion. For example, the least element in a stack can be specified by the following

30 ISSUES AND CHOICES IN FORMAL METHODS

An Aside on Notation. Representative notation for a property-oriented
specification of a pushdown stack is the following. Note that the value of the
stack is supplied as an explicit argument (here s) to the operations, rather than
being the implicit value of a program “state.”

axiom pop-push is pop(push(s,z)) = s
axiom top-push is top(push(s,x)) = x

recursive function:

Zeast(s) = if empty(s) then 00 else min(top(s), Zeast(pop(s))) endif.g

Notice that although the stack operations are specified in a property-oriented
style, this specification of the least function has an algorithmic flavor; the pre-
sentation in the previous section used a model-oriented specification for the data
structure, but the specification of the least function was property-oriented (relative
to the model of the data structure), rather than algorithmic. These mixed modes
of expression are not uncommon.

An advantage of property-oriented over model-oriented specifications is that it
is possible merely to constrain certain relationships or values, without having to de-
fine them exactly. On the other hand, it is very easy to write conflicting constraints
that cause the specification to become inconsistent; inconsistent specifications are
unimplementable, and are very dangerous because they can be used to prove any-
thing. Some Level 3 specification languages provide ways to ensure or demonstrate
that property-oriented specifications are consistent (see section 2.3.1, and page 32
in particular).

2.2.3 Specifications for Concurrent Systems

Concurrent and distributed systems can be specified in a variety of styles. One style
takes some form of communication as primitive and has programming-like features
for sending and receiving values. This style has a model-oriented flavor and is often
referred to as process aZgebra. Another style takes shared variables as the primitive
means of communication and often uses temporal logic to allow specification that a

’The treatment here of the empty stack (setting its Zeust value to infinity), is a little suspect,
though it can be made rigorous. Also, I have not explained how the empty predicate is defined.
Taking care of these difficulties in a fully satisfactory manner would require more space than I
wish to allocate, but they give a hint of the technical details that must be dealt with in a formal
specification notation.

2.3 The Varieties of Formal Analysis 31

property should hold “henceforth” or “eventually” on some or all execution paths.
This style has a property-oriented flavor. Methods associated with a kind of analysis
known as model checking use one type of description (a kind of state machine) to
specify the system concerned, and another (a kind of temporal logic) to specify the
properties required of it.

Further distinctions concern whether concurrent activities are considered to oc-
cur simultaneously (“true” concurrency) or alternately (“interleaving” concurrency),
and whether consideration of time is restricted to the order in which events happen,
or whether duration is considered (“real-time” logics).

2.3

Earlier, I observed that one of the most significant differences among formal methods
concerns whether their primary purpose is description or analysis. In fact, this
distinction is too coarse: we have to ask what kind of analysis. The strongest
kind of analysis is one that takes a formal description and predicts the behavior
of a system satisfying that description. This is the kind of analysis that most
closely corresponds to the use of applied mathematics and calculation in traditional
engineering fields. If this is the goal desired of formal methods, then the modeling
and notational techniques employed should favor efficient deduction, whereas more
weight should be given to the “readability” of the notation when descriptive purposes
are paramount. In an ideal world, one technique would serve both ends but, in
the present state of the art, those notations that are considered most “readable”
are much less tractable for automated reasoning than notations designed for that
purpose-conversely, notations designed for automated reasoning tend to have a
rather austere and forbidding appearance.1°

In between the purely descriptive uses of formal specifications and those that
use automated deduction to make general predictions of behavior, there are many
intermediate kinds of analysis that perform formal calculations to establish limited
properties of a specification.

The Varieties of Formal Analysis

2.3.1 Consistency Analysis and Typechecking

One kind of analysis does not attempt to deduce specific properties of the system
described by a formal specification; instead it attempts to deduce whether such a
system could exist. In other words, it checks whether the specification is sufficiently
well formed to be a description of something.

One very important well-formedness property is consistency: if a specification
states two contradictory things, then it cannot describe a real system and is therefore

“The influence of notation can be illustrated by comparing Arabic with Roman numerals: for
small numbers, at least, Roman numerals are more “readable” (e.g., I11 is more suggestive of the
concept “three” than is 3), but they are much less effective for calculation than are Arabic numerals.

32 ISSUES ANI) CHOICES IN FORMAL METHODS

useless as a specification. Certain types of specification lend themselves to system-
atic checks for consistency but, as always, there are tradeoffs involved. For example,
specifications that allow new concepts to be introduced only by definition in terms
of existing concepts can easily be checked for consistency; however, such specifica-
tions are purely constructive (i.e., strongly model oriented), and are unattractive
for some purposes. In particular, constructive definitions are an unnatural way to
state assumptions about the environment in which a system is to operate; axioms
are more natural for this purpose, since our goal is to describe the environment,
not to implement it. Consistency for axiomatic specifications can be established by
showing that the axioms are true of some constructively defined “implementation.”
This implementation need not be efficient or realistic, it just has to exist.

It is shockingly easy to write formal specifications that are inconsistent; con-
sequently, any specifications offered in support of certification for safety-critical
systems should be furnished with evidence for their consistency.

Some specification languages allow “types” to be given for entities appearing in
specifications. Types are familiar from programming languages such as Ada, where
variables can be declared as integer or boolean and the compiler will generate an
error message if an attempt is made to multiply an integer by a boolean. The types
in a specification language can be more sophisticated (since they do not have to have
a direct implementation), and the checks that are performed can be more elaborate.
A computer program that checks specifications to ensure that entities are always
used in ways compatible with their types is called a typechecker; it can be seen as
a tool that performs a specialized kind of formal deduction (it attempts to prove
the theorem “this specification is type-correct”). If the typechecker is allowed to
use general-purpose theorem proving, rather than just perform algorithmic checks
like a programming-language compiler, then the type system can become very so-
phisticated, and typechecking becomes a very powerful way to detect errors in a
specification.

Specification languages based on certain kinds of mathematical logic (notably,
higher-order logic) have to use types to keep the logic consistent; types are tech-
nically optional for other kinds of logics (where they are sometimes called sorts).
Ordinary set theory is untyped; when types are added (as in 2, for example), the
result is a little awkward in that either some of the conveniences of set theory (e.g.,
nonhomogeneous sets) must be given up, or typechecking must be rather weak.
Within these constraints, selection of a typed or an untyped specification language
is often considered a matter of personal preference: some people value the early
error detection of typechecking, others find the restrictions imposed by types to be
irksome. However, those who prefer to forsake types should be expected to pro-
vide other, equally strong, evidence for the properties that would be established by
typechecking.

2.3 The Varieties of Formal Analysis 33

In my opinion, strong typechecking (the stronger the better) should always be
required for formal specifications offered in support of certification for safety-critical
systems.

