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Abstract 

This report is based on one prepared as a chapter for the FAA Digital Sys- 
tems Validation Handbook (a guide to assist FAA Certification Specialists with 
Advanced Technology Issues).l Its purpose is to explain the use of formal meth- 
ods in the specification and verification of software and hardware requirements, 
designs, and implementations, to identify the benefits, weaknesses, and difficul- 
ties in applying these methods to digital systems used in critical applications, 
and to suggest factors for consideration when formal methods are offered in 
support of certification. 

The presentation concentrates on the rationale for formal methods and on 
their contribution to assurance for critical applications within a context such 
as that provided by DO-178B (the guidelines for software used on board civil 
aircraft)2; it is intended as an introduction for those to whom these topics are 
new. A more technical discussion of formal methods is provided in a companion 
rep01-t.~ 

Digital Systems Validation Handbook-Volume ID. Federal Aviation Administration Technical 
Center, Atlantic City, NJ. Forthcoming. 

2Software Considerations in Airborne Systems and Equipment Certification. Requirements and 
Technical Concepts for Aviation (RTCA), Washington, DC, December 1992. 

3John Rushby, Formal Methods and the Certification of Critical Systems, Technical Report 
SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA. Also NASA 
Contractor Report 4551. 
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Glossary 

These explanations are provided to help the nonspecialist. They are intended to 
reflect the technical uses of the terms considered, but do not attempt to incorporate 
subtleties that concern the specialist. 

Abstraction: the process of simplifying certain details of a system description or 
model so that the main issues are exposed. Abstraction is the key to gaining 
intellectual mastery of any complex system, and a prerequisite to effective use 
of formal methods. It requires great skill and experience to use abstraction to 
best effect. 
In formal methods, abstraction is part of the process of developing a math- 
ematical model that is a simplification or approximation of reality but that 
retains the properties of interest. In physics, for example, it is customary to 
model a moving object as a point mass, and to ignore its shape. Similarly 
in the case of a flight-control system, one can analyze properties of, say, the 
clock synchronization algorithm or the redundancy management mechanisms 
by abstracting these away from the larger and more complex system in which 
they are embedded. 

Correctness: the property that a system does what it is expected and required to 
do. Formal methods cannot establish correctness in this most general sense 
because they deal with formal models of the system that may be inaccurate or 
incomplete, and with formal statements of requirements that may not capture 
all expectations. The difference between the real and modeled worlds is a 
potential source of error that attends all uses of mathematical modeling in 
engineering (e.g., in numerical aerodynamics or stress calculations) and that 
must be controlled by validating the models concerned. The difference between 
expectations and documented requirements is another problem that attends all 
engineering activities. Formal methods provide ways to make the specifications 
of assumptions and requirements precise; formal validation (q.v.) can then be 
used to  ensure that the specifications are adequately complete and correct. 
Correctness does not ensure safety or other critical properties, since the system 
requirements and expectations may not address these issues (correctly or at 
completely). System requirements usually describe functional properties (i.e., 
what the system is to do); it is necessary to establish nonfunctional properties 
such as safety and security (which often describe what the system is not to 
do) by separate scrutiny (based, e.g., on hazard analysis, or threat analysis). 
Formal methods can be used in these processes. 

Design Faults: mistakes in the design of the system, or in the understanding of 
its requirements and assumptions, that cause it to do the wrong thing or to 
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fail in certain circumstances. Also called generic faults. Modular redundancy 
provides no protection against these faults. 

Formal logic: symbolic notation equipped with rules for constructing formal proofs 
(q-v.). Formal logic consists of a language for writing statements and syntactic 
rules of inference for constructing proofs using these statements. Formal logic 
supports a form of reasoning that does not rely on the subjective interpretation 
of the symbols used. For example, “All Os are #; this 0 is a 0; therefore, this 
0 is #” is sound reasoning, no matter what the symbols mean. Because they 
do not depend on intuition, formal proofs can be developed or checked by 
computer (see theorem proving). 
There are many formal logics; they differ in what concepts they can express, 
and in how difficult it is to discover or check proofs. Propositional logic, first- 
order logic, higher-order logic, the simple theory of types, and temporal logic 
are all examples of formal logics that find application in formal methods. These 
logics are generally augmented with certain theories defined within them that 
provide definitions or axiomatizations for useful mathematical concepts, such 
as sets, numbers, state machines, etc. 

Formal Proof and formal deduction. Formal deduction is the process of deriv- 
ing a sentence expressed in a formal logic from others through application of 
one or more rules of inference. In the example above, formal deduction allows 
us to derive the sentence “this 0 is #”  from the two sentences “All Os are #” 
and “this 0 is a 0.” 
A formal proof is a demonstration that a given sentence (the theorem) follows 
by formal deduction from given (i.e., assumed) sentences called premises. 

Formal methods: methods that use ideas and techniques from mathematical or 
formal logic (q.v.) to specify and reason about computational systems (both 
hardware and software). 

Formal specification: a description of some computational system expressed in 
a notation based on formal logic. Generally, the specification states certain 
assumptions about the context in which the system is to operate (e.g., laws of 
physics, properties of subsystems and of systems with which the given system 
is to interact), and certain properties required of the system. A requirements 
specification need specify no more than this; a design specification will specify 
some elements of how the desired properties are to be achieved-e.g., algo- 
rithms and decomposition into subsystems. 

Formal validation: a process for gaining confidence that top-level formal spec- 
ifications of requirements and assumptions are correct. Formal verification 
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(q-v.) cannot be applied at these levels because there are no higher-level re- 
quirements or more basic assumptions against which to verify them: processes 
of review and examination must be used instead. Formal validation consists 
of challenging the formal specifications by proposing and attempting to prove 
theorems that ought to follow from them (i.e., “if I’ve got this right, then this 
ought to follow.”) 

Formal verification: the process of showing, by means of formal deduction, that a 
formal design specification satisfies its formal requirements specification. The 
formal description of a design and its assumptions supply the premises, and the 
requirements supply the theorem to be proved. In hierarchical developments, 
assumptions and designs at one level become requirements at another, so the 
formal verification process can be repeated through many levels of design and 
abstraction. At the topmost level, validation (q.v.) must be employed. 

Theorem proving and proof checking. Given a putative theorem and its 
premises, a theorem prover attempts to discover a proof that the theorem 
follows from the premises; on the other hand, a proof checker simply checks 
that a given proof is valid according to the rules of deduction for the logic 
concerned. Both these processes can be automated. A theorem prover is a 
computer program that uses search, heuristics, and user-supplied hints to guide 
its attempt to discover a proof. A proof checker is a computer program that 
is used interactively: a human user proposes proof steps and the proof checker 
checks they are valid and carries them out. The most effective automated 
assistance for formal methods is generally obtained by a hybrid combination 
of these approaches: the user proposes fairly big steps and the proof checker 
uses theorem proving techniques to fill in the gaps and take care of the de- 
tails. Examples of theorem provers include Otter, Nqthm, PTTP, RRL, and 
TPS. Examples of proof checkers include Automath, Cog, HOL, Isabelle, and 
Nuprl. Hybrids include Eves, IMPS, PC-Nqthm, and PVS. Other forms of 
automated analysis that can be applied to formal specifications include model 
checking, language inclusion, and state exploration; examples of systems that 
perform these analysis are SMV, COSPAN, and Murq5. 
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Introduction 

This report is based on one prepared as a chapter for the FAA Digital Systems Val- 
idation Handbook (a guide for aircraft certifiers) [FAA89]. Its purpose is to outline 
what is meant by “formal methods” and to explain their rationale and suggest tech- 
niques for their use in providing assurance for critical applications. The report is 
intended as an introduction for those to whom these topics are new and assumes no 
background beyond some exposure to software engineering and to safety-critical sys- 
tems. A more technical examination of formal methods is provided in a companion 
report [Rus93]. 

The presentation is in three sections: the first outlines the general rationale for 
formal methods; the second considers the different kinds of formal methods, and 
some of the issues in their selection and application; the third considers their contri- 
bution to assurance and certification for critical applications, using the requirements 
concerning software in civil aircraft for concrete illustration. 

1 The Rationale for Formal Methods 

Formal methods are a very different approach to software development and assur- 
ance than traditional methods. In order to describe why formal methods can be 
worthwhile, I begin by explaining why the assurance problem is so hard for soft- 
ware. 

1.1 The Problem With Software and Its Assurance 

Software is notorious for being late, expensive, and wrong. Exasperated technical 
managers often ask “what’s so different about software engineering-why can’t we 
(or, less generously, you) do it right?” The unstated implication is that the tra- 
ditional engineering disciplines-in which technical managers usually received their 
training-do things better. 

In my opinion, this unflattering comparison of software with other engineering 
endeavors is somewhat justified; in particular, the traditional disciplines are founded 
on science and mathematics and are able to model and predict the characteristics and 
properties of their designs quite accurately, whereas software engineering is more of 
a craft activity, based on trial and error rather than calculation and prediction. The 
comparison is too glib, however, in that it fails to acknowledge that in two important 
respects software is different. These respects are the complexity of behavior that is 
achieved by software, and its lack of continuity. These are discussed in the next two 
sections. 

P 

PAGE 
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1.1.1 Complexity and Design Faults 

Software provides much of the functionality of modern systems, and software there- 
fore directly expresses the scale and complexity of these systems. Complexity is a 
source of design faults, by which I mean faults in the intellectual construction of the 
system-faults that will cause the system to do the wrong thing in some circum- 
stances. Design faults can occur in any system, independently of the technologies 
used in its construction (see, for example, [BJ94]) but, because design faults are 
often due to a failure to  anticipate certain interactions among the components of 
the system, or between the system and its environment, they become more likely as 
the number and complexity of possible behaviors and interactions increases. 

Individual software components perform complex functions in modern systems, 
and collectively they provide the focus for interaction among all parts of the system, 
and between the system and its environment and operators. Furthermore, software, 
because of its mutability, is also the target for most of the changes that are generated 
in requirements and constraints as the overall design for a system evolves. Thus, 
software carries the burden of overall system complexity and volatility, and it is to 
be expected that design faults will most commonly be expressed in software. 

The Need for Correctness. Because software is found in active control systems, 
it is usually infeasible to compensate for possible faults or uncertainties in its design 
by “overengineering” it to provide a “design margin” in the same way as physical 
systems: whereas a wing spar may be constructed to withstand loads far greater 
than any it should encounter in normal flight, the software in an autoland system, 
for example, has to do exactly the right thing. 

I 
An Aside on Defensive Programming. A plausible counterpart to over- 
engineering in software may be defensive programming, whereby each software 
component explicitly checks for “impossible” conditions and tries to do some- 
thing sensible if they arise. The problem is that if the impossible happens, then 
some failure of design must have already occurred, and there is no telling what 
impact an autonomous decision to do something locally “sensible” may have on 
overall system behavior. This is the central problem with complex, interacting 
systems: local actions can have highly nonlocal consequences. 

Another technique whose protection does not extend from physical to  design 
faults is simple modular redundancy. There is always the possibility that physical 
components may fail-either through manufacturing defects, fatigue and wear-out, 
improper maintenance, physical damage (e.g., shrapnel from a disintegrating engine, 
or crushing from a collapsing floor), or environmental effects (e.g., heavy ions from 
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cosmic rays, or excessive moisture and heat following loss of air-conditioning)-so it 
is a good idea to have spares and backups to provide fault tolerance. A fault-tolerant 
system must be designed to avoid common mode failures in which all its redundant 
components are brought down by a single cause. An example of a common mode 
failure is the loss of all hydraulic systems in the Sioux City DC-10 crash: the separate 
hydraulic systems were routed through a single space near the tail engine and all 
were severed when that engine di~integrated.~ 

Design faults are the quintessential source of common mode failures, so simple 
replication can provide no protection against them. It is, of course, possible to pro- 
vide redundant components based on different designs-so-called multiple-version 
dissimilar (or diverse) software-but this is not a fully satisfactory solution. I give 
a very brief summary why this is so in an aside on page 8. 

Evidence for Correctness and the Need to Consider All Behaviors. Al- 
though defensive programming and software diversity provide paUiatives in some 
circumstances, for most critical software systems there is no alternative to the daunt- 
ing task of eliminating all design faults-or at least those that could have serious 
consequences. And it is also necessary to provide evidence that this has been done 
successfully. This evidence is usually in two parts: one is concerned with the pro- 
cess of design and construction-it seeks to show through evidence of good practice 
that everything has been done to prevent serious design faults being introduced and 
remaining undetected and uneradicated; the second seeks to demonstrate directly, 
through examination of the system in operation and under test, and through an 
analysis of its design and supporting rationale, that it is free of serious faults. The 
first of these forms of evidence concerns quality control, the second provides quality 
assurance. 

