
NASA-CR-199363

Final Report to

NASA Lewis Research Center

for the project entitled

Durability and Life Prediction Modeling in Polyimide
Composites

NCC 3-188

by

Wieslaw K. Binienda
The University of Akron
Akron, OH 44325-3905

Tel: (216) 972-6693
Fax: (216) 972-6020

(NASA-CR-199363) DURABILITY AND N96-16579
LIFE PREDICTION MODELING IN
POLYIMIOE COMPOSITES Final Report
(Akron Univ.) 153 p Unclas

G3/24 0065611

September 19, 1995



Introduction

Polyimide Composites have received considerable attention due to their present and potential
future application, owing to their small structural weight and higher glass transition
temperature, Tg. In this work the formation of cracks from smooth surfaces of brittle materials
was studied.

It is known from the previously published research that polyimide composite plates are
sensitive to thermal aging that manifest itself by the degradation of the effective mechanical
properties and weight loss due to oxidation processes. Microscopical examination revealed
generation of the microcracks perpendicular to fiber direction and voids in polymer matrix
material.

The microcracking generation mechanisms depend on the environmental conditions such as
time and temperature but also on the load history for a given material. Microstructure of the
material itself, fiber volume ratio, type of reinforcement, fiber distribution and fiber alignment
definitely influence the aging and microcracking processes.

As the first approximation of the aging process the crack formation in isotropic material can be
studied due to non uniform strain distribution caused by aging phenomenon. Cracking is the
main failure mode for brittle materials when the stress is tension dominant. The starting point
of cracking can be determined by various strength criteria. However, the strength criteria does
not contain any information that dictates the behavior of the following cracking in the material.

In the following section a copy the Ph.D dissertation of the student Anping Hong supported by
this NASA project is included as a report of the research efforts. This work can be expanded
in the future to address the cracking in the orthotropic materials. The theoretical results should
be first examined using aging of the resin plate that can be modeled by the work done in the
presented studies. <,
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ABSTRACT

Sudden appearance of cracks on a macroscopically smooth -surface of brittle

materials due to cooling or drying shrinkage is a phenomenon related to many

engineering problems. Although conventional strength theories can be used to predict

the necessary condition for crack appearance, they are unable to predict crack spacing

and depth. On the other hand, fracture mechanics theory can only study the behavior of

existing cracks. The theory of crack initiation can be summarized into three conditions,

which is a combination of a strength criterion and laws of energy conservation, the

average crack spacing and depth can thus be determined. The problem of crack initiation

from the surface of an elastic half plane is solved and compares quite well with available

experimental evidence.

The theory of crack initiation is also applied to concrete pavements. The

influence of cracking is modeled by the additional compliance according to Okamura's

method. The theoretical prediction by this structural mechanics type of model correlates

very well with the field observation. The model may serve as a theoretical foundation for

future pavement joint design.

The initiation of interactive cracks of quasi-brittle material is studied based on a

theory of cohesive crack model. These cracks may grow simultaneously, or some of

them may close during certain stages. The concept of crack unloading of cohesive crack

model is proposed. The critical behavior ( crack bifurcation, maximum loads) of the

cohesive crack model are characterized by rate equations. The post-critical behavior of

crack initiation is also studied.

ill



TABLE OF CONTENTS

LIST OF FIGURES • vi

CHAPTER

I. INTRODUCTION 1

H. LITERATURE REVIEW 6

2.1 A System of Parallel Cracks from a Smooth Surface 6

2.2 Classical Cohesive Crack Models 11

2.3 Fracture Mechanics of Concrete 14

2.4 Crack Spacing in Concrete Pavement Due to Temperature Effects . . . . 21

m. INITIATION THEORY —FOR BRITTLE MATERIALS 27

3.1 Statement of Problem 28

3.2 Conditions Governing Crack Initiation from Smooth Surfaces 30

3.3 Mathematical Formulation 33

3.4 Numerical Method 35

3.5 Analysis of Numerical Results 39

3.6 Experimental Evidence 44

3.7 Additional Comments and Brief Summary 46

3.8 Outline of a Proposed Experiment 48

IV. CRACK INITIATION IN CONCRETE PAVEMENTS. 54

4.1 Mechanical Modeling of Pavement ." 56

4.2 Structural Analysis 58

4.3 Stress Intensity Factors and Additional Compliance Functions 63

4.4 Crack Initiation Theory 65

iv



4.5 Numerical Method 70

4.6 General Behavior of the Model 73

4.7 The Effect of Nonlinear Temperature Distribution 76

4.8 Discussion and Conclusions 78

V. INITIATION THEORY —FOR QUASI-BRITTLE MATERIALS 91

5.1 Basic Conditions and Definition 93

5.2 Cohesive Model with Interactive Cracks 96

5.3 Mathematical Formulation and Numerical Method 99

5.4 Computational Procedure and Observation 105

5.5 Rate Equation of CCM 107

5.6 Maximum Load and Bifurcation Ill

5.7 Maximum Load with One Crack Unloading .112

5.8 Post-critical Behavior and Lower Crack Spacing Limit 114

5.9 Concluding Remarks 116

VI. CONCLUSIONS AND FUTURE RESEARCH 123

BIBLIOGRAPHY 129

APPENDIX 1 THE STRESS INTENSITY FACTOR 142

APPENDIX 2 ADDITIONAL COMPLIANCE FUNCTIONS 144



LIST OF FIGURES

3-1 (a) Geometry definition of parallel crack system 51

(b) Initial strain profile 51

(c) Unit cell of width b 51

3-2 (a) Crack spacing versus load depth. . . 52

(b) Initial crack length versus load depth 52

3-3 Energy release rate and average energy release rate as a function of a/d

in the limit case 53

4-1 Geometry definitions for (a) pavement on an elastic foundation 81

(b) a unit cell with an edge crack in the center . . . . 81

4-2 The length-dependent bending compliance of a beam on Winkler foundation . 82

4-3 Schematic of crack initiation theory 83

4-4 Definitions of effective energy and total fracture energy 83

4-5 Total stress intensity factor as a function of crack length

and loading configuration 84

4-6 Crack spacing as a function of 10 without axial constraint 85

4-7 Crack spacing as a function of lo with axial constraint 86

4-8 Crack spacing with tangential bonding 87

4-9 The effect of nonlinearity coefficient P on crack spacing 88

4-10 The effect of axial thermal stress 89

4-11 Schematic of nonlinear distribution of thermal stress 90

5-1 (a) Cracking of quasi-brittle Materials 118

vi



(b) The cohesive crack model 118

5-2 (a) Geometry definition of parallel crack system with alternative lengths . . .119

(b) Unit cell of width 2b 119

5-3 Possible crack initiation paths 120

5-4 Bifurcation and critical curves 121

5-5 (a) Loading parameter y versus crack length a*j for two paths 122

(b) Crack mouth opening versus crack length a*! for unloading path 122

vil



CHAPTER I

INTRODUCTION

Formation of initial macroscopic cracks from smooth surfaces of brittle

materials can be frequently observed. For instance, in large blocks of concrete, nearly

periodic cracks can appear suddenly due to drying shrinkage or hydration heat. In the

case of reinforced concrete beams, cracks of a certain spacing form at the tensile face

when the applied load becomes large enough. In drying lake beds and mud flats, cracks

with a honeycomb pattern emerge after some period of drying. When a floating sea ice

plate is subjected to a vertical load, star-shaped cracks of finite length radiate suddenly

from the loaded area when the applied load reaches a certain level. Highway pavement

develops cracks each year due to various environmental changes such as temperature

and moisture. In all these situations, cracks of macroscopic sizes form suddenly from a

smooth surface.

Cracking is the main failure mode for brittle materials when the stress state is

tension dominant. The starting point of cracking can be marked by various strength

criteria depending on the specific material under specific environment. In the simplest

case, one can use the condition that the maximum tensile stress should not exceed the

tensile strength of the material. However, the strength criteria does not contain any

information that dictates the behavior of following cracking in the material. Engineers

1



2
used to avoid the cracking by reducing the maximum stress in their designs. However,

cracking in some cases is either inevitable or uneconomical. For instance, the asphalt

concrete pavement in northern America and Canada develops crack each and every

winter, it cannot be avoided. It would not be cost effective to design a reinforced

concrete beam prohibiting cracking on its tension side. Sometimes, it may become

crucial to know what will happen after cracking occurs. For instance, due to safety

concern, it is very important to know the behavior of nuclear reactor structure after

cracking has occurred. Obviously, the conventional strength criteria are not sufficient

to answer these questions.

Cracking has been studied by the theory of fracture mechanics. During the

recent half century since the practical applications pioneered by Irwin, fracture

mechanics has been significantly developed and enriched in terms of practical

applicability and theoretical understanding. Although the original intention of the

fracture mechanics, initiated by Griffith (1924), was to understand the strength of

brittle materials and its relation with the inevitable defects in the material, the later

development was more focused on the problems of crack growth. As a result, a new

type of material strength, called the toughness of the material (or fracture energy), was

brought into the light and became the subject of intensive research. Fracture toughness

of the material determines whether a crack of a given size will propagate under a given

load. Fracture mechanics works where the conventional strength criteria fail, because

at crack tip the stress is infinite so the conventional strength is inapplicable. However,

fracture mechanics does not encompass the territory of the conventional strength
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criteria, either. If there are no pre-existing cracks in material (or the pre-existing cracks

are very small in sizes), fracture mechanics would predict unreasonably high failure

load. Mathematically this is because the energy release rate for a very short crack

approaches zero like a linear function of crack length (so the stress intensity factor due

to a unit load approaches zero like the square root of the crack length).

It is, therefore, seen that the theory of fracture mechanics and the strength

criteria have their own domains of applicability that do not overlap. The phenomenon

of crack initiation lies partially in both of these two domains, but not entirely in either

one. This is because the strength theory alone cannot describe the cracking behavior,

but fracture mechanics cannot be adequately employed either where there is no pre-

existing cracks. A new theory that combines these two different aspects of material

strengths must be found to study the crack initiation theory. This kind of theory does

not seem to have been systematically studied before.

From the practical point of view, the pattern of initial cracking can be important

for many engineering problems. Sometimes sparse cracking patterns are preferred,

sometimes dense but small cracking patterns are more desirable. For the former case

one can mention pavement cracking. The longer crack spacing is preferred because

one can use less joints to control cracking at less cost. For the later case, one can

mention cracking in the reinforced concrete. To prevent corrosion of reinforcement,

the cracks must remain hairline thin, and so we need the crack spacing to remain

sufficiently small.
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In all these cases, it is important to understand the mechanism of crack initiation

so that we can know what can be done to control cracking. The main focus of this

dissertation is to establish the formulation of the crack initiation theory, solve the crack

initiation problems of different geometric structures as well as different material

properties. It is hoped that these new knowledge can shed new light on many

engineering problems in which cracking is inevitable.

Some basic idea of crack initiation theory for the case of vertical penetration of

a floating sea ice plate was contained in the study by Li and Bazant (1994). Since the

penetration load depends on the number of radial cracks, it is essential to understand

how the number of cracks can be determined. In this dissertation, the crack initiation

theory is stated in a form that facilitates further development.

The structure of the dissertation is organized as follows. Chapter H related

literature review. The basic concept and definition of crack initiation theory is

introduced in chapter III, the problem of periodic parallel cracks initiated from the

surface of a perfect brittle and elastic half plane under the action of initial strains will be

discussed. The initial strains can be caused by a drop of temperature or by drying

shrinkage of the material. The elastic stress distribution is solved by a integral

equation. The solution of this problem can be related to the behavior of crack

initiation that happens sufficiently far away from material boundaries.

For the pavement problem, the cracking is normally confined in the top layer of

the pavement, and the structure can be more appropriately modeled as an elastic beam.

A new type of elastic analysis is introduced in chapter IV. Since the pavement layer is
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usually about 10 inches thick, the nonlinear process zone of the crack is significantly

large, and the consequence of the nonlinearity of the pavement material must be taken

into consideration, which results in a further refinement of the crack initiation theory.

However, the treatment should be considered as an empirical simplification.

To fully consider the effect of nonlinear process zone, the cohesive crack model

must be employed. In the cohesive crack model (CCM), the material does not fail

immediately. Instead, there is gradual decreasing of bridging stress for increasing crack

opening displacement, a phenomenon called strain softening, or simply softening.

When the cohesive crack model is used, the concept of crack initiation needs to be

generalized further. In addition, the theory of the cohesive crack model also needs to

be expanded to consider the interaction between the cohesive cracks and the

description of a unloading cohesive crack. Applying the cohesive crack model to study

the problem of parallel cracks initiated from the surface of a half-plane is discussed in

chapter V.

Many problems of crack initiation theory still remain open. The main existing

problems and possible solutions will be discussed. Future research direction will be

described as a closure to this dissertation.



CHAPTER n

LITERATURE REVIEW

In this chapter, some of the literature that are related to this study will be briefly

reviewed. In addition, some nonlinear fracture models for quasibrittle material are also

discussed because some of the analysis is based on these theories. To apply the crack

initiation theory to concrete pavements, the literature of the concrete pavements design

and research regarding temperature response are outlined.

