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ABSTRACT

Two linearized solvers (time and frequency domain) based on a high resolution
numerical scheme are presented. The basic approach is to linearize the flux vector by
expressing it as a sum of a mean and a perturbation. This allows the governing equa-
tions to be maintained in conservation law form. A key difference between the time
and frequency domain computations is that the frequency domain computations re-
quire only one grid block irrespective of the interblade phase angle for which the flow
is being computed. This is achieved through the use of phase shifted periodic boundary
conditions. As a result of this and due to the fact that the governing equations for this
case are steady, frequency domain computations are substantially faster than the cor-
responding time domain computations. The linearized equations are used to compute
flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numer-
ical solutions are compared to linear theory (where available) and to numerical solu-
tions pf,the nonlinear Euler equations.



CHAPTER I

INTRODUCTION

Blade vibration (the aeroelastic problem) and noise generation (the aeroacoustic problem) are
both undesirable consequences of the unsteady flow processes that occur within a turbomachine and
are, therefore, important concerns to the designer. The aeroelastic problem has received far more
attention than the aeroacoustic problem because the former can lead to structural failure of the blad-
ing and possibly result in extensive damage to the engine [I]. An unsteady aerodynamic analysis in-
tended for turbomachinery aeroelastic and aeroacoustic applications must be applicable over a wide
range of structural geometries, mean-operating conditions, and unsteady excitation modes and fre-
quencies. Because of the large number of parameters involved, the analysis must provide the neces-
sary unsteady information both efficiently and economically.

To date, three different types of methods have been used to model the unsteady flows
through cascades [21. They are : 1) analytical, 2) semi-analytical, and 3) numerical. The degree of
accuracy of each of these methods depends on how well the mathematical models which represent
these methods describe the unsteady flowfield for flow through a vibrating cascade.

The first approach involves solving the partial differential equations which govern the flow in
a cascade using methods of applied mathematics. Closed form solutions can be obtained for a hand-
ful of extremely simplified geometries and flow conditions and hence are of limited use for configura-
tions of practical interest.

The second approach uses a combination of singularities distributed along the airfoil surfaces
and wakes to model the steady and unsteady flow through a cascade. This reduces the governing
equations to a set of integral equations involving kernel functions. Because of the complexity in de-
termining these kernel functions, the mean flow through the cascade is assumed to be uniform or
nearly uniform. Hence, the flow model often bears little resemblance to flows found in actual turbo-
machines.

The third approach is to discretize the field equations which describe the unsteady flow and
solve them numerically. The advantage of this approach is that features such as blade loading, arbi-
trary airfoil shapes, and moving shocks are accounted for. This ability to analyze'fairly general ge-
ometries comes only with considerable computational overhead. The computational methods can be
further subdivided into 1) methods based on nonlinear governing equations and 2) methods based on
a set of linearized equations. The methods based on the nonlinear governing equations are almost
always time-marching, while those based on the linearized equations are time-marching (time-do-
main) or harmonic (frequency-domain). The nonlinear governing equations are used if the unsteadi-
ness in the flow cannot be treated as a small-perturbation of the nominal mean flow (steady or peri-
odic) through the cascade. If the small-perturbation assumption is valid, the nonlinear equations
can be linearized about the mean flow, resulting in a set of linearized equations for the unsteady per-
turbations. For most cases of practical interest, the linearized equations are good enough. The har-
monic method introduces the additional simplifying assumption that the unsteady flow perturbations
are harmonic in time. This reduces the linearized governing equations to a set of time-independent
partial differential equations (PDEs) for the complex amplitudes of the unsteady flow properties. The
time-marching method, on the other hand, makes no such assumptions and solves for the unsteady



perturbations by marching the solution in time. Both these approaches have been used in the course
of the present study.