Assurance for a safety-critical system must, at least in principle, consider all 
possible behaviors of the system under all the circumstances it might encounter. 
Since “all possible” behaviors may be too many to examine, two complementary 
approaches have evolved that attempt to reduce the number of behaviors that must 
be considered. One way tries to show that the system always does the right thing, 
the other tries to show that it never does a seriously wrong thing. 

For the first approach, we use a combination of analysis and empirical testing to 
examine those behaviors that are considered most likely to harbor serious faults-for 
example, those that are close to boundary conditions, or that represent “off nominal” 
conditions, such as those where some subsystems or redundant components have . 
failed. Examples of this approach are fault injection (an empirical method) and 
failure modes, effects and criticality analysis (FMECA, an analytical method). 

4For a critical examination of ethical and regulatory issues concerning the DC-10, see the com- 
pendium edited by Fielder and Busch [FB92]. 
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A n  Aside on Multipleversion Software. The topic of constructing systems 
that can tolerate faults in their own design using multiple-version software is controver- 
sial. The main questions are whether this approach provides any significant additional 
assurance of safety, and whether that assurance is quantifiable. Answers to these ques- 
tions hinge on “how much” dissimilarity of design can be achieved in the different 
versions, and on the extent to which any failures of dissimilar designs will be indepen- 
dent. 

The extent of dissimilarity depends on how much of the overall design is developed 
in multiple versions. If dissimilar design is limited to multiple versions of low-level mod- 
ules, then no protection is provided against design faults above that level; in particular, 
the system is fully exposed to faults in the modules’ requirements. Furthermore, the 
degree of design freedom, and hence the scope for diversity, is limited when small com- 
ponents are built to a common set of requirements, and there is some evidence that 
different designers or implementers do tend to make similar mistakes [ECK+91, KL861. 
If dissimilarity is at the level of whole systems or subsystems (e.g., an independent 
backup to a digital flight control system), then there is the question whether the dis- 
similar system should have the full capability and assurance of the primary system: if 
it does, then development and maintenance costs will be at least doubled (and that 
money could have been spent improving the quality, or the assurance, of the primary 
system); if not, there is concern whether the secondary system can be relied on in an 
emergency (e.g., the control envelope of an analog backup system is often less than 
that of the primary flight control system). 

In all cases, there is the critical problem of designing and implementing redundancy 
management across the dissimilar versions: that is, how to decide when one version has 
failed and another should be given control (in the case of backup systems), or how to 
resolve voter disagreements in the case of parallel systems. (Dissimilar designs cannot 
be expected to produce bit-for-bit identical behavior, so threshold voting has to be 
used.) Like other problems involving synchronization and coordination of concurrently 
active distributed components, redundancy management-whether of identical or dis- 
similar components-is among the most difficult and fault-prone aspects of software 
design. Redundancy management does not lend itself to diversity (e.g., you cannot 
vote the voters ad infinitum; ultimately a decision must be made and the algorithm 
by which that decision is accomplished represents a single design), and can be made 
more complex and fault prone by the need to manage diversity in other components. 
For example, when, on test flight 44, disagreements among the threshold voters in 
the AFTI-F16 digital flight control system caused each computer to declare the others 
failed, the analog backup was not selected because simultaneous failure of two or more 
digital channels had not been anticipated in design of the redundancy management 
system [Mac88, p. 441. 

For these and other reasons, the guidelines for certification of airborne software state 
that the degree of protection provided by software diversity “is not usually measurable” 
and dissimilar software versions do not provide a means for achieving safety-critical 
requirements, but “are usually used as a means of providing additional protection 
after the software verification process objectives for the software level.. .have been 
met” [RTCA92, Subsection 2.3.21. 
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The general idea behind the second approach to quality assurance is to hypoth- 
esize that the system has done something bad and then to analyze all the circum- 
stances that could cause this to come about and to show that the design prevents 
them from happening. This approach is inspired by hazard analysis, which is a 
central concept in safety-critical systems; one particular method for doing it that 
has been adapted to software is fault-tree analysis (FTA) [Lev95, Section 14.31. 

The property that is common to the different assurance techniques is that they 
provide ways to group “essentially similar” behaviors together so that fewer cases 
need to be considered while still providing effectively complete coverage of all possi- 
ble behaviors. These techniques are very effective with systems based on mechanical, 
hydraulic, electrical, and other physical components: these have relatively few “es- 
sentially different” behaviors, so that relatively straightforward analysis combined 
with a modest number of empirical tests is sufficient to cover all possibilities. These 
familiar techniques are far less effective, however, with complex systems that can 
exhibit extremely large numbers of essentially different behaviors. 

Because the complexity in modern systems is expressed in software, it follows 
that the software will exhibit a large number of different behaviors and that assur- 
ance will be difficult for this reason. In fact, this difficulty is compounded by another 
attribute of software that distinguishes it from physical systems. This attribute is 
considered next. 

1.1.2 The Discontinuous Behavior of Software Systems 

The reason that software is the focus for most of the design complexity in modern 
systems is its versatility: a software system can provide many different behaviors and 
can be programmed to  respond appropriately to many different circumstances. The 
source of these different behaviors and responses is in the many discrete decisions 
that are made as software executes: each decision is discrete in that the subsequent 
course of execution switches from one path to another according to whether or not 
some condition is true. Because the relationship between the inputs and the outputs 
of a piece of software is the cumulative effect of these many discrete decisions, it 
follows that overall input/output relationship must itself be discretized, or discon- 
tinuous: small changes in inputs can change the outcomes at certain decision points, 
resulting in radically changed execution paths and correspondingly large changes in 
output behavior. This discontinuous relationship between inputs and outputs is the 
second major respect in which software differs from the physical processes considered 
by other engineering disciplines. 

In physical systems, there is usually a (piecewise) continuous relationship be- 
tween inputs and outputs: smooth changes in the inputs produce correspondingly 
smooth changes in the outputs. This allows the complete behavior of a physical 
system to be extrapolated from a finite number of tests: the continuous character 
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of the system ensures that responses to untested input configurations will be es- 
sentially similar to  those of nearby cases that have been tested. Departures from 
continuity are usually catastrophic breakdowns in response to inputs beyond the 
operating range. 

An Aside on Hardware. Although this report speaks only of software, ex- 
actly the same concerns apply to many hardware components, especially cus- 
tom ASICs (application-specific integrated circuits). These share all the im- 
portant properties of software-notably, design complexity and discontinuity of 
behavior-and differ only in the technology of their implementation. Whereas 
software design is ultimately expressed in a programming language such as Ada 
and then compiled into code that is interpreted by a processor, ASIC designs 
are expressed in a hardware design language such as VHDL or Verilog and then 
transformed into hardware structures, or to  gate-array configurations. The 
considerations for assurance described in standards and guidelines such as DO- 
178B should apply to ASICs as they do to software. Similarly, the techniques of 
formal methods can be applied to ASICs and other complex hardware designs. 

But with software, this method of inferring properties of the totality of possible 
behaviors from tests on a selected sample is much less secure: without continuity, 
we cannot assume that neighboring cases are essentially similar to one another, so 
there is little justification for extrapolating from tested to untested cases. Now, it 
can be argued that although less than exhaustive testing does not allow definitive 
statements to be made about complex software, it does permit statistical statements 
of its reliability, and that such quantification of reliability is both necessary and 
sufficient for the certification of safety-critical systems. Sometimes this is countered 
by the argument that talk of reliability is meaningless when we are dealing with 
design faults: if design faults are present, they will cause the system to fail in 
specific circumstances, and the failure is certain whenever those circumstances arise. 
However, we must recognize that occurrence of those circumstances is associated 
with a random process-namely, the sequence of inputs to the system (or, more 
generally, the sequence and timing of its interactions with its environment). Thus, 
the manifestations of design faults behave as stochastic processes and can be treated 
probabilistically: to talk about a piece of software having a failure rate of less than, 
say, per hour is to say that the probability of encountering a sequence of inputs 
that will cause a design fault to lead to failure is less than lo-’ per hour. 

The problem with the experimental statistical approach to assurance for complex 
software is that the smallest failure rates that can be determined in this way are 
typically several orders of magnitude greater than those required for safety-critical 
systems. I explain this in somewhat more detail in the box on page 11. 
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An Aside on The Infeasibility of Experimental Quantification of the 
Reliability of Critical Software. It is perfectly reasonable to state require- 
ments for safety-critical systems in statistical terms. For example, catastrophic failure 
conditions in aircraft (“those which would prevent continued safe flight and landing”) 
must be “extremely improbable.” That is, “so unlikely that they are not anticipated to 
occur during the entire operational life of all airplanes of one type” [FAA88, paragraphs 
6.h(3) and 9.e(3)]. A little arithmetic suggests lo7 hours as the operational lifetime of 
an aircraft fleet, and hazard analysis might typically reveal ten potentially catastrophic 
failure conditions in each of ten systems on board the aircraft, so that the maximum al- 
lowable failure rate for each is about per hour [LT82, page 371. This is indeed the 
number suggested as an “aid to engineering judgment to help determine compliance” 
with the requirement for extremely improbable failure conditions [FAA88, paragraph 
10. b] .a 

For a simple physical system where breakdown or wearout is the only potential 
cause for a catastrophic failure condition, experience with similar systems together 
with testing and analysis, may yield data that can substantiate a claimed failure rate 
as low as lo-’. Software, however, generally interacts with its environment in such 
a complex manner that prior experience of its behavior in similar applications may 
provide relatively little assurance in a new one.* Furthermore, most software has 
significant elements of novelty from one application or version to another, so that 
experimental determination of software reliability must examine the actual software in 
the context of its actual application. Furthermore, the test scenarios used to derived 
reliability estimates must closely approximate in type and frequency the distribution 
of inputs that will be encountered in operation (this is called the operational profile). 
For required failure rates on the order of this means that it will be necessary to 
construct many millions of the very rare scenarios that will each be encountered only 
one time in a billion. (Catastrophic failures usually arise in situations compounded 
by several rare events [Hec93].) Divergence between the test and operational profiles 
in these remote regions can lead to inaccurate estimates of reliability and spurious 
assurance of safety. 

The difficulty in reproducing the operational profile for rare events, and the time 
required to perform fault injections and to configure other elements of “all-up” test 
scenarios limit the feasible failure rates that can be determined empirically to or 

[BF93]-nowhere near the that is required. 

=The probability lo-’ is applied to complete (sub)system failure, not to any software the 
system may contain. Numerical estimates of reliability are not assigned to airborne soft- 
ware [RTCA92, Subsection 2.2.31, but the figure gives an idea of the quality required. 

*In fight tests of the X31, the control system “went into a reversionary mode four times in 
the first nine fights, usually due to disagreement between the two air-data sources. The air 
data logic dates back to the mid-1960s and had a divide-by-zero that occurred briefly. This was 
not a problem in its previous application, but the X31 fight-control system would not tolerate 
it” [DorSl]. Similarly, much of the software in the Therac 25 medical electron accelerator, 
which led to massive overdoses of radiation and the subsequent deaths of six patients, had 
been used in an earlier machine without accident [LT93]. 
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The infeasibility of experimental quantification of reliability for safety-critical 
software means that its assurance must chiefly be provided by other means. Now, 
experimental evaluation is not the only means for providing assurance about the 
behaviors of physically engineered systems. The engineering field concerned nor- 
mally provides well-validated mathematical models that allow the properties and 
behavior of a given design to be predicted through calculation-for example, struc- 
tural engineers can calculate the behavior of a wing spar before it is built. It is one 
of the distinctions between engineering and craft activities that engineering uses 
mathematical modeling to predict behavior, whereas crafts use trial and error. 

In the next section, I introduce formal methods, which provide a way to move 
the construction and validation of software away from experiment and adjustment, 
and towards prediction and calculation. 

1.2 Formal Methods 

The term formal methods refers to the use of mathematical modeling, calculation, 
and prediction in the specification, design, analysis, construction, and assurance of 
computer systems and software. The reason it is called “formal methods” rather 
than “mathematical modeling of software” is to  highlight the character of the math- 
ematics involved. 