2.1 A System of Parallel Cracks from a Smooth Surface

Consider the two-dimensional problem of a homogeneous isotropic elastic half-

plane in which a system of parallel equidistant cracks normal to the surface is produced

by cooling or drying shrinkage. This problem arises in many applications. In the later

70's and early 80's an interest to extract heat from the hot-dry-rock by circulating the

water through the cracks attracted a lot of researches. Also, there are applications of

shrinkage cracking of concrete. Base and Murray (1982) called that "shrinkage

cracking" is the most troublesome and frustrating quirk of structural concrete.

Bazant and Ohtsubo (1977) first carried out stability analysis in which the

conditions of stability of a system of Mode I cracks propagating along given paths

were determined by analyzing the second variation of the work needed to create the
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cracks as well as by formulating the conditions of adjacent equilibrium. The crack

system that is in equilibrium state is stable if the second variation of the strain energy

&W is always positive, and unstable if it is negative, i.e.

> 0 stable

2 —< *
1=1 '

= 0 critical (2-1)

< 0 unstable

Bazant, Ohtsubo, and Aon (1979) continued their work to determine the critical

states, bifurcation of equilibrium path and postcritical behavior. When a system of

parallel equidistant cooling cracks propagates, it reaches a critical points, and the

equilibrium path of the system bifurcates. The stable post-critical path consists of

extension of every other cracks upon further cooling, initially with a crack jump at

constant temperature, while the intermediate cracks stop growing and gradually

diminish their stress intensity factor. Subsequently the leading cracks grow at equal

length until they again reach a critical state, at which every other crack stops growing,

and the process in which the crack spacing double is repeated. In both papers the finite

element approach was adopted for completing numerical analysis. Bazant and Wahab

(1979) also discussed the effect for different temperature profiles.

Nemat-Nasser, Keer, and Parihar (1978) formulated the problem in terms of a

singular integral equation of Cauchy type with continuous dislocation functions as basic

unknowns for alternative cracks. They analyzed the crack growth regimes based on

stability analysis of crack growth by checking the derivatives of the stress intensity

factors with regard to crack lengths. It is equivalent to the Bazant's stability analysis.
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They pointed out that the equal crack growth regime is stable as long as the following

condition holds

-^- = -^- < 0 (2-2)

Where Kv and K2 are stress intensity factors, al and a2 are crack lengths for the

corresponding crack. An unstable critical state is reached when

—L = —- = 0 (2-3)

After this state, one crack, say crack 2, stops as the other crack, i.e. crack 1, grows

spontaneously.

Keer, Nemat-Nasser and Oranratnachai (1978) extended their work to the array

whose unit cell contains three interacting cracks. The model can exam the crack

growth regime at and after the second critical state, at which every other of those

cracks which had continued growing stop growing, while the remaining one continue to

grow at a faster rate. It is shown that when the temperature profile is in the form of an

error function, the inclusion of the third interacting crack changes the previous obtained

results qualitatively (i.e. no crack closure is attained in this case). The lack of

symmetry in this model implies that crack extension involves in both Modes I and n,

and the calculation requires the correspondingly great number of simultaneous integral

equations, which causes the computational complexity.

The above stability analysis requires accurate estimates of the values of the

stress intensity factors at various crack tips, and their derivatives with respect to the

crack lengths. Actually K\ is obtained by extrapolation of the solution of system



equations, and the calculation of ——L is more difficult and less accurate. Sumi,
da>

Nemat-Nasser and Keer (1980) proposed a combined analytical and finite-element

solution method which leads to a rather effective solution procedure. Nemat-Nasser,

Sumi and Keer (1980) also used this method to study stable and unstable bifurcation

points and critical points. In particular, they pointed out the stability of this kind is

highly imperfection-sensitive.

To verify the previous theoretical results Geyer and Nemat-Nasser (1982)

conducted experimental investigation on thermal induced parallel edge cracks in half-

plane of brittle material. Glass plates were heated to a uniform temperature and then

brought in contact with dry ice. The thermal contraction of boundary layer produced

interactive tension cracks. They observed that the cracking occurred in a dynamic

fashion seconds after initial contact with the dry ice bath. However, dynamic crack

growth is related more to the problem of 'brack initiation" than 'brack growth", as

was recognized by the authors.

Bazant and Wahab (1980) used previous formulation of stability condition to

investigate the reinforced concrete (one layer of steel reinforcement) by finite element

approach. The bond slip (between concrete and steel) length was assumed and taken

into account.

In Chapter 12 of his book (Bazant and Cedolin,1991), Bazant summarized the

stability analysis of a system of parallel cracks. In all these works it was found that
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instability of a system of parallel shrinkage or cooling cracks may cause some cracks

to close and the remaining ones to extend and widen.

However, most attention is focused on the problem of how cracks develop in

structures that already have them. Since cracks propagation happens after crack

initiation, thus the problem of crack initiation becomes an issue.

Although there were some crude estimates. Keer, Nemat-Nasser (1978, 1979)

estimated crack spacing with several approaches. One is by energy consideration, its

idea is that the portion of the total strain energy before cracking is used to generate

new surfaces as the thermal crack initially form (BW = 2ay). Then the minimum crack

spacing b is obtained in this way as

'•'•if <2-4>
where a is crack length, d is penetration depth of drying or cooling, and 0 < d< 1,

denotes the fraction of the total strain energy that will be released. The coefficient k0

depends on the temperature profile and material properties. However, neither ratio a/d

nor fraction 0 can be determined in their analysis, ,as was admitted by Nemat-Nasser

(1979). Also Bazant and Wahab (1979) and Bazant and Cedolin (1991) gave a similar

estimate of the minimum cracking spacing for the parabolic temperature profile as:

20(1 -v)r a ,„
0(l+v)c?*TEd (2'5)

where y is the surface energy density, a the coefficient of thermal expansion, AT the

surface temperature drop.
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2.2 Classical Cohesive Crack Models

Barenblatt (1959a, 1959b, 1962) was the first one to challenge the concept of

stress singularity in fracture mechanics. His basic argument is that stress should always

be finite. His mathematical model of crack differs from that of Griffith's model in that

the cohesive interatomic and/or intermolecular forces are explicitly included in the

equilibrium of the crack. It is noted that in Griffith's approach the cohesive forces are

only accounted for in surface energy computation but ignored totally in the equilibrium

consideration. Barenblatt pointed out an interesting fact that the smoothness of crack

opening profile is equivalent to the finiteness of stress at crack tip, which can be seen

from the solution of the infinite plane with a semi-infinite cut on the negative x-axis.

Besides the external loads that make the crack open, there are distributed forces p(x)

defined symmetrically on the both sides of the crack that tend to close the crack. The

normal stress and displacement in y-direction near the crack tip can be expressed as

» (2-6)

where s, is in the positive x-direction while Sj in the negative x-direction, the sign in

front of displacement indicates that each crack face goes to opposite directions, v is the

Poisson's ratio. When K is zero in these expression, then crack opening is smooth at

the crack tip. Besides, it is noted that when stress singularity is nullified, the normal

stress component in y-direction is continuous at crack tip. The connection between the

smoothness of crack opening and the finiteness of stress was perhaps first demonstrated

by Westergaard (1933) in a paper on the stress distribution in a RC beam with crack.
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The cohesive force generally depends on the crack opening displacement,

therefore the cohesive crack models are generally nonlinear. However, Barenblatt

argued that if the process zone is small when compared with the crack length, then the

cohesive force can be considered to be independent of crack opening displacement.

Furthermore, the cohesive force can be used to determine the modulus of cohesion K,.:

(2-7)

where 1,, is the length of process zone. It is to be remembered that now p(x) depends

only on its position rather than crack separation. The distinction between the classical

cohesive crack model and the cohesive crack model discussed herein lies in whether

cohesive forces are considered dependent on the evolution of crack opening

displacement. By adopting the above assumptions, the process of crack formation is no

longer considered.

It should be noted that in the original definition, the factor (1/rc) is not included.

Furthermore Barenblatt argued that the modulus of cohesion has the same relation with

the strain energy rate G as the stress intensity factor K when crack is about to

propagate. It is therefore fair to say that Barenblatt's theory did not yield any

operational difference from linear elastic fracture except for a more realistic picture of

what is happened near crack tip.

The postulation of equivalence between Barenblatt's criterion and Griffith's

criterion was examined mathematically by Willis (1967). Willis found that in order for

the two theories to be compatible, it is necessary to require that the cohesion zone be
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small compared to the crack length, and the load level must be very low with respect

to the Young's modulus of the material. The problem of the profile of crack separation

within cohesion zone was addressed by Smith (1974). Instead of solving for crack

separation for given cohesion law, which is a nonlinear problem, an inverse approach is

employed, that is, stress-separation law is deduced from given separation which is

usually of very simple form. At this point, one should keep in mind that Smith's results

rely completely on the assumption of smallness of cohesion zone, any extension to

nonlinear fracture mechanics (e.g. Karihaloo et. al. 1989) is, therefore, unlikely to be

justifiable.

Dugdale (1960) was credited for demonstrating the usefulness of cohesive

crack model in nonlinear problem. Actually his objective was to find the extent of

yielding in front of crack tip as a function of loading over yielding stress. Assuming that

the plastic region is a thin strip extending from the crack tip, the cohesive force is con-

sidered to be constant at the magnitude of yielding stress. Since no stress should exceed

yielding stress, the stress intensity factor should be zero which in turn becomes a

condition for determination of cohesive zone length. According to Dugdale's

experiment, the theory provided excellent prediction. Eight years later Cotterell (1968)

affirmed that Dugdale's model is equally applicable to organic glass.

The drawback of Dugdale's work is that no crack propagation criterion was

provided, which was not the intention of his paper, the cohesion zone can be stretched

to arbitrary length for sufficient load level. To remedy the situation, the crack opening

displacement (COD) was proposed to serve as the cracking criterion for Dugdale
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model. When COD exceeds some critical value, which is assumed as a material con-

stant, the crack will propagate. Later it will be seen that COD is not a constant in the

cohesive crack model.

2.3 Fracture Mechanics of Concrete

Quasibrittle materials such as concrete, rock, ceramic, paper, lumber etc., are

very different from metals, because they exhibit significant softening behavior while

plastic hardening deformation is negligible. On the other hand, these materials are not

as totally brittle as materials such as glass and mica. Quasibrittle materials also can

include advanced cementitious composite, fiber reinforced composite, etc. (Shah 1991).

In quasibrittle materials fracture is preceded by a fracture process zone, which may be

caused by microcracking or other material defeats that the major source of nonlinearity

come from. Some experiment observations of concrete indicate that within this zone,

fracture is manifested in the form of aggregate debonding and overlapping

microcracking, mainly parallel to each other, with some intact grain bridges between

them (Mier, Rots and Bakker, 1991). Concrete has an added complication in that the

scale of its mesostructure is relative large compared to other materials. Kaplan (1961)

applied linear fracture mechanics to concrete for the first time. Since then most efforts

have been directed towards better understanding of the pronounced nonlinearity in

concrete and how to deal with such nonlinearity as has been summarized in the

excellent review articles by Mindess (1983, 1984).
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Kaplan (1961) was the first one to acknowledge the slow crack growth in

concrete, which is a stable crack extension under increasing load before final rupture

occurs. Kaplan was able to relate the length of slow crack growth with the size of the

specimen. As a matter of fact, the phenomenon of slow crack extension is not unique to

concrete. Irwin (1958) was probably the first one to undertake this problem by

identifying it with plastic deformation. Slow crack led its way to the so-called R-curve

approach by Broek (1968) in his study of an aluminum-copper alloy. Since then the R-

curve approach became a very popular practice also in concrete fracture mechanics

research (e.g. Bazant, 1984b; Wecharatana and Shah; 1983a, 1983b; Mai, 1984; Foote,

1986, etc.). Although Broek (1986) realized that R-curve is not likely to be a material

property, as has been indicated by numerous researches that R-curve is dependent on

the loading configurations (Wecharatana, 1983b, e.g.) as well as specimen size ( Foote,

et.al, 1986). However, due to the fact that there has been no better approach available,

R-curve method still enjoys wide applications among some of more pragmatic

researchers (e.g. Mobasher,1989; Shah, 1990).

Another difficulty with linear fracture mechanics of concrete is the so called

notch sensitivity problem. Griffith (1924) is the first one to consider the smallest size of

crack which can cause the observable decrease in the strength of materials. For glass,

Griffith found that this size is about 1.5*10~3 (mm). When this size is relatively large,

the material may be called notch insensitive. While many researchers agree that

hardened cement paste is a notch sensitive material, the opinions about concrete and

fiber reinforced concrete are divided, both sides claimed having experimental evidence
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backups. When it comes to the experimental measurement of K,. and Gc, the results

are again highly contradictory, especially in the study of the dependency of Tf^. and Gc

on the geometry of specimens. Although obviously the highly heterogeneous nature of

concrete is responsible at least in part for this apparent inconsistency, nevertheless by

the end of seventies the linear fracture mechanics was not considered directly applicable

to concrete material by most researchers.