This report is divided into seven chapters. Chapter 2 deals with the development of the gov-
erning equations for the time and frequency domain computations. Development of a high-resolution
flux formulation and numerical computation of flux Jacobians is presented in Chapter 3. Chapter 4
covers the solution procedure used while Chapter 5 deals with boundary conditions (EC's) for the
time and frequency domain computations. Representative results are shown in Chapter 6. In Chap-
ter 7, some conclusions are drawn regarding the utility of the methods used in this research.



CHAPTER II

GOVERNING EQUATIONS

In this chapter, the governing equations for linearized problems (time and frequency domain)
are developed. The Navier-Stokes equations can most accurately describe the complicated nature of
steady and unsteady flows through turbomachinery. However, if the Reynolds number is sufficiently
high and Prandtl number is of order unity, the Euler equations provide a good approximation to the
behavior of the flow. The nonlinear Euler equations for a dynamic curvilinear grid are obtained by
transforming the Euler equations from Cartesian coordinates to dynamic curvilinear coordinates
[3],[4], These equations form the basis for both the nonlinear (un)steady flows as well as for the linea-
rization. Section 2.1 develops the linearized Euler equations (time domain) based on the small per-
turbation approach, the perturbation being about a nonlinear mean flow (obtained from a steady state/
unsteady (periodic) solution to the unsteady, nonlinear Euler equations). Section 2.2 develops the
linearized Euler equations for frequency domain computations.

2.1 Linearized Euler Equations (time domain)

For illustration purposes, consider the one-dimensional Euler equations in Cartesian coordi-
nates, that is,

t + f = 0 (2-1)dt dx

where q is the Cartesian dependent variable vector and f is the Cartesian flux vector. To start the
linearization process, the dependent variables are expressed as the sum of two components, namely, a
meanflow component which, by definition, satisfies the (un)steady nonlinear equations, and an un-
steady perturbation, i.e.,

q = q + q'

where the perturbations q' are assumed small compared to their mean-flow counterparts q. Similar-
ly, the flux can be viewed as being composed of two components, i.e.,

f = f + f

where J and f are as yet undefined, but can be interpreted as mean and perturbed fluxes, respective-

ly. A definition of f based on a high resolution flux formulation will be given in Chapter III.
Using these definitions of q and f, and noting that the mean flow satisfies the equation,

^ +^ = 0dt * dx U

Equation (2.1) may be written as

¥ + f = o <2-2>dt dx

Extending this approach to curvilinear coordinates results in



+ - 0 (2 3)
dr + d£ U '

£ = £fc,T) ; Q = Jq; Q = Q + Q'

This extension is necessary because it is easier to handle arbitrary configurations in curvilinear coor-
dinates as opposed to Cartesian coordinates. However, F is no longer a pure function of Q; it also

depends on the metrics, i.e., £T and £%. Hence, any definition of F' should take into account this
dependency of F on the metrics. Extending Equation (2.3) to three-dimensions results in

Equation (2.4) is the linearized Euler equations (time domain) for three-dimensional curvilinear
coordinates.

2.2 Linearized Euler Equations (frequency domain)

Expressing Q' and F' in Equation (2.3) as

Q' = Re(Q0(£)exp(Hor))

F' = Re[F0(|)exp(ia>T))
results in

(«u)Q0 + § = 0 (2.5)
05

a) = frequency of vibration

QO< FQ = Complex amplitudes of Q' and F' respectively

Equation (2.5) represents a steady-state equation for the complex amplitude QQ. This equation is

solved using a time marching method by introducing a pseudo-time derivative , i.e., we solve

-=-^ -f (io))Qn 4 r^r = 0 (2.6)

Equation (2.6) can be extended to three-dimensions resulting in

i 0 i 0 , "•'•'O r» /O f?\
1 ^r •! ^r "I ^r = 0 (-^.7)

Equation (2.7) is the linearized Euler equations (frequency domain) for three-dimensional curvili-
near coordinates.