1.2.1 Analytic Formal Methods 

Each engineering discipline develops a body of mathematical techniques that are 
particularly appropriate for modeling and predicting the phenomena relevant to its 
field. In many cases, the relevant applied mathematics uses partial differential equa- 
tions to model the variations in continuous physical quantities over time or space. 
For software, however, the familiar methods of calculus and differential equations 
are inapplicable because, as noted above, we have to model discrete, rather than 
continuous quantit ie~.~ Instead of differential equations, the properties and behav- 
iors we are concerned with are best described in terms of concepts from discrete 
mathematics: “sets,” “graphs,” “partial orders,” “finite-state machines,” and so on. 
“Calculation” in these finite domains is based on the methods of formal (or math- 
ematical) logic rather than numerical computation. This is because the results we 
are interested in are logical properties, such as “this system can tolerate any single 
fault in any component ,” rather than numerical estimates for some parameter such 
as lift or drag. To deduce whether a certain logical property follows from descrip- 
tions of certain discrete mathematical structures, we have to start from the axioms 
describing those structures and manipulate their symbols according to certain rules 

5We have to be careful here to distinguish the mathematics of the domain to which the software 
is applied (which may, as in the case of control applications, require the evaluation of expressions 
derived from differential equations) from the mathematics that describes its own operation. 



1.2 Formal Methods 13 

of deduction. This process is more akin to proving theorems in Euclidean geometry 
than to ordinary numerical calculation, but it shares with calculation the charac- 
teristic that it is performed according to strict rules, so that one person can check 
the work of another and computers can be used to automate some of the steps. 
The process of manipulating symbols according to certain rules is called “formal 
deduction” because the legitimacy of the process depends only on the form of the 
symbolic expressions concerned and not on what they are supposed to mean. For 
example, the transformation of an expression of the form z2 - y2 into one of the 
form (z + y) x (z - y) is legitimate whenever z and y are numbers, independently 
of whether they represent the mass of planets or the debts of nations. 

The particular importance of formal methods to safety-critical systems is that 
they, uniquely, though subject to caveats I will come to shortly, permit analysis 
of abb the behaviors of a software system, This total exploration is the only way 
to provide assurance that catastrophic failure does not lie hidden among the vast 
number of possible behaviors. How is total exploration possible? We have already 
seen that in the absence of continuity there is no basis for extrapolating from tested 
to untested cases, so how is it that a finite procedure based on formal methods can 
provide assurance for all the (possibly infinite) behaviors of a software system? 

Part of the explanation is that formal methods provide us with powerful tools for 
identifying and grouping “essentially similar” pieces of behavior together so that all 
members of a group can be dealt with at a single shot. In empirical testing, we ex- 
amine only the external manifestations of the system, and our ability to assign these 
to groups that are essenti&y similar is very limited because of their discontinuous 
nature. But in formal methods we examine the internal design of the system, where 
the sources of discontinuity are visible, and we can group little “pieces” of behavior 
together-all those that result from following a certain path through a certain part 
of the design, for example. We can then characterize the properties of those pieces 
by mathematical expressions (Le., formal specifications), and can deduce the prop- 
erties of larger pieces of behavior by applying formal deduction to the expressions 
describing their component pieces. By composing small pieces of behavior together 
to yield larger and larger parts of the complete behavior, we eventually cover all 
possible end-to-end behaviors without having to enumerate them explicitly. 

Another way of saying this is that formal methods let us calculate the reasons 
why a software design does its job. Software is a designed artifact, consciously 
constructed to achieve some goal: if we can write down what that goal is, and 
how the design accomplishes it, then we should be able to construct an argument 
that explains why we believe the software does its job. Formal methods allow this 
argument to be reduced to the certainty of calculation. 

The “certainty of calculation” needs qualification: for example, the rules of 
arithmetic reduce addition to the certainty of calculation, but it is easy to make 
mistakes when adding a long column of figures. The calculations underlying formal 
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An Aside on Finite Analysis of Infinite Systems. Mathematical logic 
provides ways to reason about the properties of large or infinite collections of 
related things in a finite manner: instead of reasoning about the behavior of a 
system when given the input 1, or the input 2, or . . . , logic provides us with 
methods to reason about its behavior on the symbolic input n, thereby collaps- 
ing all the separate cases into one. One method allows us to draw conclusions 
for all values of a given variable by reasoning about a single representative sym- 
bolic constant (this process is called Skolemization). Another method allows 
us to deduce properties for all values of some ordered domain (e.g., the natural 
numbers, 0, 1, 2,. . .) by showing (a) that the property is true for the least ele- 
ment(s) of the domain (e.g., 0), and (b) that when it is true for all members up 
to some point (e.g., n), then it is also true for the next point (e.g., n + 1) (this 
process is called mathematical induction). Formal deduction allows properties 
of a complete system to be deduced by combining basic steps such as these: 
steps that are required to follow certain rules, and can therefore be checked by 
others, or by machine. 

methods are similarly tedious and error-prone when done by hand, so it is often 
desirable to automate them. Unfortunately, these kinds of calculations are not so 
easily mechanized as numerical ones. Whereas the steps of a numerical calculation 
can be programmed as a deterministic algorithm, selection of the steps in a formal 
deduction requires either insight, or a heuristically guided trial-and-error search. 
Theorem provers are computer programs that attempt to automate formal deduc- 
tions through a combination of heuristics and brute-force search; proof checkers are 
programs that leave selection of the steps to an insightful human and simply check 
that each one is carried out correctly. The most effective automated reasoning tools 
for formal methods generally combine elements from both theorem provers and proof 
checkers. For simplicity, the term “theorem prover” is generally used in the following 
sections to cover all forms of automated deduction. 

I said that the ability to represent values symbolically, and hence to group related 
behaviors together is part of the reason why formal methods allow us to consider 
all the vast numbers of behaviors of a complex software system, and I also said that 
this claim is subject to certain caveats. Both points concern the fact that formal 
methods are a modeling activity: formal methods do not deal with actual software 
running on electronic computers interacting with the real environment but with 
mathematical models of these artifacts. This is exactly similar to the mathematical 
methods used in other engineering disciplines: a finite-element calculation does not 
calculate the stress in wing spar, it calculates a representation of the stress in a 
mathematical model of a wing spar. 
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Modeling is a source of both weakness and strength. Because a model is not 
the same as reality, predictions made with its aid may be incorrect. This can be 
because the model is insufficiently detailed, or because it is plain wrong. It is nec- 
essary to guard against these potential weaknesses by carefully validating models 
before trusting to their predictions. The fear of imprecision or inaccuracy sometimes 
leads to the development of complicated, highly detailed models, but this can vitiate 
the main purpose for developing a model in the first place: its ability to  support 
tractable analysis. The great opportunity offered by modeling is the freedom to 
select and simplify the aspects of reality that are to be considered; Newtonian me- 
chanics achieves its effectiveness because it selects for attention just a few properties 
of bodies and their motions: the mass of a body is considered, but not its volume, 
or its color. In the same way, formal methods can achieve great effectiveness by 
focusing on just certain parts of a complex system (e.g., those that give most diE- 
culty, such as redundancy management), and by excluding details that are judged 
irrelevant (e.g., we may focus on the algorithms for redundancy management, and 
ignore the details of their execution as programs). It requires great skill, judgment, 
and taste to perform the abstraction necessary to create formal models that are sim- 
ple enough to be computationally tractable, yet realistic enough to provide accurate 
predictions and credible assurance. 

1.2.2 Descriptive Formal Methods 

In the previous discussion, I introduced formal methods by analogy with engineering 
mathematics, and stated that the purpose of formal methods is to make predictions 
about the properties and behavior of software, based on calculations performed on a 
mathematical model of its design. But engineering mathematics is not used only for 
calculation and analysis: it also provides a vocabulary for describing and document- 
ing designs, and a framework for thinking about them. Thus, aeronautical engineers 
may speak of “drag divergence” or “flow separation” as concepts independently of 
particular sets of equations. Formal methods can serve a similar descriptive func- 
tion for software. That is to say, concepts such as “relations,” “functions,” “finite 
state machines,” and “universal quantification” can supplement or replace the En- 
glish prose, pseudocode, and various kinds of diagrams that are traditionally used 
in documenting requirements, specifications, and designs for software systems. Two 
benefits can follow from this use of mathematical notation: it can improve the qual- 
ity of documentation and lead to better communication among those working on 
the system, and it can supply better ways of thinking about software. 

There are two aspects to  a software system: control and data. Control is con- 
cerned with the selection, timing, and sequencing of the operations performed in a 
software system. Data is concerned with how information is represented within the 
computer system and manipulated by its software. The problem with traditional 
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ways of documenting and thinking about both aspects of software is that they are 
almost entirely operational: software is understood by mentally “executing” it; sim- 
ilarly specifications all too often describe how the software works, rather than what 
goals it is to accomplish. 

For the control aspect, traditional operational methods can be quite effective for 
systems composed of a single sequential program: with practice and determination 
it is often possible to think through the consequences of each alternative at a branch 
point, and the behavior of loops can largely be understood by mentally considering 
the cases where each is executed zero, one, and many times. For large, or reactive, 
or parallel systems, however, these methods become very unreliable: it is hard to 
comprehend all the possibilities when external events can have an impact at almost 
any point and we have to consider scenarios such as “what happens if a timer 
interrupt occurs here, and suppose the other processor is in fault-recovery mode, 
so that it could post a ‘need-service’ flag at just the instant that. . . .” The box on 
page 17 describes an example of the difficulties caused when one of the possible 
scenarios is overlooked. 

As with control, the traditional way of documenting and thinking about the 
data aspect of software is largely in terms of its concrete representations. Thus, 
much software documentation is composed of pictures or programming-like notation 
describing how certain information is recorded in the bits of a computer word, 
how collections of similar items are represented in “arrays” of computer words, 
and how more complex structures are represented by “pointers” linking “records” 
together. More modern notations, derived from programming languages like Ada 
and ideas from object-oriented design [RBP+91], have significantly raised the level of 
abstraction and improved the organization of data descriptions, but the orientation 
is still that of implementation. 

In contrast to these very operational ways of describing and understanding soft- 
ware systems, formal methods provide ways to document and think about data and 
control that depend less on mentally tracing execution paths, and more on iden- 
tifying properties that are to be assumed, established, or preserved. In addition, 
the mathematical concepts employed in formal methods assist in the construction 
of more abstract descriptions that state more clearly what is to be accomplished 
without getting caught up in premature details of how it is to be done. 

Although the main purpose of descriptive formal methods is to improve com- 
munications among those working on a software project, and to facilitate informal 
quality control activities such as reviews and inspections, these methods are not 
antithetic to the analytical purposes described earlier. Rather, there is a continuum 
of formal methods ranging from those that are primarily intended to  support me- 
chanically checked analysis to those that are primarily intended for documentation. 
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An Example of the Kind of Fault That Is Hard to Find. While in orbit 
around Venus, the Magellan spacecraft broke contact with Earth and entered 
“safing” modes-preempting its scientific mission-on a number of occasions. 
Extensive efforts were undertaken to find the source of the problem and, after 
eight months, the most likely cause was identified [KP93]. Two flags determine 
whether a background task should be run in the otherwise unused time after the 
end of all the foreground tasks in the current frame and before the end-of-frame 
interrupt. The “scheduled” flag determines whether a particular task should be 
run as the background task, and the “active” flag indicates whether this task 
is an uncompleted activity that should be resumed at an address stored on the 
stack, or a new one that should start at its entry point. On very rare occasions, 
the end-of-frame timer interrupt would occur in the instant after one flag had 
been set to a new value but before the other had been. In particular, a sequence 
that was invoked when a background task completed could be interrupted after 
the “scheduled” flag had been turned off, but before the “active” flag could 

~ be turned off also. Next time this task was scheduled, the background task 
’ manager would mistakenly think it was active and would pop the stack to 

obtain the address at which to continue its execution. Since the task had, in 
fact, completed, there was no restart address on the stack, so the value that 
was popped and used was some random piece of data. As luck would have 
it, this random address sent the processor to a piece of code where it sat in a 
tight loop that continually reset the watchdog timer, thereby disabling the very 
mechanism that was intended to thwart such runaways  COO^^, pp. 209-221].a 

’ Computer scientists are thoroughly familiar with the dangers of being in- 
~ terrupted while adjusting critical data structures and will normally arrange 
~ for such actions to take place inside a “critical section” that cannot be inter- 
~ rupted. These incur overhead, however, and the Magellan designers thought 

that in their particular circumstance it was safe to do without this protection. 
Cooper’s book, cited above, aptly conveys the monumental task of trying to 
diagnose a very rare but devastating misbehavior in a reactive, real-time, par- 
allel software system operating in the presence of faults, when the ody  way to 
understand the system is to mentally (or actually) simulate its execution under 
as many circumstances as possible. 

~ 

aFortunately, Magellan had multiple levels of redundancy and, although these were in- 
tended to cope with hardware, not design, problems, they saved the spacecraft. Specifically, 
the design fault described above was in the software of the attitude and articulation control 
system (AACS) computer and although the runaway execution reset the watchdog timer, it did 
not modulate the “heartbeat” pattern that is placed in memory shared with the command 
and data subsystem (CDS) computer. When the CDS computer saw the AACS heartbeat 
cease, it reconfigured the AACS systems, eventually leading to a reboot of the errant AACS 
computer. 
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2 Issues and Choices in Formal Methods 

I have sketched the rationale for using formal methods in software development and 
assurance. In this section I describe some of the different varieties of formal methods 
and some considerations for their selection and use. 