2.3.2 Validating Formal Specifications

Predictions are based on a mathematical model of the system; if the model is inac-
curate, the predictions may not be true of the real system. It is therefore necessary
to validate the accuracy of the model very carefully. Formal methods are no dif-
ferent in this regard than the mathematical methods used in any other engineering
field. Consistency analysis and typechecking provide evidence that a formal spec-
ification means something, but additional evidence is required to establish that it
means what is intended. Reviews are one way to develop this evidence, but formal
specifications can also support more analytical methods.

Animation

One way to gain confidence in a formal specification is to “test” it on a few small
examples. This kind of examination of a specification is sometimes called anima-
tion. Some kinds of formal specification can be “executed” using highly efficient
forms of deduction, so that test cases can be run directly against the specification.
Model-oriented specifications tend to lend themselves more naturally to direct ex-
ecution than do property-oriented specifications. Note that executability may be
at odds with other desirable properties of a specification (such as abstractness, and
nonprescriptiveness) [HJ89]. For specifications that cannot be executed directly, it
may be desirable to construct a simulator or rapid prototype for testing purposes.

Formal Challenges

Formal specifications can also be explored by posing and proving putative theorems
that I call challenges: “if this specification says what it should, then the following
ought to follow.” For example, suppose we had specified the operation of sorting a
sequence; we might then ask whether sorting an already sorted sequence leaves the
sequence unchanged (i.e., whether sorting is idempotent). That is, we might ask
whether

sort(sort(z)) = sort($)

is a theorem of the specification (assuming sort is a function that takes a se-
quence as argument and returns the sorted sequence as its value). Gerhart and
Yelowitz [GY76] describe how early formal specifications of sorting were deficient
in that they required the output of the operation to be ordered, but neglected to
stipulate that it should also be a permutation of the input. An attempt to prove
the theorem above would reveal such inadequacies.

34 ISSUES AND CHOICES IN FORMAL METHODS

Animation could examine the putative theorem for a few representative values of
the input 2, but a formal challenge would force consideration of all inputs. For some
specifications of sorting, this could lead to the discovery that the putative theorem
is unprovable; further examination might then lead to the notion of a stable sort
(one that does not reorder elements of the sequence that are equivalent with respect
to the ordering criterion, but distinguishable in other ways). We could then decide
whether stability was important to our application and, if so, could adjoin it as an
additional requirement of the sorting specification.

Notice how this process of subjecting specifications to formal challenges probes
the completeness as well as the correctness of specifications. Data from the Jet
Propulsion Laboratory indicates that two-thirds of the defects in requirements spec-
ifications are omissions [KSH92], so that systematic methods of exploring complete-
ness are highly desirable.

Challenges can be undertaken at any level of formality, but I believe that all
those who write or review formal specifications should have experience in challenging
specifications at Level 3 using a mechanized proof checker or theorem prover. Those
who learn a formal specification language from textbooks or training courses, but
who do not experiment with mechanically checked challenges, are in a position
similar to those who would learn a programming language without the opportunity
to execute programs. In fact, their position is worse because experience with other
programming languages is likely to help them learn a new one, whereas many of
those learning a formal specification language are receiving their first exposure to
formal methods, as well as to abstract and axiomatic forms of expression. Just
as the failure of an “obviously correct” program teaches us that programming is
difficult, so the discovery through dialog with a theorem prover that an expected
property is not entailed by an “obviously correct” formal specification teaches us
that specification is no easier than programming. In my experience, we all have to
learn this for ourselves: only the personal shock of discovering egregious errors in
our own specifications teaches us the requisite humility.

2.3.3

Formal challenges probe a formal specification by asking whether it entails certain
expected properties. Generally, these properties are special cases, or fragments of
the overall requirements. Once a specification has been sufficiently validated in this
way, it is possible to examine it for the properties of real interest, and to verify some
steps in its refinement toward implementation.

The behavior of a system generally has many aspects and formal methods are
usually not used to examine every aspect, but only those that are important to
a particular analysis: for example, we may want to know whether a system can
deadlock, or whether it can survive any single fault, or whether a response is always

Predicting Behavior and Verifying Refinement

2.3 The Varieties of Formal Analysis 35

delivered within a certain time. Some formal methods are especially well suited
to the calculations necessary to predict certain kinds of properties, others are well
suited to certain kinds of systems.

State Exploration

Certain kinds of formal methods allow automatic, brute force exploration of all
possible behaviors, provided there are not too many of them (the maximum number
depends on many factors and increases as technology improves, but the typical
range is from tens of thousands to tens of millions). Hardware, and distributed
algorithms such as protocols are particularly suitable for this kind of examination
through exhaustive state exploration [DDHY92] (related technologies are known as
model checking [CGL94] and language inclusion [HKSO]).

A specification may admit too many behaviors for state exploration to succeed,
but it may be possible to develop a “downscaled” version that can be examined in
this way. For example, a communications protocol may be designed to move arbi-
trary data reliably over a faulty channel using sequence numbers that cycle through
the range 0 . . .255. For state exploration, we could downscale the protocol to con-
sider just one or two different data values, and with sequence numbers restricted to
0 and 1. Experience indicates that examining all behaviors of a downscaled design
is often a more potent validation and assurance technique than examining some of
the behaviors of the full design. Downscaling is closely related to abstraction; the
difference is that abstraction is generally used in verification, whereas dowscaling is
generally used for debugging and can be useful even if crude. (Generally, we require
that if a property is verified of an abstraction, then it should also be true of the full
specification, whereas for a downscaled specification we only require that bugs in
the full specification should be likely to show up in the downscaled version.)

Verifying Desired Properties

Formal methods provide the most searching examination and the strongest assur-
ance when proofs are used to verify significant application properties. The process
is essentially similar to that used in challenging specifications, except that the prop-
erties verified are of external significance, and the proofs are usually more difficult
and longer. The basic idea is that we construct a formal specification of the require-
ment, design, or algorithm concerned, and also a formal statement of the property
it is desired to satisfy, and then try to prove that the one implies the other. In
practice, the first proof attempt seldom succeeds; instead it usually reveals the need
for adjustments to the specification, or to the statement of the desired property
or the assumptions under which it is expected to hold. Generally, this process of
adjustment is iterated several times as renewed proof attempts reveal additional sub-
tleties. My experience is that the process is always very enlightening, particularly

36 ISSUES AND CHOICES IN FORMAL METHODS

when conducted with the full rigor of Level 3 formal methods, and leads to greatly
enhanced understanding of the specifications and properties under examination.

If all goes well, the adjustments will converge and we will finally obtain a sat-
isfactory proof. Subject to caveats on the fidelity of the modeling employed (these
were mentioned at the end of Section 1.2.1 on page 14 and must be ensured by
reviews and by validation as explained in the previous section), and on the proof
being performed without error (this is where mechanized proof checking is valuable,
but the mechanization is intended to enhance, not replace, human judgment and
responsibility), the proof provides strong assurance that the specified artifact indeed
satisfies the desired property. In addition, the process of formal modeling and proof
generally provides other, incidental benefits: the discovery and correction of faults,
complete enumeration of assumptions, sharpened statements of properties assumed
or satisfied, streamlined arguments, and an enhanced understanding that can lead to
improvements in design or assurance. Furthermore, formal specifications and proofs
are a reusable intellectual resource that can be particularly valuable-potentially,
a corporate asset-when design changes on the larger scale require modifications
to the component under consideration: highly automated Level 3 verifications, in
particular, can often verify slightly modified designs or properties with very little
extra effort, and with the same degree of rigor as the original case-something that
is very difficult to achieve with reviews.