CHAPTER III

NUMERICAL FORMULATION

The governing equations for both the nonlinear and linearized cases can be written in the

form

where Q.= Q, $ = F, (j = G, W, = H and $ = 0 correspond to the nonlinear case, a = Q' , % = F', Q = G' ,

36 = H' and $ = 0 correspond to the linearized (time domain) case and Q. = QQ, 9 = FQ, Q = GQ, Dt =

#0 and y = -MO-QQ correspond to the linearized (frequency domain) case. These governing equations

are hyperbolic in time and can be solved by a time-marching technique.

3.1 Discretization of the Governing Equations

A finite volume semi-discretization of Equation (3.1) may be written as

aa , *i 9= , 6J 9 a* K _ f ,3 2)
- a F + ^ F + ^ + ^ r - * ( }

where

(5* (.) = (.).+1 - (.),_!
2 2

and 1,7, & denotes a finite volume (cell) center. The * ± 1/2 denotes a cell interface and the depen-
dent variables are assumed to be constant within each computational cell. In the curvilinear trans-
formation the terms A£, At] and A£ can be set equal to one and Equation (3.2) can be written as

^ = -<& (3.3)
at

where

3.2 Flux formulation

The governing equations are hyperbolic in time, hence any flux formulation process should re-
spect the direction of information propagation as dictated by the eigenvalues (upwinding). The ap-
proach used in this research is due to Roe [5] . It is based on a one-dimensional analysis of the Riemann
problem, the idea being to solve an approximate Riemann problem exactly at each interface. The rest
of this section is devoted to the development of formulas (first and second order spatial accuracy) for
the fluxes at the cell faces for both the nonlinear and linearized Euler equations (time & frequency do-

main).



3.1.1 Flux formulas for nonlinear Euler equations

Details of the development of flux formulas (first and higher order) for the Euler equations are
available from a variety of sources [5] [6] [7] [8] [9] . In particular, the formulation used in this research
can be found in [6] .

3.1.2 Flux formulas for linearized Euler equations (time domain)

Since the nonlinear unsteady Euler equations were solved using a high-resolution scheme
based on Roe's approximate Riemann solver, it is logical to use a similar formulation for the linearized
equations. The details of the linearization are available in [10]. The final form of the linearized flux
formulation is:

6F' = F'R-FL = A(qR,qL,M^ (QR - QL) (3.4)

where an overbar -indicates a mean-flow quantity and a prime indicates a perturbed quantity. The
perturbed flux at any face can then be computed as

a r W (3'5)

where

aj = strength of the jth wave = I • dQ

X = jth eigenvalue of A(qR, q^ M^)

I ,r® = jth left and right eigenvectors of A(qR, q~L, Mp, respectively

MI = Vector of metrics = [£*,£?, £2>£t]
r

Q' = Jq' + J'q

' = Q'R - QL

and 2~ denotes summation over the negative wave speeds. As can be seen from Equation (3.5), F' ^

needs to be computed in order to evaluate F' . .. This can be achieved through a linearization of the
l +2

flux vector, i.e.,

FL = FL + J' A(gL,Mp qL + JA(qL,M^ q' L +

where

** - I and R(QL,M,) =

Noting that the flux (FL) can be written as a sum of a mean and a perturbation results in the follow-

ing definition for F' ^.



FL' = J' A(qL,M^) qL + J

Q'L

q'L + J R(qL,

M£)M I (3.6)

Similar formulas can be written for computing G' and H', thus extending this formulation to
multiple-dimensions. Higher order fluxes are computed in a manner similar to the nonlinear fluxes
and limiters are used to suppress spurious oscillations.

3.1.2 Flux formulas for linearized Euler equations (frequency domain)

Substituting for the "primed" quantities in Equations (3.5) and (3.6), we have

where

Further,

and F0 =

th

(3.7)

dj = strength of the jth wave = I • dQQ

A = jth eigenvalue of A

— jth left and right eigenvectors of A , respectively

= QR -

= M£ exp(jcor)

Q, yo, gzo, ; f 0

where £XQ etc. are complex numbers and represent the harmonic deformation of the grid due to the

vibration of the body. Formulas similar to F' can be written for G' and H' also. Higher order accu-
rate fluxes are computed using simple extrapolation. Limiters are not used because using them
introduces nonlinearities which prevent certain simplification from being made.