2.1 Selection and Abstraction in Applications of Formal Methods 

Expertise in formal methods is not widespread, and can be costly to acquire. Fur- 
thermore, the resources available for any project are limited, so that effort expended 
on formal methods may reduce that available for other methods of analysis and as- 
surance. For these reasons, formal methods need to be applied selectively. There 
are several dimensions in the use of formal methods that permit selective or partial 
application. I list five of the most important. 

0 The amount of formality can vary between occasional use of ideas and notation 
from discrete mathematics in a “pencil and paper” manner to “fully formal” 
treatments that are checked with a mechanical theorem prover. 

0 Formal methods can be applied to all, or only to selected, components of the 
system. 

0 Formal methods can be applied to  selected properties of the system (e.g., 
absence of deadlock) rather than to  its full functionality. 

0 Formal methods can be applied to all, or merely to  some, of the stages of the 
development lifecycle. If the latter, we can choose whether to favor the earlier, 
or the later stages of the lifecycle. 

0 In all cases it is possible to include more or less detail and to choose the level 
of abstraction at which the formal treatment is conducted. 

I examine each of these in more detail below. 

2.1.1 Levels of Formality 

The very notion “formal” can have different interpretations, and methods differ in 
the “amount” of formality they employ. An example may help explain this. 

Suppose we are to produce a program that will compute the exponential nm 
where n and m are integers, and m is nonnegative. One way to do this is by repeated 
multiplication; it is not a very efficient method, but will serve our purpose. I claim 
that the following program, written in a generic high-level language, computes the 
value nm and leaves it in the variable T :  

PRE 
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r := 1; 
i := m; 
while i # 0 do 
r := r * n; 
i i z i - 1  

endwhile 

To justify my claim, I present the following proof: 

0 Each time in the while loop, at the point just before the i f 0 test, the 
following relationship is true among the variables: 

T x n2 = nm. 

To prove this I consider two cases: 

First time into the loop. We have initialized T to 1 and i to m, so P x n2 
is 1 x nm and the desired relationship is true. 

Other times around the loop. Assume the previous iteration left T x n2 = 
nm; after going round the loop once more, we have replaced T by T x n 
and i by i - 1, so we need to prove (P x n) x ni-l = nm. By arithmetic, 
the left side equals T x ni and the result follows. 

0 We exit the while loop when i = 0. Since we know that T x n2 = nm at this 
point, it follows by arithmetic that ni is 1, and so T = nm as required. 

0 To see that the program does always terminates, note that i is initialized to 
m, which is a nonnegative integer. The value of i is reduced by one each time 
round the loop, so eventually it will reach zero and the loop will exit. 

Although I used a proof here, the process was not particularly formal: I presented 
the argument in fairly ordinary English, and relied on our intuitive understanding 
of how the program executes. 

A more formal approach would use logical axioms to describe the behavior of 
the program without requiring us to mentally execute it. As an example, I will 
use a method that manipulates Houre sentences, which are constructs of the form 
{P}S{Q}, where P and Q are expressions describing the relationships among the 
program variables, and S is a piece of program text; the interpretation is that if 
the relationship P is true before execution of S ,  and if S terminates, then the 
relationship Q will be true afterward. 

The behavior of a while loop is specified by the following axiom? 

{ P  A BWPI 
{P}  while B do S endwhile {P A lB} ’ 

61n this formula, the symbol A means “and,” and 7 means “not.” 
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This says if the Hoare sentence above the line is true, then the Hoare sen- 
tence below the line will be true also. If we substitute “i # 0” for B,  
“r := r * n; i := i - 1” for S, and “T x ni = nm” for P ,  then we obtain 

{r x ni = nm ~i # O}r := r * n; i := i - i{r x ni = nm} 

Now the expression T x ni = nm A i = 0 at the bottom right gives us T = nm, which 
is what we want to prove, so the next step is to  prove the Hoare sentence above the 
line, which involves the sequential composition of two assignment statements. 

The axiom for sequential composition is the following, where both Hoare sen- 
tences above the line must be true in order to conclude the one below the line. 

We substitute “T x ni = nm A i # 0” for P, “1: : = r * n” for SI, “r x ni = n x nm” 
for Q ,  “i := i - 1” for 5’2, and “T x n’ = nm” for R to obtain 

{ r X n 2 = n m A i # O } r  := r * n { r X n i = n x n m } ,  
{ r x n 2 = n x n m ) i  := i - i { r x n i = n m }  

{Txn i=nm/ \ i#O)  r := r * n; i := i - 1 {rxni=nm}‘  

I won’t go into the details, but the axioms that specify assignment statements 
do aJow us to prove the two Hoare sentences above the line. To complete the proof 
of our program, we need to establish that the initialization statements establish the 
relationship assumed at the start of the while loop, that is 

{m>_O}r := 1; i := m { r x n Z = n m } .  

This follows from the axioms for sequential composition and assignment in a man- 
ner similar to that of the previous step, thereby completing the proof of partial 
correctness for our program. Partial correctness establishes that the program gives 
the right result, provided that it terminates. To establish total correctness, we must 
show that the program does indeed terminate; a formal version of the argument €or 
termination can be based on the informal argument that i is decremented each time 
round the loop, so that the loop termination condition must eventually be satisifed. 

This second way to analyze our program using Hoare logic was much more formal 
than the first: instead of appealing to intuition about how a program executes, we 
used axioms and substituted program text and mathematical expressions into them. 
Although we used insight and intuition to decide which axioms to use and what to 
substitute into them, the subsequent manipulations were quite mechanical and it 
should be clear that each of the steps we performed could have been checked by 
computer. 
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There are advantages and disadvantages to the different levels of formality em- 
ployed in these two treatments of our example program. In discussing them, it is 
useful to have a simple scale for identifying levels of formality. I use a three-point 
scale as follows. 

Level 1 formal methods use ideas and notation from discrete mathematics and 
logic, but within a loose framework, where mathematics, English, diagrams, 
and other notations are used together. Proofs are careful arguments that 
are evaluated by whether they persuade reviewers. This is the way most 
mathematics is done. My first treatment of the exponentiation program was 
an example of Level 1 formalism. 

Level 2 formal methods employ a fixed specification language for documenting 
requirements and designs. A specification language generally blends concepts 
from logic, discrete mathematics, and programming into a single notation. 
Often, the language is supported by tools that check specifications for certain 
types of errors, and that provide useful functions such as cross-referencing or 
typesetting. Analyses and proofs are performed by hand and recorded with 
pencil and paper, but make use of explicit axioms and proof rules that describe 
the semantics of the languages and methods used. My second treatment of 
the exponentiation program was an example of Level 2 formalism. 

Level 3 formal methods stress mechanized analysis. Their specification languages 
are generally closer to standard logic than those of type 2 formal methods, 
and are supported by tools that include proof checkers, theorem provers, or 
model checkers. The tools that support a Level 3 formal method are often re- 
ferred to collectively as a verification system; such a system could mechanize 
either the first or the second of the approaches I presented for the exponenti- 
ation program. Most current systems use an approach closer to the first than 
the second. Typically, a program verification system would require that the 
program is annotated with assertions and a loop invariant as follows: 

entry assertion m 2 0 
r := I; 
i := m; 
while i # 0 do 
loop invariant T x n2 = nm 
r := r * n; 
i Z z i - 1  

endwhile 
exit assertion r = nm 
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Using the method of inductive assertions (the fully formal version of the 
method I used in the first example), the verification system would then gener- 
ate the following three verification conditions, which correspond to the paths 
in the program from the entry assertion to the loop invariant, from the loop in- 
variant around the loop and back to the invariant, and from the loop invariant 
to the exit assertion, re~pectively.~ 

VC1: m 2 O A T  = 1 A i  = m 2 T x na = nm. 
V C ~ :  m 2 O A T  x ni = nm A i  # O A T ’  = T x n Ai’= i- 1 2  TI  x nit = nm. 
v c 3 :  m 2 O A T  X ?ti = nm A i  = 0 2 T = nm. 

These verification conditions are expressions in ordinary logic (plus arith- 
metic), and can be proved quite easily by the theorem provers of most verifi- 
cation systems. 

The advantage of Level 1 formal methods is the flexibility that is available: 
notations and techniques can be selected, or invented, to suit the particular problem 
at hand. These methods can be very effective when used by individuals or small 
teams possessed of skill and judgment, but the lack of standardized notation and 
methods can make communication and training difficult across larger groups. 

Level 2 formal methods address the problems of communication and training by 
providing fixed specification notations (Z [Spi93] and VDM [Jon901 are well-known 
examples) and, usually, a methodology for using them. Individual Level 2 methods 
are well suited to some types of applications (e.g., data processing), and less well 
suited to others (e.g., concurrent systems); users must be careful not to stretch their 
chosen method beyond its limits. 

In general, the Level 2 notations are optimized for descriptive, rather than an- 
alytic, purposes. If the goal is to use formal methods to calculate properties of a 
design for the purpose of analysis, then a Level 3 method equipped with appropri- 
ate tools will probably be more suitable. It generally requires considerable skill and 
experience to use Level 3 tools effectively, but they can provide a very high degree 
of assurance. 

2.1.2 Selected Components 

Formal methods are generally advocated because it is felt that they can improve 
quality control and assurance for software. If this is so, then the greatest benefits 
will be seen when formal methods are applied to the most critical components, and 
to those for which traditional methods have been found least effective. 

‘The symbol 3 in these formulas means “implies.” Also, a prime indicates the value of a variable 
in the ‘new” state following execution of a path, and an unprimed name indicates the value in the 
‘old” state at the beginning of the path. 
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An Aside on Practicality. baders who found their eyes glazing over at the 
formulas used to verify the trivial exponentiation program may wonder whether these 
formal techniques really are practical, and might ask “how am I going to get my 
engineers to use this stuff?” Privately, they may also wonder “if this stuff is so good, 
why isn’t it used more?” 

Before we attribute the slow industrial takeup of formal methods to ineffectiveness, 
we should remember the comparative youth of the field, and should recall the history 
of other engineering subjects (see, for example, [Vi90]). Most of the disciplines that 
we now regard as engineering started as crafts, practiced by experimentalists who 
learned what would work and what would not by trial and error, and who passed 
their lore on to their successors by on the job example. Gradually, methods based 
on science and mathematics started to appear, but they did not immediately displace 
the traditional methods. Among the reasons for the slow acceptance of mathematical 
techniques were the conservatism of the traditional practioners” , the arcane difficulty 
of the new methods (to those lacking the necessary training), and their initially narrow 
range of application. The new methods displaced the old as concrete evidence of their 
superiority accumulated, as good textbooks became available, and as new generations 
of engineers, trained in the mathematical methods, joined the field. For example, 
when Donald Douglas, then recently graduated from MIT, started work for the Martin 
company in 1914, he found Glenn Martin bouncing up and down inside a seaplane 
supported on wooden trestles “to see if it was strong enough.” Douglas noted that “this 
didn’t represent any load that the plane bore in flight.” Aided by proper engineering 
analysis, his first design (the Model S) had almost twice the range and payload of 
Martin’s previous products [Bidgl, pp. 85, 861. 

It is inconceivable today that an aeronautical engineer could be ignorant of aero- 
dynamics or structural mechanics, still less argue that such mathematical modeling 
is irrelevant to the practical business of designing airfoils. I expect formal methods 
eventually to play a similar role in software engineering. 

The practicality and cost/benefit of formal methods are heavily dependent on the 
type of applications considered. Program verification of the kind illustrated in my 
examples is undeniably tedious and expensive (see, for example the figures quoted 
in [GH90]), and must compete with traditional methods that are quite effective. My 
opinion is that the greatest benefits are likely to be found when formal methods are 
applied to the hardest and most difficult problems-where traditional methods are 
ineffective or unavailable. Examples of hard problems are those involving distributed 
and concurrent execution and, especially, redundancy management [ORSvH95]. These 
problems can be considered practical because, though hard, they are not large and can 
therefore be undertaken by a few highly skilled people. It is not necessary to train 
every programmer to get valuable returns from formal methods. Another opportunity 
lies in problems where formal methods can be massively automated. Example include 
certain kinds of protocols [HK90, CGH+95] and hardware designs [MS95]. 