An Aside on Mechanized Proof Checking. The effectiveness of mecha-
nized proof checkers and theorem provers for formal methods is advancing very
rapidly. For example, mechanized verification of the microcode for a simple
processor called “Tamarack” represented a significant challenge just five years
ago [Joy89], whereas it can now be done completely automatically in about five
minutes [CRSS94]. Progress is uneven however, and the amount of human time
and effort required to undertake a Level 3 analysis can vary by two orders of
magnitude or more from one verification system to another. Potential users
should be skeptical of developer’s own assessments of where their verification
system stands in the “power rankings,” and of impressions gained from small
examples; instead, they should evaluate candidate systems on full-size examples
representative of the intended application.

Verifying Design Refinement

Verification of requirements, designs, and algorithms against desired properties is
typically an activity of the early lifecycle. In the later lifecycle, the task of verifica-
tion is generally to demonstrate that (the specification of) a design at one level is

2.3 The Varieties of Formal Analysis 37

implemented correctly by another at a more detailed level. Generally an ubstruction
function is used to translate the terms of the lower-level specification into those of
the upper-level and the task is then to prove that this function has the properties
of a homomorphism. The task becomes more complicated when the two levels op-
erate at different granularities of time, and especially when the timing relationship
between them is variable (as, for example, in a pipelined microprocessor, where the
implementation may take a variable number of cycles to complete an instruction,
depending on whether the pipeline stalls, and other details that are hidden at the
upper level).

Design refinement can be verified using any level of formality but, once the
specifications get reasonably large, it is difficult to construct all the proof obligations
to establish the homomorphism without mechanized assistance. On the other hand,
the required proofs can be rather repetitive, so that investment in automation is
often very worthwhile.

39

3 Formal Methods and Certification

This section is concerned with the use of formal methods in support of certification
for critical systems. First, I present my general recommendations; these are followed
by more specific recommendations presented in the context of a commentary on the
guidelines for the certification of software for civil aircraft.

3.1 General Recommendations

Formal methods should be part of the education of every computer scientist and
software engineer, just as the appropriate branch of applied mathematics is a nec-
essary part of the education of all other engineers. Formal methods provide the
intellectual underpinnings of our field; they can shape our thinking and help direct
our approach to problems along productive paths; they provide notations for doc-
umenting requirements and designs, and for communicating our thoughts to others
in a precise and perspicuous manner; and they provide us with analytical tools for
calculating the properties and consequences of the requirements and designs that
we document.

However, it will be many years before even a small proportion of those working
in industry have been exposed to a thorough grounding in formal methods, and
it is simply impractical to demand large scale application of formal methods in
critical software-and unnecessary too, since industry seems to be doing a mostly
satisfactory job using nonformal methods."

Nonetheless, I believe industry should be strongly encouraged to develop and
apply formal methods that will permit more complete analysis and exploration of
those aspects of design that are least well covered by present techniques. These
arise in redundancy management, partitioning, and the synchronization and coor-
dination of distributed components, and primarily concern fault tolerance, timing,
concurrency, and nondeterminism. Scrupulous informal reviews, massive simu-
lation, near-complete unit testing of components, and extensive all-up testing do
not provide the same level of assurance in these cases as they do for sequential
programs-because the properties of interest are not manifest in individual compo-
nents, and because distributed execution is susceptible to subtle variations in timing
and fault status that are virtually impossible to set up and cover adequately in tests.

These formal analyses should be additional to those presently undertaken and
can increase assurance without necessarily being totally comprehensive: the value of
formal methods lies not in eliminating doubt but in circumscribing it. For example,
in addition to all the other assurance techniques that may be applied, it will be
valuable to prove that mode-switching logic does not contain states with no escape,

"The appalling safety record of the Airbus A320 aircraft [BCAG95] seems attributable to poor
human factors rather than to specific software faults [Me194].

40 FORMAL METHODS AND CERTIFICATION

and that sensor data is distributed consistently despite the presence of faults. These
are not the only properties required of mode switching and sensor distribution,
but they are among the most crucial and among the most difficult to assure using
traditional methods. To deal with such problems using current technology for formal
methods it will often be necessary to abstract away irrelevant detail, and possibly to
simplify even relevant detail. Doing so while continuing to model the issues of real
concern in a faithful way requires considerable talent and training. On the other
hand, since we will be dealing only with relatively small, albeit crucial, elements
of the system, the number of people required to possess that talent and training in
formal methods will be small.

The benefit provided by these formal analyses is a complete exploration of a
model of possible behaviors. Subject to the fidelity of the modeling employed (which
must be established by extensive challenge and review), we will be assured that cer-
tain kinds of faults are not present at the level of description and stage of the
lifecycle considered. One source of doubt will have been eliminated, and others
posed more sharply. Admittedly, this does not guarantee that the implementation
will not reintroduce the very faults that have been excluded by the formal analysis,
but current practices seem effective at tracing implementations. As resources and
capability permit, it will be worth seeing if formal methods can increase assurance
for these aspects also, but initially we should focus on cases where current prac-
tice seems weakest, not where it seems effective. By that measure, other promising
applications for formal methods are in the general area of requirements specifica-
tion and analysis-where current processes, though fairly effective, are ad-hoc and
unstructured.

3.2 Interpretation for DO-178B

The RTCA (“Requirements and Technical Concepts for Aviation, Inc.”) document
known in the USA as DO-178B [RTCA92] and in Europe as EUROCAE ED-12B
provides industry-accepted guidelines for meeting certification requirements for soft-
ware used in airborne systems and equipment, and is incorporated by reference into
European and United States regulatory and advisory documents. DO-178B provides
guidelines and does not lay down specific certification requirements: those are based
on existing regulations or special conditions decided by the certification authority
in consultation with the applicant.

Formal methods are not specifically endorsed by DO-178B (in contrast to certain
other guidelines and standards that do recommend or require their use [MOD91]),
but are included among the “alternative methods” discussed in its section 12.3.

12.3. Alternative Methods: Some methods were not discussed in the previous
sections of this document because of inadequate maturity at the time this doc-
ument was written or limited applicability for airborne sofcware. It is not the

3.2 Interpretation for DO-1 78B 41

intention of this document to restrict the implementation of any current or fu-
ture methods. Any single alternative method discussed in this subsection is not
considered an alternative to the set of methods recommended by this document,
but may be used in satisfying one or more of the objectives of this document.

