
MB I
Radar Systems and
Remote Sensing Laboratory

NASA-CR-199791

(NASA-CR-199791) SCAN PATTERNS AND
ACCURACY OF A RADAR WIND SENSOR
(RAWS) (Kansas Univ. Center for
Research) 39 p

N96-16227

Unclas

G3/47 0085688

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.
2291 Irving Hill Road
Lawrence, Kansas 66045-2969



SCAN PATTERNS AND ACCURACY OF A
RADAR WIND SENSOR (RAWS)

S. Song, B. Ben, and R. K. Moore

Radar Systems and Remote Sensing Laboratory
Department of Electrical Engineering and Computer Science, University of Kansas

2291 Irving Hill Road, Lawrence, Kansas 66045-2969
TEL: 913/864-4835 * FAX: 913/864-7789 * E-MAIL: graham@ardneh.rsl.ukans.edu

RSL Technical Report 11170-2

November 1995

Sponsored by:

NASA Marshall Space Flight Center
MSFC.AL 35812

Grant No. NAG8-1095



SCAN PATTERNS AND ACCURACY OF A RADAR
WIND SENSOR (RAWS)

Shuxian Song, Beng Beh, and Richard K. Moore
Radar Systems and Remote Sensing Laboratory

The University of Kansas
2291 Irving Hill Road

Lawrence KS 66045-2969

ABSTRACT

The Radar Wind Sensor (RAWS) was proposed as a complement to laser wind sensors,

allowing coverage in cloudy regions excluded from laser coverage. Previous University of

Kansas studies showed the feasibility of the wind measurement at various levels in the

atmosphere and indicated that RAWS can also measure rain rates and ocean-surface winds. Here

we discuss measurement of the wind vector in terms of the scan patterns for a conically scanned

antenna. By using many measurements from cells about 66 km square and 132 km square, a

least-squares algorithm gives results that are reasonable for insertion into global atmospheric

models. For RAWS to be used successfully as a complement to a laser wind sensor, the design

of the two sensors should be integrated and radial velocity measurements in a given atmospheric

cell should be combined to get the most accurate results.



Introduction

Modeling global atmospheric circulations and forecasting the weather would improve

greatly if worldwide information on winds aloft were available. Recognition of this led to the

inclusion of the Laser Wind Sounder (LAWS) to measure Doppler shifts from aerosols in the

original plan for Earth Observation System (EOS) [1]. However, gaps would exist in LAWS

coverage where clouds are present. The RAdar Wind Sensor (RAWS) was proposed to fill these

gaps by measuring Doppler shifts from clouds and rain [2,3].

Previous studies showed that RAWS is technologically feasible. Sensitivity studies

showed the best single frequency and pairs of frequencies [4] and the required antenna size.

With the original power proposed, RAWS could measure most clouds types. With reduced

power, it can measure all but thin clouds [5]. The conical scan pattern gives two looks for every

point measured [2]. Use of estimates of the raindrop fall speed based on rain-echo intensity

solved the problem of the dependence of the wind solution on the vertical speed of hydrometeors

[6]. Also, studies showed that the combination of a laser and a microwave radar would reduce

the power requirements of the microwave radar [7].

This report discusses the derivation of the true wind velocity from multiple measurements

of radial velocity. Ideally the conical scan pattern would provide intersections of forward- and

aft-looking radial velocity measurements for individual points. In fact, the forward motion during

conical scans is such that one must use measurements from nearby, but not coincident, points for

most of the coverage area. In this report, we show simulations that indicate the accuracies that

may be achieved by using all measurements within a particular grid square.



Antenna Scan Pattern and Measured Points

RAWS uses a conical scan pattern that is similar to the proposed LAWS scan pattern.

The scan method is shown in Fig. 1. There, h is the altitude of the radar and 6 the nadir angle

Fig. 1. Conical scan pattern for RAWS.

of the scan beam. This is a single-beam scan that allows two looks at a given area along the

path parallel to the antenna moving velocity vector. The scan paths on the ground are plotted

in Fig. 2.
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Fig. 2. RAWS scan paths on the ground.