CHAPTER IV

SOLUTION PROCEDURE

In this chapter, time discretization of Equation (3.2) is carried out. A broad class of difference
schemes for advancing the solution in time is given by

Some of the implicit time differencing schemes represented are three-point backward (9 = 1, V = 1/2),
backward Euler (6 = 1, V = 0), and trapezoidal (9 = 1/2, V = 0). Accounting for deforming grids [10]
results in

' + q"
(4-2)

where q is the Cartesian dependent variable vector. Rewriting Equation (4.2) in operator form and
applying Newton's method (for time accuracy) to the resulting equation, we have [10] (for the nonlin-
ear Euler equations)

+ dM+ • + 6M~ - Aqn + l'm = - RHS(qn+l'm) (4.3)

where

6 At
- qn\ - I[(0 - 1)R» - 6Rn+l'M}

"L

and m represents the Newton iteration parameter. Adopting the same approach for the linearized
Euler equations (time-domain) results in

\ 0 ^ ~ At1 + 6^+ ' + 6™~ \ A(l'n + l'm = ~ RHS(q'n + l'm) (4.4)

where the overbar for the Ms implies mean flow based quantities and

= jj-[q'n+1'm ~ q"1} ~ y-^— [ (9 - l)R'n - O



The linearized (frequency domain) Euler equations are solved using local time stepping and
Newton's method need not be used (since we desire only steady-state solutions). The discretized fre-
quency domain equations can be written as

?o = - R»W (4-5)

where R0 is the complex residual. The 6M* in all these equations can be defined as

6M+ • = d :A+ • + 6: B+ • + dk C+ •
I J K

6M~ • = 6, A' • + 6, B~ • + 6h C~ •
I J K

4.1 Choice of Flux Jacobians

The flux Jacobians can be obtained from the flux vector split (FVS) form of the flux difference
split (FDS) form. The final form of the Jacobians using these two formulations are:

= , ^ , =

FDS:

dF. !\ dG ^ dH
B± = J+*\ c± =

where p = 0 for M+ and p = 1 for M~ and m is the Newton iteration parameter.

4.2 Solution of Linear Systems

Equations (4.3), (4.4) and (4.5) can be written in a general form as

( L + D + U ) x = b . (4.6)

where L is strictly lower block triangular, D is block diagonal and U is strictly upper block triangular.
This system defined by Equation (4.6) can be solved using the "N-Pass" algorithm. The "N-Pass"
algorithm can be viewed as a relaxation scheme based on the symmetric Gauss-Seidel algorithm:

( L + D ) x l + U x ° = b ]
D + 2 + L X i = lst Pass

(4.7)

( L + D ) re2*'1 + U xw~2 =61
( D + U ) x™ + L x™-1 = b } Nth Pass



with x° = 0. The nature of L, D and U can be exploited to reduce the number of matrix-vector multi-
plications to be carried out [10].
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CHAPTERV

BOUNDARY CONDITIONS

The problem of determining a solution to a partial differential equation when both initial and
boundary data are present is called an initial-boundary value problem [11]. The solution to the Euler
equations on finite domains falls under this category of problems. Boundary conditions are vital in de-
termining the success or failure of a CFD code. Incorrect boundary conditions can often lead to wrong
solutions or at least drastically alter convergence rates. Boundary conditions (EC's) can be classified
into three major categories: 1) Far field EC's (inflow/outflow) 2) Solid wall EC's (no flow across a surface)
3) Block-to-block EC's (transfer boundary conditions).

