
I 11111 1llllll1111 lllll 11111 11111 11111 Ill11 11111 11111 Ill11 llllll111 Ill11 Ill1
US0054287 10A

United States Patent [I91 [11] Patent Number: 5,428,718
Toomarian et al. [45] Date of Patent: Jun. 27, 31995

FAST TEMPORAL NEURAL LEARNING
USING TEACHER FORCING

Inventors: Nikzad Toomarian, Encino; Jacob

Assignee:

Barhen, La Crescenta, both of Calif.

The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, D.C.

Appl. No.: 908,677

Filed: Jun. 29,1992

Int. C1.6 .. G06F 15/18
U.S. C1. .. 395/23; 395/20;

395/21
Field of Search 395/21, 22, 23, 11,

395/27; 382/15

References Cited
U.S. PATENT DOCUMENTS

4,804,250 2/1989
4,912,652 3/1990
4,918,618 4/1990
4,926,064 5/1990
4,951,239 8/1990
4,953,099 8/1990
4,967,369 10/1990
4,990,838 2/1991
5,014,219 5/1991
5,046,019 9/1991
5,046,020 9/1991
5,050,095 9/1991
5,052,043 9/1991
5,056,037 10/1991
5,058,034 10/1991
5,075,868 12/1991
5,086,479 2/1992
5,093,899 3/1992
5,146,602 9/1992
5,253,329 10/1993
5,313,558 5/1994

Johnson 330/162.12
Wood 364/513
Tomlinson, Jr. 364/513

Jourjine 364/513
Jourjine 364/513
Kawato et al. 318/568.10

.......................... 395/23
Basehore 364/513

Samad 364/513
Gaborski 382/14
Eberhardt 395/23
Murphy et al. 395/23
Andes et al. 395/23
Takenaga et al. 382/14
Hiraiwa 395/23
Holler et al. 395/23
Villarreal et al. 395/23
Adams 395/22

OTHER PUBLICATIONS
Michail Zak, “Terminal Attractors in Neural Net-
works,” Neural Networks, vol. 2, pp. 259-274, 1989.
J. Barhen, et al., “Application of Adjoint Operators to

~)an(tyPen(t)Pmnu.

Neural Learning”, Aool. Math. Lett., vol. 3 No. 3, pp.
13-18, 1990 Printed in Great Britain.
J. Barhen, et al., “Adjoint Operator Algorithms for
Faster Learning Dynamical Neural Networks”, Center
for Space Micro-electronics Technology, Jet Propul-
sion Laboratory, California Institute of Technology,

R. J. Williams et al., “A Learning Algorithm for contin-
ually running fully recurrent neural networks,” Neural
Computation, vol. 1, No. 2 pp. 270-280.

(List continued on next page.)

pp. 498-508.

Primary Examiner-Robert W. Downs
Assistant Examiner-Tariq R. Nafiz
Attorney, Agent, or Firm-John H. Kusmiss; Thomas H.
Jones; Guy M. Miller

[571 ABSTRACT
A neural network is trained to output a time dependent
target vector defined over a predetermined time inter-
val in response to a time dependent input vector defined
over the same time interval by applying corresponding
elements of the error vector, or difference between the
target vector and the actual neuron output vector, to
the inputs of corresponding output neurons of the net-
work corrective feedback. This feedback decreases the
error and quickens the learning process, so that a much
smaller number of training cycles are required to com-
plete the learning process. A conventional gradient
descent algorithm is employed to update the neural
network parameters at the end of the predetermined
time interval. The foregoing process is repeated in re-
petitive cycles until the actual output vector corre-
sponds to the target vector. In the preferred embodi-
ment, as the overall error of the neutral network output
decreases during successive training cycles, the portion
of the error fed back to the output neurons is decreased
accordingly, allowing the network to learn with greater
freedom from teacher forcing as the network parame-

’ ters converge to their optimum values. The invention
may also be used to train a neural network with station-
ary training and target vectors.

-

39 Claims, 10 Drawing Sheets

5,428,710

Page 2

OTHER PUBLICATIONS

R. J. Williams et al., “A Learning Algorithm for contin-
ually running fully recurrent neural networks,” Techni-
cal Report ICs Report 8805, UCSD, La Jolla, Califor-
nia 92093.
Kumpati S . Narendra fellow, IEE and Kannan Par-
thasarathy, “Identification and Control of Dynamical
Systems Using Neural Networks”, vol. 1 No. 1, Mar.
1990.
Masa-aki Sato, “A Learning Algorithm to Teach Spa-
tiotemporal Patterns to Recurrent Neural Networks”,
Biological Cybernetics, (1990) pp. 259-263.
Masa-aki Sato, “A Real Time Learning Algorithm for
Recurrent Analog Neural Networks”, Biological Cy-
bernetics, (1990) pp. 237-241.
Fernando J. Pineda, “Time Dependent Adaptive Neu-
ral Networks”, Center for Microelectronics Technol-

ogy, Jet Propulsion Laboratory, California Institute of
Technology, pp. 710-718.
N. Toomarian and J. Barhen, “Adjoint-Operators and
Non-Adiabatic Learning Algorithms in Neural Net-
works”, Appl. Math. Lett., vol. 4 No. 2, pp. 69-73,
1991, printed in Great Britain.
Barak A. Pearlmutter, “Dynamic Recurrent Neural
Networks”, School of Computer Science, Carnegie
Mellon University, Pittsburgh, Pa. 15213. This research
was sponsored in part by The Defense Advanced Re-
search Projects Agency, Information Science and
Technology Office, under the title Research on Parral-
le1 Computing, ARPA Order No. 7330 issued by DAR-
PA/CMO.
Barak A. Pearlmutter, “Learning State Space Trajecto-
ries in Recurrent Neural Networks”, Neural Computa-
tion 1, pp. 263-269 (1989) Massachusetts Institute of
Technology.

U.S. Patent

I- -

June 27, 1995 Sheet 1 of 10

4

- 4 -
I
I cn

0

0

0

0

I 0

U.S. Patent June 27, 1995 Sheet 2 of 10

6

FIG. 2
(PRIOR ART)

“t 4- I 1

FIG. 4

US. Patent June 27, 1995

AMPLITUDE

AMPLITUDE

Sheet 3 of 10

c

FIG. 3

U'n (t+dt)

FIG.

US. Patent June 27, 1995 Sheet 4 of IO 5,42

U.S. Patent June 27, 1995 Sheet 5 of 98 5,428,71

DEFINE NEURON TEMPORAL LEARNING BEHAMOR
FOR M NRWORK PARAMRERS T & , p K j , Y i 30

il

32

INPUT anw TO INPUT NEURONS

f- 38
OBSERVE ERRORS e&)

c
PERFORM GRADIENT DESCERT ALGORITHM

FOR EACH OF THE M NETWORK PERAMETERS

40 J

US. Patent June 27, 1995 Sheet 6 of 1Q

U.S. Patent June 27, 1995 Sheet 7 of 18

DEFINE NEURON TEMPORAL LEARNING BEHAVIOR
FOR M NETWORK PARAMETERS ~ ~ , p K j l ” Y ~

~

DEflNE TRAINING SET:

an(t) FOR n IN O :OUTPUT PAITEXN
FOR n IN I ANPUT PATERN

FOR TIME INTERVAL t o T

FIG. 9a

U.S. Patent June 27, 1995 Sheet 8 of 10

FROM THE TEMPORAL LEARNING BEHAVIOR

~ r r , r + & ~ n , m ~ r n , p = ~ n . g

SOLVE THE FORWARD SENSITIWIY EQUATIONS
M TIMES , ONCE FOR EACH OF THE M NRWORK

PARAMEl'ERS FOR -pp

40 c

42

FIG. 9 b

U.S, Patent June 27, 1995 Sheet 9 of 10

0.6 I

-0.6 0.0 0.6

FIG. 10

0.6 1 f

0.0

-0.6
-0.6 0.0 0.6

FIG. 12

0.0

-0.6

e

4

3
z
g 2
w

1

0

LEARN I N G BTERATIO NS

US. Patent June 27, 1995 Sheet 10 of 18

0.6 1

1 0.0

-0.6 I I

-0.6 0.0 0.6

FIG. 14

0.0

-0.6
-0.6 0.0 0.6

FIG. 16

5

4

u 3
0
K

5 2

1

0

0.6

0.0

-0.6
-0.6 .o

0 200 400 600 800 100
LEARNING ITERAVIONS

5,428,710
1

FAST TEMPORAL NEURAL LEARNING USING
TEACHER FORCING

BACKGROUND OF THE INVENTION 5

Origin of the Invention
The invention described herein was made in the per-

formance of work under a NASA contract, and is sub-
ject to the provisions of Public Law 96-517 (35 USC 10
202) in which the contractor has elected not to retain
title.

Technical Field

with time dependent phenomena and to the problems
associated therewith, including reducing the number of
computations required and increasing the quality or
fidelity of the neural network output.

Background Art

The invention relates to training neural networks 15

20

Recently, there has been a tremendous interest in
developing learning algorithms capable of modeling
time-dependent phenomena. In particular, considerable
attention has been devoted to capturing the dynamics
embedded in observed temporal sequences.

In general, the neural architectures under consider-
ation may be classified into two categories:

* Feedforward networks, in which back propagation
through time can be implemented. This architec-
ture has been extensively analyzed, and is widely
used in simple applications due, in particular, to the
straightforward nature of its formalism.

* Recurrent networks, also referred to as feedback or
fully connected networks, which are currently
receiving increased attention. A key advantage of
recurrent networks lies in their ability to use infor-
mation about past events for current computations.
Thus, they can provide time-dependent outputs for
both time-dependent as well as time-independent
inputs.

One may argue that, for many real world applica-
tions, the feedforward networks suffice. Furthermore, a
recurrent network can, in principle, be unfolded into a
multilayer feedforward network. A detailed analysis of
the merits and demerits of these two architectures is
beyond the scope of this specification. Here, we will
focus only on recurrent networks.

The problem of temporal learning can typically be
formulated as a minimization, over an arbitrary but
finite time interval, of an appropriate error functional.
The gradients of the functional with respect to the vari-
ous parameters of the neural architecture, e.g., synaptic
weights, neural gains, etc. are essential elements of the
minimization process and, in the past, major efforts
have been devoted to the efficacy of their computation.
Calculating the gradients of a system’s output with
respect to different parameters of the system is, in gen-
eral, of relevance to several disciplines. Hence, a variety
of methods have been proposed in the literature for
computing such gradients. A recent survey of tech-
niques which have been considered specifically for
temporal learning can be found in Pearlmutter, B. A.
(1990) “Dynamic recurrent neural networks,” Techni-
cal Report CMU-CS-90-196, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, Pa. We
will briefly mention only those which are relevant to
the oresent invention.

25

30

35

40

45

50

55

60

65

Sat0 proposed, at the conceptual level, an algorithm
based upon Lagrange multipliers. However, his algo-
rithm has not yet been validated by numerical simula-
tions, nor has its computational complexity been ana-
lyzed. Williams and Zipset [Williams, R. J., and Zipser,
D. (1989) “A learning algorithm for continually running
fully recurrent neural networks”, Neural Computation,
Vol. 1, No. 2, pp. 270-2801 presented a scheme in which
the gradients of an error functional with respect to
network parameters are calculated by direct differentia-
tion of the neural activation dynamics. This approach is
computationally very expensive and scales poorly to
large systems. The inherent advantage of the scheme is
the small storage capacity required, which scales as
O(N3), where N denotes the size of the network.

Pearlmutter, on the other hand, described a varia-
tional method which yields a set of linear ordinary dif-
ferential equations for backpropagating the error
through the system. These equations, however, need to
be solved backwards in time, and require temporal stor-
age of variables from the network activation dynamics,
thereby reducing the attractiveness of the algorithm.
Recently, the inventors herein [Toomarian, N. and Bar-
hen, J. (199 1) “Adjoint operators and non-adiabatic
algorithms in neural networks,” Applied Mathematical
Letters, Vol. 4, No. 2, pp. 69-73] suggested a frame-
work formalism which enables the error propagation
system of equations to be solved forward in time, con-
comitantly with the neural activation dynamics. A
drawback of this novel approach came from the fact
that their equations had to be analyzed in terms of distri-
butions, which precluded straightforward numerical
implementation. Finally, Pineda proposed combining
the existence of disparate time scales with a heuristic
gradient computation. The underlying adiabatic as-
sumptions and highly approximate gradient evaluation
technique, however, placed severe limits on the applica-
bility of his method.

Analogy to real-life behavior motivates the learning
paradigm of the present invention described below.
Suppose that a parent wants to teach his child to ride a
bicycle. Clearly, the parent will not stay home, let his
child ride the bicycle and, from time to time, tell him
how good or bad he is performing (just as it happens in
classical supervised learning). The best way to train the
child would be for the parent to accompany him during
the riding sessions. This suggests that different dynami-
cal systems should be considered for the two basic
stages of learning and recall (or generalization). How-
ever, the functional form of the neural dynamics used
during the learning stage should smoothly evolve
toward the functional form of the neural dynamics to be
used during recall, after training is completed. In this
context, the network dynamics during the learning
stage should include an instantaneous signal from the
teacher on its performance. This necessitates a mecha-
nism for incorporating information regarding the de-
sired output directly into the activation dynamics. Such
a mechanism has been referred to as teacher forcing.
Williams and Zipset [williams, R. J., and Zipset, D.
(1988) “A learning algorithm for continually running
fully recurrent neural networks,” Technical Report ICs
Report 8805, UCSD, La Jolla, Calif. 920931, to the best
of our knowledge, have been the primary users of
teacher forcing. They limited their algorithm to a dis-
crete- time problem, replacing the output of the net-
work with desired output values at each time step.

