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At visible to infrared wavelengths, interaction of electromagnetic radiation with a
particulate medium involves a combination of reflection, absorption, scattering, and
emission processes, each dependent on the geometry of the interaction, the physical
character of the surface, and the wavelength of radiation being analyzed. Approximate
analytic expressions provide a useful framework to evaluate individual components and
their potential effects on spectral features.

Chapter contributed by Bruce Hapke.

IrK'his-Ghapter the theory in which either or both
reflected sunlight and thermally emitted radiation con-
tribute to the power received by a detector viewing
a particulate medium, such as a powder in the
laboratory or a planetary regolith, is considered theo-
retically. This theory is of considerable interest for the
interpretation of data from field or spacecraft instru-
ments that are sensitive to the near-infrared region
of the spectrum, such as NIMS (near-infrared mapping
spectrometer) and VIMS (visual and infrared mapping

_spectrometer), as well as thermal infrared detectors.
Ex-p©ni mental andjob^ej^a.tional techniques and^re-
sults are discussed extensively in several other chap-
ters -in this-book.

There exists a large body of literature that treats
radiation transfer in planetary and stellar atmospheres
(e.g.,Chandrasekhar, I960;Goody, 1964;Sooe/ov, 1975;
Van de Hulst, 1980), but it has not been widely recog-
nized until recently that models based on the equation
of radiative transfer also apply to powdered materials
in which the particles are closely spaced. However,
the exact theories require the solution of nonlinear
integral equations. Since in most cases the absolute

radiance received and the particle scattering proper-
ties of the surface being investigated are poorly known,
exact theories are not necessarily more useful, and are
much less convenient, than approximate analytical
solutions.

Theoretical treatments of reflectance or emittance
from a particulate medium have been published by
Vincent and Hunt (1968), Conel (1969), £ms//e and
Aronson (1973), Lumme and Bowell (1981), and Hapke
(1981, 1986). However, the situation when both re-
flectance and emittance contribute to the received
signal has not been discussed. Also, most theories of
emittance by powders derive only the hemispherically
integrated radiance, whereas it is the directional
emittance that is measured from spacecraft.

In this chapter the author's reflectance model
(Hapke. 1981, 1986) is extended to include the effects
of thermal radiation. The general approach and as-
sumptions on which that reflectance model is based
also apply here. The particles of the medium are
assumed to be larger than the wavelength, irregular
and randomly oriented and positioned, so that coher-
ent and near-field effects in the radiation scattered
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LIST OF SYMBOLS

AA: surface area
Aa: detector area
B: Planck emission function
B0: constant term in emission function
B(: coefficient in emission function
b. opposition effect function
b0: amplitude of opposition effect
BRDF: bidirectional reflectance distribution function
c: speed of light
D: particle diameter
E: volume extinction coefficient
e: angle of observation
F: volume emission coefficient
f: filling factor
G: volume angular scattering coefficient
g: phase angle
H(w,x): H-function
h: Planck's constant
I: radiance
i: angle of incidence
J: incident irradiance
j: subscript indicating type of particle
K: volume absorption coefficient
k: opposition effect width parameter
L = EA: dimensionless emission scale height
n: number of particles per unit volume
p: average particle angular scattering function
Qa: absorption efficiency
Qe: extinction efficiency
Qs: scattering efficiency

r: distance from detector
rdd: bidirectional reflectance
rdh: directional-hemispherical reflectance
rhd: hemispherical-directional reflectance
rhh: bihemispherical reflectance
S: volume scattering coefficient
s: distance
T: temperature
u = Ez: dimensionless distance
V: volume in medium
v: volume of particle
w: single scattering albedo
z: altitude

y = v I - w: albedo factor
c. emissivity
ed: directional emissivity
eh: hemispherical emissivity
<j>: emitted integrated flux
(p: hemispherically integrated flux
6. polar angle
A: thermal emission scale height
A: wavelength
p: cose
H0: COSi

a. particle geometric cross section
(I. direction
dfl: increment of solid angle
Aoi: solid angle of detector

between particles can be neglected. An approximate
solution for the emergent radiance based on the two-
stream approximation to the equation of radiative
transfer will be derived.