Hillerborg's fictitious crack model (FCM) was advanced during the late

seventies and early eighties (1976,1985) as the first nonlinear fracture mechanics model

in concrete. Apparently encouraged by the success of Dugdale's model, Hillerborg

proposed to use a declining cohesion law (i.e. stress-separation relation) to describe the

strain softening behavior of cementitious materials. The total area below the stress-

separation curve defines a quantity called fracture energy Gfi which is experimentally

found to be less dependent on specimen size than any other fracture parameters

(Hilsdorf and Brameshuber, 1984). An important difference from that of Dugdale's

model is that the cohesive stress now is displacement (crack separation) dependent,

therefore the model became truly nonlinear because the cohesive stress is neither

constant nor proportional to the crack separation. It is so difficult that no analytical

solution even for the simplest geometry has been found. Convenience in finite element

application is one of the objective in the original paper (Hillerborg, 1976), since the

removal of stress singularity made it possible to use regular coarse mesh.

When Bazant proposed his crack band theory, his major objective seemed to

aim at the formulation of a nonlinear fracture model for concrete (and its similar
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material, of course) such that the distributed microcracking as well as coalesced (that

is, localized) cracking can be treated in a unified way (e.g. 1984a, 1984c, 1986a,

1990a, 1990b). The starting point is a numerical technique called smeared crack

simulation proposed by Rashid (1968) where crack is represented by elements with

tensile Young's modulus equals to zero. Bazant employed the method to include strain

softening in the formulation. No sooner than the scheme was implemented, the result

was found mesh dependent, i.e., the energy dissipated by strain softening diminishes as

the mesh shrinks. The strategy used in his crack band model is to take softening

modulus ET as a function of Young's modulus E, tensile strength /„ the fracture energy

Gy-and the cracking front width wc such that the fracture energy Gfis constant:

1 1
Gf = - (- +— ) wc = constant (2-8)

2 E -ET

where the factor that multiplied by \vc can be recognized as the specific strain energy,

that is, the area under stress-strain diagram. But if ET is determined independently, then

\vc can be determined from the above equation. Bazant considered \vc as a material

property and refused to take elements smaller than wc.

A comparison between FCM and crack band model was made by Bazant

(1986a) in which Bazant recognized certain similarity after microcracks are localized

into one macroscopic crack. It is fair to say that Bazant's goal is more ambitious, it is a

serious strive towards a unified theory of distributed cracking as well as localized

cracking. On the other hand, Hillerborg's objective is modest, he chose to deal only

with those cases where localization is known a priori. Consequently FCM is simple
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both mathematically and physically. The introduction of stress-separation relations in

place of stress-strain relation circumvented the predicament of unobjective softening

modulus ET, leading to a much simpler numerical scheme. The attractiveness of this

approach was enhanced by Ottosen (1986). Using stability and uniqueness arguments,

he demonstrated the ominous incongruity accompanied with strain softening concept.

One of the interesting feature of FCM is the unified treatment of notched

fracture and unnotched fracture. As it was mentioned in the beginning of this section,

notch is not necessary for concrete to rupture by cracking as most metals do, since it is

its only way of rupture under tension. Extensive calculations of FCM on 3-point beams

was made by Carpinteri (e.g. 1989) for different sizes and different notch ratios

including zero notch ratio. A boundary element simulation was made by Liang and Li

(1991a). The size effect of FCM is examined (Liang and Li, 1991b). It is fascinating to

see how size effect curves gradually shift towards a curve of bending strengthening. Li,

et.al. (1986) used the Green's function method to solve FCM for a centrally cracked

infinite plane using different stress-separation curves with the same Gf and the same

tensile strength. Among many conclusions, they found that the shape of the stress-

separation curve has a significant effect on the load versus crack opening diagram, and

that the length of process zone is not a material property, but rather a variable

depending on the loading configuration and structural geometry. Liaw et.al. (1990)

recently demonstrated that better results can be obtained by adopting a more refined

stress-separation curve in FCM computation. Li and Liang (1993) developed a theory

of CCM in which the peak load of the Griffith problem (a Central tensile crack in an
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infinite plane) was solved through the condition of stability limit. The critical

condition can be transformed into a linear eigenvalue problem under the assumption of

linear softening law. Using the same technique, Li and Hong (1992) solved cohesive

crack problems of double-notched or center notched infinite strip under remote tensile

loading.

There is another nonlinear fracture mechanics model of concrete material called

two-parameter model by Jenq and Shah (1985a,1985b). As is well known that the

critical stress intensity factor K,. and critical energy release rate Gc calculated from the

peak load depend on the dimensions of specimens, Jenq and Shah proposed to use

crack mouth opening displacement (CMOD) as a second crack parameter to

complement linear fracture mechanics parameter such as Kc. In computation, CMOD is

used to determine the length of process zone in which a stress-separation relation is

assumed. After the adjustment caused by the bridging effect in the process zone, the

calculated net stress intensity factor at peak load is found to be constant by their

experiments. Actually the idea of using cohesive force as a modifying factor in linear

fracture mechanics exits in Shah's research before 1985, as can be seen in their earlier

papers by Wecharatana and Shah (1983a, 1983b), and a discussion by Hillerborg

(1984) in which some ambiguity in definition as well as in concept was commented.

The two-parameter model published later is just a manifestation that Shah hardened his

position in defending his notion that the stress singularity still exists in spite of the

presence of pronounced cohesive force in process zone. Recently Shah in a keynote

lecture (1989) vindicated his model by categorizing the dissipation mechanism in
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concrete into three sources, one that corresponding to surface energy, one due to

microcracking and the one that dissipated in the wake of crack path. According to this

classification Shah claimed that the two-parameter model is the best in terms of energy

balance consideration.

It is a generally accepted idea that when concrete specimen is small, the

strength criterion will dictate the rupture load, and when the dimension becomes

sufficiently large, the well-known inverse-square-root scaling law of linear fracture me-

chanics will govern. Now the question is what happens in between these two extremes.

Walsh (1972) tried for the first time to establish the size effect. It is very interesting to

note that he used (f/aj2 as ordinate and d/da as abscissa to plot his result which is a

straight line, and this is basically the same form as the one proposed by Bazant (1984a)

for his size effect law. According to Bazant (1984a), for a family of geometrically

similar specimens with size characterized by d, the peak load when represented in terms

of nominal stress on can be expressed as

cr. Bn —
i ,, (2'9>•F It _L_ 0 Aft .y/l + Ad

where B and X are fitting parameters. For some reason Bazant preferred to define X=l/

Xodj, where X,, is a nondimensional parameter and d, is the size of the aggregate of

concrete. This form of size effect law describes quite well for many failure modes of

concrete material. However, if the notch length is very small or zero, then the above

equation must be modified.
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2.4 Crack Spacing in Concrete Pavement Due to Temperature Effects

The first Portland cement concrete pavement in the United States consisted of a

10-ft wide by 220-ft long slab constructed in Bellefontaine, Ohio in 1891. During the

following 100 years tremendous increased pavements were build at various locations in

the Unite States. In 1991, the Federal-aid highway system comprised more than

850,000 miles of pavements of various design. (FHWA, NCHRP Synthesis 189,

1993).

It is necessary to briefly review the basic consideration regarding temperature

effect in concrete pavement design from "AASHTO Guide for Design of Pavement

Structures 1993". The rigid pavement (Portland cement concrete pavements) includes

plain jointed (TCP), jointed reinforced (JRCP), and continuously reinforced (CRCP).

Joints are placed in concrete pavements to permit expansion and contraction of the

pavement, thereby relieving stresses due to environmental changes (i.e., temperature

and moisture) and friction. There are three types of joints for JCP: contraction,

expansion and construction and their functions are as follows:

(1) Contraction or weakened-plane joints are provided to relieve the tensile stresses

due to temperature, moisture, and friction, thereby controlling cracking. If contraction

joints were not installed, random cracking would occur on the surface of pavement.

(2) The primary function of an expansion joint is to provide space for the expansion

of the pavement, thereby preventing the development of compressive stresses, which

can cause the pavement to buckle.

(3). Construction joints are required to facilitate construction.
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For contraction joints, according to the AASHTO (1993), the spacing

decreases as the thermal coefficient, temperature change, or subbase frictional

resistance increases; and the spacing increases as the concrete tensile strength increases.

The spacing also is related to the slab thickness and the joint sealant capabilities. It is

suggested, as a rule of thumb, the joint spacing (in feet) for plain concrete pavements

should not greatly exceed twice the slab thickness (in inches). For example, the

maximum joint spacing for an 8-inch slab is 16 feet. In 'Rigid Pavement analysis and

Design'lCFHWA-RD-88-068, 1989) joint spacing for plain concrete pavement ranges

between 12 and 20 feet, with maximum 20 feet. California instituted the practice of

specifying joints at 12, 15, 13, and 14 feet. The use of a random spacing pattern was

instituted in the early 1960's to minimize excessive vibration problems (FHWA-RD-86-

040, 1986).

The width of the joint is controlled by the joint sealant extension. The depth of

contraction joints should be adequate enough to ensure that cracking occurs at the

desired location rather than in a random pattern. Normally, the depth of transverse

contraction joints should be 1/4 of the slab thickness. These joints may be developed

by sawing, inserts, or forming. Time of sawing is critical to prevent uncontrolled

cracking.

The use of expansion joints is generally minimized on a project due to cost,

complexity, and performance problems. They are used at structures where pavement

types change (e.g., CRCP to jointed), with prestressed pavements and at intersections.

In 'Pavement Structural Design Practices" (1993) it is stated that the use of expansion
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joints was virtually standard practice by the mid 1930s, but has since been found to

be unnecessary except where the pavement abuts a structure.

Major distress problems of concrete pavements generally start with crack

formation caused by the combined effects of traffic load and service temperature.

Water and salt can easily infiltrate into the pavement at the location of cracks and

create durability and structural problems.

The structural response of concrete pavements under traffic loads is highly

dependent on temperature and its variation. Temperature effects on concrete pavement

behavior have been recognized since the mid-1920s. Westergaard (1926) identified

temperature curling as an important parameter affecting the structural behavior of

concrete pavements. Westergaard's method (1925) for computing stresses in concrete

pavement was based on an assumption that the subgrade acts as a Winkler foundation:

the pressure between slab and subgrade is proportional to deflection. Teller and

Sutherland (1935) reported the results of tests conducted on concrete pavements to

study the effects of variations in temperature and moisture. Lang (1940) studied the

movement of concrete pavement slabs resulting from changes in temperature and

moisture. Friberg (1954) presented a mathematical evaluation of horizontal slab

movements, and effect of the subgrade frictional resistance, on stress development in

long pavement slab. Harr and Leonards (1959) conducted laboratory tests to measure

temperature curling and compute subsequent stresses. They correlated the results from

the laboratory tests with predicted response with an analytical model that they

developed.
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Armaghani, Larsen and Smith (1987) try to more precisely describe the

displacements (vertical and horizontal) of a concrete pavement slab associated with

temperature variation and weather. Temperature data, accumulated by Bergen from

1983 to June 1986 from a test road (in Florida), are analyzed. Slab displacements were

monitored and evaluated. It is found that maximum daily displacements were

concurrent with maximum temperature differentials in the slab. They pointed out 'in

many analysis of thermal stresses, temperature gradients have been assumed to be

linear. This assumption has simplified the modeling of pavements without significantly

affecting the accuracy of the computations. Therefore for all practical purposes the

temperature gradient can be approximated by a linear curve." Richardson and

Armaghani employed a parabolic function to model the nonlinear temperature parallel

to the pavement thickness. In their particular case the nonlinear temperature stress is

only 17 percent of the flexural strength. Although the importance of nonlinear

temperature may not be important for deformation due to normal daily temperature

fluctuation, they did not rule out the importance of the nonlinear temperature

distribution during dramatic temperature changes. Because cracks are most likely to

initiate during dramatic temperature changes, the nonlinear distribution can be

important for our purposes.

In 1970's, continuously reinforced concrete pavement (CRCP) increase

dramatically in use, for instance, from 1961 to 1971, increase is 20 time. In design of

CRCP, allows the effects of shrinkage and temperature change to produce random

cracks but keep the cracks tightly closed together. Comparing with plain concrete
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pavements, it has much shorter crack spacing and width. The average mature crack

spacing is around 5 feet. The average percentage of steel is 0.6 (the more steel, the

shorter the crack spacing.)

Most studies on the crack formation mechanisms in concrete pavements are

still limited to the conventional models developed on the basis of stress-based or strain-

based elasticity analysis. Jenq, Liaw and Kim (1993) applied the fracture mechanics to

study the effects of temperature on early crack formation. To properly control the

occurrence of random cracking, saw-cut grooves are generally introduced at the

earliest possible age of the concrete pavement. Adequate groove depth must be

provided to ensure that the transverse cracks will be confined at the location of the

groove. The cohesive crack model and finite element method are used, once knowing

the expected temperature deferential and thickness of the pavement, they can determine

the timing and groove depth. Based on their theory the spacing of saw-cut groove can

not be determined.

It is reported by Federal Highway (FHWA, 1990) that thermal cracking of

asphalt pavement continues to be a problem in many parts of the Unite States. The low-

temperature shrinkage cracking is concerned in Canada and northern United States,

and thermal fatigue cracking is now recognized as a problem in more temperate

climates. The early models to predict thermal cracking are based upon empirical or

statistical relationships that relate cracking to various asphalt specification data and

environmental parameters.
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More recently, fracture mechanics theory was used to develop a computer-

based model that can be applied to the thermal cracking problem. During the

development of this model, it was necessary to resort to statistical regression equations

to predict fracture properties, rather than to incorporate fundamental asphalt or mixture

fracture properties into the model. Thus, neither the statistical based models nor the

more recently developed fracture asphalt model is a completely mechanistic approach

for relating fundamental asphalt or mixture properties to the incidence of thermal

cracking.