”For example, Tesla quit Edison’s laboratory after less than a year complaining of Edison’s 
preference for empirical methods “knowing that a little theory and calculation would have 
saved him 90% of his labor” [Bur93]. 
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Standards and guidance documents for safety-critical systems generally rank 
software components by criticality according to the severity of the consequences 
that could result from their malfunction. For example, DO-178B identifies software 
criticality levels A through E according to the severity of their potential failure condi- 
tions (Le., Level A is software whose malfunction could contribute to a catastrophic 
failure condition) [RTCA92, Subsection 2.2.27. Software criticality level determines 
the amount of effort and evidence required to show compliance with certification 
requirements. It provides a natural criterion for selecting components for which 
formal methods should be considered. 

Another criterion that should be considered is the likely effectiveness of formal 
methods versus traditional methods for quality control and assurance. It is to be 
expected, and there is some evidence to  support the expectation [Lut93], that the 
intrinsically hard design problems tend to be the most prone to faults, and the 
most resistant to traditional means of assurance. These intrinsically hard problems 
generally involve complex interactions, such as the coordination of distributed, con- 
current, or real-time computations, and redundancy management. It requires great 
skill to address these problems using formal methods, but the number and size of 
these problems may not be large. Hence, as noted in the box on page 24, the greatest 
return on formal methods may be obtained when relatively few, very highly skiied 
people apply formal methods to the hardest and most critical problems. 

2.1.3 Selected Properties 

Just as some components of a system may be more suitable for formal methods 
than others, so different properties of those components may be more suited than 
others to formal treatment. As with components, suitability may be determined by 
criticality or by the effectiveness of formal methods compared with other methods. 
For example, the important property of a particular component may not be that 
it does its job (there may be backups to accomplish that), but that it is free of 
“specific anomalous behaviors’’ [RTCA92, Section 2.61. Negative properties such as 
this (Le., properties that state what must not happen) are particularly difficult to 
test and can be good candidates for formal analysis. 

2.1.4 Lifecycle Stages 

The example shown earlier involving the exponentiation program illustrated the use 
of formal methods in the late lifecycle. That example was one of program verifi- 
cation, where an executable program is proved to satisfy its detailed requirements. 
Other applications of formal methods focus on activities of the early lifecycle, such 
as the documentation and analysis of requirements, and on those of the interme- 
diate lifecycle stages such as the documentation of interfaces and the systematic 
refinement of requirements into designs, or designs into implementations. 
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Late-lifecycle applications of formal methods such as program verification were 
among the earliest to be developed and are now widely known and well under- 
stood. But precisely because this part of the lifecycle is well understood, informal 
methods and engineering practice have achieved a considerable degree of practical 
effectiveness: sequential programming and gate-level design are not major sources 
of difficulty or faults today (at least, not in those industries that practice stringent 
software quality control and assurance). For example, Lutz [Lut93] reports on 197 
significant software faults detected during integration and system testing of the Voy- 
ager and Galileo spacecraft. Only three of these faults were programming errors; 
the vast majority were requirements problems. Similarly, Keutzer [KeuSl] reports 
that fully half of all ASICs are faulty on first fabrication, and that these faults are 
invariably due to errors in requirements or high-level design: no errors are reported 
in implementation below the register-transfer level. 

It is now generally recognized that faults introduced in the early lifecycle are 
among the most difficult and expensive to detect and eradicate later; furthermore, 
the most serious failures are often traced to undetected faults that were introduced 
early in the lifecycle. One explanation for the intractability and persistence of faults 
introduced in the early stages of development is that there are few good methods for 
validating the products of these stages: requirements and early design descriptions 
do not lend themselves to execution and tests. Formal methods can help overcome 
this difficulty by allowing early specifications to be challenged and explored through 
theorem proving: a challenge of the form “if this specification says what it should, 
then the following ought to follow” can be formulated as a putative theorem that 
should be provable from the specification. Rapid prototyping can serve some of the 
same ends, but it is not always straightforward to distinguish those properties that 
are truly entailed by the requirements or design descriptions being validated from 
those that are accidental to the prototype. Unlike a prototype, a formal requirements 
specification can be validated experimentally without necessarily being executable. 

2.1.5 Abstraction 

Abstraction is one of the most powerful tools for gaining intellectual mastery of 
complex systems: it allows us to ignore the irrelevant and simplify the relevant so 
that the essential matter of concern is exposed to scrutiny in its clearest and most 
tractable form. Abstraction is also a crucial factor in controlling the size of a formal 
development, and the effort required for its analysis. 

One example of abstraction considers the algorithms that underlie a design, 
rather than their expression as programs. For example, the repeated multiplication 
that underlies the exponentiation program considered earlier can be abstracted to  
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an algorithm represented by the following recursive function.8 

nm &f - if m = 0 then 1 else n x nm-l endif 

This specification can be analyzed using ordinary logic (i.e., without the special ma- 
chinery for program verification, such as Hoare sentences) and it is comparatively 
easy to establish its properties, even when using Level 3 formal methods and mecha- 
nized theorem proving. The transition from this abstract algorithm to the concrete 
program can be justified either informally, or using formal methods of any of the 
three levels. 

When formal methods are applied to algorithms, there is further scope for ab- 
straction in the choice of how much detail to include. For example, one of the 
important algorithms in fault-tolerant systems is one for distributing sensor sam- 
ples consistently in the presence of faults [LSP82]. This is a distributed algorithm, 
and if we are concerned with issues of the timing and transfer of the messages that 
are communicated in the algorithm, then it is necessary to model these mechanisms 
in some detail, and the analysis will be correspondingly detailed and lengthy [LM94]. 
But if we are mainly concerned with the fault masking properties of the algorithm, 
then the mechanisms of distributed computation and communication can be ignored 
and the algorithm can be modeled as a recursive function, in which form its analysis 
is quite straightforward. Certain details of behavior, and therefore the opportunity 
to detect some potential faults, are missing in the more abstracted representation. 
On the other hand, the economy provided by ignoring details of communication can 
allow us to increase detail elsewhere, and this may be a useful tradeoff. In this 
particular example, it is possible to increase the number of different types of faults 
that are considered in the most abstracted representation, and this allows the fault 
tolerance of the algorithm to be analyzed in greater detail (and reveals a bug in a 
published algorithm) [LR93]. 

As this example makes clear, abstraction is closely related to the modeling ac- 
tivity that is inherent in formal methods. The whole basis of formal methods is 
to create mathematical models of certain physical and computational phenomena 
and to make predictions about these phenomena through analysis of the models. 
Abstraction is concerned with how much, and what, detail to include in the model, 
and how to represent it. Validity of the predictions made through use of formal 
methods requires that the abstraction retains all salient details and that their for- 
mal representation is faithful to reality. Tractability of formal analysis, on the other 
hand, requires that the abstraction is ruthless in expelling all irrelevant detail. Abil- 
ity to resolve this tension between too much and too little abstraction is the most 

'Actually, this specification is generally taken as the axiomatic definition of exponentiation and 
is used to establish lemmas such as n1 = n and nml+m2 = nml x nm2 and the correctness of more 
efficient algorithms. 
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important, and rarest, of the skil ls required to  make effective use of formal methods. 

2.2 

Formal methods embrace a variety of approaches that differ considerably in tech- 
niques, goals, claims, and philosophy. The previous section discussed some of the 
important differences, such as whether formal methods are used primarily for de- 
scriptive or for analytic purposes, the level of formality employed, and the stage(s) 
of the software development lifecycle to which formal methods are applied. The 
different approaches to formal methods tend to be associated with different kinds 
of specification languages. Conversely, it is important to recognize that different 
specification languages are often intended for very different purposes and therefore 
cannot be compared directly to one another. Failure to appreciate this point is a 
source of much misunderstanding. In this section I briefly introduce some of the 
main varieties of specification languages and indicate their applications. 

The Varieties of Formal Specifications 

2.2.1 Model-Oriented Specifications 

If specification or annotation of programs is the goal, then the formal notation 
employed should generally be close to, though more abstract than, that of program- 
ming, with operations changing values “stored” in an implicit system “state,” with 
data structures described fairly concretely, and with control described in operational 
terms. 

Formal notations with these characteristics are often described as model oriented, 
meaning that desired properties or behaviors are specified by giving a mathematical 
model that has those properties. For data structures, these models are often con- 
structed from the notions of set theory using sets, functions, relations, and so on. 
A pushdown stack, for example, can be modeled by a pair consisting of a natural 
number (the pointer) and a function (the stack) from natural numbers to the type 
of value being stacked. (This can be thought of as an array with the contents of the 
pushdown stack occupying positions 1.. .pointer; the empty stack is indicated by 
pointer = 0.) The “top” of the stack is the value of the function at the argument 
indicated by the pointer; the stack is “popped” by decrementing the pointer, and a 
value z is “pushed” on to the stack by incrementing the pointer and modifying the 
function so that it takes the value z at the argument indicated by the pointer. 

To describe control, model-oriented notations for sequential programs generally 
provide sequential composition and if-then-else selection. Explicit loop constructs 
are not needed since their effects can usually be specified more abstractly using 
quantification. For example, whereas in programming we would use a loop to search 
for the least value stored in a pushdown stack, we can formally specify this value as 
the 1 such that (a) for all (V) natural numbers up to the pointer, the value of the 
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An Aside on Notation. Representative notation for a model-oriented spec- 
ification of a pushdown stack is the following, where a prime indicates the value 
of a variable in the “new” state following the operation and an unprimed name 
indicates the value in the “old” state prior to the operation. The @ operator 
indicates function modification (also called “overriding”). 

top is stack(pointer), provided pointer > 0 
pop is pointer’ = pointer - 1, provided pointer > 0 
push is pointer’ = pointer + 1 A stack’ = stack @ (pointer’ H x }  

stack at that point is no less than I, and (b) there mists (3) a natural number less 
than or equal to the pointer such that the value of the stack at that point equals 1. 
Typical notation for specifying this is the following: 

(Vp : 1 5 p 5 pointer stack(p) 2 Z) A (3p : 1 5 p 5 pointer stack(p) = I). 

A disadvantage of model-oriented specifications is that they can be overly pre- 
scriptive: suggesting how something is to be implemented, rather than just the 
properties it is required to have. For example, even though the specification of the 
least function does not prescribe an algorithm, it is stated in terms of the pointer and 
array model, and so it would be fairly difficult to use this specification to establish 
correctness of an implementation that used linked lists instead. 

2.2.2 Property-Oriented Specifications 

In contrast to the model-oriented style of specification that is often preferred for 
program-level descriptions, specifications of early-lifecycle products such as require- 
ments commonly use property-oriented notations. These notations use an axiomatic 
style to state properties and relationships that are required to hold of the component 
being described, without suggesting how it is to be achieved. To specify a pushdown 
stack, for example, a property-oriented notation would state the relationships that 
are required to hold among the operations “top,” “pop,” and “push”: namely, that 
a push followed by a pop leaves the stack unchanged, and a top following a push 
returns the value that was pushed onto the stack. 

Sequential control in property-oriented specifications is generally modeled by 
functional composition. For example, a push followed by a pop is specified by 
pop(push(s, x ) )  rather than by the more operational push(x);pop (where the semi- 
colon indicates sequential composition and the state of the stack is implicit in the 
operational specification). Iteration is generally modeled by quantification or re- 
cursion. For example, the least element in a stack can be specified by the following 
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An Aside on Notation. Representative notation for a property-oriented 
specification of a pushdown stack is the following. Note that the value of the 
stack is supplied as an explicit argument (here s) to the operations, rather than 
being the implicit value of a program “state.” 

axiom pop-push is pop(push(s,z)) = s 
axiom top-push is top(push(s,x)) = x 

recursive function: 

Zeast(s) = if empty(s) then 00 else min(top(s), Zeast(pop(s))) endif.g 

Notice that although the stack operations are specified in a property-oriented 
style, this specification of the least function has an algorithmic flavor; the pre- 
sentation in the previous section used a model-oriented specification for the data 
structure, but the specification of the least function was property-oriented (relative 
to the model of the data structure), rather than algorithmic. These mixed modes 
of expression are not uncommon. 

An advantage of property-oriented over model-oriented specifications is that it 
is possible merely to constrain certain relationships or values, without having to de- 
fine them exactly. On the other hand, it is very easy to write conflicting constraints 
that cause the specification to become inconsistent; inconsistent specifications are 
unimplementable, and are very dangerous because they can be used to prove any- 
thing. Some Level 3 specification languages provide ways to ensure or demonstrate 
that property-oriented specifications are consistent (see section 2.3.1, and page 32 
in particular). 