Two important omissions from this model are
the effects of large-scale surface roughness and the
neglect of polarization. The changes that roughness
causes to the reflectance are examined in Hapke
(1984), but the analogous theory for emittance is much
more difficult and is beyond the scope of this chapter.
A recent treatment is that of Spencer (1990). The
neglect of polarization greatly simplifies the deriva-
tions and can be partially justified on the grounds that
large, irregular, dielectric particles do not polarize light
strongly by scattering.

2,1. DERIVATION OF THE
EMITTED RADIANCE

The geometry of the model is shown schematically
in Fig. 2.1. The plane surface z = 0 separates an empty
half-space z>0 from a half-space z<0 filled with

particles. The medium is illuminated by a collimated
irradiance J; the direction to the source makes an angle
i with the upward normal to the surface. The medium
is observed by a detector whose line of sight, as seen
from the surface, makes an angle e with the normal.
The phase angle between the source and detector is
denoted by g. The detector has sensitive area Aa and
accepts radiation from within a solid angle Aw. Let

and

= cose

Mo = COSI

(2. la)

Assume that the medium is made up of different
types of particles denoted by subscript j. The particles
may differ because of size, composition, or other
characteristics. Then the extinction, scattering, and ab-
sorption coefficients of the medium are respectively

E - (2.2a)
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z=0

Fig. 2.1. The geometry of the model.

(2.2b)

(2.2C)

In these equations nf is the number of particles of type
j per unit volume, at is the rotationally averaged geo-
metric cross-sectional area of the jth type of particle,
and Qej, Qsj, and Qaj denote their extinction, scattering,
and absorption efficiencies, respectively.

If a particle is large compared with the wavelength
X and is isolated, then Qej = 2. However, when the
particles are so close together that they touch, the
diffracted light must be regarded as associated with
the holes between the particles rather than with the
particles. Because the particles are close together the
light diffracted by the holes does not have sufficient
space to spread appreciably before encountering a
particle and therefore cannnot be distinguished from
the incident, unextinguished light. Hence, for particles
close together, Qej = 1.

Denote the angular scattering functions of each type
of particle by Pj(g), where Pj(g) is normalized so that
its integral over all solid angles is equal to \ir, and
the emissivity of a particle of type j by ty Then the
angular scattering coefficient of the medium is

(2.2d)G(g)=

and the emission coefficient is

F - (2.2C)

The efficiencies and angular scattering functions of
isolated particles are treated theoretically in several
places (e.g., Van de Hulst, 1957; Kerker, 1969; Bohren
and Huffman, 1983). Except for Qej, these quantities
do not change appreciably when the particles are close
together (Hapke, 1981). Since Qsj -I- Qaj = Qej, then S +
K = E. In general, E, S, K, G, and F are functions of
wavelength X.

Let the volume of particles of type j be Vj. Then the
filling factor, or fraction of the volume occupied by
solid matter, is

f = (2.20

and the porosity is 1 - f. Strictly speaking, the densities
nf in equations (2.2a-e) should actually be replaced
by the effective density -n j ln( l - f ) / f (Hapke, 1986);
however, this distinction will be found to have no effect
on the final form of the equations except for the
opposition effect, which will be discussed separately
below.

Define the average properties of the medium as
follows

average single scattering albedo,
w = S/E = [ S n C T (2.3a)

albedo factor,
y— \/l-w

average particle angular scattering function,
p(g) = G(g)/S = [ZjnjajQsjpjteH/lZinjajQs,]

average particle emissivity,
e = F/E = [ S n O T

(2.3b)

(2.3C)

(2.3d)

In general, the parameters w, y, p(g), and t are all
functions of X. Furthermore, it can readily be shown
that tj = Qaj, so that

and

; = K/E= l -w=7 2

(2.3e)

(2.30

Although the detector appears to be examining an
area AA located on the apparent surface a distance
R from the detector, it is actually receiving radiation
from all the particles below the surface within the cone
Aco. Consider an increment of volume dV = r2drAo>
located at depth z below the apparent surface and
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a distance r from the detector. There are three con-
tributions to the power received by the detector from
dV: (1) radiation from the source scattered once by
the particles in dV into the direction toward the
detector; (2) radiation thermally emitted by the par-
ticles in dV toward the detector; and (3) radiation that
has been emitted or scattered at least once, impinging
on the particles in dV and being scattered toward the
detector. After the radiation emerges from dV it is
exponentially attenuated as it traverses the medium
on its way to the surface.