...

12.3.1. Formal Methods: Formal methods involve the use of formal logic,
discrete mathematics, and computer-readable languages to improve the
specification and verification of software. These methods could produce
an implementation whose operational behavior is known with confidence
to be within a defined domain. In their most thorough application, formal
methods could be equivalent to exhaustive analysis of a system with respect
to its requirements. Such analysis could provide:

e Evidence that the system is complete and correct with respect to its
requirements.

e Determination of which code, software requirements or software ar-
chitecture satisfy the next higher level of software requirements.

The goal of applying formal methods is to prevent and eliminate require-
ments, design and code errors throughout the software development pro-
cesses. Thus, formal methods are complementary to testing. Testing
shows that functional requirements are satisfied and detects errors, and
formal methods could be used to increase confidence that anomalous be-
havior will not occur (for inputs that are out of range) or unlikely to
occur.12

Section 12.3.1 of DO-178B recognizes different levels of formality and rigor in appli-
cations of formal methods.

Formal methods include these increasingly rigorous levels: l3

e formal specification with no proofs.

121 find this sentence difficult to interpret. I think what is intended is that testing provides
assurance that the normal behavior of the software is satisfactory; formal methods can extend
that assurance by considering all possible behaviors, including those induced by rare or anomalous
combinations of inputs and other circumstances.

I3These levels do not correspond to those I call 1, 2 and 3: DO-178B does not identify methods
corresponding to my Level 1 (semiformal mathematical notation and proofs), and subdivides my
Level 2 in two according to whether manual proofs are performed; we agree on level 3. The reason
I do not subdivide my Level 2 is that, as explained in Section 2.3.2 on page 33, I attach little
credibility (or utility) to specifications whose consequences have not been challenged by proof.
For safety-critical applications, I believe that my interpretation of Level 1 rigor is preferable to
DO-178B’s.

42 FORMAL METHODS AND CERTIFICATION

e formal specifications with manual proofs.
e formal specifications with automatically checked or generated proofs.

The use of formal specifications alone forces requirements to be unam-
biguous. Manual proof is a well understood process that can be used
when there is little detail. Automatically checked or generated proofs can
aid the human proof process and o$er a higher degree of dependability,
especially for more complicated proofs.

Section 12.3 of DO-178B provides guidance in using an alternative method.

An alternative method cannot be considered in isolation from the suite
of software development processes. The eflort for obtaining certification
credit of an alternative method is dependent on the software level and
the impact of the alternative method on the software lifecycle processes.
Guidance for using an alternative method includes:

a. An alternative method should be shown to satisfy the objectives of this
document.

b. The applicant should specify in the Plan for Software Aspects of Cer-
tification, and obtain agreement from the certification authority for:

(1) The impact of the proposed method on the software development
processes.14

(2) The impact of the proposed method on the software lifecycle
data.15

(3) The rationale for use of the alternative method which shows
that the system safety objectives are satisfied.

The rationale should be substantiated by software plans, processes,
expected results, and evidence of the use of the method.

The effort required to satisfy these guidance items will depend on the extent to
which formal methods replace, rather than merely supplement, traditional lifecycle
processes and data. Note, however, that even if formal methods are truly supple-
mentary to the traditional processes, there will still be some impact on the lifecycle
processes and data that the applicant should discuss and explain. For example, if
descriptive formal methods are used to supplement traditional documentation, then
we have to ask which is the primary description, how is consistency established

14Software development processes, discussed in Section 5 of DO-l78B, include software require-
ments analysis, design, coding, and integration.

15Software lifecycle data, which are discussed in Section 11 of DO-l78B, are produced “to plan,
direct, explain, define, record, and provide evidence of activities throughout the software lifecycle.”

3.2 Interpretation for DO-178B 43

between them (and maintained through changes), and which is the target of the
reviews and analyses performed for verification?

Oddly, the guidance for alternative methods in Section 12.3 of DO-178B does not
explicitly call for an assessment of the impact of the proposed method on verification
activities. In my opinion, however, this is implicit in the requirement (quoted in
paragraph 12.3.b(2), above) to consider the impact of the method on lifecycle data-
since these data record the results of verification activities. Verification is one of
what DO-178B calls the “integral processes” which

. . . support the development processes by ensuring the correctness and
quality of all processes and the delivered software.

The integral processes comprise software verification, software configuration man-
agement, software quality assurance, and certification liaison. They are discussed in
Sections 6 through 9 of DO-178B; in particular, technical guidance on verification
is found in Section 6.16

6.0. Software Verification Process:
...
Verification is not simply testing. Testing, in general, cannot show the absence
of errors. As a result, the following subsections use the term “verifyn instead
of (%estn when the software verification objectives being discussed are typically
a combination of reviews, analyses, and tests.

Section 6.3 makes a distinction between reviews and analyses that is pertinent when
considering formal methods.

6.3. Software Reviews and Analyses: Reviews and analyses are applied to the
results of the software development processes and software verification process.
One distinction between reviews and analyses is that analyses provide repeat-
able evidence of correctness and reviews provide a qualitative assessment of
correctness. (A draft version of DO-178B said “The primary distinction be-
tween reviews and analyses is that analyses provide repeatable evidence, and
reviews provide a group consensus of correctness.”)

The significant attribute of formal methods is that they allow certain questions to be
settled by calculation-that is, by analysis-which informal methods must resolve
by means of reviews.

An applicant who offers descriptive formal methods might argue that formal
analysis is not his goal and that reviews provide an adequate means of verification

“The guidance on software quality assurance found in Section 8 is chiefly concerned with moni-
toring and recording the processes recommended in the other sections.

44 FORMAL METHODS AND CERTIFICATION

for his purpose. This could be acceptable if formal methods are offered only as a sup-
plement to traditional documentation, and if the traditional verification processes
are applied to that documentation (though it would then be natural to question the
purpose of offering formal methods); it could also be acceptable if formal methods
are used for limited purposes, such as describing data structures. I am skeptical,
however, of the reliability of reviews when they are applied to substantial formal
specifications involving, for example, significant numbers of axioms, or operations
specified by complex pre- and post-conditions, or constructions with subtle seman-
tics (e.g., schemas in the language 2). The problem is that it is difficult to provide
objective evidence that the authors of a specification can reliably express themselves
in such forms, and that its reviewers can interpret them correctly; the problem is
compounded by the fact that such specifications often contain technical errors (the
equivalent of “coding bugs”) that can render them inconsistent or meaningless.

It is my opinion that an essential step in ensuring an effective review process
for formal specifications is to require that they are subjected to stringent (and
preferably mechanized) analysis before they are submitted to reviews. The purpose
of the analysis is to eliminate as large a class of potential faults as possible by
purely formal means (Le., by calculational processes), so that the review process
may concentrate on the intellectual substance of the specification. Some specific
forms of analysis that should be considered (in ascending order of stringency) are

0 Parsing.

0 Typechecking (there are many degrees of stringency possible here; the most
stringent generally require use of theorem proving).