The possible scan swath width using plane geometry is

W=2h-tan(Q )

When the radius of the Earth is considered, W becomes

(1)

=a(9 ,-8

where a is the radius of the Earth and 0, is

6 a=sin- l( —sine )
3

(2)

(3)

The possible measured points on the scan path depend on the scan period Tp and the antenna

dwelling time td at one point. The total number of points on one scan circle is



n-Ta

where Tp depends on the measurement accuracy requirements and is chosen to be Tp = 10s [2].

The look time at one point depends on the number of pulses used for each look and the pulse

period T. For transmission of pulse pairs [5], T is calculated as 207.8us. Table 1 shows the scan

parameters for a different number of pulses averaged per point. Using more pulses per point

Table 1. Scan Parameters for Different Pulses per Point

Pulses per Point

Distance between Points
(km)

Change of the Azimuth Angle
(Degree)

Distance Antenna Moved
(km)

128

6.14

0.027

0.176

256

12.28

0.055

0.351

512

24.57

0.110

0.702

1024

49.14

0.220

1.404

increases the angles and the distances between two points.

The distribution of measured points near the surface is shown in Fig. 3, where the

asterisks are the forward looks and the circles are the aft looks. From the figure, we see that the

distribution is not uniform. Measurements in the edge area are much more dense than in the

center area. This influences the wind solution from the data measured at these areas.



350

g.300

u
S

I
250

200

150

O)

J100H

50

xO x-f
at, cr,

X
•X
X
X
X

'X
X

o
o
o
o

o
o
o
o
o ,

o
o

X
X
X
X
X
X

x o

PX
P x
0 Xo
o
o
o

x o
* Q

X
X
X
X
X

O JK O )|J
0 *xO° '"

o6**
° °

O )((
0 **o

o5**
°

X O
O

O

x o
K O

:0
x o * o

I Io x o xrt — c\

x
x* «xo

o x
o x
o x

Xo
o
o

O x
O x
o xo
o

x o
x o
x o

JL_o_

o*x o*«
O w O
> x o

x o
xo
*>
Q*o *

p x
o x

x o
x o
x o
x o
x o
JLL

jg O iK O

o
o

X
X
X

o
o
o

- o
x o
x o
*. o

X
x -xo

OK
o x
o x
o x

X

X
o

o
x o
xo

OK
O x
o x
O X

X
X

x o
X

iW

X
X
X
X
X

O X
O , x

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450
Moving distance along the Track (km)

1500

Fig. 3. Measured points on the ground.

Derivation of the Wind Velocity from the Measured

Doppler Velocity
Let the true wind velocity be

^U^+Uvyy+U^z (5)

where the z-direction component Uwz is derived from the rain fall speed [6]. The unknowns are

the x and y components. The Doppler frequency is

(6)



where

r=sin6 cos<|> x+sin6 sin<|> y-cos8 z

which stands for the antenna pointing vector.

Point solution

To obtain the exact solution for the two unknowns,Uwx and Uwy, from the two looks at

each point, we write the Doppler velocity for two looks as

where r, and r2 are

cos<|> iX+sinS sin<(> ^y-cosQ z
cos<|) 2x+sin6 sin<|) 2y-cos8 z

Solving (8), we obtain the solution in matrix form

[O _ fsin8 cos<|> x sine sin<|) Mu^ (1(J)

(c/^J [sin8 cos<|) 2 sin8 sin<)) 2J|ud2+C7wzcose J

The point solution gives the true wind velocity if the measurements have no errors. However,

from the distribution of measured points (Fig. 3), we know that it is difficult to have two looks

(one forward and the other backward) exactly at one point. We have to make pairs of

measurements that may not be at the same locations, which introduces some geometrical errors.

The global wind models use cells of size 100km x 100km or larger. Thus, it is possible

to use multiple points inside such a cell to derive the true wind velocity in that area. This is the

cell solution or multiple-points solution.



Cell solution

The cell solution groups the measured point distribution in a different way than the point

solution. It divides the swath width into several bands according to the resolution requirements.