Thus, the power received by the detector can be
written mathematically in the following form

AP=/ B(T)

r = R

/ "
4n-

GO

L
.wf I(z,n')p(g')dn']e~E|2|/M Er2drAw—^r (2.4)

J J 47rr2

+ 4tB(T) +

where B(T) = is the Planck blackbody thermal emis-
sion function

2rrhc2 . ., T .
B(T)= r- (e^"7-!)-'

T(z) is the temperature, h is Planck's constant, c is
the speed of light, K is Boltzmann's constant, I(z,H)
is the radiance in the medium at position z traveling
into direction ft of radiation that has been emitted
or scattered at least once, and g is the angle between
directions ft" and (1 Note that B(T) is the power emitted
per unit area, so that the power emitted per unit area
per unit solid angle is B(T)/7r. Equation (2.4) assumes
that the emittance of each particle is isotropic, which
will be true for an ensemble of randomly oriented
particles even though they may not necessarily scatter
isotropically.

Now, the reciprocal of E has units of distance and
is known as the extinction length. Let

u = Ez (2.6)

the apparent surface measured in units of the ex-
tinction length. Then, since dr = -dz//*. the radiance
at the detector emerging from the surface can be
written

= — f [jwp(g)eu/"°
I

•f L
AaAw An

w T I(u,ft')p(g')dfrleu/'' — (2.7)

4ir

where.it has been explicitly recognized that z and u
are negative over the integral.

Since the temperature is a function of altitude z,
the thermal emission function B(T) is also a function
of z and can be written B(z). Expression (2.7) will be
evaluated under the condition that B(z) can be ap-
proximated by

B(z) = B0 + B,e"|z|/A

or

B,e~|u|/L

(2.8a)

(2.8b)

where A is a thermal emission scale height, and L =
EA. Both B0 and B, are functions of X. This expression
is sufficiently general that it can describe a subsurface
temperature distribution containing a thermal gra-
dient, yet is simple enough that an analytic solution
can be obtained using the two-stream method. For

(2.5) instance, B(0) = B0 + B,, B(-°°) = B0, and (dB/dz)\

The first two terms in the integrand of equation (7)
can be evaluated directly. The two-stream approxi-
mation to the equation of radiative transfer will be
used to evaluate the third term. Including a collimated
source and thermal emission, the equation of radiative
transfer is

ds V
4ir

4rr

that is, u is the dimensionless altitude above or below

where ds is an increment of length in the direction
ft. This equation describes the changes dl that occur
as a ray of radiance 1 traverses a distance ds parallel
to direction O in a medium that scatters, absorbs, and
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emits. The first term on the right describes the energy
removed from the beam, the second and third terms
describe the energy added by scattering, and the last
term describes the contribution of thermal emittance.

Let 6 be the angle between the upward normal and
ds (Fig. 2.2), so that ds = dzsec0. Dividing through by
E and putting du = Edz, the radiative transfer equation
can be written in the form

COS0
dl(u,n>

du

w /'
4»r

, 2w . -y
— P(g)eu/"° + — B(u)
4?r TT

(2.9)

Now, the third term in the integrand of equation (2.7)
refers to the multiply scattered component of the
radiance field in the medium. This term will be much
less sensitive to p(g) than the first term, as can be

seen by the following. Suppose p(g) scatters light much
more strongly in the backward direction than in the
forward. Then I will be stronger in the upward direction
than if p(g) were isotropic; however, this excess will
be preferentially scattered downward when I interacts
with p(g), so that the effects of the anisotropy on the
third term will approximately cancel each other.