0 Well-formedness checking for definitions (i.e., assurance of conservative exten-
sion).

0 Demonstration of consistency for axiomatic specifications (i.e., exhibition of
models).

0 Animation (i.e., construction of an executable prototype from the formal spec-
ification, so that it can be subjected to experiment). This form of analysis
has a rather different character than the others listed here, and should be used
for specific purposes that are defined beforehand-otherwise it can degenerate
into hacking.

0 State exploration (;.e., exploring all the behaviors of a possibly downscaled
version of the specification).

0 Formal challenges (i.e., posing and proving putative theorems that should be
entailed by the specification).

3.2 Interpretation for DO-178B 45

My experience is that mechanically supported analyses of the kinds suggested
above are extremely potent forms of fault detection for formal specifications. I
expect that in many projects it will also be worthwhile to develop additional forms
of mechanized analysis to check for specific classes of faults. By these means, it
can be ensured that the formal specifications submitted for review are free of gross
defects and the reviewers can focus on deeper issues.

The question remains: how much confidence can we have in reviews of formal
specifications by personnel who may not be experts in formal methods? It seems to
me that we must trust the integrity of the review process to decide this. Currently,
reviews are conducted using checklists with items such as “do you consider the
requirements are complete?” and it will be necessary to add items such as “do you
consider that you have been able to fully comprehend the formal specification?”
The assurance that participants do fully comprehend a formal specification may be
enhanced if the suggestions of Parnas and Weiss [PW85] are followed: for example,
someone other than the author of a specification should be expected to explain it
during the review, and the author should pose questions to the reviewers (rather
than vice versa).

The rationale submitted to satisfy Section 12.3.b(3) of D0178B, should clearly
state the analyses that are required to be completed prior to reviews, and should
describe the class of faults that are detected by means of these analyses, and whether
the detection is certain, or merely likely. The number and stringency of the analy-
ses performed may be determined by the criticality and sophistication of the formal
specifications considered. The rationale should also provide evidence that the ap-
plicant’s process for reviewing formal specifications is effective.

Although descriptive formal methods have value, it is when formal methods
exploit the power of calculational, and especially automated, forms of analysis that
their singular potential is best realized. For example, in its Section 6.3.1 (Reviews
and Analyses of High-Level Requirements), DO-178B requires

b. (Accuracy and Consistency): The objective is to ensure that each
high-level requirement is accurate, unambiguous and suficiently de-
tailed and that the requirements do not conflict with each other.
(Similar considerations apply to lower-level requirements described
in DO-178B Section 6.3.2.)

Some aspects of consistency and nonconilict can be established mechanically for
formal specifications by strong typechecking and related analyses.

At a more detailed level, the verification objectives stated in Section 6.3.1 of
DO-178B include

g. (Algorithm Aspects): The objective is to ensure the accuracy and
behavior of the proposed algorithms, especially in the area of dis-
continuities.

46 FORMAL METHODS AND CERTIFICATION

Suitable verification objectives for analytic formal methods would be to demon-
strate that certain fundamental algorithms and architectural mechanisms involving
complex behavior (Le., behavior with large numbers of “discontinuities”) satisfy
their corresponding high-level requirements. Other suitable verification objectives
for strong kinds of formal analysis may be to discharge the requirements of DO-178B
Section 6.2.d.

When it is not possible to verify specific software requirements by exer-
cising the software in a realistic test environment, other means should
be provided and their justification for satisfying the software verification
process Objectives [should be] defined in the Sofiware Verification Plan.

In my opinion, circumstances “when it is not possible to verify specific software
requirements by exercising the software in a realistic test environment” are likely
to include those where complex interactions produce very large numbers of possible
behaviors (e.g., in coordination of real-time or concurrent processes, and in redun-
dancy management), and analytic formal methods may be the most effective “other
means” of verification in these cases. DO-178B seems to agree that formal methods
are well suited to such “complex behaviors,” and in its Section 12.3.1 states that

Formal methods may be applied to software requirements that:

e Are safety-related.
e Can be defined by discrete mathematics.
e Involve complex behavior, such as concurrency, distributed process-

ing, redundancy management, and synchronization.

The specific benefit provided by formal methods is that they allow “complex behav-
iors” to be analyzed (by means of proofs or state exploration), rather than merely
reviewed-and analyzed in their totality, rather than merely sampled as by testing
or simulation. Thus, the benefit derives from formal analysis, not from formal spec-
ification alone: formally specifying the individual state machines at either end of a
protocol, for example, adds little to our understanding-we need to calculate their
combined behavior to ensure that they accomplish the desired goal.

My recommendation is that those aspects of design that “involve complex behav-
ior” should be provided with at least the level of formal description and analysis
that would be found in a refereed computer science journal. That is, for the mech-
anisms of, say, redundancy management, a specification of the relevant algorithms
should be provided, together with the fault assumptions, the fault masking or re-
covery objectives, and a proof that the algorithms satisfy the objectives, subject to
the assumptions. This level of rigor of presentation is what I earlier called a “Level
1” formal method; it is less rigorous than any of the levels of formality contemplated

3.2 Interpretation for DO-178B 47

in Section 12.3.1 of DO-178B. Nonetheless, I believe this level of rigor would be a
distinct improvement on current practice.

Beyond this modest step, we should consider the extent to which quality control
and assurance might be further enhanced by increasing the level of formal rigor
employed, or the number of stages of the lifecycle subjected to formal analysis.

When the concern is to establish that certain tricky or crucid aspects of design
are correctly handled by the algorithms and architectural mechanisms employed, I
see little advantage to Level 2 formal methods over Level 1: it is the proofs that
matter, and both levels employ the traditional kind (presented and checked infor-
mally “by hand”); all that Level 2 would add is a fmed syntax for the specification
language and possibly some built-in models of computation and concurrency. These
last may be a mixed blessing: useful if they match the needs of the problems con-
sidered, otherwise an obstacle to be overcome.

But if Level 2 formal methods add very little in this domain, Level 3 may add
a great deal. The focus will be on difficult problems, where a large number of
potential behaviors must be considered-that is why the applicant has decided to
use formal methods-and the proofs may be expected to be replete with boundary
conditions and case analyses. These are precisely the kinds of arguments where
informal reasoning may be expected to go astray-and go astray it does: for example,
the published proof for one synchronization algorithm {LMS85] has flaws in its main
theorem and in four of its five lemmas [RvH93]. The flaws in this example were
discovered while undertaking formal analysis at Level 3 and suggest the benefits
that may be derived from this level of rigor.