The Euler equations are hyperbolic in time. This means that the characteristics determine the
direction of propagation of information from or to the boundaries. Therefore, it is only natural to use
a formulation based on characteristic variables to determine the physical and numerical boundary
conditions to be imposed at any given boundary. The formulation and implementation of far field condi-
tions for steady flows is identical to that used in [12] and will not be repeated here.

This chapter is divided into four sections. The first section deals with the development of non-
reflecting far field boundary conditions for unsteady flows (time domain) as well as for the frequency
domain. Sections 2 and 3 deal with development of impermeable wall EC's for nonlinear and linearized
flows respectively. The last section explains the multi-block strategy for the unsteady (time domain)
cases and how the computations can be performed in just one grid block for the frequency domain cases.

5.1 Non-Reflecting Boundary Conditions

The two-dimensional Euler equations (Cartesian coordinates) in nonconservative, quasilinear
form can be written as

+ a < f + b =
dt dx (5.1)

where U = (Q,u,v,p)T an

a =

'u Q 0 0"

0 u 0 i

0 0 u 0
0 yp 0 u

b =

'v 0 Q 0"
0 u 0 0
00 v 1

0 0 v

Equation (5.1) can be linearized to yield (for small perturbations):

dU' , dU' , dU1

I (5.2)

where
17' = \e',u',v',P']T

and a and 6 are constant coefficient matrices based on the steady flow variables. Non-dimensional-
ization of Equation (5.2) results in:

'u I 0 0^1 fv 0 1 0"
0 H 0 1 , O u O O

0 0 v 1
0 0 1 v

a = 0 0 u 0
0 1 0 u

b =

A Fourier analysis of Equation (5.2) (as described in [13]) yields a set of (four) eigenvectors repre-
senting an entropy wave, a vorticity wave, an upstream running pressure wave and a downstream

11



running pressure wave. Based on this analysis, the characteristic variables for unsteady flows can be
written in terms of the perturbation variables as:

'- 1
0
0
0

0
0
1
- 1

o r
1 0
0 1
0 1

V
du
6v
dp

(5.3)

where dg, du, dv and dp are the perturbations from the mean flow and the q 's are the characteristic
variables. Using these eigenvectors and assuming locally one-dimensional flow at the boundary, the
boundary condition, expressed in terms of the characteristic variables is simply

cn = 0

for all n corresponding to incoming waves. This means that, for subsonic inflow, the amplitudes of
incoming unsteady characteristics (cj, 02, 03: assuming co-directional inflow) are set to zero and the
outgoing characteristic is computed using Equation (5.3). For subsonic outflow, c4 = 0 (again, assum-
ing co-directional outflow) and the remaining characteristics are computed. Once the characteristics
are known at theinflow as well as outflow boundaries, the perturbations can be determined using an
inverse transform.

The primitive variables can now be calculated because the perturbations from the mean flow
(i.e., dg, du, 6v and dp) are known. Once the primitive variables have been determined, the conserved
variables can be calculated. The strategy for the frequency domain case is very similar to that described
here because the governing equations can be cast in terms of the nonconserved quantities, thereby
yielding a set of equations identical to (5.2) except that the primed quantities are replaced by the corre-
sponding complex quantities.

5.2 Solid Wall Conditions for Nonlinear Euler equations

Casting the non-conservative form of the nonlinear, Euler equations into characteristic vari-
able form and assuming locally one-dimensional flow results in

dT
+

dk
= 0 k = £ ,rj or (5.4)

where W^ are the characteristic variables. The details of the derivation and implementation are
available from a variety of sources including [4], [12], [14] etc.

5.3 Solid Wall Conditions for Linearized Euler Equations

The linearized Euler equations can be written as

I
h =1,77 and?