Hence, in the first approximation, provided the de-
partures from isotropy in p(g) are not too great, in
equation (2.7) we may put

(2.10)

where I| (u,H) is the solution of equation (2.9) for iso-
tropic scattering. If the scatterers are isotropic, p(g) =
1, and equation (2.9) is

cose
w

du
= -ij(un') + — r

/
J

dz
ds

l+dl

Fig. 2.2. The equation of radiative transfer describes the
changes dl that occur in the beam of radiant energy as it
traverses the cylinder of length ds.

w
J —

4;r
B(u) (2.11)

Using the two-stream method for solving equa-
tion (2.11), the equation is integrated separately over
the upward-going and downward-going hemispheres,
and I; is replaced by its appropriate average in the
integrals. Thus, let <£u and 0D be the integrated power
per unit area traveling into the upward and downward
directions, respectively

ir/2

| Ii(un')dfr = I= Ii(un)27rsin0d0

ftu 0

</>D(U) = r Mutton-=r= I Ii(un)27rsin0d0

7T/2

Then the average upward and downward radiances
are <I>u = </)U/27r, and <I>D = <t>D/2n. Integrating
equation (2.1 1) over Clu, the upward hemisphere of H,
and replacing I by its appropriate average gives

d$n(u)
— -

du

w
-
2

w
j_ (2.12a)
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Doing the same over flD gives

1 d«fo(u)
2 du

w
J—

w
+ —

2

2y2B(u)

+

(2.12b)

The solution of equations (2.12) is facilitated by
letting

(2.13a)

(2.13b)

or

= [<£ + A0J/2 (2.13c)

(2.13d)

or

1 dd>
0(0) + -- r(0) =

2 du
(2.16c)

The solution of equation (2.15) with B(u) of the form
of equation (2.8) and these boundary conditions is

= A,e2l(U A4eu/L

where

A, = --,
1 +7

+ 2Mo

(1 +
2Ly2

(2. 1 7)

• + 460 +

(2.18a)

Adding (2.12a) and (2.12b) gives A2 = Jw

2 du

and subtracting gives

— — — - A
2 du

Differentiating (2.14b) gives

1 d2<ft_
2 du2" du

Substituting this result into (2.14a) gives

~
2 du2

(2.14b)

= - y2^ + Jweu/"° + 47
2B (2. 1 5)

The boundary conditions on <f> are that the radiance
vanishes at u — -°°

4>(-°°) — 0 (2.l6a)

and that there are no diffuse sources above the surface,
so that

(0) = [<*>(0)-A<2>(0)]/2 = 0 (2.l6b)

, ,

4 Mo 7 -

A4 = .
4L272 2

x,2 24L272 -

(2.18C)

(2.18d)

Now, in the two-stream approximation, ^ljdn' = <£.
Using equation (2.10) and inserting equation (2.15)
into equation (2.7) gives

2

Ki,e,g) = — f Ijwlp(g) - 1 ]eu/"° + 0 - ̂  — )eu/"°du
47T/LlJ [ 4 dU J

Inserting equations (2.17) and (2.18) into this last
equation and integrating gives

: J Jw(p - 1) ( 1- -)
4;TM Mo M

A, + -)•' +
4MQ2 - 1 J_ i .,

4 Mo2 Mo M

4L2 - 1 1 1
A3M + A4 A , (- + -)

4Lr L M

which, after a modest amount of algebra, can be put
into the form
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W
(i,e,g)=J —

4?r Mo
[p(g) + H(W,Mo)H(W,M) -

Thus, the final form lor the radiance received by the
detector is

B, L .
72H(w,L)H(w,M)] (2.19)

7T L +p.

where

H(w,x) =
1 +2x

27X
(2.20)

More rigorously, the H-function defined by equa-
tion (2.20) is actually an analytic approximation to a
function defined by the integral equation

w
H(w,x)= 1 + — xH(w,x)

i

/
H(w.y)

x +y
dy (2.21)