The bands are cut into cells. Each cell is a square area with each side satisfying the resolution

requirements. The number of looks in each cell depends on the distribution of the measured

points. Fig. 4 depicts the bands, cells, and the number of points in each cell. The cells shown

are square, with the 94-km dimension obtained by dividing the swath into 8 equal bands.
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Fig. 4. Measured location (bands and cells) and number of points in one cell for RAWS.

In each cell, the estimated wind velocity can be calculated from the measured Doppler velocity

for all the points inside that cell. Assuming the number of looks in the cell is N, then we write

coscj) .£ + [/ sin9 sin<J> ^ (11)



where U"^ is the measured Doppler velocity, and the z-direction component is known and is

omitted. The square error between the measured and the true wind velocity is

By taking the partial derivatives of e with respect to Uwx and U^ and setting them to zero, we

obtain

53 C7disin0 cos<|) ±-£ sinB cos<|> ^ [U^sinB cos<|)
=53 Udisine cos(J> i-tT^J^ sin20 cos2<|) 1+^5

7disin6 sin<|) j-J^ sin0 sin<|> ± [U^sinB cos<|) 1+C7wysin6 sin<|) J]
=53 UdiSinS sin<|) i-^53 s^n20 sin<|> ^cosjj) i+C/vj,^ sin20 sin2<|) j

Rearranging them to matrix format we get

t 53 sin2e cos2<j> J 53 sin20 sin<J> icos0 iO 53 Udis

sin28 sin<J) icoscj) .j 53 s:i-n20 sin2<J) i \u

U^} . f Vcos^i Y;sin<J> iCos<|> / V^ [ 53 c°s2$ i
sino IV^ sin<b -cos<b ,.\£^ ^ •*

'53 udi
(53 t7disin<|)

(14)

The solution for this equation is

(15)



Rewriting the inverse matrix in (15)

sin8 A -

sin<t> i
(16)

where

A =^ sin2<t> JJ^ cos24> 4- (17)

Error Analysis

Both the point solution and the cell solution give the exact wind velocity when there are

no measurement errors. However, measurement errors are inevitable. The standard deviation of

the average velocity for a covariance estimator is [8]

A Vd=A [ [32TT 2Afp 2 (Ts

+N2/S2+2(N/S)]]1 /2

( T J ) A
(18)

where M is the number of pulses for one look, Ts is the spacing between the pulses of a pair,

T is the pulse pair repetition time, os
2 is the variance of the power spectral density of received

echoes, and N/S is the inverse of signal-to-noise ratio. p(Ts) is the correlation function [5]

p (mTs) = (19)

where m = 1 and A, is the wavelength of the RF wave. To prevent the standard deviation AVd

from increasing exponentially and also to keep the samples correlated, as should satisfy



4n (20)

Using carrier frequencies of 94 GHz, 24 GHz, and 35 GHz and the pulse period of Ts=207.8 us,

we calculated the standard deviations of the average Doppler velocity for a different numbers of

pulses and SNR(signal to noise ratio). The results are shown in Tables 2 to 4.

Table 2. The Standard Deviations of the Average Doppler Velocity at 94 GHz

^k^sT^-^x

SNR
(dB)

5

10

IS

20

Pulse lumber Per Point (M)

128

05749

0.6147

0.4670

0.4120

2S6

0.6893

0.4346

0.3302

0.2913

512

0.4874

0.3073

0.2335

0.2060

1024

0.3447

0.2173

0.1651

0.1457

Table 3. The Standard Deviations of the Average Doppler Velocity at 24 GHz

X>&
^S3k*V<<2§

SNR
(dB)

5

10

15

20

Poise Number Per Point (M)

128

3.8182

2.4075

1.8292

1.6136

256

2.6999

1.7024

1.2934

1.1410

512

15091

1.2038

05146

0.8068

1024

1.3499

0.8512

0.6467

0.5705



Table 4. The Standard Deviations of the Average Doppler Velocity at 35 GHz

•̂ §k^fc^ss

SNR
(dB)

5

10

15

20

Pulse Number Per Point (M)

128

2.6182

1.6S09

1.2534

1.1065

256

1.8513

1.1673

0.8869

0.7824

S12

1.3091

0.8254

0.8254

0.5532

1024

05257

0.5837

0.4435

0.3912

A combination of increases in both the number of pulses and SNR will lower the standard

deviations of the average Doppler velocity and thus help to provide a better estimate from the

measurements. Note that the standard deviations decrease as we use higher RF frequencies.