The study of this dissertation treat asphalt concrete as a quasibrittle material

with significant post-peak softening behavior. Actually asphalt concrete is more like a

viscoelastic material in the warm temperature. However, during winter weather,

viscosity of the asphalt concrete become less important, and as an approximation it can

be reasonably excluded in our analysis. Although the materiel properties are

temperature dependent, the dependence is not as pronounced if temperature is low.

The cracking of the asphalt pavement is sometimes measured by the number of

cracks per mile. Some data are reported (Ruth, 1982) as to how this cracking index

increases year by year for different type of asphalt concrete mix. However, in this

report, only the cracks that cross the whole traffic lane are counted. Conceivably, if

shorter cracks are also included, the value of the crack index should be multiplied by a

factor of 2 - 4. Accordingly, the first year average crack spacing is about 30 meters if

only full grown cracks are counted. If shorter cracks are also included, then the

spacing is about 7 to 15 meters.



CHAPTER HI

INITIATION THEORY— FOR BRITTLE MATERIALS

Because of cooling, externally applied loads, residual-stress build-up due to

creep, loss of moisture and consequent shrinkage, or other natural of imposed

processes, cracks often form from smooth surfaces. Problems of this kind include

shrinkage cracks in drying concrete, Shrinkage cracks in polymers due to aging and

loss of moisture, desiccation cracks in deserts and at the bottom of dried up lakes, to

name just a few. The situation may be idealized as a system of parallel Mode I

equaldistance cracks normal to the smooth surface of half-plane.

The crack propagation of a system of parallel cracks was studied in detail with

respect to a proposed hot-dry-rock geothermal energy scheme in late '70s. The stability

analysis of crack propagation was done by Bazant and Ohtsubo (1977), Bazant,

Ohtsubo, and Aoh (1979) and Bazant and Wahab (1979) that they adopted the finite

element approach; also by Nemat-Nasser, Keer, and Parihar (1978), Keer, Nemat-

Nasser, and Oranratnachai (1979), Sumi, Nemat-Nasser, and Keer (1980) that they

formulated the problem in terms of a singular integral equation. But most attention is

focused on the problem of how cracks develop in structures that already have them

(crack propagation happen after crack initiation). Although Keer, Nemat-Nasser

(1978, 1979) gave some crack spacing estimate based on arbitrary assumption.

27
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The purpose of this research is to provide a theoretical analysis and numerical

approach for the crack initiation problem. The initiation of thermally induced equally

spaced and equal lengths parallel cracks in a half-plane consisting of a homogeneous

isotropic linearly elastic brittle material are studied. The problem is stated and basic

model is outlined in section 1. In section 2 the basic three conditions for governing

crack initiation of brittle material are cast. The corresponding thermoelasticity problem

is formulated in the form of integral equations in section 3, and the numerical method

of solution is outlined in section 4. Numerical results, relevant discussion and

comparison with other theoretical results at limit cases are then presented in section 5.

The experiment evident of glass comparing with the solutions are reported in section 6.

Some comments and a few conclusions are presented in section 7. The possible

experiment is suggested in the final section.

3.1 Statement of Problem

Consider an elastic half-plane of unit thickness that occupies the region y > 0

(Fig.3-la) and is under plane stress. The material is homogeneous and isotropic. The

half-plane is subjected to initial strain ex - £0f(y/d) which may be caused by cooling

or drying of the surface; / is a given strain function and d is the penetration depth of

cooling or drying. The initial stress is ax = Eex = efflyld). The general shape of

function flyld) is shown in Fig.3-lb. The initial strain profile may be considered either

an error function (which is the exact solution of the linear diffusion problem) or a

parabolic function (which is an often used approximation). These functions are



29

or /(y) = (l-.y)2 0 < y < \ (3-1)

with maximum value /(O) = 1. We shall use both functions. Basically they give similar

results.

The phenomena of crack formation are often complicated by fhe randomness of

material inhomogeneity. The initial cracks rarely appear in a regular and systematic

way. In the case of large concrete blocks, the cracks are never straight and the spacing

between these cracks is hardly uniform. In the case of a drying lake bed, the crack

pattern may not be exactly hexagon; it may be in the shape of a pentagon or heptagon.

However, it is also true that hexagon is the most common shape, and the sizes of these

hexagons are almost uniform. In the case of penetration of a sea ice plate, it is found

that the total number of radial cracks varies from experiment to experiment, but

generally larger punch sizes produce more radial cracks (Frankenstein, 1963). Despite

the randomness, there must nevertheless be deterministic laws underlying these

phenomena.

However, due to lack of information, and because of the accompanying

analytical difficulty, we dramatically simplify the problem into the idealized case of

cooling of a perfectly homogeneous and isotropic elastic half-plane, in which we

expect the initial cracks to be straight, perpendicular to the free surface (system of

parallel cracks), their spacing uniform and their pattern regular. The temperature profile

in the solid is not altered by the formation and extension of these cracks. Moreover, to
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simplify the analysis further, we assume that the initial cracks are of equal length a in

this chapter. Thus we may concentrate on one cell of width b as shown in Fig.3-lc.

The problem is first decomposed into two separate problems. The first is the

structure without cracks with the'initial (or residual) stresses applied. Tne second is

the structure without initial stress, but with cracks and the crack surface traction that

are equal in magnitude to the initial stresses but opposite in direction. The solution is

obtained by the superposition of these two problems. Since there is no stress intensity

factor in the first problem, we can, therefore, study only the second problem. This is the

standard approach studying the fracture mechanics problem in elastic materials with

residual stresses.

3.2. Conditions Governing Crack Initiation from Smooth Surfaces

It is well known from experience that the formation of initial macroscopic

cracks from a smooth surface of brittle material is a sudden event. The phenomenon of

crack initiation involves transition between two states: One is the initial equilibrium

state in which there are no cracks. The other is the first state of stable equilibrium at

which the cracks have formed and have come to a stop but are simultaneously in a

critical state from which they can propagate further in a stable equilibrium manner. In

between these two states, the cracks are unstable and grow dynamically. The reason

that the transition is dynamic is that the energy release rate as a function of crack length

begins increasingly from zero. At the same time, since we treat the problem according

to linear elastic fracture mechanics (supplemented by the strength criterion), the
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fracture energy is constant and nonzero. This is what causes the initial instability of

crack growth. In this study we are interested only in the two equilibrium states and the

basic laws governing them. Because the material is considered to be elastic the

response is path independent, and so the dynamic transition between these two states

need not be analyzed in order to solve the crack spacing problem.

The first condition governing the crack initiation is a stress condition: The

tensile stress caused by load before cracking must reach the tensile strength of the

material at least at one point. For any load below this level the material simply can not

start to break.

The second condition is that the final state, as we have defined it, satisfy the

Griffith law that the energy release rate be equal to its critical value. If the energy

release rate were above the critical value, then the cracks already formed would be

unstable and would not stop at the final state. On the other hand, if the energy release

rate were below the critical value, then the cracks would have had to stop earlier and

that state would not represent the final state.

The third condition is provided by the law of energy conservation, which

requires the potential energy of the structure released due to crack jump to be fully

converted into surface energy of the newly formed cracks. Note that the Griffith law

(the second condition) is also a statement of energy conservation which is however

applied to an infinitesimal crack extension and is represented by a differentiation of the

potential energy, whereas the third condition is energy conservation for a finite crack

jump and is represented by a finite difference in potential energy.
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The three conditions of crack initiation can simply be written as

<rx(X,0)>f t; G(a,d;b) = Gf; U(0,d;V-U(a,d;b) = aGf (3-2)

where// = tensile strength of the material; G/= fracture energy of the material defined

as the energy required to open a unit crack fully, U = strain energy within the cell of

width b. For simplicity, we use here for the stress condition the equality crx =//, and

postpone the consideration of the case of inequality. In the following derivation, we

will make use of Irwin's formula for energy release rate in terms of the stress intensity

factor,

dU K*

where K = mode I stress intensity factor at the crack tip , defined as

K = lim <7X [2 n(y - a) ]1/2 ,and E = Young's modulus of the elastic material. With this

relation and based on the third condition, we can express the strain energy change as

2da • (3-4)

Furthermore, by combining the second and third conditions and rearranging, we can

cast the three basic conditions as:

a x =f t ; K 2 = E G f - a K 2 = K 2 d a (3-5)

Since all the equations refer only to a unit cell of width b (crack spacing) the second

condition of crack initiation furnishes a relation between the ratios of a/b and d/b. In

this way, solution of the crack initiation problem yields K as a function of a/b and d/b

for the given initial strain profile. In other words, there is a one-to-one correspondence
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between crack spacing b and the loading depth d. Once the penetration depth d is

given, the crack spacing b and the initial crack length a can also be determined. We

will come back to this point later.

3.3 Mathematical Formulation

Since all these quantities are complicated functions of the geometrical

configuration and the loading profile, the solution has to be numerical.

The problem of a half space weakened by equidistant parallel surface cracks has

been studied by Bazant et al. (1977, 1979) using the finite element method, by Nemat-

Nasser, Keer and Parihar (1978) using the dislocation representation, and by Nied

(1987) using the displacement jump as the basic unknown. The problem was also

reviewed by Bazant and Cedolin (1991). The stresses for one normal surface crack in a

half space were given by Keer and Chantaramungkorn (1975), and Nemat-Nasser, Keer

and Parihar (1978) modified the expression to obtain the stresses for an array of

equidistant cracks on the surface. When all cracks are of equal length, as assumed

here, the equation can be simplified. The condition that stress at the surface reaches

the tensile strength may be written as

o-.(0,>0 = J-["£>(') ̂ g(t,nb,y)dt = -/, f(yld) (3-6)
**K n=-to

where E is the Young's modulus for plane stress condition and changed to EI (1 - v2)

for plane strain condition, where v is Poisson's ratio. Function D(f) represent the

dislocation density. The kernel function g can be expressed as
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(3-7)

Since g is an even function of x, the series in (3-6) may be written as •

(3-8)

Using the following two formulae (Gradshteyn and Ryzhik, 1965, pp. 23, pp. 36),

(3-9)

" -1 -' 1

the infinite series can be summed into a finite expression:

,«. .A_ ' 2 - / -4(V 2*. v + / Cy
b b

6 6
(3.u)
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Also from (3-7) we have

2 2

' >-.y (y+03

It is further convenient to represent the kernel function in the following form

, ,
«=i b

where the function g^ can be written as

(3-13)
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g (t y) = + 2 coth(y + t)-(y + 3t) csch2 (y + /) + 4tycsch2 (y + /) coth(.y + /)
t-y

1 r i 2 iH II-2(y-/)coth(.y — t) + (y — t) csch (y-1)\

(3-14)

Because function £>(/) is singular at the crack tip, it is now convenient to introduce a

new unknown function C(f):

(3-15)
\?-r,

which is a smooth function. Equation (3-6) is thus transformed into the following

equivalent integral equation for the unknown function C(f)'.

Also the unknown function C is a bounded function. Once the unknown

function is solved, the stress intensity factor can be calculated as

(3-17)

The detail proof can be found in appendix 1 .

3.4 Numerical Method

Since the first term of the expression of function gl is l/(t-y), (3-16) is actually

a Cauchy's singular integral equation. To solve it numerically, we first normalize the

interval (0,a) by defining



s = t/a, x = y/a, C(as) = B(s)

Now the singular integral equation (3-16) can be written in the form

T7 i 1>f -A f _~~S ' N

t f1 &\S) K® I ft&S 70XC

Next, (3-16) is extended into the interval (-1, 1) by an even continuation:

36
(3-18)

(3-20)

In this way, (3-16) can be equivalently expressed as

E na
~b~

Teas

)
^-l 0 < x < (3-21)

With the Gauss-Chebyshev quadrature and the collocation technique as described by

Erdogan, Gupta and Cook (1972, pp. 380-381, where n is replaced here by 2n+l), we

can convert the singular integral equation into a discrete form as

2n+I naxj

' b
(3-22)

where n is the number of integration points and

f - co
2/-1 ^ ( jn

n , x, = coa —-—
A *• i O / ' I O-M i

(3-23)

let

a
(3-24)

then equation (3-22) may be written as
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where

H(t,y;e) = ne{*,t + 2coth(y + /) - (y + 3t)coth2 (y +1)

+4tycoth(y + /)[coth2 (y + f)-l]~ 2coth(.y -t) + (y~t) coth2 (y - /)}.
(3-26)

If we introduce

Then (3-25) become

f(^-y\ j = \,2,....,n (3-28)

Such a system of linear equations can be easily solved, for example, by the method of

triangular factorization. Once we know A, we can calculate the stress intensity factor

K in the form of dimensionless stress intensity factor N as

N = — = = --2 - ^=_=(2/7 + l)J-^(l) (3-29)
J W ^ }

Note that the numerical solution does not yield directly .4(1). The closest data point on

which the unknown function is defined is Sj = cos(7t/(4/H-2)). In theory, an

extrapolation, for instance a quadratic extrapolation, is needed to find ^4(1). However,

when n is large enough (for instance, n = 50), the difference between ^4(1) and A(s}) is

in the third of fourth digit, and thus is negligible.