The values of this function are tabulated in Chandra-
sekhar (1960). The differences between the H function
defined by equation (2.21) and the approximation
(2.20) are in all cases less than 4%, which is adequate
for most remote-sensing applications. Also, it can
readily be shown that

i

/
H(w,x)dx =

1 +7
(2.22)

One further phenomenon must be considered when
the medium is illuminated by a highly collimated
source: the opposition effect. This effect is a sharp peak
in the brightness of the scattered radiance at zero
phase angle due to the hiding of extinction shadows
by the particles that cast the shadows. It occurs only
when the particles are large compared to the wave-
length, and acts only on the singly scattered part of
the radiance. Its derivation is beyond the scope of this
chapter, but is discussed in detail in Hapke (1986). The
result is that p(g) must be multiplied by a term of the
form 1 + b(g), where

b(g) = +( i /k ) tan(g /2)
(2.23)

b0 is the amplitude of the opposition effect and k is
its angular half-width. These two parameters depend
on the nature of p(g), porosity, and particle size dis-
tribution, and are discussed extensively in Hapke
(1986).

W
l(i ,e,g)=J —

4?r + (l/k)tan(g/2)

7T L +
(2.24)

Equation (2.24) describes the directional radiance
of a particulate medium illuminated by a collimated
source and with a thermal emission function that can
be approximated by a constant term plus an expo-
nentially decreasing term. This radiance is the quantity
that would be measured by a field spectrometer or
by a detector on a spacecraft. In equation (2.24), the
first term on the righthand side describes the scattered
radiance received by the detector, the term propor-
tional to p(g) describes the singly scattered light, and
the remainder describe the multiply scattered light.
The second term on the right describes the thermally
emitted radiance.

However, the quantity that is frequently measured
in the laboratory is the hemispherically integrated flux,
which is the radiant power emitted per unit area into
the entire upward direction. This quantity is given by

7T/2

I(0,e)/j27rsinede

A useful approximation for <t>(i) for the case of isotropic
scatterers, p(g) = 1, may be derived as follows. Be-
cause the opposition effect is so narrow, the power
included in it is negligible compared with the total
power radiated into the entire hemisphere and may be
ignored in calculating 4>(i). Thus, using the two-stream
approximation and equations (2.13c) and (2. l6b) ,

IT/ 2

4>(i)~ <*>•u(0) fcose sine de = <MO)/2 = </>(0)/2

Substituting equations ( 2 . 1 7 ) and (2.18) into the last
expression and performing a bit of algebra gives

1-7 2y 2y 2yL

+ 7 1 +27!,
B, (2.25)

4>(i) is the quantity that would be measured by an
integrating sphere in the laboratory. It is also one of
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the factors that determines the temperature of a
surface in radiative equilibrium. The first term on the
righthand side of equation (2.25) is the power per unit
area scattered into the entire upward hemisphere by
the medium; the second and third terms are the ther-
mal power emitted into this hemisphere.

2.2. REFLECTANCES, EMISSIVITIES,
AND KIRCHHOFFS LAW

2.2.1. Bidirectional Reflectance and BRDF

Several other quantities of interest for the interpre-
tation of laboratory and remotely sensed data can be
derived from equations (2.24) and (2.25). They will be
discussed in this section.

The coefficient of the incident illuminance J in
equation (2.24) is the bidirectional reflectance

2.2.3. Hemispherical-Directional Reflectance

It will be shown below that the directional reflec-
tance of a medium of isotropic scatterers illuminated
by a diffuse radiance I0 uniformly distributed over a
hemisphere is often of interest in the measurement
of thermal emissivity. Since the incident illumination
is not collimated, the opposition effect can be ignored.
The emergent radiance Ie (e) under these conditions
may be calculated from the reflectance portion of
equation (2.24), with p(g) = 1 and b0 = 0, by letting
J = I0dfl = I027rsinidi and integrating over i

ir/2

I0 -
A*o

47T Mo + M

sini di =

-I0H(W,M)
Mo +

/• vrdd(i.e,g) =
W

4n Mo + M

{[l+b(g)]p(g) + H(w,)u0)H(w,M)- (2.26)

where b(g) is given by equation (2.23) and H(w,x) by
equation (2.20). The reflectance is controlled primar-
ily by w, the average single scattering albedo of the
medium.