The value of undertaking mechanically checked proofs is that the dialog with
a theorem prover forces examination of all cases to the argument. On it own,
a mechanically checked proof is not a “means of compliance” with a certification
basis and concern that “the theorem prover has not itself been proved correct”
is not an obstacle to deriving great benefit and additional assurance by applying
Level 3 formal methods in this domain. The analysis produced through dialog
with any adequately validated proof-checker will be considerably more complete and
reliable (and repeatable) than one produced without such aid-it is the ultimate
walkthrough-but the “certificate” that comes from a mechanized proof checker
should not be accepted as unsupported evidence of fitness any more than should
other computer-assisted calculations, such as those of aerodynamic properties, or of
mechanical stress. In my opinion, the analysis developed with the aid of a theorem
prover should also be rendered into a clear and compelling semiformal (i.e., Level
1) argument that is subjected to intense human review, and it is the combination of
stringent mechanical and human scrutiny (and other evidence, such as tests) that
should be considered in ~ertification.’~

I7For this reason, I do not endorse the requirement in UK Interim Defence Standard 00-
55 [MODSl, paragraph 32.2.31 that a second mechanically checked proof using a “diverse tool”

48 FORMAL METHODS AND CERTIFICATION

The construction of a mechanicdy checked proof that certain algorithms and
architectural mechanisms accomplish certain gods subject to certain assumptions
addresses only part of the problem: it is also necessary to validate the modeling
employed. That is to say, the applicant needs to provide evidence that the model
of computation employed, and the statements of the assumptions made and of the
goals to be achieved, are all true in the intended interpretation. It is also necessary
to provide evidence that the algorithm and architectural mechanisms considered in
the proof are correctly implemented. There is a tension between these concerns: it
is generally easier to validate models that make a few broad and abstract assertions
(e.g., “it is possible for a nonfaulty processor to read the clock of another aonfaulty
processor with at most a small error E ”) than those that make many detailed ones
(e.g., that talk about specific mechanisms for reading clocks and the behavior of
particular interface registers), but the “gap” between the verified specification and
its implementation will be greater in the former case. Since the assurance objective
of this analysis is to ensure that there are no conceptual flaws in the basic algorithms
and mechanisms, my opinion is that credibility of validation should take precedence
over proximity to implementation. This argues for performing the analysis early in
the lifecycle and using abstract modeling (Le., suppressing a l l detail judged irrel-
evant). Validation should be accomplished by peer review, supported by analyses
that demonstrate, for example, that axiomatic specifications are consistent (i.e.,
have a model), that intended models are not excluded (e.g., that clocks that keep
perfect time satisfy the axioms for a “good clock”), that definitions are well formed,
and that expected properties (i.e., “chdenges”) can be proven to follow from the
specification. Concern that implementations are faithful to their verified specifica-
tions is a separate problem, and can be handled using either formal methods, or
traditional techniques for V&V. My personal opinion is that traditional techniques
are likely to be adequate: the evidence seems to be that it is the basic mechanisms
and algorithms that have been flawed, not their implementations.

3.3 Conclusion

The recommendations presented above may seem modest to those who believe that
formal methods should be used more extensively (for example, in the manner re-
quired by UK Interim Defence Standard 00-55). They may also seem a retreat from
the traditional goals of formal verification: there would no claims of “proving cor-
rectness,” and no ambition to apply formal methods from “top to bottom” (Le.,
from requirements down to code or gates). Rather, the goal would be to establish
that certain properties hold, and certain conceptual faults are absent, in formal
models of some of the basic mechanisms necessary to safe operation of the system.

should be required. The resources required would be better expended on diverse analysis, and on
human scrutiny of the argument and modeling employed.

3.3 Conclusion 49

These may seem small claims in the total scheme of things, but they are the claims
that I think are least well supported by current practice and that cause the most
concern, since they are the most fundamental.

Those who argue that more should be required-that formal methods should be
carried down to code or gates, or that formal specifications should be used as part
of the software engineering process-need to provide evidence that this wiu. increase
assurance in an industry that has an excellent record of accomplishment using tra-
ditional methods. They also need to provide evidence that resources expended on
formal methods would not be better spent on other forms of assurance.

On the other hand, these recommendations may seem excessive to some readers:
I propose that the most stringent kinds of formal methods should be applied to
the hardest problems of design. These pose tough challenges, to be sure, but how
could anything less challenging be expected to improve a process that is already very
effective? And notice that although these challenges are tough, they are relatively
few in number and small in scale, and can therefore be undertaken by a small (though
highly skilled) team of people. The tools that are currently available to support these
ambitious applications of formal methods are not ideal, but are adequate to the task.

Finally, I would like to observe that using all the techniques at our disposal,
even including formal methods, I do not believe we can provide assurance that
software of any significant complexity achieves failure rates on the order of lo-’ per
hour for sustained periods, and we should not build systems that depend on such
undemonstrable properties. System-level reliability and safety analyses must not be
predicated on software failure rates that cannot be substantiated by experiment or
analysis. To achieve a credible probability of catastrophic system failure below lo-’,
software must generally be buttressed by mechanisms depending on quite different
technologies that provide robust forms of diversity. In the case of flight control
for commercial aircraft, this probably means that stout cables should connect the
control yoke and rudder pedals to the control surfaces.

Acknowledgments

I wish to acknowledge my deep appreciation for the support and encouragement
(and patience!) of Pete Saraceni of the Flight Safety Research Branch of the FAA
Technical Center, and Ricky Butler of the NASA Langley Research Center. I would
also like to thank my colleagues Judy Crow, Jack Goldberg, Pat Lincoln, Sam Owre,
Peter Neumann, Natarajan Shankar, and Mandayam Srivas for numerous discussions
on these topics, and for comments on drafts of this report.

51

References

[BCAG95]

[BF93]

[Bid911

[BJ94]

[Bur931

[CGHS95]

[CGL94]

[Coo931

[CRSS94]

[DDHY92]

Statistical Summary of Commercial Jet Aircraft Accidents, Worldwide
Operations, 1959-1994. Published annually by: Airplane Safety En-
gineering (B-210B), Boeing Commercial Airplane Group, Seattle, WA,
March 1995.

Ricky W. Butler and George B. Finelli. The infeasibility of experimental
quantification of life-critical software reliability. IEEE Transactions on
Software Engineering, 19(1):3-12, January 1993.

Wayne Biddle. Barons of the Sky: From Early Flight to Strategic War-
fare, the Story of the American Aerospace Industry. Simon and Schus-
ter, New York, NY, 1991. Paperback edition by Henry Holt, 1993.

J. Brazendale and A. R. Jeffs. Out of control: Failures involving control
systems. High Integrity Systems, 1(1):67-72,1994.

R. W. Burns. Genius at work. IEE Review, 39(5):187-189, September
1993.

Edmund M. Clarke, Orna Grumberg, Hiromi Haraishi, Somesh Jha,
David E. Long, Kenneth L. McMillan, and Linda A. Ness. Verification
of the Futurebusf cache coherence protocol. Formal Methods in System
Design, 6(2):217-232, March 1995.

E. Clarke, 0. Grumberg, and D. Long. Verification tools for finite-
state concurrent systems. In J. W. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, A Decade of Concurrency, pages 124-175, REX
Workshop, Mook, The Netherlands, June 1994. Volume 803 of Lecture
Notes in Computer Science, Springer-Verlag.