As well as the measurement errors, the geometrical distribution of the points also

contributes to the wind errors. Using the point-solution formula (10), we evaluate the

dependence of wind errors on the location of the measured points. Fig. 5a and b show the wind

errors at different azimuth angles, using 94 GHz as an example. A Monte Carlo approach (2000

trials) was used for the point-solution formula. The results in Fig. 6 show the probability of

errors at different azimuth angles. For this example, a fixed error of 0.2 m/s is assumed for

the radial velocity in the backward direction. The parameter for the curves is the error in forward

radial velocities. It can be seen that larger errors occur near the edge area ( O~90°) and the

center area (3>=0°). The points near the edge and the center area must be discarded to meet the

accuracy requirements. Hence, the uesful swath width is less than the diameter of the scan.
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Even though the point solution gives an estimation of wind velocity at a single point,

global wind modeling needs only one wind datum in a target area. The cell solution can be used

to meet the requirements. Using (16) and (18), along with the measurement errors (assuming

Gaussian), we develop an algorithm to simulate the errors in the measured winds. The results

are presented in Figs. 7a and b to 9a and b. The conditions for each run of simulation are stated

in brackets following the title of each figure.

Figs. 7a and b to 9a and b show the probability distribution of the magnitude and

direction errors of a given wind velocity in different bands and cells (see Fig. 4).

For the 94-GHz case, the simulated true wind magnitude errors rarely exceed 2 m/s and the true

wind direction errors do not exceed ±15° with 90% probability. The 24-GHz case exhibits larger

errors in both magnitude and direction than that at 94 GHz. The direction errors go beyond ±20°

in bands #4 and #5 with 50% probability. The magnitude errors go beyond ±2 m/s in bands #1

and #8 with less than 5% probability; beyond 2m/s in bands #4 and #5 with 10% probability.

With 35 GHz, the direction errors go beyond ±20° in bands #4 and #5 with 10% probability, and

the magnitude errors are within ±2 m/s in every band with 90% probability. The simulated

results indicate that maximum errors are concentrated in the center area (bands #4 and #5).
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The errors of the measured wind also depend on the magnitude and direction of the true

wind. Figs. lOa and b to 12a and b show the RMS (Root Mean Square) errors for four different

wind speeds, namely 5 m/s, 8 m/s, 10 m/s and 14 m/s. The change in true wind magnitude does

not affect the magnitude errors significantly, but it does have strong influence on the direction

errors. At 94 GHz, the RMS errors for the wind direction are within 20° and the magnitude

errors are well below 1 m/s at all the bands. At 24 GHz, the direction RMS errors exceed 20°

in bands #4 and #5 for true wind speeds of 5 m/s, 8 m/s and 10 m/s. For bands #4 and #5, we

also see the RMS errors for the wind magnitudes go beyond 2 m/s, except in the 14-m/s case.

With 35 GHz, the RMS errors for the derived wind direction exceed 20° at bands #4 and #5

when the true wind speed is 8 m/s or below. The magnitude RMS errors are below 2 m/s. All

the figures display the trend of decrease in direction errors as the measured wind speeds increase.

Except for the center bands (#4 and #5) for the 24-GHz and 35-GHz cases, the overall errors

at other bands fall below 20° and 2 m/s, which is the specification for RAWS.