The stress intensity factor, either in the form of K or the dimensionless form N,

is obviously a function of a/b and d/b as well as the initial strain profile f(y/d). Our
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purpose in the next section will be to find the relation between these geometric

characteristics.

In terms of dimensionless stress intensity factor JV, we can rewrite the last

equation in (3-5) as

£ N2(x, A)<fc = eN2 (e, A) (3-30)

Note that this equation is purely geometric, that is independent of the material

properties. From this equation, we can establish a relationship, which turns out to be

one-to-one, between e and A. Furthermore, let

This frequently used material characteristic, which will be called the effective length (or

characteristic length), is an important quantity in this analysis. (For the concrete with

Young's modulus E = 4.2 x 106 psi, fracture Energy Gf = 85 N/m = 0.485 Ib/in, and the

tensile strength ft = 3.45 Mpa = 500 psi, the effective length 10 would be 8.15 inches.)

All the lengths characterizing the geometry will be normalized with respect to /„. The

second equation of (3-5) can now be converted to the form:

where b* = b/l0 is the dimensionless crack spacing. Also, the dimensionless crack

length and loading depth can be defined as

* ^ ^ T * 7 * I * ^ * " » » i T * f * . x«.«Na = — = —b =eb d = — = — b =kb (3-33)
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In the calculations, the ratio A is given as an input. Then, using (3-30) we can solve

for e. After e and A are known, the value of b* is determined from (3-32). The

dimensionless quantities a* and d* can be determined using (3-33). In this way, the

problem is solved accurately and efficiently.

The detailed procedure are given step by step as :

(1). give ratio A (penetration depth d over crack spacing b);

(2). select ratio e (crack length a over crack spacing b);

(3). solve for 4(1) through eq.( 3- 28) and calculate N by eq. (3-29);

(4). check equation (3-30). IfN2 satisfy it go to next step otherwise go back

to step 2;

(5). determine b*, a* and d* by using eqs. (3-32), (3-33).

3.5 Analysis of Numerical Results

Fig.3-2 shows the relation between a* and d*, as well as between b* and d*. It

should be emphasized that the relation plotted in Fig.3-2 between the penetration depth

d* and the crack spacing b* (as well as the initial crack length a*) does not apply for

the subsequent crack evolution. Rather, each point in Fig.3-2 represents an event of

crack formation. After the crack is formed, there are other laws that govern the further

growth of the crack system, which have been discussed in detail by Bazant et al. (1977,

1979, 1991) and Nemat-Nasser et al. (1978, 1979).

The solid curve shows the error function and the dashed curve the parabolic

function. As can be seen from Fig.3-2, the difference in the final results between these
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two profiles is not significant. Thus, all the following analysis refers to the parabolic

profile only. As the dimensionless loading depth d* increases, the spacing b*, starting

from a very large value (which is actually infinite), decreases monotonically. However,

the initial crack length first decreases. After it reaches its minimum value, it increases

with d* towards infinity. Such a behavior must reflect the requirement of energy

balance. The crack driving force is controlled by the loading depth d*. For small d*

there is only a small amount of energy available, and so the cracks must be very sparse,

crack spacing b* must be very large and the crack length a* must be very small. On

the other hand, a larger d* provides a larger amount of energy, and therefore a smaller

crack spacing. Because the rate of decrease of b* is initially dramatic, the energy

available for each crack must be reduced. That is why initially the crack length must

decrease with the loading depth. After the rate of decrease of b* becomes less

dramatic, the energy availability for each crack somehow catches up, and then the crack

length a* begins to increase monotonically with d*.

For very large d*, the crack length a* is also very large. Therefore, for the

crack tip, the free surface at.y = 0 is no longer important. In addition, when the loading

depth increases unboundedly, the initial strain distribution becomes uniform. The

problem is thus transformed into an array of semi-infinite cracks under the uniform

surface pressure //. The stress intensity factor for this problem can be solved

analytically using Fourier transformation method (Tada, 1985), and the result is:
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Substituting this solution into the second equation of (3-5), we obtain the theoretical

result for the lower limit of crack spacing b* = 2. Such a limit serves as a check for our

numerical calculation. Specifying a large value of d/b, we can solve for b*, which is

found to be always larger, but very close to 2. For example, when d* = 104, b*

=2.026. Ifd* = 10s, then b* = 2.013. For the concrete with the effective length 10 =

20cm = 7.8 inches, the lower limit of crack spacing would be 15.6 inches.

The other limit corresponds to a small d* value when the spacing is infinitely

large. Since the interaction between the cracks can be neglected, the problem can be

transformed into a single crack in an elastic half-plane. The numerical method

described in the previous section can certainly be modified to solve for the stress

intensity factor for this configuration, but we decide to use a simpler and more explicit

approach. According to Tada (1985) (page 8.3a), the stress intensity factor can be

expressed as

(3-35)

where F(x) = 1.3 - 0.3x5M. This formula has an error less than 0.5%.

L e , L f f f y ^ K (3-36)

By introduce dimensionless variables

s = y/a, z = y/d and t = ald (3-37)

and dimensionless function
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(3-38)

4 A,J
thus ^2=-a02(0 = — /*2(0 (3-39)

n n

The term K* must satisfy the third condition of crack initiation in the form

r*w?
It can be transfer to the following form by using the relation (3-38)

£ z<D2 (z) dz = f 2O2 (f) (3-40)

We can define another dimensionless function

¥(/)= f zO2(z)dr (3-41)

and rewrite (3-40) as

¥(/)//= f*2(f) (3-42)

Also according to (3-31) and (3-39)

/ =K 2 =—t^m
n

so two following equations are obvious existed

n (3'43)
4a *

To achieve adequate precision, Gauss-Chebyshev quadrature must be employed to

calculate the function O. First we extend the integration interval to (-1, 0) as

(3-44)
I — s
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We now use the integration formula corresponding to the weight function (l-s2)~1/2

and obtain = (3-45)

where sj has the same definition as one in (3-23).

We can determining the ratio a/dfrom equation (3-42). Then, through either of

equations in (3-43), we can determine the value of d*. This value ofd* is found to be

approximately 2.281, and the corresponding crack length a*=1.411 (when the initial

strain profile is taken as a parabolic function). This result is also used as another check

on our numerical calculations. The difference between the values just calculated and

the extreme values of our previous numerical results is less than 0.4%.

The function fO2(0 and ¥(/)/* is plotted in Fig. 3 -3. Note that, away from the

origin, there is only one point at which these two curves intersect. Such a point

happens to be the maximum point of function ¥(/)//, which is the dimensionless form of

the total energy released due to the crack formation. This property can easily be

verified by the definition (3-38) and (3-41) of these two functions. The ratio t = a/d =

0.6186 is such that the total energy released is maximized among all the other ratios.

As a result, the penetration depth is minimized.

One is naturally led to the question: what will happen when the maximum

tensile stress exceeds the tensile strength of the material while the penetration depth d*

is still much less than the minimum value 2.281? Such a situation can happen, for

instance, when the half plane represents a very hot object, and the surface of which is
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suddenly brought into contact with a very cold medium. The surface stress quickly

rises to £a(7J - 7^) (where a is the coefficient of thermal expansion and 7J - T0 is the

temperature difference), but the penetration depth is initially very small because there is

not enough time for the conduction of heat into the material.

According to our theory, when d* is smaller than the lower limit value, there

will not be enough energy available to open a crack, although the stress level is already

high enough to break the material. As a result, the maximum tensile stress can rise

above the tensile strength while the material retains its integrity. Now we can replace

the stress condition with

a,(P,y) = rfJ(yi*) . r*i (3-46)

Then, equations (3-40) and (3-44) will change to

n
(3-47)

When the stress condition is changed, the energy balance laws are also changed

accordingly. In fact, the altered system will be the same as the equations in (3-42)

except that the dimensionless loading depth d* has to be replaced with y2d*. As a

result, the critical ratio a/d is the same and the minimum penetration depth becomes

2.281/7'2, which is still finite, although smaller than the original minimum depth.

3.6 Experimental Evidence

The present theory appears to be compatible with the existing experiment

evidence. In Geyer's experiment (Geyer et.al., 1982), a uniformly heated (at about 200
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°C) glass plate was put into contact with dry ice (at -78 °C). Seconds after contact, a

few cracks suddenly shot up in a dynamic manner. Since the paper did not report what

kind of glass is used in the test, we assume that it was soda-lime glass. For this kind of

glass, the tensile strength is typically 70 MPa (Bansal, 1986). The typical standard

deviation in the glass tensile strength is about 20%. The Young's modulus reported in

the paper is E = 69 GPa. The thermal expansion coefficient is 8.5 x IQ^'C. The initial

tensile stress caused by the temperature difference is calculated to be of 60MPa,

which is larger than the tensile strength. If the fracture energy Gf is taken as 3.6 N/m

as reported in the paper, the effective length of material /0 is about 5x I0~2mm. With

such a small reference length, only the part of the solution for small d* and big b* is

relevant to this experiment.

It is observed that cracks do not form immediately after the hot glass is in

contact. Rather, a few seconds are usually needed. This can also be explained by our

theory: the penetration depth needs to reach a certain length (a process that takes time)

before the cracks can form. The average spacing is about 1 to 2 cm, which is

sufficiently large for b* to be regarded as infinity. In this experiment, the maximum

stress is larger than the tensile strength (X is about 2). An over stressed plate can be

highly unstable. For instance, any disturbance supplying energy (such as kinetic

energy) can make the energy sufficient for crack formation. If this condition is met, the

crack could form suddenly and probably in a dynamic manner. Another possible cause,

for dynamic crack growth, probably more important, is the fact that the tensile strength

decreases with an increase of temperature. Although the fracture energy also decreases
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with temperature, the rate of decrease is not as significant as the tensile strength. In the

case of Geyer's test, the cold side of the glass plate is much stronger, therefore requires

a higher level of stress to break the glass. However, once the cracks are formed and

enter the zone of higher temperature, where the glass is less tough, then there is a

surplus of crack driving force (that is, energy release rate). Such a surplus of driving

force would certainly cause cracks to grow in an uncontrolled dynamic way.

3.7 Additional Comments and Brief Summary

Which d* should be used depends on the loading method? Imagining that both

the maximum value of the initial strain and the loading depth grow with time, one

should take the loading depth at the moment when the maximum strain reaches the

tensile strength. It is this loading depth that determines the initial crack spacing and the

initial crack length. However, if the loading depth is still smaller than the minimum

value, then the critical penetration depth will be the depth that first satisfies the relation

Nemat-Nasser et al. (1978), (1979) and gave an estimate of the lower limit of

crack spacing by energy consideration. The idea is that the fraction of total strain

energy before cracking should be used to generate new surfaces. From which , using

our notation, the minimum crack spacing in the form of b*> \l (y2K0). K0 is an

empirical coefficient depending on the initial strain loading profile, the ratio a/d and a

parameter 9 representing the fraction of strain energy to be used in creating new crack

surfaces. However, neither a/d nor 9 can be determined in their analysis, as is admitted
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by Nemat-Nasser (1979). In Geyer's paper, this factor is taken as 0.1. Therefore, their

estimate of lower limit is 5 times larger than here. Bazant et al. (1979) also gave a

similar estimate, and the value of a/d is considered to be at least 1.5, which is also

larger than our result a/d = 0.62 (see Fig.3-3). An adequate experiment is needed to

verify these theoretical predictions. Glass is probably not the best choice for the test,

because its effective length is so small. Crack sizes in the range of 1 to 10 times of /„

are very hard to observe by the naked eyes. Brittle materials with /0 in the range of

millimeters or even centimeters are preferable.

For small d*, the initial crack length is of the same order as the effective length

/„. Note that /„ is of the same order as the process zone length, which is a zone that

contains highly nonlinear deformation. When the crack length is of the same order as

the process zone length, the nonlinear effects are no longer negligible. The crack

initiation theory, which is mainly based on linear elastic fracture mechanics, should be

only regarded as the first approximation. The problem of determine the initial crack

spacing in a material with a large nonlinear process zone is to be studied in the chapter

V.

The crack initiation theory proposed herein is more general than either

homogeneous isotropic materials or a half-plane problem. For example, for orthotropic

or anisotropic material you may find a suitable representation for the components of

stresses or the stress intensity factor (as a function of crack length, loading depth and

crack spacing), then the problem can be solved in the same way as for isotropic

material . For the purpose of applying the theory to more practical engineering
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problems and also checking the correctness of the initiation theory, the crack initiation

of concrete pavements is to be studied in the next chapter.

The main contribution done in this chaper van be briefly summarized as follows:

1. The initial spacing and initial stable equilibrium length of parallel equidistant

cracks emanating from the surface of a brittle elastic half plane can be determined from

three conditions: (1) The stress at the surface reaches a given strength limit. (2) After

the initial cracks form, the energy release rate equals its given critical value. (3) The

finite energy release due to the initial crack jump equals the energy needed to form the

crack (according to the given fracture energy of the material or fracture toughness).

2 The problem can be solved if the stress intensity factor as a function of

loading depth, crack length and the crack spacing is known. The stress intensity factor

can be solved using Cauchy's integral equation. For the limiting cases of infinite initial

crack length and of infinite large crack spacing, the correct limiting values are

approached, which provides a check for the accuracy of the numerical solutions.