Henry S. F. Cooper Jr. The Evening Star: Venus Observed. Farrar
Straus Giroux, New York, NY, 1993.

D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem
proving for hardware verification. In Ramayya Kumar and Thomas
Kropf, editors, Theorem Provers in Circuit Design (TPCD '941, pages
203-222, Bad Herrenalb, Germany, September 1994. Volume 910 of
Lecture Notes in Computer Science, Springer-Verlag.

David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Pro-
tocol verification as a hardware design aid. In 1992 IEEE International
Conference on Computer Design: VLSI in Computers and Processors,

52 REFERENCES

pages 522-525. IEEE Computer Society, 1992. Cambridge, MA, Octo-
ber 11-14.

[Dorgl] Michael A. Dornheim. X-31 flight tests to explore combat agility to 70
deg. AOA. Aviation Week and Space Technology, pages 38-41, March
11,1991.

[ECK+91] Dave E. Eckhardt, Alper K. Caglayan, John C. Knight, Larry D. Lee,
David F. McAllister, Mladen A. Vouk, and John P. J. Kelly. An exper-
imental evaluation of software redundancy as a strategy for improving
reliability. IEEE Transactions on Software Engineering, 17(7):692-702,
July 1991.

[FAA881 System Design and Analysis. Federal Aviation Administration, June
21, 1988. Advisory Circular 25.1309-1A.

[FAA891 Digital Systems Validation Handbook- Volume II. Federal Aviation
Administration Technical Center, Atlantic City, NJ, February 1989.
DOT/FAA/CT-88/10.

[FB92] John H. Fielder and Douglas Birsch, editors. The DC-IO Case: A Case
Study in Applied Ethics, Technology, and Society. State University of
New York Press, 1992.

[GH90] G. Guiho and C. Hennebert. SACEM software validation. In 12th
International Conference on Software Engineering, pages 186-191, Nice,
France, March 1990. IEEE Computer Society.

[GY76] S. L. Gerhart and L. Yelowitz. Observations of fallibility in modern pro-
gramming methodologies. IEEE Transactions on Software Engineering,
SE-2(3):195-207, September 1976.

[Hec93] Herbert Hecht. Rare conditions: An important cause of failures. In
COMPASS ’93 (Proceedings of the Eighth Annual Conference on Com-
puter Assurance), pages 81-85, Gaithersburg, MD, June 1993. IEEE
Washington Section.

I. J. Hayes and C. B. Jones. Specifications are not (necessarily) exe-
cutable. IEE/BCS Software Engineering Journal, 4(6):320-338, Novem-
ber 1989.

[HJ89]

[HK90] Zvi Har’El and Robert P. Kurshan. Software for analytical development
of communications protocols. ATBT Technical Journal, 69(1):45-59,
January/February 1990.

53

[Jon901 Cliff B. Jones. Systematic Software Development Using VDM. Prentice
Hall International Series in Computer Science. Prentice Hall, Heme1
Hempstead, UK, second edition, 1990.

[Joy891 Jeffrey Joyce. Multi-Level Verification of Microprocessor-Based Sys-
tems. PhD thesis, University of Cambridge, December 1989.

[KeuSl] Kurt Keutzer. The need for formal verification in hardware design and
what formal verification has not done for me lately. In Phillip Windley,
editor, Proceedings of the 1991 International Workshop on the HOL
Theorem Proving System and its Applications, pages 77-86, Davis, CA,
August 1991. IEEE Computer Society.

J. C. Knight and N. G. Leveson. An experimental evaluation of the as-
sumption of independence in multiversion programming. IEEE Trans-
actions on Software Engineering, SE-12(1):96-109, January 1986.

[KL86]

[KP93] Rick Kasuda and Donna Sexton Packard. Spacecraft fault tolerance:
The Magellan experience. In Robert D. Culp and George Bickley, edi-
tors, Proceedings of the Annual Rocky Mountain Guidance and Control
Conference, pages 249-267, Keystone, CO, February 1993. Volume 81
of Advances in the Astronautical Sciences, American Astronautical So-
ciety.

[KSH92] John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An analysis of
defect densities found during software inspections. Journal of Systems
Software, 17:lll-117,1992.

Nancy G . Leveson. Safeware: System Safety and Computers. Addison-
Wesley, 1995.

[Lev951

[LM94] Leslie Lamport and Stephan Merz. Specifying and verifying fault-
tolerant systems. In H. Langmaack, W.-P. de Roever, and J. Vytopil,
editors, Formal Techniques in Real- Time and Fault-Tolerant Systems,
pages 41-76, Lubeck, Germany, September 1994. Volume 863 of Lecture
Notes in Computer Science, Springer-Verlag.

L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the pres-
ence of faults. Journal of the ACM, 32(1):52-78, January 1985.

[LMS85]

[LR93] Patrick Lincoln and John Rushby. A formally verified algorithm for
interactive consistency under a hybrid fault model. In Fault Tolerant
Computing Symposium 23, pages 402-411, Toulouse, France, June 1993.
IEEE Computer Society.

54

[LSP82]

[LT82]

[LT93]

[Lut93]

[Mac881

[Me1941

[MOD911

[MS95]

REFERENCES

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Tmnsactions on Programming Languages and
Systems, 4(3):382-401, July 1982.

E. Lloyd and W. Tye. Systematic Safety: Safety Assessment of Aircmft
Systems. Civil Aviation Authority, London, England, 1982. Reprinted
1992.

Nancy 6. Leveson and Clark S. Turner. An investigation of the Therac-
25 accidents. IEEE Computer, 26(7):18-41, July 1993.

Robyn R. Lutz. Analyzing software requirements errors in safety-critical
embedded systems. In IEEE International Symposium on Requirements
Engineering, pages 126-133, San Diego, CA, January 1993.

Dale A. MacM. Development and flight test experiences with a flight-
crucial digital control system. NASA TP-2857, 1988.

Peter Mellor. CAD: Computer-aided disaster. High Integrity Systems,
1(2) :101-156,1994.

Interim Defence Standard 00-55: The procurement of safety critical
software in defence equipment. UK Ministry of Defence, April 1991.
Part 1, Issue 1: Requirements; Part 2, Issue 1: Guidance.

Steven P. Miller and Mandayam Srivas. Formal verification of the
AAMP5 microprocessor: A case study in the industrial use of formal
methods. In WIFT '95: Workshop on Industrial-Strength Formal Speci-
fication Techniques, pages 2-16, Boca Raton, FL, 1995. IEEE Computer
Society.

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.
Formal verification for fault-tolerant architectures: Prolegomena to the
design of PVS. IEEE Tmnsactions on Software Engineering, 21(2):107-
125, February 1995.