3
5,428,7 10

4
SUMMARY O F THE INVENTION FIGS. 10, 11 12 illustrate different simulation results

of a neural network learning a circular motion using the
The present invention is a new continuous form of invention.

teacher forcing, and appropriately modifies the activa- FIG. 13 is a graph of the error as a function of the
tion dynamics of a simple additive neural network dur- 5 number of learning iterations for each of the cases illus-
ing its learning stage. The temporal modulation of trated in FIGS. 10-12.
teacher forcing is analyzed as learning proceeds, so that FIGS. 14, 15 ad 16 illustrate different simulation re-
the activation dynamics of the learning stage can m u - sults of a neural network learning a figure-eight motion
ally be reduced to the activation dynamics of the recall using the invention.
stage. FIG. 17 is a graph of the error as a function of the

In accordance with the invention, a neural network is number of learning iterations for each of the cases illus-
trained to output a time dependent target vector defined trated in FIGS. 1&16.
over a predetermined time interval in response to a time
dependent input vector defined over the same time
interval by applying corresponding elements of the l5
error vector, or difference between the target vector
and the actual neuron output vector, to the inputs of
corresponding output neurons of the network as correc- We formalize a neural network as an adaptive dynam-

quickens the learning process, so that a much smaller 20 the following set of coupled nonlinear differential equa-
number of training cycles are required to complete the
learning process. The learning process employs a con-
ventional gradient descent algorithm to update the neu-
ral network parameters (e.g., synapse weights and/or
neuron gains) at the end of the time interval. The fore-
going process is repeated in repetitive cycles until the
actual output vector corresponds to the target vector. It
has been found that not only is the number of required where U n represents the output of the nth neuron (u, (0)
training cycles decreased but that the quality or fidelity being the initial state), and Trim, denotes the strength of
of the neural network output is significantly increased 30 the synaptic coupling from the m-th to the n-th neuron.
by the invention. In the preferred embodiment, as the The constants K n characterize the decay of neuron ac-
overall error of the neural network output decreases tivities. The sigmoidal functions &(*) modulate the neu-
during successive training cycles, the portion of the ral responses, With gain given by Yn; typically,
error fed back to the output neurons is decreased ac- 35 g d Y n x) = ~ (P n x) . In order to implement a ~ ~ n l i n e a r
cordingly, allowing the network to learn with greater functional mapping from an NI-dimensional input space
freedom from teacher forcing as the network parame- to an Nodimensional output space, the neural network
ters converge to their optimum values. is topographically partitioned into three mutually exclu-

sive regions. As shown in FIG. la, the partition refers
BRIEF DESCRIPTION OF THE DRAWINGS 4o to a set of input neurons SI, a set of output neurons SO,
FIG. l a is a diagram of a neural network of the prior and a set of “hidden” neurons SH. Note that this archi-

tecture i s not formulated in terms of “layers” and that
FIG. 16 a diagram of a neural network training archi- each neuron may be connected to all others including

itself.
FIG. 2 is a diagram of a neural network numerical 45 Let $t) (the overhead bar denotes a vector) be an N-

dimensional vector of target temporal patterns, with
non zero elements, an(t), in the input and output sets
only. When trajectories, rather than mappings, are con-
sidered, components in the input set may also vanish.

50 Hence, the time- dependent external input term in Eq.
(l), i.e., I,(t), encodes component-contribution of the
target temporal pattern via the expression

lo

DETAILED DESCRIPTION OF THE
INVENTION

Temporal Learning Framework

tive feedback. This feedback decreases the error and ical system whose temporal is governed by

tions:

(1)

i n i- Kn Un = gn [Yn (: Tnm Urn + I n
25

art.

tecture of the prior art.

training architecture of the prior art including error
feedback which nulls the error at each numerical step.

FIG. 3 is a time domain diagram illustrating the be-
havior of the neural network training architecture of
FIG. 2.

FIG. 4 is a simplified diagram of a neural network
training architecture embodying the present, invention.

FIG. 5 is a time domain diagram illustrating the be-
havior of the neural network training architecture of
FIG. 4. 55

FIG. 6 is a system diagram corresponding to the
neural network training architecture of FIG. 4.

FIG. 7 is a flow diagram illustrating the operation of
the neural network training architecture of FIG. 4 using To proceed formally with the development of a tem-
a generic gradient descent algorithm for computing the 60 poral learning algorithm, we consider an approach
neural network parameter changes during training. based upon the minimization of an error functional, E,

FIG. 8 is a system diagram illustrating a preferred defined over the time interval [to,td by the following
embodiment of the system of FIG. 5. expression

FIGS. 9a and 96 together constitute a flow diagram
illustrating the operation of the neural network training 65
architecture of FIG. 4 for an embodiment employing a

rithm.

(2)
a&) if n PSI

= o i f n e SH u SO

(3)
E (Z 3 = ‘t Z: en2 dt = Fdt J Y particular type of conventional gradient descent algo- to

5,428,710
5

where the error component, en(t), represents the differ-
ence between the desired and actual value of the output
neurons, i.e.,

(4)
an(t) - un(t) if n E So

i f n a S I U SH e&) =

In our model, the internal dynamical parameters of
interest are the strengths of the synaptic interconnec-
tions, Trim, the characteristic decay constants, un, and
the gain parameters, yn, They can be represented as a
vector of M [where: M=N*+2N] components

F=)Tii.. . . , TNN, KI,. . . KN, yi ,YN} (5)

We will assume that the elements of 5 are statistically
independent. Furthermore, we will also assume that, for
a specific choice of parameters and set of initial condi-
tions, a unique solution of Eq. (1) exists. Hence, the stag
variables u are an implicit function of the parameters p.
In the rest of this paper, we will denote the pth element
of the vector p by pp (p = 1, . . . , M).

Traditionally, learning algorithms are constructed by
invoking Lyapunov stability arguments, i.e., by requir-
ing that the error functional be monotonically decreas-
ing during learning time, T. This translates into

One can always choose, with 77 > 0

5

10

15

20

25

30

which implements learning in terms of an inherently
local minimization procedure. Attention should be paid
to the fact that Eqs. (1) and (7) may operate on different
time scales, with parameter adaptation occurring at a
slower pace. Integrating the dynamical system, Eq.(7),
over the interval [T, ?-+AT], one obtains,

40

Equation (8) implies that, in order to update a system
parameter pp, one must evaluate the “sensitivity” (Le., 50
the gradient) of E, Eq. (3), with respect to ppin the
interval [T, T + ~ T] . Furthermore, using Eq. (3) and
observing that the time integral and derivative with
respect to pp, commute, one can write

55

This sensitivity expression has two parts. The first term 60
in the Right Hand Side (RHS) of Eq.(9) is called the
“direct effect”, and corresponds to the explicit depen-
dence of the error functional on the system parameters.
The second term in the RHS of Eq. (9) is referred to as
the “indirect effect”, and corresponds to the implicit 65
relationship between the error functional and the sys-
tem parameters via u. In our learning formalism, the
error functional, as defined by Eq. (3), does not depend

6
explicitly on the system parameters; therefore, the “di-
rect effect” vanishes, i.e.,

Since F is known analytically (viz. Eqs. (3) and (4)),
computation of J F h u is straightforward. Indeed

Thus, to enable evaluation of the error gradient using
Eq. (9), the “indirect effect” matrix should, in
principle, be computed.

TEACHER FORCING
The neural activation dynamics specified by Eqs. (1)

and (2) does not include explicit information regarding
the desired network output. If these equations are used
in conjunction with the learning formalism described in
the previous section, the network parameters (Le., the
elements of i) will be modified at the end of a trajec-
tory, i.e., at time t j as shown schematically in FIG. lb .
Such a parameter adaptation is based upon the total
error between the desired and the actual output of the
network, accumulated over the interval [to,tf3. Refer-
ring to FIG. lb, a neural network 2 is stimulated by a
time-varying training vector I(t) to produce a time-
varying output vector u(t). A subtractor 4 subtracts the
output vector u(t) from a time-varying target vector a(t)
to produce a time-varying error vector e(t). An integra-
tor 6 integrates the error vector e(t) over the time per-
iod of the time-varying training vector I(t). At the end
of the time period, the result of this integration is used
by a gradient descent algorithm to change the parame-
ters (e.g., the synapse weights) of the neural network in
such a manner as to reduce the output of the integrator
6 in the next time period. In our earlier analogy to real-
life behavior, this would correspond to a parent staying
home, letting his child ride a bicycle and, after each
trial, telling him all the errors he made. “Conventional”
supervised learning operates in this fashion, and usually
takes a great deal of iterations to produce the desired
results.