2.2.3 Specifications for Concurrent Systems 

Concurrent and distributed systems can be specified in a variety of styles. One style 
takes some form of communication as primitive and has programming-like features 
for sending and receiving values. This style has a model-oriented flavor and is often 
referred to as process aZgebra. Another style takes shared variables as the primitive 
means of communication and often uses temporal logic to allow specification that a 

’The treatment here of the empty stack (setting its Zeust value to infinity), is a little suspect, 
though it can be made rigorous. Also, I have not explained how the empty predicate is defined. 
Taking care of these difficulties in a fully satisfactory manner would require more space than I 
wish to allocate, but they give a hint of the technical details that must be dealt with in a formal 
specification notation. 
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property should hold “henceforth” or “eventually” on some or all execution paths. 
This style has a property-oriented flavor. Methods associated with a kind of analysis 
known as model checking use one type of description (a kind of state machine) to 
specify the system concerned, and another (a kind of temporal logic) to specify the 
properties required of it. 

Further distinctions concern whether concurrent activities are considered to oc- 
cur simultaneously (“true” concurrency) or alternately (“interleaving” concurrency), 
and whether consideration of time is restricted to the order in which events happen, 
or whether duration is considered (“real-time” logics). 

2.3 

Earlier, I observed that one of the most significant differences among formal methods 
concerns whether their primary purpose is description or analysis. In fact, this 
distinction is too coarse: we have to ask what kind of analysis. The strongest 
kind of analysis is one that takes a formal description and predicts the behavior 
of a system satisfying that description. This is the kind of analysis that most 
closely corresponds to the use of applied mathematics and calculation in traditional 
engineering fields. If this is the goal desired of formal methods, then the modeling 
and notational techniques employed should favor efficient deduction, whereas more 
weight should be given to the “readability” of the notation when descriptive purposes 
are paramount. In an ideal world, one technique would serve both ends but, in 
the present state of the art, those notations that are considered most “readable” 
are much less tractable for automated reasoning than notations designed for that 
purpose-conversely, notations designed for automated reasoning tend to have a 
rather austere and forbidding appearance.1° 

In between the purely descriptive uses of formal specifications and those that 
use automated deduction to make general predictions of behavior, there are many 
intermediate kinds of analysis that perform formal calculations to establish limited 
properties of a specification. 

The Varieties of Formal Analysis 

2.3.1 Consistency Analysis and Typechecking 

One kind of analysis does not attempt to deduce specific properties of the system 
described by a formal specification; instead it attempts to deduce whether such a 
system could exist. In other words, it checks whether the specification is sufficiently 
well formed to be a description of something. 

One very important well-formedness property is consistency: if a specification 
states two contradictory things, then it cannot describe a real system and is therefore 

“The influence of notation can be illustrated by comparing Arabic with Roman numerals: for 
small numbers, at least, Roman numerals are more “readable” (e.g., I11 is more suggestive of the 
concept “three” than is 3), but they are much less effective for calculation than are Arabic numerals. 
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useless as a specification. Certain types of specification lend themselves to system- 
atic checks for consistency but, as always, there are tradeoffs involved. For example, 
specifications that allow new concepts to be introduced only by definition in terms 
of existing concepts can easily be checked for consistency; however, such specifica- 
tions are purely constructive (i.e., strongly model oriented), and are unattractive 
for some purposes. In particular, constructive definitions are an unnatural way to 
state assumptions about the environment in which a system is to operate; axioms 
are more natural for this purpose, since our goal is to describe the environment, 
not to implement it. Consistency for axiomatic specifications can be established by 
showing that the axioms are true of some constructively defined “implementation.” 
This implementation need not be efficient or realistic, it just has to exist. 

It is shockingly easy to write formal specifications that are inconsistent; con- 
sequently, any specifications offered in support of certification for safety-critical 
systems should be furnished with evidence for their consistency. 

Some specification languages allow “types” to be given for entities appearing in 
specifications. Types are familiar from programming languages such as Ada, where 
variables can be declared as integer or boolean and the compiler will generate an 
error message if an attempt is made to multiply an integer by a boolean. The types 
in a specification language can be more sophisticated (since they do not have to have 
a direct implementation), and the checks that are performed can be more elaborate. 
A computer program that checks specifications to ensure that entities are always 
used in ways compatible with their types is called a typechecker; it can be seen as 
a tool that performs a specialized kind of formal deduction (it attempts to prove 
the theorem “this specification is type-correct”). If the typechecker is allowed to 
use general-purpose theorem proving, rather than just perform algorithmic checks 
like a programming-language compiler, then the type system can become very so- 
phisticated, and typechecking becomes a very powerful way to detect errors in a 
specification. 

Specification languages based on certain kinds of mathematical logic (notably, 
higher-order logic) have to use types to keep the logic consistent; types are tech- 
nically optional for other kinds of logics (where they are sometimes called sorts). 
Ordinary set theory is untyped; when types are added (as in 2, for example), the 
result is a little awkward in that either some of the conveniences of set theory (e.g., 
nonhomogeneous sets) must be given up, or typechecking must be rather weak. 
Within these constraints, selection of a typed or an untyped specification language 
is often considered a matter of personal preference: some people value the early 
error detection of typechecking, others find the restrictions imposed by types to be 
irksome. However, those who prefer to forsake types should be expected to pro- 
vide other, equally strong, evidence for the properties that would be established by 
typechecking. 
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In my opinion, strong typechecking (the stronger the better) should always be 
required for formal specifications offered in support of certification for safety-critical 
systems. 

2.3.2 Validating Formal Specifications 

Predictions are based on a mathematical model of the system; if the model is inac- 
curate, the predictions may not be true of the real system. It is therefore necessary 
to validate the accuracy of the model very carefully. Formal methods are no dif- 
ferent in this regard than the mathematical methods used in any other engineering 
field. Consistency analysis and typechecking provide evidence that a formal spec- 
ification means something, but additional evidence is required to establish that it 
means what is intended. Reviews are one way to develop this evidence, but formal 
specifications can also support more analytical methods. 

Animation 

One way to gain confidence in a formal specification is to “test” it on a few small 
examples. This kind of examination of a specification is sometimes called anima- 
tion. Some kinds of formal specification can be “executed” using highly efficient 
forms of deduction, so that test cases can be run directly against the specification. 
Model-oriented specifications tend to  lend themselves more naturally to direct ex- 
ecution than do property-oriented specifications. Note that executability may be 
at odds with other desirable properties of a specification (such as abstractness, and 
nonprescriptiveness) [HJ89]. For specifications that cannot be executed directly, it 
may be desirable to construct a simulator or rapid prototype for testing purposes. 

Formal Challenges 

Formal specifications can also be explored by posing and proving putative theorems 
that I call challenges: “if this specification says what it should, then the following 
ought to follow.” For example, suppose we had specified the operation of sorting a 
sequence; we might then ask whether sorting an already sorted sequence leaves the 
sequence unchanged (i.e., whether sorting is idempotent). That is, we might ask 
whether 

sort(sort(z)) = sort($) 

is a theorem of the specification (assuming sort is a function that takes a se- 
quence as argument and returns the sorted sequence as its value). Gerhart and 
Yelowitz [GY76] describe how early formal specifications of sorting were deficient 
in that they required the output of the operation to be ordered, but neglected to 
stipulate that it should also be a permutation of the input. An attempt to prove 
the theorem above would reveal such inadequacies. 
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Animation could examine the putative theorem for a few representative values of 
the input 2, but a formal challenge would force consideration of all inputs. For some 
specifications of sorting, this could lead to the discovery that the putative theorem 
is unprovable; further examination might then lead to the notion of a stable sort 
(one that does not reorder elements of the sequence that are equivalent with respect 
to the ordering criterion, but distinguishable in other ways). We could then decide 
whether stability was important to our application and, if so, could adjoin it as an 
additional requirement of the sorting specification. 

Notice how this process of subjecting specifications to formal challenges probes 
the completeness as well as the correctness of specifications. Data from the Jet 
Propulsion Laboratory indicates that two-thirds of the defects in requirements spec- 
ifications are omissions [KSH92], so that systematic methods of exploring complete- 
ness are highly desirable. 

Challenges can be undertaken at any level of formality, but I believe that all 
those who write or review formal specifications should have experience in challenging 
specifications at Level 3 using a mechanized proof checker or theorem prover. Those 
who learn a formal specification language from textbooks or training courses, but 
who do not experiment with mechanically checked challenges, are in a position 
similar to those who would learn a programming language without the opportunity 
to execute programs. In fact, their position is worse because experience with other 
programming languages is likely to help them learn a new one, whereas many of 
those learning a formal specification language are receiving their first exposure to 
formal methods, as well as to abstract and axiomatic forms of expression. Just 
as the failure of an “obviously correct” program teaches us that programming is 
difficult, so the discovery through dialog with a theorem prover that an expected 
property is not entailed by an “obviously correct” formal specification teaches us 
that specification is no easier than programming. In my experience, we all have to 
learn this for ourselves: only the personal shock of discovering egregious errors in 
our own specifications teaches us the requisite humility. 

2.3.3 

Formal challenges probe a formal specification by asking whether it entails certain 
expected properties. Generally, these properties are special cases, or fragments of 
the overall requirements. Once a specification has been sufficiently validated in this 
way, it is possible to examine it for the properties of real interest, and to verify some 
steps in its refinement toward implementation. 

The behavior of a system generally has many aspects and formal methods are 
usually not used to examine every aspect, but only those that are important to 
a particular analysis: for example, we may want to know whether a system can 
deadlock, or whether it can survive any single fault, or whether a response is always 

Predicting Behavior and Verifying Refinement 
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delivered within a certain time. Some formal methods are especially well suited 
to the calculations necessary to predict certain kinds of properties, others are well 
suited to certain kinds of systems. 

State Exploration 

Certain kinds of formal methods allow automatic, brute force exploration of all 
possible behaviors, provided there are not too many of them (the maximum number 
depends on many factors and increases as technology improves, but the typical 
range is from tens of thousands to tens of millions). Hardware, and distributed 
algorithms such as protocols are particularly suitable for this kind of examination 
through exhaustive state exploration [DDHY92] (related technologies are known as 
model checking [CGL94] and language inclusion [HKSO]). 

A specification may admit too many behaviors for state exploration to succeed, 
but it may be possible to develop a “downscaled” version that can be examined in 
this way. For example, a communications protocol may be designed to move arbi- 
trary data reliably over a faulty channel using sequence numbers that cycle through 
the range 0 . .  .255. For state exploration, we could downscale the protocol to con- 
sider just one or two different data values, and with sequence numbers restricted to 
0 and 1. Experience indicates that examining all behaviors of a downscaled design 
is often a more potent validation and assurance technique than examining some of 
the behaviors of the full design. Downscaling is closely related to abstraction; the 
difference is that abstraction is generally used in verification, whereas dowscaling is 
generally used for debugging and can be useful even if crude. (Generally, we require 
that if a property is verified of an abstraction, then it should also be true of the full 
specification, whereas for a downscaled specification we only require that bugs in 
the full specification should be likely to show up in the downscaled version.) 

Verifying Desired Properties 

Formal methods provide the most searching examination and the strongest assur- 
ance when proofs are used to verify significant application properties. The process 
is essentially similar to that used in challenging specifications, except that the prop- 
erties verified are of external significance, and the proofs are usually more difficult 
and longer. The basic idea is that we construct a formal specification of the require- 
ment, design, or algorithm concerned, and also a formal statement of the property 
it is desired to satisfy, and then try to prove that the one implies the other. In 
practice, the first proof attempt seldom succeeds; instead it usually reveals the need 
for adjustments to the specification, or to the statement of the desired property 
or the assumptions under which it is expected to hold. Generally, this process of 
adjustment is iterated several times as renewed proof attempts reveal additional sub- 
tleties. My experience is that the process is always very enlightening, particularly 
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when conducted with the full rigor of Level 3 formal methods, and leads to greatly 
enhanced understanding of the specifications and properties under examination. 

If all goes well, the adjustments will converge and we will finally obtain a sat- 
isfactory proof. Subject to caveats on the fidelity of the modeling employed (these 
were mentioned at the end of Section 1.2.1 on page 14 and must be ensured by 
reviews and by validation as explained in the previous section), and on the proof 
being performed without error (this is where mechanized proof checking is valuable, 
but the mechanization is intended to enhance, not replace, human judgment and 
responsibility), the proof provides strong assurance that the specified artifact indeed 
satisfies the desired property. In addition, the process of formal modeling and proof 
generally provides other, incidental benefits: the discovery and correction of faults, 
complete enumeration of assumptions, sharpened statements of properties assumed 
or satisfied, streamlined arguments, and an enhanced understanding that can lead to 
improvements in design or assurance. Furthermore, formal specifications and proofs 
are a reusable intellectual resource that can be particularly valuable-potentially, 
a corporate asset-when design changes on the larger scale require modifications 
to the component under consideration: highly automated Level 3 verifications, in 
particular, can often verify slightly modified designs or properties with very little 
extra effort, and with the same degree of rigor as the original case-something that 
is very difficult to achieve with reviews. 