The bidirectional reflectance distribution function
(BRDF) is the ratio of the radiance scattered from a
surface to the radiant power J/i0 incident on a unit
area of the surface. Hence, the BRDF is

w 1
BRDF(i,e,g)=-

47T U0 4

{[1 + b(g)]p(g) + H(w.Mo)H(w,M) - 1} (2.27)

2.2.2. Directional-Hemispherical Reflectance

The directional-hemispherical reflectance is the
fraction of power incident from a specific direction
scattered by unit surface area into all directions into
the upward hemisphere. The power per unit surface
area of collimated illuminance J incident from a di-
rection making an angle i with the normal is J/x0. Hence,
the directional-hemispherical reflectance is the co-
efficient of J/u0 in equation (2.25)

1-7 (2.28)

'/
0
I

/w r tt(w,fj.0)
- [- MH(w,M) / — dMo]} (2.29)

Using equations (2.21) and (2.22) gives

Ie(e) = I0{(1

loll -

The hemispherical-directional reflectance is the re-
flected radiance per unit incident radiance

rhd(e) = I e(e)/I0=l-7H(w,M)=;
1 -

(2.30)

where equation (2.20) has been used for the H func-
tion. Note that rnd has the same functional depend-
ence on e as rdh does on i.

2.2.4. Bihemispherical Reflectance

The bihemispherical reflectance is a theoretical
quantity that is probably unobservable in practice but
will be shown below to be important in the meas-
urement and interpretation of thermal emittance. An
approximate expression for the bihemispherical re-
flectance can be found by a two-stream solution to
the equation of radiative transfer in the form of equa-
tion (2.12) for isotropic scatterers. Since we are inter-
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ested only in reflectance in this section, B = 0. It is
assumed that no collimated sources are present, so
J = 0. Diffuse radiant flux </>0 is assumed to be incident
on the medium from the entire hemisphere above the
surface, so that boundary condition (2.16b) is replaced
by 4>D(0) — <£o- BY ^e very straightforward calculation,
the two-stream approximation for the bihemispherical
reflectance is found to be

1 -7

1 + 7
(2.31)

The bihemispherical reflectance is mathematically
simple, yet is sufficiently accurate that it can be used
for quantitative estimates in many radiative transfer
problems. In support of the last statement, note from
equation (2.28) that rdh (60°) = rhh, and from equa-
tion (2.30), rhd (60°) = rhh. Also the bidirectional reflec-
tance of a Lambert surface is, by definition, rL(i) = HO/TT;
hence, if the particles scatter isotropically (p(g) = 1)
and g is large enough that the opposition effect is
negligible, then rdd(60°,60°,g)/rL(600) = rhh.

2.2.5. Directional Emissivity

When the temperature T of the medium is constant,
B,=0, and the radiance from a blackbody at that
temperature is given by BO(T)/TT. Hence, from the
thermal emittance part of equation (2.24), the direc-
tional emissivity of the medium is

ed(e) = 7H(w,ju) = 7; (2.32)

if a large temperature gradient is present the emit-
tance of the medium is given by the last two terms
of equation (2.22). The blackbody emittance of the sur-
face is then B[T(0)] = (B0 + B,)/TT. If L = EA > 1 , then

) — 1, and the emittance is given approx-
imately by fd(e)(B0+B,)/7r. In this case the emittance
corresponds to that of a blackbody at the temperature
of the surface multiplied by the directional emissivity.
As L decreases, the effects of B, decrease and the
emittance is influenced more and more by the emis-
sion corresponding to a body at the subsurface tem-
perature B0. However, since A can hardly be smaller
than the thickness of a monolayer of particles, which
is of the order of 1/E, L can never be significantly
smaller than unity.