In order to overcome this difficulty, we consider the
concept of teacher forcing, Le., driving the output neu-
rons to desired values in finite time. Williams and Zipser
williams, R. J., and Zipser,’D. (1988) “A learning
algorithm for continually running fully recurrent neural
networks,” Technical Report ICs Report 8805, UCSD,
La Jolla, Calif. 920931 disclose forcing in a similar con-
text. Their focus, however, is on discrete time problems.
To highlight the differences between the two ap-
proaches we make the following observations. By defi-
nition, the conventional output of a network at time step
(t+l), without teacher forcing, is a function of the
external inputs to the network and of the networks’-
states at time step (t), i.e., in our notation,
M+ 1)=gn[W,u~4,Pl

where n&o, ieSI and JcSIUSHUSo. T o introduce
teacher forcing, Williams and Zipser replace the output
of the network with the desired output values at time
step (t). This means that

un(t+ ~) = g n [~ ~ ~ r) , ~ ~ r) . ~ n C r) m

5,428,710
7 8

N. and Gulati, S. (1990) “Adjoint operator algorithms
where ncSo, icSI and j c S N SH. The network parame- for faster learning in dynamical neural networks,” in
ters can be updated either at the end of each time step, David S . Touretzky (Ed.), Advances in Neural Informa-
or at the end of the trajectory, i.e., at time tr. A sche- tion Processing Systems, Vol. 2, pp. 498-508, San Mateo,
matic block diagram of this model, in which the param- 5 calif. (Morgan Kaufmm); and, Barhen, J., Toomanan,
eters are updated at the end of the trajectory, is given in N. and Gulati, S. (1990) ‘‘Application of adjoint opera-
FIG. 2. Referring to FIG. 2, at time t the neural net- tors to neural learning,” AppZied Mathematical Letters,
work is “forced” to an Output Vector equal to the CUT- Val. 3, No. 3, PP. 13-18] have considered terminal at-
rent target vector a()- The neural network then re- tractor dynamics induced from the input set, rather than
sponds to the current training vector to produce an 10 the output set, SO. They have observed that such a output vector u(t+l) at the time step t+l. The
subtractor 4 subtracts the output vector u(t+ l) from
the target vector a(t+ ‘1 Of the next time step t+ to
produce an vector e(t+ l). the Opera-

dynamics enables to learn time-independent mappings
much faster than backpropagation. This provided the
motivation for choosing p=7/9 for the numerical simu-
lations described below in this specification. Simula- tion of the model of FIG. 2 is analogous to that of FIG. 15 tions with other positive constants, such as p= 1, have

16. The temporal behavior of this model is illustrated in qualitatively, similar albeit Over a FIG. 3, in which the neuron outputs are forced to the longer training period. A study of the sensitivity of the training target (zero-error) values at the end of each results to the choice of p is beyond the scope of this time step. Since the network outputs, u,(t+ l), neSo, are specification. dependent upon the desired values a,(t) of the network 20
outputs at time step t, the algorithm can be interpreted
as training the network to capture the velocity of given

When learning is successfully
%(t)=o], teacher forcing will and the network

points on the trajectory, rather than the trajectory itself. given by Rs.
In our earlier analogy, each time interval may be (1) and (2). However, there might be instances where
viewed as a learning session at the end of which the 25 !he error functional can not be reduced to zero, imply-
parent, is correcting the child‘s performance. ing that the teacher forcing term will not vanish as

The teacher forcing paradigm of the present inven- learning Proceeds- Thus, a discrepancy in results be-
tion, on the other hand, stems from feedback control. In tween the learning and recall mode of the network
such a scheme, with continuous network dynamics, the Should be expected. In an attempt to Ove~cOme this
error between the actual and the desired outputs is fed 30 problem, we recall another lesson from life. When a
back, as inputs to the network output set neurons. A parent teaches his child to ride a bicycle, at early stages
schematic block diagram of the invention is presented in he keeps his hands on the bicycle, accompanying the
FIG. 4. Referring to FIG. 4, on a simplistic level the child. However, as soon as the child shows some
operation of the invention is analogous to the model of learned skills in controlling himself, the parent will take
FIG. 16 discussed above. However, the invention modi- 35 his hands off more and more often, to let the child ride
fies the error vector e(t) by a function A(t) and feeds the independently. In this vein, the teacher’s intervention in
modified error vector back to the neural network 2 in the learning process preferably decreases as learning
real t h e . Preferably, this feedback is applied directly to progresses. Specifically, in Equation (1) A may be mod-
the inputs of the array of output neurons of the neural ulated in time as function of the error functional, ac-
network 2. As can be seen, the parameters of the net- cording to
work are updated based upon the error accumulated
over the length of the trajectory, i.e., over the interval (12)
[tortfj. Again, by analogy, this scheme corresponds to a
parent accompanying his child and holding the bicycle The above expression should be understood as indi-
during the trajectory, to keep him on the right track as 45 cating that, while A varies on the learning time scale, it
much as possible. At the end of the trajectory the parent remains at essentially constant levels during the itera-
would explain to his child what went wrong and where, tive passes Over the interval [t,,,tfj.
SO that corrective action Can be taken for the next The behavior in a time continuum of the neural net-
round. In order to incorporate this teacher forcing into work in the training architecture ofFIG. 4 is illustrated

revert to the conventional

A(+ 1 -e-E(T)

the neural learning formalism presented earlier, the 5o in FIG. 5, in accordance with the temporal evolution-
the-dependent input to the neural activation dynamics, ary behavior defined by equation (1). At a given the t,

target value for that neuron is a(t), which differs from
the actual neuron output by an error e(t). The feedback

(11) 55 of the error e(t), illustrated in FIG. 4, reduces the error
at the next time differential, t+dt, by an amount fie(t)]-
which is a function of the error e(t). Thus, without the
invention, the neuron output at the next time differential
t +dt would have been u’(t +dt), but with the invention

60 the error at t+dt is reduced by qe(t)] to produce a
At this stage, A and p are assumed to be positive con- neuron output u(t+dt) which is closer to the target
stants. The purpose of the term [an(t)]l-Pis to insure output a(t+dt). The overall result is that the total error
that I,(t) has the same dimension as a,(t) and u,(t). It E(T) of equation (3) is reduced. In accordance with
(1989) has been demonstrated that in general, for equation (12), the amount of correction, namely the
p=(2i+ 1)/(2j+ l), i< j and i and j strictly positive 65 proportion of the error e(t) fed back to the output neu-
integers, an expression of the form [a,-u,]Pinduces a ron, is reduced as the total error E(7) of equation (3) is
terminal attractor phenomenon for the dynamics de- reduced at the end of each learning cycle of time dura-
scribed be Eq. (1). Barhen et al. [Barhen, J., Toomarian, tion Ar=[b,tA.

i.e-, as given by Eq. (2), is modified to read the output of a given output neuron is u(t) while the

i f n e S I

i f n e S H

A [o,,(r)]l-P[a,,(r) - un(t)]P if n e SO

5,428,710
9 10

A significant advantage of the invention is that it being applied as feedback to the neural network 10.
works in the time continuum of the differential equation First, the error e(t) is raised to a selected exponential
of Equation (3), while the technique of FIGS. 2 and 3 is power fi by a processor 50, while the target output a(t)
a numerical simulation not realizable using analog neu- is raised to a complementary exponential power 1 - f i
rons. 5 by a processor 52. The results are combined by a multi-