3. The results of analysis compares favorably with available experimental

evidence on thermal cracks in glass. However, this comparison is valid only in the

range of very large initial crack spacing. For a complete check of the validity of the

solution, further experimental studies are needed.

3.8 Outline of a Proposed Experiment

For a complete check of the validity of the solution, further experimental

studies are needed. The following experiment may be conducted in a laboratory.
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The brittle material suggested for experiment is gypsum, which is cheap and its

characteristic length IQ is suitable for a limit sized spacemen simulating a half-plane.

Glass's IQ is too small the naked eye may not observe crack forming. On contrary

concrete's IQ is too large, required size of specimen would be beyond our laboratory

ability.

It is important to evaluate the material fracture properties. Beam specimens can

be used for three-point bending tests. The dimensions of the beam specimen could be

12 inches long, 3 inches high, and 1 inch thick. During three-point beam test, the

applied load, the CMOD (crack mouth opening displacement), and the load-point

deflection (5) should be monitored and stored in a digital form. The rate of loading is

controlled by a constant increment of CMOD. The suggested loading rate is 0.01

in./min. The typical load-load line deflection (P - 8) and load-CMOD (P - CMOD)

curves can be obtained from the test data. From these two curves, Young's modulus

and fracture energy (Gf) can be evaluated. The Young's modulus value calculated

from the load-CMOD curves are usually higher than those obtained from the load-

deflection curves, as reported by other researchers. Fracture energy is defined as the

area under the load-line deflection curve divided by the initial uncracked ligament area.

Although the area under the load-CMOD curve does not have a direct physical

meaning, the fracture energy calculated from it is comparable with that obtained from

load-deflection curves. Since CMOD value is less sensitive to support settlements, the

P-CMOD curve should be used to determine the fracture energy.
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For determining the tensile strength , splitting tension tests can be conducted,

which is carried out on a standard cylinder, tested on its side in diametral compression.

The dimensions of the cylinder specimen could be 3 inches in diameter and 6 inches

long. The test could be performed under displacement control at a rate of 0.005 in./min

or under load control at a rate of 50 to 150 lbAn.2/min. The tensile strength then can be

2P
calculated as /. = , where P is the applied compressive load, L the cylinder

nLD

length, D the cylinder diameter.

To observe the phenomena of crack initiation due to drying shrinkage the

following experiment may be conducted in some laboratory. The top opened rectangle

box, which inside dimension may be three feet width, one inch thick and two feet high

(the final size should depend on the fracture material properties), can be made by

concrete or some hard material because the deformation in width direction is not

allowed. Two side panel in thickness direction should be greased, it would allow free

movement along these panel surfaces. The moisture measure meters may be installed in

the middle section distributed from top to bottom of box. The prepared gypsum paste

then can fully fill the box. Keep the top of box open to evaporate water from this top

surface.

The moisture record every certain period of time until the shrinkage cracks

appear. Measure the crack spacing and depth and draw a moisture distribution curve,

it can be modified as a drying profile. The results from the experiment and from the

initiation theory can be compared and reported.
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Fig. 3-1 (a) Geometry definition of parallel crack system;

(b) Initial strain profile;

(c) Unit cell of width b.
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CHAPTER IV

CRACK INITIATION IN CONCRETE PAVEMENTS

It has been known that joints must be placed in Portland cement concrete pavement

to control cracking that is caused by environmental changes. By providing joints, cracks

either do not develop or develop only in a controlled manner related to the location of the

joint. The cost of construction increases and the ride quality decreases if the spacing

between the joints are short. Selection of joint spacing is motivated by above requirement.

Many states have developed standards for joint spacing through experience. No rational

procedure exists to determine the "correct" joints spacing. However, due to paucity of

general understanding of the crack spacing phenomena, the best guideline, at the present

time, is still the local road service record or certain rule of thumb. For instance, it is

advised that the joints spacing (in feet) should not greatly exceed the slab thickness

(in inches). It is therefore important to understand the basic physical mechanism of

pavement crack spacing.

For asphalt concrete pavement, thermal cracking is one of the main causes of quality

deterioration. Each seasonal cycle brings about new cracks in the surface course, and the

extent of cracking is usually measured by the cracking index, which is the length of cracks in

each unit area. The theory proposed in this paper is relevant when pavement surface is free

of cracks, or when the cracks are still very sparse.

54
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This dissertation aims to establish a simple mechanical model of concrete pavement

that can be used to predict the spacing in pavement due to temperature differential. Crack

spacing due to moisture change can be discussed in the same way if the coefficient of

expansion due to moisture change is known for the material. The main purpose of this

study is to identify the basic laws that govern the cracking phenomena in pavement, and

using these basic laws to relate causes to their consequences. With these knowledge, it may

improve our capability to extrapolate the experimental findings in one locality to another

and thus reduce the cost and time required for repeated field tests on different geographical

locations. The model proposed hopefully can serve as a theoretical foundation for

pavement joint design.

Cracking in pavement is an example of a special class of mechanical problems in

which a system of cracks suddenly occurs on a smooth surface under the action of

temperature and moisture change. The problem of crack initiation from the surface of an

elastic half-plane has been studied in the previous chapter. However, the problem of crack

initiation in pavement has its own rights because of the following reasons. First, the

pavement is very different from a homogeneous half-plane, the material property is

dramatically different between the pavement and its foundation (or subbase). Second, the

pavement material is not perfectly brittle so linear elastic fracture mechanics cannot be

applied. As a result, a new modeling must be devised to take advantages of the structures

main feature, and the crack initiation theory must also be modified to take into account of

the influence of large process zone.
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4.1 Mechanical Modeling of Pavement

The pavement is structurally modeled as an elastic plate sitting on a Winkler

foundation(Fig.4-la). To focus on the main issue, only transverse cracking will be

considered in this paper. Therefore, we can take a slice of plate of unit width together with

its supporting foundation in the longitudinal direction from the plate. Since we are only

interested in the average behavior of cracking spacing in pavement, the crack spacing 27 and

crack depth a are assumed to be uniform. Following the treatment of Okamura (1973,

1975) and also that of Rice and Levi (1972), the effect of cracks in a beam is represented by

the increase in its compliance. Let At and 0, be the total elongation and rotation of an

elastic beam with an edge crack at the center (Fig.4-2) loaded by bending moment M

(moment per unit width) and axial tension N (force per unit width) at both ends. M and N

are reaction forces from adjacent plates. The positive M is denned as it would open the

crack (top of beam in tension). The total deformation can be expressed as the sum of the

deformation of the beam without a crack and the additional ones due to the crack, that is,

A, = A0 + Ac and 0t = 00 + 9C (4-1)

where subscript "0" denotes deformations of the beam without a crack, and cc" additional

deformations due to a crack. These deformations also are corresponding to the whole beam,

which are the sum of both ends deformation. The additional deformations can be related to

these nominal forces as:

oc = AMMM+A^N, AC = /U,A/+;U,JV (4-2)
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where A represents the increments of the compliance functions caused by the existence of a

crack, namely, AMM = additional rotation due to an unit bending moment, XMV = additional

elongation due to an unit axial tension force, /W = /W (due to reciprocity of linear

elasticity) = elongation or rotation due to a unit value of M or N respectively. These

additional compliances would be defined in section 4.

The basic equation of lateral equilibrium of plate resting on Winkler foundation can

be written as

vbw = 0 (4-3)v
ax

where D = Ebh3ll2(l-v*) = plate stifihess and k* = the coefficient of subgrade vertical

reaction; E =Young's modulus of pavement, v = Poisson's ratio of pavement, b = plate's

width, and h = plate's thickness. This equation is the same as that for an elastic beam in the

plane strain condition. The external load need not be considered because only thermal effect

is of concern. Also because the self weight of pavement only produce uniform downward

movement and increase the magnitude of the contact stress, thus, the flexure of the beam is

unaffected by effects of self-weight. We need not to consider it either.

The temperature vary through the thickness of pavement but not in planes

parallel to the surface of the pavement. For simplicity the temperature distribution

through the thickness of the pavement is assumed to be linear. This assumption is

without significantly affecting the accuracy of the computations., as Armaghani, Larsen

and Smith (1987) pointed.
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The pavement is stressed by temperature differential, with Tt = the temperature

differential at the top of the beam and Tb = the temperature differential at the bottom.

Denote

_ Ea T t-Tbh2 _ Ea T,+ Tb, , .
MT - - -- ;~7' NT ~ ~i -- '-> — * t4"4)1- v 2 6 1-v 2

as the moment and tension that the beam would experience if the corresponding

deformation is restrained, a = thermal expansion coefficient of pavements.

4.2 Structural Analysis

The structure can be solved by the compatibility condition at the cracked section.

Due to symmetry, only one half of the beam needs to be considered (Fig.4-lc). The elastic

solution of equation (4-3), found from Selvadurai's book (1979), pp.84, is

w(x) = e** ( Ci cos^ + C2 sin Ax) + e'**(CiCOsAx+ C4s\nAx) (4-5)

where X* = k, /4D, X x is a dimensionless parameter. The constants C\, (i=l,2,3,4) are to be

determined by the boundary conditions of the beam.

From the homogenous solution (4-5) the slope , bending moment and shear force of

the beam are given by

u f j \O

T- F(x) = -/>*£ (4-6)
ax. ax.

Boundary conditions 0(0) = 0, F(0) = 0 and F(l) = 0 yield

C1=C3; Q = -C4; C,=QC2

Then the solution can be written in the forms:

MT (4-7)
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Where O and *F are dimensionless functions given as

O(x) = cosxcoshx - Q(x)sinxsinhx (4-8)

¥(x) = £?(x)(cosxsinhx-sinxcoshx) + cosxsinhx + sinxcoshx (4-9)

_, x cosxsinhx - sinxcoshx ,A „„.
and Q(x) = - . . - — - . (4-10)

cosx sinh x + sin x cosh x

By eliminating Cz from (4-7), we can obtain the following relation:

(4-n)

The rotational compliance of beam can be defined as

C ~ « = (4-12)
™~ AD ( >

The function D is plotted in Fig. 4-3. As can be seen, when the nondimensional length Al

becomes larger about 1.8, Q starts to fluctuate and eventually approaches to 4. However,

this behavior is not desirable from physical point of view, because it amounts to say that the

bending compliance is bounded from above, while in reality the bending compliance must

increase with beam length.

The assumption that the reaction from the foundation is proportional to deflection is

reasonable when the beam deflection is downward. It becomes meaningless if the deflection

is upward. A small portion of upward deflection is acceptable because the self-weight

always produce uniform downward movement that keeps the beam in contact with the

foundation, but if there are significant uplifting of the beam, then the compliance formula

must be modified. The simplest remedy is to assume that the stiflhess of the foundation can

be neglected, one can use the simple beam theory to obtain
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2/

A/(7) D V '

this compliance formula is proportional to the beam length. It will be seen later that (4-12)

and (4-13) yields very close solutions for a small crack spacing, (4-13) is more reasonably

behaved if the crack spacing is large. Therefore, the compliance function defined in (4-13) is

preferable.

The elongation is related to the elastic normal force and thermal force through the

following relation

A0 = CNN(N + NT), Cw = (4-14).

Now the total deformations at the ends of beam.can be expressed as

N ) (4-15)

(4-16)

The final equation for solving the bending moment and axial force depends on

additional assumptions regarding the constraint in the longitudinal direction.

Case I. The full constraint at the ends of beam : 0t = 0 and A, = 0.

This case reflects that for an infinite long pavement , the ends of any unit beam are the

surface of symmetry, at which above constrains conditions established. Through Eqs.(4-15)

and (4-16), the bending moment and axial tension force can be solved from a set of coupled

equations:

(CMM + AwW + IMN N + CMM MT = 0 (4-17)

(Cm +AMV)A r + Cw NT = 0 (4-18)
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As we will see later, the crack spacing will be very sensitive to the thermal contraction,

which is presented in the equation in terms of NT.

Case n. Constraint only on rotation but not in axial direction: Ot = 0.

If there is no bonding or friction between the pavement and its subgrade, then the beam can

expand freely in axial direction and the axial force N is zero consequently. We obtain an

equation to determine the total moment as

(Cm, + ;U,)M + CMM MT = 0 (4-19)

Case ffl. The same constraint condition as Case E and plus friction force.

If there is friction between the pavement and its subgrade, then during contraction

the friction would act against the relative movement to prevent the contraction. Across the

center of the beam the frictional force must change sign because of symmetry. The axial

force at the end of the beam, denoted as Nf must be the total fractional force on one half of

the beam span. Equation (4-17) must be modified as

(CMM + AJW)M = ~ CMM MT - J.W Nf (4-20)

The simple formula of friction force (Ib.) proposed by Friberg (1954) was

e(l-x)F Ft1

N f = \ -———dx = for a slab with length 21 inches, concrete weight of 1/12 Ib. per
o 12 24

cu. in., and average frictional coefficient F. According to his paper, the range of the ratios

between elastic modulus and friction coefficient might be from 106/0.33, to 4.5xl06/1.5. For

the typical concrete system, with E = 4.2x106 psi, the friction coefficient F should be taken

as 1.4, thus the friction force Nr= 7/V120.
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The frictional force acts to enhance the effect of thermal loading in the pavement.

This is in agreement with the engineering experience that the joint spacing must decrease for

an increase of frictional coefficient. . However, according to our calculation, the effect of

friction force on the crack spacing is practically negligible.