David L. Parnas and David M. Weiss. Active design reviews: Principles
and practices. In 8th International Conference on Software Engineering,
pages 132-136, London, UK, August 1985. IEEE Computer Society.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
and William Lorensen. Object-Oriented Modeling and Design. Prentice
Hall, Englewood Cliffs, NJ, 1991.

[PW85]

[RBP+91]

55

[RTCA92]

[Rus93]

[RvH 9 31

[Spi93]

[Ving 01

DO-178B: Software Considerations in Airborne Systems and Equip-
ment Certification. Requirements and Technical Concepts for Aviation,
Washington, DC, December 1992. This document is known as EURO-
CAE ED-12B in Europe.

John Rushby. Formal methods and digital systems validation for air-
borne systems. NASA Contractor Report 4551, NASA Langley Re-
search Center, Hampton, VA, December 1993.

John Rushby and Friedrich von Henke. Formal verification of algo-
rithms for critical systems. IEEE Transactions on Software Engineer-
ing, 19(1):13-23, January 1993.

J. M. Spivey, editor. The Z Notation: A Reference Manual. Prentice
Hall International Series in Computer Science. Prentice Hall, Heme1
Hempstead, UK, second edition, 1993.

Walter G. Vincenti. What Engineers Know and How They Know It:
Analytical Studies from Aeronatical History. Johns Hopkins Studies in
the History of Technology. The Johns Hopkins University Press, Balti-
more, MD, 1990.

57

Index
A320 aircraft, 39n
Ada programming language, 10,16,32
AFTI-F16 aircraft, 8
analysis, 11

vs. reviews, 43
and abstraction, 26-28
and formal methods, 13, 15, 16, 25, 31-37,

40,46-48
mechanized, 22,45

in support of reviews, 44
of designs, 7
of formal specifications, 45-48

animation, 33, 44
Application-Specific Integrated Circuit , see

ASIC, 10, 26
aside

ASIC

example of fault that is hard to find, 17
on defensive programming, 6
on finite analysis of infinite systems, 14
on hardware, 10
on infeasibility of quantifying reliability, 11
on mechanized proof checking, 36
on multiple-version software, 8
on notation

model-oriented, 29
property-oriented, 30

on practicality, 24

and abstraction, 15, 35
and formal methods, 13, 39, 47-48
and Level 3 formal methods, 23, 35
and traditional methods, 19, 25, 39
based on prior experience, 11
statistical, 10-12

automated deduction, 14

assurance, 7-9

catastrophic failure condition, 11, 13, 25, 49
challenge, see formal challenge

code verification, see verification of programs
common mode failure, 7
complexity, and design faults, 6-12
concurrency, 30-31,39
correctness

evidence for, 7
need for, 6

DC-10 aircraft, 7
defensive programming, 6
design faults

and complexity, 6-12
in AFTI-FIG, 8
in DC-10, 7
in Galileo, 26
in Magellan, 17
in Therac 25, 11
in Voyager, 26
in X31, 11
sources of, 26

Douglas, Donald, 24
downscale, 35,44

DO-l78B, 8,10, 11,25,40-48

Edison, Thomas, 24n
engineering vs. crafts, 12

formal challenge, 26,33,41,44, 48
formal deduction, 13
formal methods

and analysis, 45-48
and assurance, 13,39,47-48
and certification, 39-48
and design refinement, 25, 34, 36

formal specification, 13, 28-31
constructive , 3 2
model-oriented, 28-30
propert y-orient ed, 29-3 1,33

formal specification language, 22

58 INDEX

formal specifications

formal verification
consistency, 30-32

of programs, 19-25,27,49
of specifications, 36-37

Galileo spacecraft, 26
generic faults, see design faults

hazard analysis, 9, 11
Hoare sentence, 20-21,27

levels of formality, 19-23,41n
Level 1, 19,47
Level 2, 20,47
Level 3, 22,34, 35,47-49

formal, 13, 14,22, 32
higher-order, 32
temporal, 30

loop invariant, 22

logic

Magellan spacecraft, 17
Martin, Glenn, 24
mathematical induction, 14
Mathematical logic, see logic, formal
model checking, 31
models

formal, 12, 14, 27
mathematical, 5, 12, 27

modular redundancy, 6
multiple version software, 7, 8
mutability of software, 6

object-oriented design, 16
operational profile, 11

partitioning, 39
practicality, 24
predicting behavior, 5, 12, 27, 31, 33-36
process algebra, 30
program verification, see formal verification of

programs

proof checker, see theorem prover

rapid prototyping, 26,33,44
redundancy management, 7, 15,24-25,39
reliability of software, 10

reviews, 16, 33, 36
empirical quantification of, 11

us. analyses, 43
analysis in support of, 44
of formal specifications, 43-45

rigor, see levels of formality

Skolemization, 14
software

n-version, see multiple version software
dissimilar, see multiple version software
diverse, see multiple version software

state exploration methods, 35
language inclusion, 35
model checking, 35

synchronization, 8, 39

Tesla, Nicola, 24n
testing, 7, 11
theorem prover, 14, 22,36,47
Therac 25 medical electron accelerator, 11
typechecking, 31, 32,44
types, 32-33

UK Defence Standard 00-55,40,47

validation of formal specifications and models,

VDM formal method, 23
verification condition, 23
verification system, 22, 36
Verilog hardware description language, 10
VHDL hardware description language, 10
volatility of software, 6
Voyager spacecraft, 26

X31 aircraft, 11

33-36

Z formal method, 23, 32,44

Form Approved

Formal Methods and Their Role in Digital Systems

John Rushby

SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025-3493

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

a1 Monitor: Ricky W. Butler

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61 I

.eport
5. FUNDING NUMBERS

C NAS1-18969
TA 13

VU 505-64-10-13

3. PERFORMING ORGANIZATION
REPORT NUMBER

ECU 8200-260

IO. SPONSORING /MONITORING
AGENCY REPORT NUMBER

NASA CR-4673

12b. DISTRIBUTION CODE

I
13. ABSTRACT (Maximum 200 word)

This report is based on one prepared as a chapter for the FAA Digital Systems
Validation Handbook (a guide to assist FAA Certification Specialists with Advanced
Technology Issues). Its purpose is to explain the use of formal methods in the
specification and verification of software and hardware requirements, designs, and
implementations, to identify the benefits, weaknesses, and difficulties in applying
these methods to digital
factors for consideration when formal methods are offered in support of certificatil

contribution to assurance for critical applications within a context such as that
provided by DO-178B (the guidelines for software used on board civil aircraft); it
is intended as an introduction for those to whom therese topics are new.
technical discussion of formal methods is provided in a companion report.

systems used in critical applications, and t o suggest

The presentation concentrates on the rationale for formal methods and on their

A more

14. SUBJECT TERMS 115. NUMBER OF PAGES

Formal methods, digital systems validation, FAA Handbook, I critical systems, specification and verification
A04

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACl
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited I I

NSN 7540-01-280-5500 Star-=rd Form 298 ?ev 2-89)