FIG. 6 illustrates a very tutorial example correspond- plier 54 and the product is input to the multiplier 24.
ing to the architecture of FIG. 4, in which the error The gradient descent, algorithm 26 transmits neural
nduced by a factor of I-exP[E(T)l is directly fed back to gain adjustments to the neurons 12,14,16 and transmits
the inputs of the output neurons. As shown in FIG. 6, synaptic weight adjustments to the synapses 53 in order
the neural network 10 includes a Set Of input neurons 2, 10 to adjust the neuron gains and synapse weights at the
a set of hidden neurons 14 and a set of output neurons end of each time interval. The gradient descent algo-
16. The neurons 12, 14, 16 are Selectively intercon- rithm computes these adjustments based upon the out-
netted through weighted synapses (not shown in FIG. put of the integrator 20 in a well-known manner. The
6) whose weights are determined, along with the gains skilled worker may devise various alternative tech-

During this exercise, a training set of time-dependent plication of the invention.
neuron inputs are applied during a predetermined time
interval to the inputs of the input neurons 12 which

of the neurons, during a Preliminary training exercise. 15 niques for scaling e(t) depending upon the specific ap-

GRADIENT DESCENT ALGORITHMS
Produces a set of nelJrOn Outputs UO)* An The efficient computation of system response sensi-
e(t> is determined by a subtractor I s subtracting the 2o tivities (e.g., error functional gradients) with respect to
vector of outputs u(t) from the vector Of target all parameters of a network’s architecture plays a criti-

Of the error vector e(t> tally important role in neural learning. As mentioned
are squared and summed and integrated Over the prede- previously herein, the gradient descent, algorithm 26
termined time interval by the integrator 2o to produce may be any suitable gradient descent algorithm of the
the total error E(T) Of Equation at the end Of the 25 prior art. The following describes how one of the best

vector

outputs a(t).

current training cycle, which is stored in a register 22.
A multiplier 24 multiplies each component of the error
vector e(t) by the factor l-exp[E(~)], and the product is
applied as feedback to the input, of the corresponding
output neuron 16. A conventional gradient, descent, 30
algorithm 26y the Output Of the integrator 2o and
the current values of the neuron gains and synaptic
weights of the neural network 10, computes the desired

determined time interval, which are then implemented 35 equations
in the neural network 10. The process is then repeated
in successive cycles with a cyclic period equal to the
predetermined time interval, until the total error E(T)
reaches zero.

FIG. 7. Preliminarily, the neuron temporal behavior
during the evolutionary leaming process is defined by

FIG. 7) and a training set is defined for the inputs to the

neurons 16 (block 32 of FIG. 7). The training set neuron
inputs are time dependent functions over the predeter-
mined time interval. Next., the training set neuron in-
puts are applied to the inputs of the input neurons 12 for
the predetermined time interval AT= [to,g (block 34 of 50
FIG. 7) while the errors e(t) between the outputs of the
output neurons 16 and the desired target outputs are In the above expressions, gn* represents the derivative Of
monitored (block 36). The squares of the errors are g n with respect to its arguments, 6 denotes the G O -
summed and integrated over the predetermined time necker symbol and S , p is defined as a nonhomogeneous
period (block 38) to produce the total error E(7) for the 55 “source”. The source term contains d l explicit deriva-
current learning cycle. The gradient descent algorithm tives of the neural activation dynamics, Eq. (11, with
is then performed (block 40) to compute the changes to respect to the system parameters, pp. Hence, it is pa-
each of the neural network parameters (e.g., neural rameter dependent and its size is (NXM). The initial
gains and synaptic weights), and these changes are then conditions of the activation dynamics, Eq.(l), are ex-
added to the corresponding neural network parameters 60 cluded from the vector of system parameters 5. Thus,
@lock 42). If the total error E(T) of the current learning the initial conditions of the FSEs will be taken as zero.
cycle is zero (or below some predetermined threshold), Their solution will provide the matrix aii/ap needed for
then the training session is finished CyES branch of computing the “indirect effect” contribution to the
block 44). Otherwise (NO branch of block 44), the sys- sensitivity of the error functional, as specified by Eq.
tem proceeds to the next learning cycle (block 46) and 65 (9). This gradient descent algorithm is, essentially, simi-
the process is repeated starting at block 34 of FIG. 7. lar to the scheme proposed in the above-referenced

The preferred embodiment of the invention is illus- publication by Williams and Zipset (1989). Computation
trated in FIG. 8. In FIG. 8, the error e(t) is scaled before of the gradients using the forward sensitivity formalism

gradient descent algorithms is employed in the inven-
tion.

Direct Approach Gradient Descent Algorithm

including the teacher forcing, Eq. (ll), with respect to
pp We observe that the time derivative and partial

Let us differentiate the activation dynamics, Eq. (1),

derivative with respect to pp

tions,, (FSEs):

Using the changes to the gains and weights at the end Of the pre- hand notation a(. . .)/appL=(. . .),p we a set of
to as Sensitivity Equa-

un,p + Lm Anm um,p = Sn,p > 0

un,p = 0 t = O
The operation of the system of FIG. 6 is illustrated in 40

the differential equation of Equation (1) (block 30 of in which

input neurons 12 and for target outputs of the output 45 = (ICn - Y n g n a1n’aun)6nm - Yn g’n Trim (14)

(15) sn,p =

-unSpp,rcn + Y n d n 2 Umspp,Tnm + g’n
m

11
5,428,710

requires solving Eq. (1 3) M times, since the source term,
Sn,,, explicitly depends on pp This system has N equa-
tions, each of which requires multiplication and summa-
tion over N neurons. Hence, the computational com-
plexity, measured in terms of multiply-accumulates,
scales like N2 per system parameter, per time step. Let
us assume, furthermore, that the interval [to,tjj is discre-
tized into L time steps. Then, the total number of multi-
ply-accumulate operations scales like N4L. Clearly,
such a scheme exhibits expensive scaling properties, and
would not be very practical for large networks. On the
other hand, since the FSEs are solved forward in time,
along with the neural dynamics, the method also has
inherent advantages. In particular, there is no need for a
large amount of memory. Since un,, has N3+2N2 com-
ponents, the storage requirement scales as O(N3).

If the foregoing is employed for the gradient descent
algorithm 26 of FIG. 6, then the step of performing a
gradient descent algorithm of FIG. 7 (block 40 of FIG.
7) may be broken into steps Mu, 406 and 40c as illus-
trated in FIG. 9b. Specifically, the first step (block
4Ouof FIG. 9b) of the gradient descent algorithm 26 is to
derive the forward sensitivity equations (Equations
13-15) from the neural learning behavior (Equation 1).
The next step is to solve the forward sensitivity equa-
tions once for each of the M neural network parameters
(block 406 of FIG. 9b). The third step (block 4Oc of
FIG. 9b) is to compute the partial derivative of each
neuron output u(t) with respect to each of the M net-
work parameters. Finally, the computation step of
block 42’ of FIG. 9b employs the integral of this deriva-
tive to compute the change to the corresponding net-
work parameter at the end of the current learning cycle.

NUMERICAL SIMULATIONS
The embodiment of FIG. 8 has been applied to the

problem of learning two trajectories: a circle and-a
figure eight in computer simulations. Results of apply-
ing prior art techniques to these problems can be found
in the literature, and they offer sufficient complexity for
illustrating the computational efficiency of our pro-
posed formalism.