The number of pulses averaged for each point also influences the errors. Figs. 13a and

b to 15a and b illustrate the simulation results using four different numbers of pulses, 128, 256,

512 and 1024. Averaging more pulses for one point would decrease the errors but would also

decrease the number of measured points within one cell. Too few pulses per point would cause

a larger standard deviation (see Tables 2 to 4). For all the 94-GHz, 24-GHz and 35-GHz cases,

we found that the tradeoff between averaging more pulses and getting more measured points

results in comparable errors except when using 1024 pulses per point. With 1024 pulses per

point, reducing the standard deviation can no longer compensate the error due to fewer measured

points in a cell. For the time being, we find that 256 pulses per point is suitable.
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True wind Is 5 m/s at 0 deg

• • • • I. .-,I 1

)

j
!i ;1 J . ., . .

i""1

True wind Is B m/s at 0 deg

0 1 2 3 4 5 6 7 8
band*

True wind Is 10 m/s at 0 deg

....|
" 1K 1

i

|
n1 j

I M1 '

3 1 2 3 4 5 6 7 8
band*

*-i"i

«

....
I n

|
i
I

l"i-'

3 1 2 3 4 5 6 7 8
band*

True wind Is 1 4 m/s at 0 deg

j,...r..r...i i....1...^...^..,

0 1 2 3 4 5 6 7 8
band*

Fig. 11b. RMS erorrs of wind magnitude for different wind magnitudes (256 pulses/point;
cell size: 94kmx94km; SNR = 10dB; Freq = 24GHz).



True wind is 5 m/s at 0 deg
DU

I£ .-
&40

fao

CO

Fio
n

* •
4-i-i

....!...:
i ; ;

':....

11 1
•: 1

True wind is 8 nVs at 0 deg

0 1 2 3 4 5 6 7 8
band#

True wind is 10 m/s at 0 deg
DU

n i

•-r7"i"(
. * M

I
" * ,

0 1 2 3 4 5 6 7 8
band*

DU

20

n 4li '
, '

-i-i-i-i-
• • : * 1

1 2 3 4 5 6 7 8
band*

True wind is 14 nVs at 0 deg

n ti • '
...i...i...j L...

« i ! # i ,
1 2 3 4 5 6 7 8

band*

Fig. 12a. RMS erorrs of wind direction for different wind magnitudes (256 pulses/point;
cell size: 94kmx94km; SNR = 10dB; Freq = 35GHz).

True wind is 5 m/s at 0 deg

* "
3 1 :

.......... j
; I

i «
> 3 t

I i

1 !

\
|

> (
1 * '
i 7 8

True wind Is 8 m/s at 0 deg

band*

True wind Is 10 m/s at 0 deg

""m"\
,"!"i l-|l-ii'"*"'

3 1 2 3 4 5 6 7 8
band*

1«""l,-i-i-iI...L..U
0 1 2 3 4 5 6 7 8

band*

True wind is 14 m/s at 0 deg
D

Sf,
&
t o

0)

^
n

l• 1, ,1 I'l1 • • * • * " '

0 1 2 3 4 5 6 7 8
band*

Fig. 12b. RMS erorrs of wind magnitude for different wind magnitudes (256 pulses/poi'nt;
cell size: 94kmx94km; SNR = 10dB; Freq = 35GHz).



Number of pulses used is 128
DU

n at >* >

i i
1 :

I...1. i . . . .

* « ,

Number of pulses used is 256

0 1 2 3 4 5 6 7 8
band*

Number of pulses used Is 512
DU

°c
II

>
i i

;> :

ft (
| ;

3 4 !
band*

1
1

> (
' * ,> 7 a

DU

r°
fe40
o
sao

§10

n

....;....

» i, *
....
i
i i ..........1 * i

0 1 2 3 4 5 6 7 8
band*

Number of pulses used Is 1024
DU

•of 50

n i1 4p *
|

i-i-
: '1 v ,

0 1 2 3 4 5 6 7 8
band*
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The errors also depend on the cell sizes. Larger cells have more points, allowing more

averaging to make the solution more accurate. Fig. 16a, b and c compares the simulation results

for cells with different sizes at 94 GHz, 24 GHz and 35 GHz, respectively. For this simulation,

we chose the cell sizes to be 94 km x 66 km and 94 km x 132 km. We chose 66 km so that the

cells along each band will have the same number of measured points (for spacecraft velocity of

6.6 km/s and scan periods of 10 s). With an along-track distance of 132 km, there will be twice

as many points as in the 66-km size. The results show that larger cells give lower RMS errors

in both the wind direction and magnitude.
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Fig. 16a. RMS errors of wind for different cell sizes (true wind: 5m/s at 0'; 256 pulses/point;
SNR = 10dB; Freq = 94GHz).
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The SNR is another important factor that influences the RAWS accuracy. Increasing the

SNR would decrease the standard deviation (see Tables 2 to 4) and thus reduce the measurement

errors, but this requires increasing the transmitting power. For this sensitivity study, we chose

SNR = 10 dB as a suitable compromise.