2.2.6. Hemispherical Emissivity

When the temperature of the medium is constant,
so that B, = 0, the hemispherically integrated flux

from a blackbody at that temperature is B0. Hence,
from the emittance part of equation (2.25) the hemi-
spherical emissivity is

27
1 +y

(2.33)

If there is a subsurface temperature gradient, then
as with the directional emittance, if L> 1, the hemi-
spherical emittance is th (B0 + B,) = ehB[T(0)l, and the
effects of B0 increase as L decreases.

2.2.7. Kirchhoff 's Law

Kirchhoff's Law states that the sum of the reflec-
tance and emissivity of a surface must be unity. It is
of interest to inquire as to the sense in which Kirch-
hoff's Law holds in a particulate medium. First, from
equation (2.4f),

£ = 1 -W (2.34)

This expression, which shows that the sum of the aver-
age particle emissivity and single scattering albedo
equals unity, is simply a statement of Kirchhoff's Law
for individual particles in the medium.

Because the reflectance is often more convenient
to measure in the laboratory than the emissivity, the
reflectance is frequently measured and the emissivity
calculated assuming Kirchhoff's Law is valid. How-
ever, because a particulate surface can be character-
ized by several different types of reflectances and
emissivities, it is not always obvious which are the
appropriate quantities to use.

Comparing equations (2.30) and (2.32) it is seen that

ed(e) = 1 - rhd(e) (2.35)

Hence, in principle, if it desired to measure the direc-
tional emissivity at some angle e, the surface should
be flooded with diffuse light from all directions and
the hemispherical-directional reflectance measured
at the same angle e. However, in practice, it is usu-
ally easier to measure the directional-hemispherical
reflectance. Because rhd (e) and rdh (i) have the same
dependence on their respective arguments, the direc-
tional-hemispherical reflectance rdh (i = e) can be used
in equation (2.35) to obtain ed (e).

Similarly, comparing equations (2.31) and (2.33)

=l -(I -7)/d + 7) = 1 - (2.36)

Thus, to measure the hemispherical emissivity the
bihemispherical reflectance must be measured. This
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is difficult, if not impossible, to do in practice. How-
ever, as discussed in section 2.2.4, an equivalent value
can be obtained by measuring rhd, rdh, or rdd/rL at the
appropriate angles.

2.3. DISCUSSION

2.3.1. Emissivity

In this section the properties of several of the quan-
tities derived in this chapter will be discussed, along
with some applications of interest in remote sensing.
In order to avoid complications it will be assumed here
that the particles scatter isotropically. The parameter
that controls both the scattering and emissivity prop-
erties of the surface is the single scattering albedo w.
This parameter is a function of particle size, compo-
sition, and wavelength.

The variation of eh with t, or equivalently, of rhh with
w, is shown in Fig. 2.3. Note that eh is a monotonic,
nonlinear function of e. The slope of the curve is very
large for small e, but flattens for c near 1. Thus, a high
spectral contrast is observed when e < I (w ~ I), but
the contrast is much smaller when e ~ 1 (w < 1), a
point emphasized by Cone/ (1969). Unfortunately, be-
cause of the presence of restrahlen bands, most plan-
etary regoliths have low albedos and high emissivities
in the thermal infrared, so that the spectral contrast
that can be observed is limited.

30 60
e(degrees)

Fig. 2.4. Plot of directional emissivity ed and hemispherical-
directional reflectance rdh vs. angle of emergence e.

The dependence of ed(e) and rhd(e) on emission angle
e is plotted in Fig.2.4. When e— 1 (w<^ 1), ed— 1 at
all angles, and the surface emits like a blackbody.
Hence, for dark surfaces the assumption that the
emissivity is independent of angle is a good approx-
imation. As e decreases, the dependence of ed(e) on
angle increases.
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Fig. 2.3. Plot of hemispherical emissivity eh vs. particle
emissivity t = y2 and bihemispherical reflectance rhh vs.
particle albedo w.