In the following computer simulations, the network
that was trained to produce these trajectories using the
present invention involved 6 fully connected neurons,
with no input, 4 hidden and 2 output units. An addi-
tional “bias” neuron was also included. In these simula-
tions, the dynamical systems were integrated using a
first order finite difference approximation. The neuron
sigmoidal nonlinearity was modeled by a hyperbolic
tangent. Throughout, the decay constants Kn, the neural
gains Yn, and A were set to one. Furthermore, fi was
selected to be 7/9. For the learning dynamics, AT was
set to 6.3 and 7 to 0.015873. The two output units were
required to oscillate according to

ag(t)=A sin ot (W

ag(t)=A COS ot (16b)

for the circular trajectory, and, according to

a5(t)=A sin ot (17a)

ag(t)=A sin 2ot (1%)

for the figure eight trajectory. Furthermore, we took
A=0.5 and o=l. Initial conditions were defined at
to=O. Plotting a5 versus a 6 produces the “desired”

5

10

15

20

25

30

35

40

45

50

55

60

65

. _ _
12

trajectory. Since the period of the above oscillations is
27~, tf=2p time units are needed to cover one cycle. We
selected At =O. 1, to cover one cycle in approximately
63 time steps.

Circular Trajectory

In order to determine the capability and effectiveness
of the algorithm, three cases were examined. As initial
conditions, the values of Un were assumed to be uniform
random numbers between -0.01 and 0.01 for the simu-
lation studies referred in the sequel as “Case-1’’ and
“Case-2”. For Case-3, we set un equal to zero, except
U6 which was set to 0.5. The synaptic interconnections
were initialized to uniform random values between
-0.1 and +0.1 for all three experiments.

CASE-I

The training was performed over t ~ 6 . 5 time units(
i.e., 65 time intervals). A maximum number of 500 itera-
tions was allowed. The results shown in FIG. 10 were
obtained by starting the network with the same initial
conditions, un(0), as used for training, the learned values
of the synaptic interconnections, Trim, and with no
teacher forcing (A=O). As we can see, it takes about 2
cycles until the network reaches a consistent trajectory.
Despite the fact that the system’s output was plotted for
more than 15 cycles, only the first 2 cycles can be distin-
guished. FIG. 13 demonstrates that most of the learning
occurred during the first 300 iterations.

CASE-2

Here, we decided to increase the length of the trajec-
tory gradually. A maximum number of 800 learning
iterations was now allowed. The length of the training
trajectory was 65 time intervals for the first 100 itera-
tions, and increased every 100 iterations by 10 time
intervals. Therefore, it was expected that the error func-
tional would increase whenever the length of the trajec-
tory was increased. This was indeed observed, as may
be seen from the learning graph, shown in FIG. 13. The
output of the trained network is illustrated in FIG. 11.
Here again, from 15 recall cycles, only the first two
(needed to reach the steady orbit) are distinguishable
and the rest overlap. Training using greater trajectory
lengths yielded a recall circle much closer to the desired
one than in the previous case. From FIG. 13, one can
see that the last 500 iterations did not enhance dramati-
cally the performance of the network. Thus, for practi-
cal purposes, one may stop the training after the first
300 iterations.

CASE-3
The selection of appropriate initial conditions for U n

plays an important role in the effectiveness of the learn-
ing. Here, all initial values of Un were selected to be
exactly zero except the last unit, where u6=0.5 was
chosen. This corresponds to an initial point on the cir-
cle. The length of the trajectory was increased succes-
sively, as in the previous case. In spite of the fact that
we allowed the system to perform up to 800 iterations,
the learning was essentially completed in about 200
iterations, as shown in FIG. 13. The results of the net-
work‘s recall are presented in FIG. 12, which shows an
excellent match.

5,428,710
13

Figure Eight Trajectory
For this problem, the synaptic interconnections were

initialized to uniform random values between -1 and
+ 1. As initial conditions, the values of un were assumed
to be uniform random numbers between -0.01 and
0.01. The following three situations were examined.

C A S E 4
The training was performed over tf-6.5 time units(

i.e., 65 time intervals). A maximum number of lo00
iterations was allowed. The results shown in FIG. 14
were obtained by starting the network with the same
initial conditions, un(0), as used for training, the learned
values of the synaptic interconnections, Trim, and with
no teacher forcing (A=O). As we can see, it takes about
3 cycles until the network reaches a consistent trajec-
tory. Despite the fact that the system’s output was plot-
ted for more than 15 cycles, only the first. 3 cycles can
be distinguished.

CASE-5
Here, we again decided to increase the length of the

trajectory gradually. A maximum number of lo00 itera-
tions was now allowed. The length of the training tra-
jectory was 65 time intervals for the first 100 iterations,
and was increased every 100 iterations by 5 time inter-
vals. Therefore, it was again expected that the objective
functional would increase whenever the length of the
trajectory was increased. This was indeed observed, as
may be seen from the learning graph, shown in FIG. 17.
The output of the trained network is illustrated in FIG.
15. Here again, from 15 recall cycles, only the first three
(needed to reach the steady orbit) are distinguishable,
and the rest overlap. As a direct result of training using
greater trajectory lengths, orbits much closer to the
desired one than in the previous case were obtained.

CASE-6
The learning in this case was performed under condi-

tions similar to CASE-5. but with the distinction that
A was modulated according to Eq. (12). The results of
the network’s recall are presented in FIG. 16, and dem-
onstrate a dramatic improvement with respect to the
previous two cases.

It is important to keep in mind the following observa-
tions with regard to the foregoing simulation results:

1) For the circular trajectory, A was kept constant
throughout the simulations and not modulated accord-
ing to Eq. (12). As we can see from FIG. 13, in cases 1
and 2 the error functional was not reduced to zero.
Hence, a discrepancy in the functional form of the neu-
ral activation dynamics used during the learning and
recall stages occurred. This was a probable cause for
the poor performance of the network. In case 3, how-
ever, the error functional was reduced to zero. There-
fore, the teacher forcing effect vanished by the end of

5

10

15

20

25

30

35

40

45

14
In order to assess the effectiveness of the new

method, the foregoing simulations applied it to two
examples of representative complexity which have re-
cently been analyzed in the open literature. We have
demonstrated that a circular trajectory can be learned
in approximately 200 iterations compared to the 12000
reported by Pearlmutter (1989). A figure eight trajec-
tory was achieved in under 500 iterations compared to
2oooO previously required. Most important, however, is
the quality of the obtained results. The trajectories com-
puted using our new method are much closer to the
target trajectories than was reported in previous studies.

While the invention has been described in accordance
with the preferred embodiment in which the feedback is
reduced as a function of the error E(T) over successive
learning cycles, it may be that in some instances such a
decrease will not be steady and may not even occur in
individual cycles. Moreover, other schemes to modu-
late the feedback in accordance with the invention may
be employed. For example, in those cases where a
stead); decrease in the error E(T) over successive cycles
may be generally expected, the feedback could be mod-
ulated as a function of the number of cycles indepen-
dently or dependently of the error E(T). Moreover:
while the invention has been described with reference
to a gradient descent, algorithm used to adjust both the
synapse weights and the neuron gains, any subset or all
of these neural network parameters or other neural
network parameters may be adjusted. For example, it
may be that only the synapse weights would be adjusted
at the end of each repetitive cycle.

While the invention has been described in connection
with training a neural network with time-varying train-
ing vectors and target vectors, the invention may also
be applied in training neural networks with time-invari-
ant training vectors and target vectors.