An Aside on Mechanized Proof Checking. The effectiveness of mecha- 
nized proof checkers and theorem provers for formal methods is advancing very 
rapidly. For example, mechanized verification of the microcode for a simple 
processor called “Tamarack” represented a significant challenge just five years 
ago [Joy89], whereas it can now be done completely automatically in about five 
minutes [CRSS94]. Progress is uneven however, and the amount of human time 
and effort required to undertake a Level 3 analysis can vary by two orders of 
magnitude or more from one verification system to another. Potential users 
should be skeptical of developer’s own assessments of where their verification 
system stands in the “power rankings,” and of impressions gained from small 
examples; instead, they should evaluate candidate systems on full-size examples 
representative of the intended application. 

Verifying Design Refinement 

Verification of requirements, designs, and algorithms against desired properties is 
typically an activity of the early lifecycle. In the later lifecycle, the task of verifica- 
tion is generally to demonstrate that (the specification of) a design at one level is 
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implemented correctly by another at a more detailed level. Generally an ubstruction 
function is used to translate the terms of the lower-level specification into those of 
the upper-level and the task is then to prove that this function has the properties 
of a homomorphism. The task becomes more complicated when the two levels op- 
erate at different granularities of time, and especially when the timing relationship 
between them is variable (as, for example, in a pipelined microprocessor, where the 
implementation may take a variable number of cycles to complete an instruction, 
depending on whether the pipeline stalls, and other details that are hidden at the 
upper level). 

Design refinement can be verified using any level of formality but, once the 
specifications get reasonably large, it is difficult to construct all the proof obligations 
to establish the homomorphism without mechanized assistance. On the other hand, 
the required proofs can be rather repetitive, so that investment in automation is 
often very worthwhile. 





39 

3 Formal Methods and Certification 

This section is concerned with the use of formal methods in support of certification 
for critical systems. First, I present my general recommendations; these are followed 
by more specific recommendations presented in the context of a commentary on the 
guidelines for the certification of software for civil aircraft. 

3.1 General Recommendations 

Formal methods should be part of the education of every computer scientist and 
software engineer, just as the appropriate branch of applied mathematics is a nec- 
essary part of the education of all other engineers. Formal methods provide the 
intellectual underpinnings of our field; they can shape our thinking and help direct 
our approach to problems along productive paths; they provide notations for doc- 
umenting requirements and designs, and for communicating our thoughts to others 
in a precise and perspicuous manner; and they provide us with analytical tools for 
calculating the properties and consequences of the requirements and designs that 
we document. 

However, it will be many years before even a small proportion of those working 
in industry have been exposed to a thorough grounding in formal methods, and 
it is simply impractical to demand large scale application of formal methods in 
critical software-and unnecessary too, since industry seems to be doing a mostly 
satisfactory job using nonformal methods." 

Nonetheless, I believe industry should be strongly encouraged to develop and 
apply formal methods that will permit more complete analysis and exploration of 
those aspects of design that are least well covered by present techniques. These 
arise in redundancy management, partitioning, and the synchronization and coor- 
dination of distributed components, and primarily concern fault tolerance, timing, 
concurrency, and nondeterminism. Scrupulous informal reviews, massive simu- 
lation, near-complete unit testing of components, and extensive all-up testing do 
not provide the same level of assurance in these cases as they do for sequential 
programs-because the properties of interest are not manifest in individual compo- 
nents, and because distributed execution is susceptible to subtle variations in timing 
and fault status that are virtually impossible to set up and cover adequately in tests. 

These formal analyses should be additional to those presently undertaken and 
can increase assurance without necessarily being totally comprehensive: the value of 
formal methods lies not in eliminating doubt but in circumscribing it. For example, 
in addition to all the other assurance techniques that may be applied, it will be 
valuable to prove that mode-switching logic does not contain states with no escape, 

"The appalling safety record of the Airbus A320 aircraft [BCAG95] seems attributable to poor 
human factors rather than to specific software faults [Me194]. 
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and that sensor data is distributed consistently despite the presence of faults. These 
are not the only properties required of mode switching and sensor distribution, 
but they are among the most crucial and among the most difficult to assure using 
traditional methods. To deal with such problems using current technology for formal 
methods it will often be necessary to abstract away irrelevant detail, and possibly to 
simplify even relevant detail. Doing so while continuing to model the issues of real 
concern in a faithful way requires considerable talent and training. On the other 
hand, since we will be dealing only with relatively small, albeit crucial, elements 
of the system, the number of people required to  possess that talent and training in 
formal methods will be small. 

The benefit provided by these formal analyses is a complete exploration of a 
model of possible behaviors. Subject to  the fidelity of the modeling employed (which 
must be established by extensive challenge and review), we will be assured that cer- 
tain kinds of faults are not present at the level of description and stage of the 
lifecycle considered. One source of doubt will have been eliminated, and others 
posed more sharply. Admittedly, this does not guarantee that the implementation 
will not reintroduce the very faults that have been excluded by the formal analysis, 
but current practices seem effective at tracing implementations. As resources and 
capability permit, it will be worth seeing if formal methods can increase assurance 
for these aspects also, but initially we should focus on cases where current prac- 
tice seems weakest, not where it seems effective. By that measure, other promising 
applications for formal methods are in the general area of requirements specifica- 
tion and analysis-where current processes, though fairly effective, are ad-hoc and 
unstructured. 

3.2 Interpretation for DO-178B 

The RTCA (“Requirements and Technical Concepts for Aviation, Inc.”) document 
known in the USA as DO-178B [RTCA92] and in Europe as EUROCAE ED-12B 
provides industry-accepted guidelines for meeting certification requirements for soft- 
ware used in airborne systems and equipment, and is incorporated by reference into 
European and United States regulatory and advisory documents. DO-178B provides 
guidelines and does not lay down specific certification requirements: those are based 
on existing regulations or special conditions decided by the certification authority 
in consultation with the applicant. 

Formal methods are not specifically endorsed by DO-178B (in contrast to certain 
other guidelines and standards that do recommend or require their use [MOD91]), 
but are included among the “alternative methods” discussed in its section 12.3. 

12.3. Alternative Methods: Some methods were not discussed in the previous 
sections of this document because of inadequate maturity at the time this doc- 
ument was written or limited applicability for airborne sofcware. It is not the 



3.2 Interpretation for DO-1 78B 41 

intention of this document to restrict the implementation of any current or fu- 
ture methods. Any single alternative method discussed in this subsection is not 
considered an alternative to the set of methods recommended by this document, 
but may  be used in satisfying one or more of the objectives of this document. 

... 

12.3.1. Formal Methods: Formal methods involve the use of formal logic, 
discrete mathematics, and computer-readable languages to improve the 
specification and verification of software. These methods could produce 
an implementation whose operational behavior is known with confidence 
to be within a defined domain. In their most thorough application, formal 
methods could be equivalent to exhaustive analysis of a system with respect 
to its requirements. Such analysis could provide: 

e Evidence that the system is complete and correct with respect to its 
requirements. 

e Determination of which code, software requirements or software ar- 
chitecture satisfy the next higher level of software requirements. 

The goal of applying formal methods is to prevent and eliminate require- 
ments, design and code errors throughout the software development pro- 
cesses. Thus, formal methods are complementary to testing. Testing 
shows that functional requirements are satisfied and detects errors, and 
formal methods could be used to increase confidence that anomalous be- 
havior will not occur (for inputs that are out of range) or unlikely to 
occur.12 

Section 12.3.1 of DO-178B recognizes different levels of formality and rigor in appli- 
cations of formal methods. 

Formal methods include these increasingly rigorous levels: l3 

e formal specification with no proofs. 

121 find this sentence difficult to interpret. I think what is intended is that testing provides 
assurance that the normal behavior of the software is satisfactory; formal methods can extend 
that assurance by considering all possible behaviors, including those induced by rare or anomalous 
combinations of inputs and other circumstances. 

I3These levels do not correspond to those I call 1, 2 and 3: DO-178B does not identify methods 
corresponding to my Level 1 (semiformal mathematical notation and proofs), and subdivides my 
Level 2 in two according to whether manual proofs are performed; we agree on level 3. The reason 
I do not subdivide my Level 2 is that, as explained in Section 2.3.2 on page 33, I attach little 
credibility (or utility) to specifications whose consequences have not been challenged by proof. 
For safety-critical applications, I believe that my interpretation of Level 1 rigor is preferable to 
DO-178B’s. 
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e formal specifications with manual proofs. 
e formal specifications with automatically checked or generated proofs. 

The use of formal specifications alone forces requirements to be unam- 
biguous. Manual proof is a well understood process that can be used 
when there is little detail. Automatically checked or generated proofs can 
aid the human proof process and o$er a higher degree of dependability, 
especially for more complicated proofs. 

Section 12.3 of DO-178B provides guidance in using an alternative method. 

An alternative method cannot be considered in isolation from the suite 
of software development processes. The eflort for obtaining certification 
credit of an alternative method is dependent on the software level and 
the impact of the alternative method on the software lifecycle processes. 
Guidance for using an alternative method includes: 

a. An alternative method should be shown to satisfy the objectives of this 
document. 

b. The applicant should specify in the Plan for Software Aspects of Cer- 
tification, and obtain agreement from the certification authority for: 

(1) The impact of the proposed method on the software development 
processes.14 

(2) The impact of the proposed method on the software lifecycle 
data.15 

(3) The rationale for use of the alternative method which shows 
that the system safety objectives are satisfied. 

The rationale should be substantiated by software plans, processes, 
expected results, and evidence of the use of the method. 

The effort required to satisfy these guidance items will depend on the extent to 
which formal methods replace, rather than merely supplement, traditional lifecycle 
processes and data. Note, however, that even if formal methods are truly supple- 
mentary to the traditional processes, there will still be some impact on the lifecycle 
processes and data that the applicant should discuss and explain. For example, if 
descriptive formal methods are used to supplement traditional documentation, then 
we have to ask which is the primary description, how is consistency established 

14Software development processes, discussed in Section 5 of DO-l78B, include software require- 
ments analysis, design, coding, and integration. 

15Software lifecycle data, which are discussed in Section 11 of DO-l78B, are produced “to plan, 
direct, explain, define, record, and provide evidence of activities throughout the software lifecycle.” 
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between them (and maintained through changes), and which is the target of the 
reviews and analyses performed for verification? 

Oddly, the guidance for alternative methods in Section 12.3 of DO-178B does not 
explicitly call for an assessment of the impact of the proposed method on verification 
activities. In my opinion, however, this is implicit in the requirement (quoted in 
paragraph 12.3.b(2), above) to consider the impact of the method on lifecycle data- 
since these data record the results of verification activities. Verification is one of 
what DO-178B calls the “integral processes” which 

. . . support the development processes by ensuring the correctness and 
quality of all processes and the delivered software. 

The integral processes comprise software verification, software configuration man- 
agement, software quality assurance, and certification liaison. They are discussed in 
Sections 6 through 9 of DO-178B; in particular, technical guidance on verification 
is found in Section 6.16 

6.0. Software Verification Process: 
... 
Verification is not simply testing. Testing, in general, cannot show the absence 
of errors. As a result, the following subsections use the term “verifyn instead 
of (%estn when the software verification objectives being discussed are typically 
a combination of reviews, analyses, and tests. 

Section 6.3 makes a distinction between reviews and analyses that is pertinent when 
considering formal methods. 

6.3. Software Reviews and Analyses: Reviews and analyses are applied to the 
results of the software development processes and software verification process. 
One distinction between reviews and analyses is that analyses provide repeat- 
able evidence of correctness and reviews provide a qualitative assessment of 
correctness. (A draft version of DO-178B said “The primary distinction be- 
tween reviews and analyses is that analyses provide repeatable evidence, and 
reviews provide a group consensus of correctness.”) 

The significant attribute of formal methods is that they allow certain questions to be 
settled by calculation-that is, by analysis-which informal methods must resolve 
by means of reviews. 

An applicant who offers descriptive formal methods might argue that formal 
analysis is not his goal and that reviews provide an adequate means of verification 

“The guidance on software quality assurance found in Section 8 is chiefly concerned with moni- 
toring and recording the processes recommended in the other sections. 
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for his purpose. This could be acceptable if formal methods are offered only as a sup- 
plement to traditional documentation, and if the traditional verification processes 
are applied to that documentation (though it would then be natural to question the 
purpose of offering formal methods); it could also be acceptable if formal methods 
are used for limited purposes, such as describing data structures. I am skeptical, 
however, of the reliability of reviews when they are applied to substantial formal 
specifications involving, for example, significant numbers of axioms, or operations 
specified by complex pre- and post-conditions, or constructions with subtle seman- 
tics (e.g., schemas in the language 2). The problem is that it is difficult to provide 
objective evidence that the authors of a specification can reliably express themselves 
in such forms, and that its reviewers can interpret them correctly; the problem is 
compounded by the fact that such specifications often contain technical errors (the 
equivalent of “coding bugs”) that can render them inconsistent or meaningless. 