Optimize the cell size

Earlier simulation results show high RMS errors at the center bands for the 24-GHz and

35-GHz cases for low wind speeds (5 m/s in our simulations). We also showed that the RMS

errors, especially the direction errors, can be reduced by increasing the cell size, allowing more

measurement points to be averaged. The simulation results indicate a smaller cell size in bands

#1,#2 and #7,#8 is possible, which allows retaining the RMS errors below the specifications.

These observations suggest using a larger cell size in the center bands and a smaller cell size in

the outer bands.

Further simulations were performed to evaluate the possibility of using a cell size of 66

km x 66 km for the outer bands (#1,#2,#7,#8) and a cell size of 132 km x 132 km for the center

bands (#3,#4.#5,#6). To maintain an 8-band resolution within the swath, we allow the cells on

bands #3 and #4 to overlap one another partially. We do the same for the cells on bands #5 and

#6. Noisy wind speeds of 5 m/s and 14 m/s, each with directions at 0°, 45° and 90°, were chosen

as the input winds for the simulations.

Figs. 17 to 22 illustrate the following observations:

(a) At 5 m/s, the direction errors at the center bands are slightly above 20° for the 24-

GHz cases and below 20° for the 35-GHz cases. The magnitude errors are less than

2 m/s in all cases except one, the 24-GHz case with wind direction at 90°.

(b) At 14 m/s, both the direction and magnitude errors are below 20° and 2 m/s in all

cases except one, the 24-GHz case with wind direction at 90°, where the magnitude

error is slightly above 2 m/s.

The results demonstrate the feasibility of using these multiple cell sizes to achieve a better

wind vector estimation.
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Discussion and Conclusions

The simulation results shown here indicate that RAWS can provide measurements of

winds aloft with adequate accuracy for use in global atmospheric models. However, the accuracy

was achieved by combining multiple measurements from relatively large areas (66-km x 66-km

cells and 132-km x 132-km cells). Clearly, many such cells will not be covered entirely by

hydrometeors, so the numbers of measurements available for averaging will be less than used

here. If we tried to use RAWS alone, the errors incurred when cells are only partially cloud

covered would exceed the values in our simulations.

Since the purpose of RAWS is to provide wind measurements in cloud-covered areas, and

since it would normally be used with a laser wind sensor, the Doppler measurements from the

radar and laser systems should be combined for partially covered cells. We did not simulate this

situation, but one would expect similar, yet different, results. The laser scan pattern would be

similar to that of the radar, but its shot rate would differ, and the errors of individual

measurements would differ from those of the radar.

In this report and earlier ones, we showed that a radar wind sensor (RAWS) is a practical

adjunct to a laser wind sensor. The accuracies that can be achieved with the RAWS for entirely

cloudy 66-km-square cells and 132-km-square cells are adequate for global atmospheric

modeling, at least for the regions where vertical motion is negligible.

When vertical motion is present in rain, we estimate it from the radar echo strength, its

relation to rain rate, and the relation between rain rate and fall speed. Such estimates may have

significant errors that would dilute the predicted accuracy. Nevertheless, the combined radar and

laser sensors should be able to determine the winds at most altitudes even in areas where rain

is present. The number of points that would need to be discarded would be small and confined



to the lower altitudes except in strong convective systems. Reducing the number of points used

in a large cell by a small fraction will not significantly increase the errors.

As the time approaches for consideration of actual flight systems, it is essential that the

radar and laser subsystems be considered together as a total system. If this is done, the scan and

shot patterns can be coordinated properly, and the data processing can be common from the point

where individual point measurements of Doppler are produced from each subsystem.
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