- 0 (5.5)

where an overbar indicates a mean quantity and a prime a perturbation (a real number for time do-
main and a complex number for frequency domain) and K = A for k = £, K = B for k = rj and K = C for
k = £, A, B and C being the flux Jacobians in the £, 77 and £ directions respectively. Casting Equation
(5.5) into characteristic variable form and assuming locally one-dimensional flow yields

dr

where

dW,
1 dk

= 0 (5.6)

12



*Y = T-I Q' =
and

The subscript 0 (zero) indicates a reference condition. An impermeable surface is characterized
by zero normal velocity. Therefore, the first three eigenvalues are zero, the fourth positive and the fifth
negative. Using this in Equation (5.6) yields

(w'kil)b = (w'k>l)r (5.7)

(">'*.2>6 = ^'*A (5.8)

Wkjb = Wkjr (5.9)

[kxu + kyu + kzw + kt]b = 0 (5.10)

Wkjb = Wkjr (5.11)

or

(w'k£b = (w'k>5)r (5.12)

where the subscripts b and r denote boundary and reference values respectively. In this case, the
reference value is chosen as the center of the first cell off the boundary. If the point r is in the positive
k direction from the boundary, Equation (5.12) is used, otherwise Equation (5.11) is used. Equations
(5.7) through (5.9) are imposed conditions, i.e., they help in obtaining a set of five simultaneous equa-
tions that can be solved. Note that even though Equation (5.10) is written in terms of total quanti-
ties, a perturbed form of the same is used in the solution process. This is because the rest of the
equations are in perturbed form. This system of equations (real or complex perturbations, but with
real coefficients) is solved for the perturbations at the boundary.

5.4 Block— to— Block Boundary Conditions

Figure 5.1 represents a single grid block used for calculations with steady flows and flows with
in-phase blade motions. All the cases considered in this study involved cascades. The boundaries that
extend upstream and downstream of the airfoils are called periodic boundaries. Therefore, a periodic
boundary condition is imposed between lines A-B and E-F, and C-D and G-H.

Periodic Boundaries

D

Figure 5.1 Periodic boundaries in a typical cascade
For harmonic blade motions with constant phase difference (interblade phase angle, o) between

adjacent blades, multiple blade rows (N of them) are required to simulate the flow field. The number
of blade passages required for arbitrary o is given by N = smallest integer {( 360/a ), 3607(360 - a)}.

13



For example, for a = 180°, two grid blocks are required. For the frequency domain case, multiple grid
blocks are unnecessary because a phase shifted boundary condition can be applied at the periodic
boundaries thereby enabling computations to be performed in just one grid block.

14



CHAPTER VI

RESULTS

Various test cases were used to validate the applicability of the present method for solving
problems involving aeroelastic and aeroacoustic phenomena. The test cases selected cover a wide
range of geometries as well as flow conditions. This chapter is divided into three main sections. The
first section deals with uniform mean flows, while the second one deals with nonuniform mean flows
(flows with blade loading). The last section discusses the performance of the linearized solver with
respect to the nonlinear solver. In both cases, the unsteadiness in the flow field is due to blade mo-
tion. The blades oscillate according to:

hy = sin(cat + o)

a = a0 sin(wt 4- a)

for tangential (plunging) motion

for torsional (pitching) motion

where /i<jy and OQ are the respective amplitudes, <o the circular frequency of oscillation and a the inter-
blade phase angle.- These oscillations are captured using a locally deforming grid technique [10].

As a part of the code validation process, linearized results are compared with linear theory for
a cascade of flat plates. Linearized Euler computations are also compared with nonlinear Euler solu-
tions for a cascade of airfoils, for which no theoretical results are available. The computations typically
required 4 cycles of motion with 200 time steps/cycle (for time domain) and 200 pseudo time steps (for
frequency domain) to reach a periodic/steady state. A schematic of a typical two-dimensional cascade
defining various terms used in this chapter is shown in Figure 7.1.