It is my opinion that an essential step in ensuring an effective review process 
for formal specifications is to require that they are subjected to stringent (and 
preferably mechanized) analysis before they are submitted to reviews. The purpose 
of the analysis is to eliminate as large a class of potential faults as possible by 
purely formal means (Le., by calculational processes), so that the review process 
may concentrate on the intellectual substance of the specification. Some specific 
forms of analysis that should be considered (in ascending order of stringency) are 

0 Parsing. 

0 Typechecking (there are many degrees of stringency possible here; the most 
stringent generally require use of theorem proving). 

0 Well-formedness checking for definitions (i.e., assurance of conservative exten- 
sion). 

0 Demonstration of consistency for axiomatic specifications (i.e., exhibition of 
models). 

0 Animation (i.e., construction of an executable prototype from the formal spec- 
ification, so that it can be subjected to experiment). This form of analysis 
has a rather different character than the others listed here, and should be used 
for specific purposes that are defined beforehand-otherwise it can degenerate 
into hacking. 

0 State exploration (;.e., exploring all the behaviors of a possibly downscaled 
version of the specification). 

0 Formal challenges (i.e., posing and proving putative theorems that should be 
entailed by the specification). 
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My experience is that mechanically supported analyses of the kinds suggested 
above are extremely potent forms of fault detection for formal specifications. I 
expect that in many projects it will also be worthwhile to develop additional forms 
of mechanized analysis to check for specific classes of faults. By these means, it 
can be ensured that the formal specifications submitted for review are free of gross 
defects and the reviewers can focus on deeper issues. 

The question remains: how much confidence can we have in reviews of formal 
specifications by personnel who may not be experts in formal methods? It seems to 
me that we must trust the integrity of the review process to decide this. Currently, 
reviews are conducted using checklists with items such as “do you consider the 
requirements are complete?” and it will be necessary to add items such as “do you 
consider that you have been able to fully comprehend the formal specification?” 
The assurance that participants do fully comprehend a formal specification may be 
enhanced if the suggestions of Parnas and Weiss [PW85] are followed: for example, 
someone other than the author of a specification should be expected to explain it 
during the review, and the author should pose questions to the reviewers (rather 
than vice versa). 

The rationale submitted to satisfy Section 12.3.b(3) of D0178B, should clearly 
state the analyses that are required to be completed prior to reviews, and should 
describe the class of faults that are detected by means of these analyses, and whether 
the detection is certain, or merely likely. The number and stringency of the analy- 
ses performed may be determined by the criticality and sophistication of the formal 
specifications considered. The rationale should also provide evidence that the ap- 
plicant’s process for reviewing formal specifications is effective. 

Although descriptive formal methods have value, it is when formal methods 
exploit the power of calculational, and especially automated, forms of analysis that 
their singular potential is best realized. For example, in its Section 6.3.1 (Reviews 
and Analyses of High-Level Requirements), DO-178B requires 

b. (Accuracy and Consistency): The objective is to ensure that each 
high-level requirement is accurate, unambiguous and suficiently de- 
tailed and that the requirements do not conflict with each other. 
(Similar considerations apply to lower-level requirements described 
in DO-178B Section 6.3.2.) 

Some aspects of consistency and nonconilict can be established mechanically for 
formal specifications by strong typechecking and related analyses. 

At a more detailed level, the verification objectives stated in Section 6.3.1 of 
DO-178B include 

g. (Algorithm Aspects): The objective is to ensure the accuracy and 
behavior of the proposed algorithms, especially in the area of dis- 
continuities. 
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Suitable verification objectives for analytic formal methods would be to demon- 
strate that certain fundamental algorithms and architectural mechanisms involving 
complex behavior (Le., behavior with large numbers of “discontinuities”) satisfy 
their corresponding high-level requirements. Other suitable verification objectives 
for strong kinds of formal analysis may be to discharge the requirements of DO-178B 
Section 6.2.d. 

When it is not possible to verify specific software requirements by exer- 
cising the software in a realistic test environment, other means should 
be provided and their justification for satisfying the software verification 
process Objectives [should be] defined in the Sofiware Verification Plan. 

In my opinion, circumstances “when it is not possible to verify specific software 
requirements by exercising the software in a realistic test environment” are likely 
to include those where complex interactions produce very large numbers of possible 
behaviors (e.g., in coordination of real-time or concurrent processes, and in redun- 
dancy management), and analytic formal methods may be the most effective “other 
means” of verification in these cases. DO-178B seems to agree that formal methods 
are well suited to such “complex behaviors,” and in its Section 12.3.1 states that 

Formal methods may be applied to software requirements that: 

e Are safety-related. 
e Can be defined by discrete mathematics. 
e Involve complex behavior, such as concurrency, distributed process- 

ing, redundancy management, and synchronization. 

The specific benefit provided by formal methods is that they allow “complex behav- 
iors” to be analyzed (by means of proofs or state exploration), rather than merely 
reviewed-and analyzed in their totality, rather than merely sampled as by testing 
or simulation. Thus, the benefit derives from formal analysis, not from formal spec- 
ification alone: formally specifying the individual state machines at either end of a 
protocol, for example, adds little to our understanding-we need to calculate their 
combined behavior to ensure that they accomplish the desired goal. 

My recommendation is that those aspects of design that “involve complex behav- 
ior” should be provided with at least the level of formal description and analysis 
that would be found in a refereed computer science journal. That is, for the mech- 
anisms of, say, redundancy management, a specification of the relevant algorithms 
should be provided, together with the fault assumptions, the fault masking or re- 
covery objectives, and a proof that the algorithms satisfy the objectives, subject to 
the assumptions. This level of rigor of presentation is what I earlier called a “Level 
1” formal method; it is less rigorous than any of the levels of formality contemplated 
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in Section 12.3.1 of DO-178B. Nonetheless, I believe this level of rigor would be a 
distinct improvement on current practice. 

Beyond this modest step, we should consider the extent to which quality control 
and assurance might be further enhanced by increasing the level of formal rigor 
employed, or the number of stages of the lifecycle subjected to formal analysis. 

When the concern is to establish that certain tricky or crucid aspects of design 
are correctly handled by the algorithms and architectural mechanisms employed, I 
see little advantage to Level 2 formal methods over Level 1: it is the proofs that 
matter, and both levels employ the traditional kind (presented and checked infor- 
mally “by hand”); all that Level 2 would add is a fmed syntax for the specification 
language and possibly some built-in models of computation and concurrency. These 
last may be a mixed blessing: useful if they match the needs of the problems con- 
sidered, otherwise an obstacle to be overcome. 

But if Level 2 formal methods add very little in this domain, Level 3 may add 
a great deal. The focus will be on difficult problems, where a large number of 
potential behaviors must be considered-that is why the applicant has decided to 
use formal methods-and the proofs may be expected to be replete with boundary 
conditions and case analyses. These are precisely the kinds of arguments where 
informal reasoning may be expected to go astray-and go astray it does: for example, 
the published proof for one synchronization algorithm {LMS85] has flaws in its main 
theorem and in four of its five lemmas [RvH93]. The flaws in this example were 
discovered while undertaking formal analysis at Level 3 and suggest the benefits 
that may be derived from this level of rigor. 

The value of undertaking mechanically checked proofs is that the dialog with 
a theorem prover forces examination of all cases to the argument. On it own, 
a mechanically checked proof is not a “means of compliance” with a certification 
basis and concern that “the theorem prover has not itself been proved correct” 
is not an obstacle to deriving great benefit and additional assurance by applying 
Level 3 formal methods in this domain. The analysis produced through dialog 
with any adequately validated proof-checker will be considerably more complete and 
reliable (and repeatable) than one produced without such aid-it is the ultimate 
walkthrough-but the “certificate” that comes from a mechanized proof checker 
should not be accepted as unsupported evidence of fitness any more than should 
other computer-assisted calculations, such as those of aerodynamic properties, or of 
mechanical stress. In my opinion, the analysis developed with the aid of a theorem 
prover should also be rendered into a clear and compelling semiformal (i.e., Level 
1) argument that is subjected to intense human review, and it is the combination of 
stringent mechanical and human scrutiny (and other evidence, such as tests) that 
should be considered in ~ertification.’~ 

I7For this reason, I do not endorse the requirement in UK Interim Defence Standard 00- 
55 [MODSl, paragraph 32.2.31 that a second mechanically checked proof using a “diverse tool” 
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The construction of a mechanicdy checked proof that certain algorithms and 
architectural mechanisms accomplish certain gods subject to certain assumptions 
addresses only part of the problem: it is also necessary to validate the modeling 
employed. That is to say, the applicant needs to provide evidence that the model 
of computation employed, and the statements of the assumptions made and of the 
goals to be achieved, are all true in the intended interpretation. It is also necessary 
to provide evidence that the algorithm and architectural mechanisms considered in 
the proof are correctly implemented. There is a tension between these concerns: it 
is generally easier to validate models that make a few broad and abstract assertions 
(e.g., “it is possible for a nonfaulty processor to read the clock of another aonfaulty 
processor with at most a small error E ” )  than those that make many detailed ones 
(e.g., that talk about specific mechanisms for reading clocks and the behavior of 
particular interface registers), but the “gap” between the verified specification and 
its implementation will be greater in the former case. Since the assurance objective 
of this analysis is to ensure that there are no conceptual flaws in the basic algorithms 
and mechanisms, my opinion is that  credibility of validation should take precedence 
over proximity to implementation. This argues for performing the analysis early in 
the lifecycle and using abstract modeling (Le., suppressing a l l  detail judged irrel- 
evant). Validation should be accomplished by peer review, supported by analyses 
that demonstrate, for example, that axiomatic specifications are consistent (i.e., 
have a model), that intended models are not excluded (e.g., that clocks that keep 
perfect time satisfy the axioms for a “good clock”), that definitions are well formed, 
and that expected properties (i.e., “chdenges”) can be proven to follow from the 
specification. Concern that implementations are faithful to their verified specifica- 
tions is a separate problem, and can be handled using either formal methods, or 
traditional techniques for V&V. My personal opinion is that traditional techniques 
are likely to be adequate: the evidence seems to be that it is the basic mechanisms 
and algorithms that have been flawed, not their implementations. 

3.3 Conclusion 

The recommendations presented above may seem modest to those who believe that 
formal methods should be used more extensively (for example, in the manner re- 
quired by UK Interim Defence Standard 00-55). They may also seem a retreat from 
the traditional goals of formal verification: there would no claims of “proving cor- 
rectness,” and no ambition to apply formal methods from “top to bottom” (Le., 
from requirements down to code or gates). Rather, the goal would be to  establish 
that certain properties hold, and certain conceptual faults are absent, in formal 
models of some of the basic mechanisms necessary to safe operation of the system. 

should be required. The resources required would be better expended on diverse analysis, and on 
human scrutiny of the argument and modeling employed. 
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These may seem small claims in the total scheme of things, but they are the claims 
that I think are least well supported by current practice and that cause the most 
concern, since they are the most fundamental. 

Those who argue that more should be required-that formal methods should be 
carried down to code or gates, or that formal specifications should be used as part 
of the software engineering process-need to provide evidence that this wiu. increase 
assurance in an industry that has an excellent record of accomplishment using tra- 
ditional methods. They also need to provide evidence that resources expended on 
formal methods would not be better spent on other forms of assurance. 

On the other hand, these recommendations may seem excessive to some readers: 
I propose that the most stringent kinds of formal methods should be applied to 
the hardest problems of design. These pose tough challenges, to be sure, but how 
could anything less challenging be expected to improve a process that is already very 
effective? And notice that although these challenges are tough, they are relatively 
few in number and small in scale, and can therefore be undertaken by a small (though 
highly skilled) team of people. The tools that are currently available to support these 
ambitious applications of formal methods are not ideal, but are adequate to the task. 

Finally, I would like to observe that using all the techniques at our disposal, 
even including formal methods, I do not believe we can provide assurance that 
software of any significant complexity achieves failure rates on the order of lo-’ per 
hour for sustained periods, and we should not build systems that depend on such 
undemonstrable properties. System-level reliability and safety analyses must not be 
predicated on software failure rates that cannot be substantiated by experiment or 
analysis. To achieve a credible probability of catastrophic system failure below lo-’, 
software must generally be buttressed by mechanisms depending on quite different 
technologies that provide robust forms of diversity. In the case of flight control 
for commercial aircraft, this probably means that stout cables should connect the 
control yoke and rudder pedals to the control surfaces. 
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