Subbases used many years ago were soft, loose and unbounded, such as sand,

gravel and clay. Today stabilized agents, such as cement, lime and asphalt, are added to

subbase materials, which lead to a strong bonding between the pavement and subbase in the

tangential direction. As demonstrated by Wesevich (1987), the horizontal force is basically

proportional to displacement for concrete slab placed on cement or lime treated clay

subbases, suggesting that the interaction may be modeled as bonding rather than friction.

For further increase of horizontal displacement, the resisting force approaches a constant. If

that is the case, equation (4-18) should be used instead of the model to be proposed as

follows. However, as will be seen later, neither bonding nor frictional forces seem to be

important for determining the crack spacing in the pavement.

Case 4. The pavement is bonded to the subbase and full constrain (as Case I) at the

ends.

If the pavement is assumed to be bonded to the subbase and the tangential force at

the bottom is assumed to be proportional to the horizontal displacement, then the

proportional constant, denoted as £/, and representing another elastic modulus of the

properties of the subbase, must also be given. The equilibrium equation for a slice of

pavement (of unit width) in the axial direction can be expressed as
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T^0-*>" = 0 (4-21)

The solution that satisfies the condition i/(0) = 0 can be written as

tt(x) = Csinh/£c, #(*) = C— -cosh/z* (4-22)

where // = (1-v2)^ /Eh and C is an arbitrary constant. The compliance function at the end

of the beam is obtained as

It is straightforward to show that when kh becomes vanishingly small, the compliance

function increases and approaches the limit value CNN .=2 /(l-v^/E/r Therefore, bonding

compliance reduces the axial compliance only, as our intuition would expect. The total axial

force and bending moment must be solved by Eqs. (4-17) and (4-18) with Cm being

calculated according to (4-23). The moment contribution of this bonding force is neglected

for the benefits of simplicity of the formulation.

Before we proceed further, it is important to note that in the above discussion, the

thermal load is calculated on the assumption that the subbase dose not contract or expand

with temperature. If the thermal deformation of subbase is also considered, then the thermal

loads defined by (4-4) must be modified accordingly.

4.3 Stress Intensity Factors and Additional Compliance Functions

The stress intensity factors at crack tip caused by an axial force and bending

moment, according to Tada's handbook (1985), can be represented respectively as:
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(4-24)

where e = alh = relative crack length and

. 7DC,
I - 0.752 + 2.02* + 0.37(1 -sin—)3

kH (x) = J2 tan^- - - - 2— . (4r2S)
' cos —

2

i - 0.923 + 0.199(1 -sin—)4

MX) = 6j2tan^ - - - 2_ (4.26)
' cos —

2

The total stress intensity factor K = KN + ̂ A/.

The elastic strain energy of structure due to cracking (also substituting the eqs (4-2)

into expression) is

(4-27)

The energy release rate in terms of stress intensity factors by Irwin's formula can be

expressed as

l + 2hNM kNkM

Also G = ~ = ̂ N2^^ + NM^^- + -M2^^- (4-29)
da 2 da da 2 da '

By comparing above two expressions of G the following relations established between

compliance functions and stress intensity factors as:
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By integrating them the compliance Sanctions can be expressed as

where i j=MoTN, rj = 0 for >W, 77 = 1 for ;W and 7 = 2 for ^/. The compliance

function can be calculated according to these formulas using numerical integration method.

In fact, the expression for AMM and Am can be obtained directly from the fracture
*

mechanics handbook compiled by Tada et al. (1985), only AM, needs to be calibrated

according to (4-3 1) using numerical integration, see Appendix 2.

4.4 Crack Initiation Theory

The previous structural analysis allows us to calculate the internal bending moment

and axial force once the crack spacing 27 and crack depth a are known. If there are no

initial cracks in pavement, the internal moment and axial force can also be obtained using

the method discussed in the previous section by letting the compliance of the cracked

section being zero. As the thermal loading continues to increase, the tensile strength of the

pavement is reached, and the necessary condition for crack initiation is satisfied. However,

the strength criterion cannot determine what is the average crack spacing, nor can it

determine the average depth of the cracks.

The energy release rate can be related to the net (total) stress intensity factor K by

the Irwin formula as K2 (1 - v2 ) / E , the total stress intensity factor can be expressed as
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(e) (4-32)

where N and M is determined by the method discussed in the previous section.

Although the function A# and k^ increases with relative crack length a/h, N and M

decreases with a/h because if the section is totally severed N and M becomes zero due to

loss of constraint. Once cracks start to gain enough lengths, the crack will stop growing

when Griffith condition G = Gf is satisfied. During the crack growth, the total energy

needed to form new crack surfaces, which is aGf for each crack, must be equal to the

energy released by the structure, which is the shaded area under the curve in Fig. 4-3. This

is the very condition that determines the crack spacing.

The process of crack initiation consists a transition from the pre-initiation state, at

which the strength criterion is satisfied, to the post-initiation state, at which the Griffith

criterion is satisfied. More specifically, the proposed initiation theory in Chapter HI can be

restated as

(1) The maximum tensile stress must be equal to the tensile strength of the

pavement at the pre-initiation state;

(2) The energy release rate of the structure must equal to the pavement toughness

Gc at the post-initiation state;

(3) The total energy must conserve during the initiation process.

These three conditions play different roles in the solution procedure. The first

condition determines the critical value of temperature differential, but it is not related to the

cracked configuration. The temperature profile is considered fixed during the initiation
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process. The rest of the two conditions must be solved together to determine the crack

spacing and crack depth for the post-initiation state.

Mathematically, with the temperature profile determined by the first condition, the

axial force N and the moment Mean be solved as functions of half crack spacing / and crack

depth a. I and a can be determined by the second and the third condition, which are

G(a) = Gf, U(0)-U(a) = aQf (4-33)

where P is the elastic strain energy of the structure. According to the definition of the

energy release rate, the third condition can also be expressed as

HGfa'Jda' = aGc (4-34)

The integral usually must be evaluated by numerical quadrature.

In the previous discussion, the material is assumed to be perfectly brittle. In terms

of fracture mechanics analysis, brittleness means that the nonlinear process zone around the

crack tip is negligible compared to characteristic structural dimension. It is widely known

that Portland cement concrete is not a perfectly brittle material, its nonlinear process zone is

often of several inches in size (Bazant, 1986a). To take the nonlinear behavior of the

material into consideration, one must perform fracture mechanics analysis according to, for

instance, the cohesive crack model (Hillerborg, 1976) with the softening stress described by

the crack opening displacement, or equivalently, a crack band model (Bazant and Oh,

1983). The crack initiation theory based on nonlinear fracture mechanics theory, although

extremely interesting and will be pursued in a future study, is too complex for the purpose

of this study.
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To obtain a simpler model, one should be cognizant of the difference between the

fracture energies obtained using different methods of calibration. Based on the cohesive

crack model, one can obtain fracture energy based on the work of fracture, as is shown

schematically in Fig.4-4. The total work Wt^ done by the load P during a displacement

controlled experiment is assumed to be totally transformed into creating new crack surfaces,

which is equal to 2B(h-d), where B = the beam width, therefore the total fracture energy G/

= WMJ2B(h-d). For Portland cement concrete, it is typically 80-120 N/m.

There are many other methods to calibrate the toughness of concrete on the basis of

maximum load capacity, among them we mention the size-effect approach proposed by

Bazant and Pfeiffer (1987) and the two-parameter model proposed by Jenq and Shah

(1985). These methods are based on the peak load value of the experimental measurement.

The fracture energy so obtained would be denoted as Gf, which is usually in the range of

30-60 N/m.

The difference in the values of fracture energy can be understood from the point of

view of the cohesive crack model. The maximum load that a structure can sustain,

according to the cohesive crack model, depends on the slope of the softening curve, not the

total area under the softening curve. This is because that the crack tip opening displacement

at the peak load is less than its threshold value \vc. For concrete slab with thickness around

10 inches, the crack tip opening displacement at peak load is typically less w</3. In other

words, the shape of the softening curve that corresponds to values larger than w/3 is

irrelevant for the purpose of maximum load determination. In other words, the softening

curve for the purpose of maximum load can be effectively replaced with a linear softening
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law with its slope corresponds to certain average slope of the original nonlinear softening

law in its small crack opening displacement range. The total area under this linear softening

law is denoted as Gf. As shown by experimental studies, Gf is typically 1/2 ~ 1/3 of G/,

which is the total area of the original nonlinear softening law, as is shown schematically in

Fig.4-4.

The second condition of crack initiation is concerned with the load bearing capacity

of the structure in the post-initiation state, therefore it seems appropriate to use Gf as a

measure of material toughness. The third condition is a statement of energy conservancy,

therefore G/ appears to be more relevant as a measure of material toughness. It should be

noted that the difference between the two measure is size-dependent, and Gf would

approach G/ if the characteristic size of structure becomes very large. Thus, the crack

initiation theory given previously is correct if the material is perfectly brittle. But for

pavement, the difference between Gf and G/ must be reflected in the crack initiation

theory. To this end, the second condition of the crack initiation theory may be written,

mathematically, as

G = Gf = PGf, P = Gf/Gf (4-35)

where the typical value of P ranges from 1/2 to 1/3. The third condition remains the same.

In this way, the nonlinearity of the pavement material can be approximately accounted. As

will be seen later, the modification dose not have significant influence on the final crack

spacing and crack depth. The nonlinear effect of the material, therefore, does not seem to

be consequential by this approximation.
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4.5 Numerical Method

It is usefiil to use a non-dimensional form to understanding the dependence of the

solution on various material properties. For this purpose, the following non-dimensional

nominal stresses can be introduced

N 6M tAtt'N = 7r*'^7* (4-36)

where/ is the tensile strength of the material. With these notations the first condition of

crack initiation theory can be simply expressed as

cjv + crM = 1 (4-37)

while the second condition becomes

oirMO + -Mo - (4-38)

where 10 = E G/ /(1-v*)/? = the effective length of the pavement. The third condition

becomes

de' = 3. (4.39)
h

It should be emphasized that, although not explicitly written in (4-38) and (4-39), ajv and

GM depends on the relative crack depth as well as crack spacing.

Also the equations for solving bending moment and axial force can be written in

nondimensional form. By defining the nominal thermal bending stress as c?M = 6 MTI h2ft

and nominal thermal normal stress as o^ = NT /h, the basic coupled equations (4-17) and

(4-18) (in Case I) in the nondimensional form are
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rM/ + Al«, 0N + Cw <?M = 0 (4-40)

f C™ + Xw)^ + Cw <?„= 0 (4-41)

where the non-dimensional compliances due to a crack are defined as

(e')de' ' (4-42)

u(e')de' (4-43)

ET, = 2j;^r^;^' (4-44)

and their empirical expression are presented in appendix 2.

The non-dimensional compliance functions are defined as

(A Af,(4-45)

Since the compliance function due to cracks is zero if the crack length is zero, the

nominal stresses at pre-initiation state can be simply solved as crM = -aj and

crN =-crN
T. Therefore the first condition, the necessary condition for crack initiation,

becomes

</w + c^=-l (4-46)

which becomes a condition to determine the critical temperature deferential. When the

distribution of the thermal stress is far from being linear, then (4-46) should be disregarded

in favor of the condition expressed in (4-37).

Combining (4-38) and (4-39), we obtain the following equation:
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For a given reasonable value of crack spacing /, one can always determine e from (4-47).

To prove this, one needs to know that the net stress intensity factor K is zero when e

approaches 0 or 1. The first zero is due to the fact that stress intensity factor approaches

zero as e"2 when e->0. The second zero is due to the fact that the total stress intensity

factor K also approaches zero when e approaches 1. This is because that the compliance

functions due to crack approaches infinity as 1/(1- e)2, forcing the nominal stresses due to

tension or bending approaches zero as (1- e)2. Although the stress intensity factors due to

unit load approaches infinity as 1/(1- e)3f2, thus the total stress intensity factor K must

approach zero like (1- e)w when e approaches 1. Translated into the language of energy

release rate, we know that G approaches zero like l-e when e approaches 1.

The actual structure of K is more complex. Depending on the tensile component of

thermal stress ONT, K can be negative for a significantly large crack length, with the negative

portion of K is deliberately cut off, see Fig. 4-5. This phenomena is particularly obvious for

large compressive axial thermal stress ONT (negative values in the plot). Although K

becomes positive again for even larger crack length, this region cannot be reached unless

additional energy is available to assist the crack to jump through the valley of negative K.

Although the energy release rate is still positive for negative K, this value does not represent

the energy that can be released from the structure by crack propagation. For this reason, it

is necessary to ensure, by means of numerical algorithm, that the solution of crack depth

does not cross the valley of negative K values.
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Based on these observations, we know that G must be an increasing function

initially and becomes a decreasing function eventually. When G is an increasing function, its

average value from 0 to e must be smaller than the current value. Since p is less than 1, the

left hand side of (4-47) must be less than the right hand side of (4-47) for small e value. For

e closes to 1, the average value of energy release rate must be a positive number while the

energy release rate approaches zero, thus the left hand side of (4-47) must be larger than the

right hand side of (4-47). Consequently, there must be a relative crack length e between 0
.*

and the boundary of negative-^ value that satisfies (4-47). This property is essential to

design a successful numerical algorithm to solve the unknown crack spacing and crack

depth. Once the crack depth is solved as a function crack spacing, one can use the second

condition (4-38) to determine the crack spacing. This is the main feature of the numerical

method used in this study.