Flat plates/airfoils

J
oo y = Stagger Angle a = Angle of attack

s/c = Gap to chord ratio Moo = Freestream Mach number

Figure 7.1 Schematic of a typical cascade

7.1 Uniform Mean Flows

For the set of cases considered in this section, the mean flow is uniform, i.e., the cascade under
consideration is made up of infinitely thin flat plates and is at zero degree angle of attack. For these
cases, theoretical results ([15],[16]) for supersonic as well as subsonic axial flows are available, hence,
they form a basis for the validation of the present method. The computer program of [15] is based on
the theory developed by Lane [17]. Unless otherwise mentioned, all computations were performed on
a 71x51 H-grid, with 50 points on either face of the flat plate.

15



7.1.1 High solidity cascade, Plunging motion,

Linearized results (time domain) are first compared to available theoretical results for a high-
solidity cascade with a supersonic axial flow. The cascade is oscillating in plunge, has a gap-to-chord
ratio of 0.311 and a stagger of 28°. The freestream Mach number is 2.61, the interblade phase angle
is 90°, and the reduced frequency (K) based on semi-chord is 0.5. The maximum CFL used was 5. As
can be seen from Figure 7.2, excellent agreement is seen between theory and the linearized solver (time
domain). The location as well as the strength of the real and imaginary parts of the discontinuities are
captured accurately by the linearized solver.

0.5

o> 0.0
o

i
i
Q

§
1 -0.5

-1.0

-1.5

Theory[15]
1 Linearized Euler

Real

Imaginary

0.0 0.2 0.4 0.6
Distance Along Chord x/c

0.8 1.0

Figure 7.2 Unsteady pressure difference on a flat plate cascade due to plunging
motion (M00=2.61/ s/c=0.311, Y=28°, K=0.5 and a = 90?)

7.1.2 Low solidity cascade, Pitching motion, M^O.8

This case involves a cascade oscillating in pitch at a reduced frequency of 1.5 with an interblade
phase angle of 270°. The cascade geometry is identical to that used in the previous test case and the
free stream Mach number is 0.8. A higher resolution grid (121x41) was used in this computation and
the maximum CFL was 3.25. The comparison is shown in Figure 7.3. The computed results (time do-
main) are in good agreement with the theoretical predictions.

7.2 Nonuniform Mean Flows

Nonuniformity in a mean flow field can be caused either by the cascade being at an angle of at-
tack or by the cascade being composed of airfoils (not infinitely thin flat plates) or a combination of the
two. Since the mean flow is not uniform any more, it needs to be computed. This is done using the high

16



b
§

OS

I

• Linearized Euler (121x41)

-10.0
0.2 0.4 0.6

Distance Along Chord x/c
0.8 1.0

Figure 7.3 Unsteady pressure difference on a flat plate cascade due to pitching
motion (M^O.8,8/0=1.0, Y=45°, K=1.5, o = 270° and pitching axis

@ 30% chord)

resolution, flux difference split, time-marching solver, which upon convergence yields the required
steady state/unsteady (periodic) mean flow field. All steady flow computations were performed on a
single block grid, while the unsteady calculations required multiple grid blocks depending on the inter-
blade phase angle. The frequency domain computations were performed om a single block grid. This
rest of this section deals with the so called 10th standard configuration.

The 10th standard configuration (10th std. cfg.) consists of a cascade of modified NACA 0006
airfoils. The gap-to-chord ratio is 1.0 and the stagger angle is 45°. All computations were performed
using a 121x41 H-grid, with 60 points each on the pressure and suction surfaces. The maximum CFL
used in the steady mean flow computations was 5000 (with local time stepping), while for the unsteady
cases it was 85. The cascade geometry and the multi-block grid used in the computation is shown in
Figure 7.4.

7.2.1 Tenth standard configuration: Subsonic case

The cascade is in a flow with M00=0.7 and at a 10° angle of attack. The mean flow through the
cascade is subsonic and reaches a maximum Mach number of 0.92 on the suction surface. A back pres-
sure (ratio of Pexit to ptotal) of 0.87 was used to achieve the required Mach number (0.7 in this case) at
the inlet. It was also observed that the back pressure required was a function of the configuration being
considered as well as the grid used for the computation. The steady pressure distribution for this case
is shown in Figure 7.5. For the unsteady calculations, the cascade is set into motion in plunge or pitch.
The amplitudes of plunge and pitch are 1% chord and 1° respectively. These cases are considered next.