While the invention has been described in detail by
specific reference to preferred embodiments of the in-
vention, it is understood that variations and modifica-
tions thereof may be made without departing from the
true spirit and scope of the invention.

What is claimed is:
1. Apparatus for training a neural network compris-

ing input, hidden and output sets of neurons having
respective neuron gains interconnected by respective
synapses having respective synapse weights to produce
at outputs of said output set of neurons a time-varying
target vector in response to a time-varying training

the learning.

between cases 5 and 6 lies in the modulation of A, @e.,
the amplitude of the teacher forcing). Even though in
both cases the error functional was reduced to a negligi-
ble level, the effect of the teacher forcing in case 5 was
not completely eliminated over the entire length of the 65
trajectory. This points toward the fact that modulation
of A not only reduces the number of iterations but, also
provides higher quality results.

2) For the figure eight trajectory, the differences 60

-
50 vector applied to inputs of said input set of neurons, said

time-varying training and target vectors being defmed
for a predetermined time interval, said apparatus com-

means for applying respective elements of said time-
varying training vector to the inputs of respective
ones of said input set of neurons during said prede-
termined time interval;

prising:

55

means for measuring an error vector constructed
from the differences between the output values
produced at the outputs of said output set of neu-
rons and corresponding elements of said time-vary-
ing target vector during said predetermined time
interval,

means for determining a function of each individual
element of said error vector during said predeter-
mined time interval;

means for feeding back said function of each individ-
ual element of said error vector to inputs of respec-

5,428,7 10
15 16

tive ones of said set of output neurons during said 8. The apparatus of claim 1 further comprising:
predetermined time interval; means for progressively decreasing said function in

means responsive to said error vector and to current
values of said neuron gains and synapse weights for 9. The apparatus of claim 8 wherein said means for
changing at least one of (a) said neuron gains and 5 progressively decreasing said function decreases said
(b) said synapse weights in accordance with a gra- function as a function of a decrease in a functional of
dient descent algorithm at the end of said predeter- said error vector over said successive ones of said repet-
mined time interval to decrease the magnitude of itive cycles.
the said error vector; and wherein, 10. The apparatus of claim 9 wherein said functional

said means for applying, said means for measuring, 10 comprises an integral of a function of each element of
said means for determining, said means for feeding said error vector measured during a previous one of said
back and said means for changing all operate to- repetitive cycles.
gether in repetitive cycles, each of said cycles hav- 11. A method for training a neural network compris-
ing a time duration equal to-said predetermined ing input, hidden and output sets of neurons having
time interval; and, 15 respective neuron gains interconnected by respective

said means for determining a function of each individ- synapses having respective synapse weights to produce
ual element of said error vector comprises means at outputs of said output set of neurons a time-varying
for modulating said function in accordance with target vector in response to a time-varying training
measurements of said error vector by said means vector applied to inputs of said input set of neurons, said
for measuring during a previous one of said repeti- 20 time-varying training and target vectors being defined
tive cycles. for a predetermined time interval, said method compris-

inrr:

successive ones of said repetitive cycles.

2. The amaratus of claim 1 wherein said means for
I I

modulating said function comprises means for multiply-
ing said function by a factor that depends upon the
measurements of all elements of said error vector mea- 25
sured by said means for measuring during an immedi-
ately preceding one of said repetitive cycles.
3. The apparatus of claim 2 wherein said factor is 1-

exp, wherein E(7) is an integral over said predetermined
time interval of a sum of squares of all elements of the 30
error vector measured during said immediately preced-
ing one of said repetitive cycles.
4. The apparatus of claim 1 wherein said means for

determining a function of each element of said error

5. The apparatus of claim 4 wherein said means for
scaling comprise means fox raising each element of said
error vector to an exponential power of p , raising the
corresponding element of said time-varying target vec-
tor to an exponential power of 1-p, and multiplying 40
them together, wherein p is a rational number less than
one.
6. The apparatus of claim 5 wherein p is on the order

of approximately 7/9.
7. The apparatus of claim 1 wherein the outputs of 45

each of said neurons obey a set of differential equations
during said predetermined time interval, said differen-
tial equation being a function of said neuron gains, said
synapse weights and said time-varying training and
target vectors, and wherein said means for computing 50
said changes by performing a gradient descent algo-
rithm comprise:

means for deriving a set of sensitivity equations from
said set of differential equations;

means for solving said set of sensitivity equations 55
once for each one of a set of parameters of said

vector comprises means for scaling said function. 35

I

applying respective elements of said time-varying
training vector to the inputs of respective ones of
said input set of neurons during said predetermined
time interval;

measuring an error vector constructed from the dif-
ferences between the output values produced at the
outputs of said output set of neurons and corre-
sponding elements of said time-varying target vec-
tor during said predetermined time interval;

determining a function of each individual element of
said error vector during said predetermined time
interval;

feeding back said function of each individual element
of said error vector to inputs of respective ones of
said set of output neurons during said predeter-
mined time interval;

changing at least one of (a) said neuron gains and (b)
said synapse weights in response to said error vec-
tor and to current values of said neuron gains and
synapse weights in accordance with a gradient
descent algorithm at the end of said predetermined
time interval to decrease the magnitude of the said
error vector; and wherein,

said applying, said measuring, said determining, said
feeding back and said changing is performed in
repetitive cycles, each of said cycles having a time
duration equal to said predetermined time interval;

said determining a function of each individual ele-
ment of said error vector comprises modulating
said function in accordance with measurements of
said error vector by said measuring during a previ-
ous one of said repetitive cycles.

12. The method of claim 11 wherein said modulating

and,

neural network, said parameterscomprising at least
one of (a) said neuron gains and (b) said synapse
weights;

of each neuron with respect to corresponding ones
of said parameters; and

means for computing a change to be made to each
one of said parameters at the end of said predeter-
mined time interval by integrating over said prede- 65 preceding one of said repetitive cycles.
termined time interval the product of said differen-
tial and a corresponding element of said error vec-
tor. prises scaling said function.

said function comprises multiplying said function by a
factor that depends upon the measurements of all ele-
ments of said error vector measured during an immedi-

13. The method of claim 12 wherein said factor is
1-exp wherein E(7) is an integral over said predeter-
mined time interval of a sum of squares of all elements
of the error vector measured during said immediately

14. The method of claim 11 wherein said determining
a function of each element of said error vector com-

means for computing a differential of the output value 60 ately preceding one of said repetitive cycles.

5428,710
17

15. The method of claim 14 wherein said scaling
comprise raising each element of said error vector to an
exponential power of p, raising the corresponding ele-
ment of said time-varying target vector to an exponen-
tial power of l-,& and multiplying them together,
wherein /3 is a rational number less than one.

16. The method of claim 15 wherein /3 is on the order
of approximately 7/9.

17. The method of claim 11 wherein the outputs of
each of said neurons obey a set of differential equations
during said predetermined time interval, said differen-
tial equations depending upon said neuron gains, said
synapse weights and said time-varying training and
target vectors, and wherein said computing said
changes comprises:

deriving a set of sensitivity equations from said set of
differential equations;

solving said set of sensitivity equations once for each
one of a set of parameters of said neural network,
said parameters comprising at least, one of (a) said
neuron gains and (b) said synapse weights;

computing a differential of the output value of each
neuron with respect to corresponding ones of said
parameters; and

computing a change to be made to each one of said
parameters at the end of said predetermined time
interval by integrating over said predetermined
time interval the product of said differential and a
corresponding element of said error vector.