2.3.2. Band Contrast in Reflectance
and Emittance

It is of interest to compare the amount of contrast
in an absorption band when observed in reflectance
and in emittance. From equation (2.26) it is seen that
the bidirectional reflectance is linearly proportional to
w(X), so that an absorption band with modest contrast
in w(\) will cause an equal or larger contrast in re-
flectance. From equation (2.32) the directional emis-
sivity is

-w(\)

The amount of contrast in td depends on w and the
particle size. If w(X) < 1, as is often the case, then the
change in V1 -w(\) with A will not be very large. In
addition, this quantity appears in both the numerator
and denominator of ed, which further reduces the con-
trast.

Reflectance and emittance from media in which the
particles are smaller than the wavelength is poorly

I•it
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understood. However,Salisbury and Eastes (1985) have
demonstrated that the number of particles per unit
volume can have a dramatic effect on both the mag-
nitude of the reflectance (and thus on the emissivity)
and on the spectral contrast within a band. A very
porous powder of fine particles has low reflectance
and spectral contrast. This can be understood if a small
particle in a low-density powder scatters light approx-
imately as if it were isolated. In that case, QS

C C(D/
X) 4 , while Qe °c (D/X)1 , where D is the diameter (Kerker,
1969). Hence, w = Qs/Qe oc (DX)3 < 1. Thus, ed(X,e) - 1
and the medium radiates practically like a blackbody.

As another example, the effect of thermal emission
on the contrast in absorption bands in the mid-infrared
will be calculated. Suppose the spectrum of an asteroid
surface at 3 AU whose regolith is at a temperature
of 2 1 0 K is measured at e = 0°. The asteroid is
i l luminated by sunlight with an effective temperature
of 5770 K at angle i = 45°. Assume that w = 0.40 at
the center of an absorption band and w = 0.50 in the
adjacent continuum.

Using the equations developed in this paper it is
readily calculated that, if observed only in bidirectional
reflectance, the band-center-to-continuum ratio is
0.72. If the band is at X = 4 /xm, the thermal emittance
contribution to the radiance increases this ratio by 0.04
to 0.76, so that the contrast is 2496, and the band is
easily observable. However, if the band is at X = 5 jum,
the thermal emittance increases this ratio by 0.24 to
0.96, so that the band contrast is only 4%, and the
band is difficult to observe.

2.3.3. Radiative Equilibrium Temperature

Finally, an expression for the radiative equilibrium
temperature of a paniculate medium with a smooth
surface will be derived. In what follows, the subscript
v will denote a quantity integrated over the spectrum
of visible sunlight, and the subscript IR will denote a
quantity integrated over the thermal infrared.

The usual expression for radiative equilibrium is
found by equating the amount of visible sunlight ab-
sorbed, taken as J vMo(l - Av), where Jv is the i l lumi-
nance of visible sunlight and Av is a visual albedo, to
the amount of infrared energy radiated, taken as e
iRaTc

4, where e,R is an infrared emissivity, a is the
Stefan-Boltzmann constant, and Tc is the calculated
surface temperature. This gives

Jv / i0(l "
1/4

It is almost always assumed that the emitted radiance
is independent of e, the angle at which the surface
is observed.

A more exact calculation using the equations of
this paper is as follows. The fraction of visible sun-
light reflected is the directional-hemispherical albe-
do, so that the amount of sunlight absorbed per unit
area of surface is (from equation (2.28) J^0( l -rdh) =

To simplify the derivation, it will be assumed that
the temperature of the medium is constant. However,
it should be kept in mind that this is an approximation;
a more rigorous calculation would take account of the

-fact that the actual temperature increases into the
medium. Then from equation (2.33) the amount of
energy radiated into the upper hemisphere is 2B,R-y|R/
(I + ym), where B,R is the Stefan-Boltzmann function
aT4 and T is the actual surface temperature.

Equating the energy absorbed to that radiated gives

B|R = aT4 =

so that the radiative equi l ibr ium temperature is

1/4

(2.38)

If this surface is observed at angle e the IR radiance
is

1 Jv
i,e) = - ed(e)B IR = — yv( 1

(2.39)
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