Plunging motion. K = 0.6435. a = -90°:

The cascade is oscillated in plunge at a semi-chord reduced frequency of 0.6435 and an inter-
blade phase angle of-90°. The real and imaginary parts of the first harmonic of the unsteady pressure
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Figure 7.4 Cascade geometry and multi-block grid used in computation

Figure 7.5 Steady pressure distribution for subsonic 10th standard
configuration cascade
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distribution are shown in Figure 7.6 and Figure 7.7 respectively. As can be seen from these two figures,
the agreement between the linearized and nonlinear solution is very good.

o Frequency Domain
D Linear (Time Domain)

o o Nonlinear

1in

a
<P

DC

0.4 0.6
Distance Along Chord x/c

Figure 7.6 Real part of unsteady pressure distribution on subsonic 10th std.
cfg. due to plunging motion (K=0.6435, o=-90°)

7.2.2 Tenth standard configuration: Transonic case

The second case is a transonic cascade (M^O.8, a=13°). This case is characterized by a fairly
strong in-passage shock. A back pressure of 0.87 was found to be sufficient to achieve the required
Mach number of 0.8 at the inlet. The pressure distribution for the transonic case is shown in Figure 7.8.
The unsteady cases are considered next.

Plunging motion. K = 0.6435. a = -90°:

The cascade is pitching at a reduced frequency of 0.6435 and an interblade phase angle of-90°.
Figure 7.9 shows the real part of the unsteady pressure distribution, while Figure 7.10 shows the imag-
inary part of the same. As can be seen from these two figures, reasonably good agreement is achieved
between the nonlinear and linearized Euler solutions. It was observed that for the cases considered,
the linearized solutions were scalable with respect to the amplitudes of pitch or plunge as the case may
be, but the nonlinear solutions exhibited a dependency on the amplitudes used (mainly near disconti-
nuities).

6.4 Comparison of the Various Approaches Used

The linearized (time-domain) code required about 14 minutes of CPU time (for a 4 block, 121x41
grid) on a CRAY-YMP to reach a periodic state. For the same problem, the nonlinear code required about
20 minutes of CPU time. The linearized (frequency domain) code, on the other hand, required only
about 1 minute of CPU time (Note that computation in the frequency domain case requires only 1 grid
block).
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Figure 7.7 Imaginary part of unsteady pressure distribution on subsonic 10th
std. cfg. due to plunging motion (K=0.6435, o=-90°)
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Figure 7.8 Steady pressure distribution for transonic 10th standard
configuration cascade
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Figure 7.9 Real part of unsteady pressure distribution on transonic 10th std.
cfg. due to plunging motion (K=0.6435, o=-90°)
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Figure 7.10 Imaginary part of unsteady pressure distribution on transonic
10th std. cfg. due to plunging motion (K=0.6435, o=-90°)
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CHAPTER VII

CONCLUSIONS

Two linearized Euler solvers (time and frequency domain) based on a high-resolution flux
difference split scheme have been presented. The linearized equations are maintained in conserva-
tion law form and the same solution procedure is used to solve the nonlinear as well as the linearized
equations. Newton subiterations helped improve time-accuracy of both the nonlinear as well as the
linearized (time domain) solutions.

The results presented in Chapter 6 prove the feasibility of using the present approaches in solv-
ing small amplitude aeroelastic and aeroacoustic problems. Though it has not been tested, no practical
difficulties are anticipated in extending this method to three-dimensional problems. The present meth-
od performs well over all flow regimes, i.e., subsonic, transonic and supersonic, and various cascade
configurations.

As anticipated, the frequency domain based method yields significant performance improve-
ment without any degradation in the quality of the solution, thus making it a valuable design tool.
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