18. The method of claim 11 further comprising:
progressively decreasing said function in successive

19. The method of claim 18 wherein said progres-
sively decreasing said function comprises decreasing
said function in accordance with a decrease in a func-

ones of said repetitive cycles.

18
rons and corresponding elements of said target
vector;

means for determining a function of each individual
element of said error vector;

means for feeding back said function of each individ-
ual element of said error vector to inputs of respec-
tive ones of said set of output neurons;

means responsive to said error vector and to current
values of said neuron gains and synapse weights for
changing at least one of (a) said neuron gains and
@) said synapse weights in accordance with a gra-
dient descent algorithm to decrease the magnitude
of the said error vector; and wherein,

said means for applying, said means for measuring,
said means for determining, said meins for feeding
back and said means for changing all operate to-
gether in repetitive cycles, each of said cycles hav-
ing a time duration equal to a predetermined time
interval; and,

said means for determining a function of each individ-
ual element of said error vector comprises means
for modulating said function in accordance with
measurements of said error vector by said means
for measuring during a previous one of said repeti-

22. The apparatus of claim 21 wherein said means for
modulating said function comprises means for multiply-
ing said function by a factor that depends upon the
measurements of all elements of said error vector mea-

30 sured by said means for measuring during an immedi-
ately preceding one of said repetitive cycles.

23. The apparatus of claim 22 wherein said factor is
1-exp, wherein E(T) is an integral over said predeter-
mined time interval of a sum of squares of all elements

35 of the error vector measured during said immediately

5

10

15

20

25 tive cycles.

tional of said error vector over said successive ones of preceding one of said repetitive cycies.
said repetitive cycles. 24. The apparatus of claim 21 wherein said means for

20. A method of training a neural network to output determining a function of each element of said error
a target vector in response to a training vector, said vector comprises means for scaling said function.
method comprising: 25. The apparatus of claim 24 wherein said means for

feeding back to neuron inputs of said neural network scaling comprise means for raising each element of said
a function of an error vector corresponding to a error vector to an exponential power of /3, raising the
difference between said target vector and a current corresponding element of said target vector to an expo-
output vector of said neural network; and, nential power of l-D, and multiplying them together,

vector while feeding back said function of the error 26. The apparatus of claim 25 wherein p is on the
vector; order of approximately 7/9.

modulating said function in accordance with a factor 27. The apparatus of claim 21, wherein the outputs of
dependent upon elements of said error vector; each of said neurons obey a set of differential equations

said feeding back is performed in repetitive cycles of 50 during said predetermined time interval, said differen-
a cyclic period and cyclically adjusting parameters tial equation being a function of said neuron gains, said
of said neural network, and wherein said adjusting synapse weights and said training and target vectors,
is performed in accordance with a measurement of and wherein said means for computing said changes by
said error vector during a previous one of said performing a gradient descent, algorithm comprise:
repetitive cycles. means for deriving a set of sensitivity equations from

21. Apparatus for training a neural network compris- said set of differential equations:
ing input, hidden and output sets of neurons having means for solving said set of sensitivity equations
respective neuron gains interconnected by respective once for each one of a set of parameters of said
synapses having respective synapse weights to produce neural network, said parameters comprising at
at outputs of said output set of neurons a target vector 60 least, one of (a) said neuron gains and (b) said syn-

40

stimulating said neural network with said training 45 wherein ,8 is a rational number less than one.

55

in response to a training vector applied to inputs of said
input set of neurons, said apparatus comprising:

means for applying respective elements of said train-
ing vector to the inputs of respective ones of said
input set of neurons; 65

means for measuring an error vector constructed
from the differences between the output values
produced at the outputs of said output set of neu-

apse weights;
means for computing a differential of the output value

of each neuron with respect to corresponding ones
of said parameters; and

means for computing a change to be made to each
one of said parameters at the end of said predeter-
mined time interval by integrating over said prede-
termined time interval the product of said differen-

5.428.710
19

tial and a corresponding element of said error vec-
t0.r.

28. The apparatus of claim 21 further comprising:
means for progressively decreasing said function in

29. The apparatus of claim 28 wherein said means for
progressively decreasing said function decreases said
function as a function of a decrease in a functional of
said error vector over said successive ones of said repet-
itive cycles.

30. The apparatus of claim 29 wherein said functional
comprises an integral of a function of each element of
said error vector measured during a previous one of said
repetitive cycles.

31. A method for training a neural network compris-
ing input, hidden and output sets of neurons having
respective neuron gains interconnected by respective
synapses having respective synapse weights to produce
at outputs of said output set of neurons a target vector

successive ones of said repetitive cycles.

20
32. The method of claim 31 wherein said modulating

said function comprises multiplying said function by a
factor that depends upon the measurements of all ele-
ments of said error vector measured during an immedi-

5 ately preceding one of said repetitive cycles.
33. The method of claim 32 wherein said factor is

1-exp, wherein E(T) is an integral over said predeter-
mined time interval of a sum of squares of all elements
of the error vector measured during said immediately

34. The method of claim 31 wherein said determining
a function of each element of said error vector com-
prises scaling said function.

35. The method of claim 34 wherein said scaling
15 comprise raising each element of said error vector to an

exponential prover of p, raising the corresponding ele-
ment of said target vector to an exponential power of
1-p, and multiplying them together, wherein /3 is a
rational number less than one.

10 preceding one of said repetitive cycles.

20 36. The method of claim 35 wherein p is on the order
of approximately 7/9.

37. The method of claim 31 wherein the outputs of
each of said neurons obey a set of differential equations,
during said predetermined time interval, said differen-

25 tial equations depending upon said neuron gains, said
synapse weights and said training and target vectors,
and wherein said computing said changes comprises:

deriving a set, of sensitivity equations from said set, of
differential equations;

solving said Set of sensitivity equations Once for each
one of a set of parameters of said neural network,
said parameters comprising at least one of (a) said
neuron gains and (b) said synapse weights;

computing a differential of the output value of each
neuron with respect to corresponding ones-of said
parameters; and

one of said
parameters at the end of said predetermined time
interval by integrating over said predetermined
time interval the product of said differential and a
corresponding element of said error vector.

38. The method of claim 31 further comprising:
progressively decreasing said function in successive

39. The method of claim 38 wherein said progres-
sively decreasing said function comprises decreasing
said function in accordance with a decrease in a func-
tional of said error vector over said successive ones of
said repetitive cycles.

in response to a training vector applied to inputs of said
input set of neurons, said method comprising:

applying respective elements of said training vector
to the inputs of respective ones of said input set of
neurons;

measuring an error vector constructed from the dif-
ferences between the output values produced at the

and ‘Orre-
sponding elements of said target vector;

determining a function of each individual element of 3o
said error vector;

feeding back said function of each individual element
of said error vector to inputs of respective ones of
said set of output neurons;

changing at least One Of (a) said neuron gains and @) 35
said synapse weights in response to said error vec-
tor and to current values of said neuron gains and
synapse weights in accordance with a gradient
descent algorithm to decrease the magnitude of the
said error vector; and wherein,

said applying, said measuring, said determining, said
feeding back and said changing is performed in
repetitive cycles, each of said cycles having a time
duration equal to a predetermined time interval;
and,

said determining a function of each individual ele-
ment of said error vector comprises modulating
said function in accordance with measurements of
said error vector by said measuring during a previ-
ous one of said repetitive cycles.

Of said Output set Of

computing a change to be made to

40

ones of said repetitive cycles.
45

* * * * * 50

55

60

65

	FIG
	FIG