4.6. General Behavior of the Model

In the following numerical examples, the thickness of the concrete slab is taken as

10 inches, which is a typical value in the pavement design. The material properties used in

these calculation is E = 4.2* 106 psi, v = 0.18 and k, = 400 lb/in3. With these parameter, X =

0.0293 (I/in.). The parameter P is chosen to be 1/3. For typical Portland cement concrete

the material length is about 7 inches, in which the toughness of the material must be defined

by the work-of-fracture method. The tensile strength/ and thermal expansion coefficient a

need not to be specified at this point because these parameters do not enter into equations

(4-38) or (4-39). They will determine the critical value of temperature differential.
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The simplest case is the pure bending without axial constraint (case n). The crack

spacing and crack depth in inches are plotted in Fig.4-6 as a function of material length lo,

which is also measured in inches. The effect of different compliance functions is clearly

demonstrated. If CMM is defined by (4-12), that is, if the pavement is modeled as a beam

resting on a Winkler foundation, then there is a upper limit for 10 beyond which there is no

solution for the crack initiation problem. This upper limit is obviously related to the upper

bound of the compliance function, as explained in the previous discussion. On the other

hand, the crack spacing is basically a linear function if CMM is defined by (4-13), which

appears more reasonable from physical point of view. When 10 is small, both compliance

functions yield very similar results.

When the axial deformation is constrained (case I), crack opening is restrained by

the compressive force it generates, the crack depth is smaller whereas crack spacing is

larger for the same lo., as can be seen from Fig.4-7. The crack spacing approaches infinity

when Jo- approaches certain finite value. One may argue that the extreme sensitivity of the

crack spacing when /<? is close to its upper limit value is not reasonable from the physical

point of the view. For small 70. values, these two compliance functions again yield very

similar results. Therefore, only the compliance function defined in (4-13) will be used in

further discussion.

The bonding between the pavement and foundation is plotted in Fig.4-8 with the lo.

fixed 3 and 7 in., respectively. Adequate data for the fa value are difficult to find in the open

literature. If we assume fa = fa, then jj. « 3xlO~3 (in.*1). At this magnitude, the tangential

bonding is not particularly important if 1Q is 7 inches. It can be important for larger value of
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1Q though. For smaller 10 value this bonding effect can be neglected for all practical

purposes.

The effect of P is plotted in Fig.4-9 with no tangential bonding but with axial

deformation constrained. Although it may come as a surprise, the influence of 3 is not

important at all. The most substantial influence on crack spacing, in addition to the material

length Ig, comes from the thermal stress distribution. As shown in Fig.4-10, if there is a

c.'

substantial tension component in the thermal loading, then the spacing is significantly

reduced. If there is a compressive component, then the spacing is dramatically increased.

It is instructive to know what will happen when there is only uniform temperature

drop when the axial deformation is constrained. Since there is no bending, the beam would

simply break into segments. The average length of these segments would be the crack

spacing in this limiting case. Because the beam is totally severed, the crack depth a = h, the

beam depth. Therefore the second condition is nullified, and only the first and the third

conditions remain. The third condition can be written as 2lha1/2E' = hGf. The conversion

must occur at a =ft. As a result, one obtains that the minimum crack spacing 21 = 2/0. It

can be seen from this analysis that lo is simply the ratio of specific elastic energy to fracture

energy, which is why lo is one of the main factors that determine the crack spacing. This

minimum value of crack spacing was also obtained in the previous study of spacing of

parallel cracks initiated from the surface of an elastic half plane.

For more general loading configuration, the elastic energy that can be stored, as

well as the fracture energy needed, depend on the crack depth. This is why the second
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condition of the initiation theory must be employed. However, the main picture is still the

global energy conservancy. The more elastic energy is stored per unit length, the smaller

the crack spacing will be; and vice versa. For instance, the elastic energy per unit length

would be smaller if the restraint by the foundation is considered. That is why the spacing

predicted with a Winkler foundation in effect is generally larger than the spacing without a

foundation. For the same reason, the axial constraint leads to larger crack spacing because

the deformation is constrained, thus less elastic energy is stored in the beam per unit length.

The effect of axial thermal loading can also be explained. As can be seen from Fig.4-5,

with a uniform contraction in thermal loading, the overall K value(and thus the total energy

that can be released from the structure) is increased, thus smaller crack spacing. On the

other hand, with uniform thermal expansion, the energy that can be released from the

structure becomes smaller, thus larger crack spacing becomes necessary.

4.7 The Effect of Nonlinear Temperature Distribution

As was shown by Armaghani et al. (1987) that the nonlinear temperature

distribution caused by daily temperature fluctuation is not very significant. In other words,

the thermal load calculated according to (4-4) is a good approximation if we are only

concerned with the thermal stress caused by daily temperature changes. However, any

pavement structures with adequate design should not develop cracks under normal daily

temperature changes. It is very likely that the critical condition is met when unusual

weather conditions occur. For instance, a rainstorm in a hot summer afternoon will bring

drastically cool off the temperature in the top layer of the pavement, as shown in Fig.4-1 la.
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The temperature distribution becomes very different from a linear distribution, thus the

thermal loads calculated according to (4-4) is no longer appropriate. Asphalt concrete

pavement invariably develops thermal cracks in northern American states during winter

season when the temperature drops rapidly in the night. The temperature profile is

schematically plotted in Fig.4- 1 Ib. In these cases (4-4) must be modified.

Let T(z) be the temperature increment (that is, the measured temperature minus the

reference temperature at which there is no thermal stress) along the pavement depth. The

thermal stress is £a77(l-v). The critical temperature distribution is determined by the

condition that the stress at the top surface is equal to the tensile strength of the material.

The thermal bending and thermal tension can be calculated as

The nondimensional nominal thermal stresses GMT and ONT are, again, defined according to

(4-36). The crack initiation condition on the nominal thermal stresses (4-46), which is

established on the assumption of linear temperature profile, must be discarded.

It is assumed that the elastic bending and tensile stresses can still be determined by

(4-40) and (4-41) during crack propagation. This is because once cracks occur, only the

bending and tension is the dominant deformation modes away from the cracked cross

section, which are captured by our mechanical model. As a result, cracks are initiated with

lower level of elastic energy per length stored in the pavement, which in turn causes larger

crack spacing. This effect can be important when theoretical predictions are to be

compared with field observations.
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As a demonstrative example, let's estimate the crack spacing in the asphalt concrete

pavement. In the state of Illinois, the crack spacing developed in the pavement, after first

winter, is about 8 to 12 meters on the average. Similar value of the first year crack spacing

can be also deducted from the data given by McLeod (in the discussion of the paper by

Ruth et al. 1982). The asphalt concrete is a very complex material, with material properties

vary strongly with temperature. Asphalt concrete becomes quite brittle under low

temperature, especially under temperature below freeing point. Although the experimental

data of material length 10 is not available, we take 10 = 10 in. for asphalt concrete, which is

believed to be a reasonable value, judging from the fact that Portland cement concrete

typically has 10 = 7 in. Assume also that the critical thermal stress GM
T = 0.7 and aN

T = 0

during a rapid temperature drop in a winter night. Furthermore, it is assumed that the

pavement thickness is 10 in. and the effect of foundation can be neglected (i.e. the elastic

bending compliance is calculated according to (4-13) and tangential bonding between the

pavement and its subgrade is considered). Under these assumptions, the calculated crack

spacing is 21 = 388 in., which is approximately 10 meters and is very realistic in comparison

with the field observation. If the nonlinear critical temperature yields (JMT = 0.5, then the

crack spacing would become more than 800 in., or 20 meters, which is still reasonable. The

actually values of these parameters must be determined by experiment.

4.8 Discussion and Conclusions

In this chapter, a simple mechanical model for predicting the crack spacing in

concrete pavement is proposed. The pavement is modeled as a simple beam with or
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without a foundation, and the influence of cracks in the pavement is simulated by the

increase of the compliance. As a result, a simple yet effective analytic model is obtained. It

is emphasized that the occurrence of cracking in pavement is determined by the strength

criterion, and no attempt is made to improve the strength criterion. Our model is aimed at

predict the average crack spacing and crack depth after the strength criterion is satisfied.

Therefore, the proposed model complements the existing knowledge on the phenomena of

pavement cracking.

The main contribution can be summarized as follows:

1. The crack spacing can be influenced by many different factors. The most

important factors are the material length IQ and the distribution of thermal stress. The effect

of the foundation can be important only under extraordinary condition, such as perfect

strong bonding.

2. For nonlinear material, a distinction must be made among the concepts of

fracture energy. The effective fracture energy, which is defined on the basis of load

capacity, can be as little as 1/3 of the total fracture energy, which is defined by the work of

fracture method. The effective fracture energy must be used with the second condition of

crack initiation theory, while the total fracture energy must be used with the third condition.

3. It is demonstrated that the most main mechanism that controls the crack spacing

in the pavement is energy conservancy. If the elastic energy per length that can be released

by crack propagation is large, then the crack spacing is small, with 2/o being the smallest

possible value. This relation can probably be developed into an experimental procedure to

determine the material length IQ directly
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4. Thermal cracking usually occurs during extreme weather conditions, in which

the thermal stress distribution can be far from linear. When such a thermal stress becomes

critical, meaning that the maximum tensile stress reaches the tensile strength of the material,

the crack will initiation under rather small stress level, causing larger crack spacing.
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Fig.4-1 Geometry definitions for
(a) pavement on an elasic foundation;
(b) a unit cell with an edge crack in the center.
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Fig.4-3 Schematic of crack initiation theory
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Fig.4-11 Schematic of nonlinear distribution of thermal stress



CHAPTER V

INITIATION THEORY — FOR QUASI-BRITTLE MATERIALS

In the previous discussion, the material is assumed to be perfectly brittle, so that

the linear elastic fracture mechanics can be utilized to describe the fracture behavior.

Although the nonlinear process zone is taken into account for the concrete material

used in highway pavement, the treatment is only approximate. In reality no material

can be regarded as perfectly brittle. Perfectly brittle material is an idealization of the

so-called quasi-brittle material when the nonlinear process zone is very small compared

to crack length. In quasi-brittle materials fracture is preceded by a fracture process

zone. It mainly consists of microcracking or other material defects. Experiment

observations of concrete indicate that within this zone, fracture is manifested in the

form of aggregate debonding and overlapping micro-cracks, mainly parallel to each

other, with some intact grain bridges between them. (Mier, Rots and Bakker, 1991). For

illustration purposes this region is portrayed in Fig 5-1 (a). The cohesive crack model

describes the region as a process zone (or a fictitious crack) where the material can still

transfer stresses which decreases with increasing crack opening. In the crack initiation

problem, the initial crack length is zero, therefore the process zone length is always

important to be included in the analysis. The theory of cohesive crack model to be

91
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employed in this dissertation is a nonlinear fracture mechnics theory, which was

proposed by Hillerborg et al. (1976) for concrete material.

When a structure contains more than one crack, the question of how cracks

interact must be answered. These cracks may grow simultaneously, or some cracks may

close during certain stages of crack growth. In the framework of linear fracture

mechanics, Bazant et al. (1977, 1978), Nemat-Nasser et al.(1978) studied the

interaction of equidistant parallel surface cracks. The problem of cohesive crack model

with multiple cracks does not seem to be studied before.

In this chapter the basic concept of the cohesive crack model and basic

conditions governing the cohesive crack initiation will be introduced first. The crack

initiation is more complex in cohesive crack model because it may involve the crack

bifurcation, crack growth and crack closure. In particular, we propose the concept of

unloading of a cohesive crack model to describe the crack closure. The half-plane with

a system of alternative surface cracks is still formulated as a singular integral equation.

The basic behavior of cohesive crack model with alternative crack lengths are

discussed. To study the solution behavior, the rate equations (rate form of the basic

equations) are developed. Based on the rate equations, the critical condition of CCM

with interactive cracks can be reduced to an eigenvalue problem. Through it the

maximum load and the bifurcation point can be directly found. The post-critical

behavior is also discussed. It is very interesting that the lower limit of crack spacing in

cohesive crack model is same as the one obtained for brittle materials.
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5.1. Basic Conditions and Definitions

In the theory of the cohesive crack model, it is assumed that fracture under

monotonically increasing mode-I loading occurs when the maximum (tensile) principal

stress reaches the tensile strength of the material ft. It is further assumed that fracture

is localized in the so-called process zone such that there is no energy dissipation in the

bulk of the structure. The process zone (Fig.5-l(b)) is modeled by a displacement

discontinuity (a crack opening displacement) with the proviso that the faces of the

discontinuity are capable of transmitting certain cohesive stresses, less than ft, such

that a- cr(\v) with<r(0) = /,, and cr(w)>Q, where a(w) describes the tensile

softening behavior. In practice, ofw) was approximated by a linear or bi-linear relation

and was assumed to vanish when the crack opening displacement w reached a certain

critical value \vc. The fracture response in this model is characterized by fracture energy

Gf defined as the energy required to open a unit crack fully, or in other words as the

area under the strain-softening curve between w = 0 and w = ~wc. In particular, we

employ the linear softening law in which the cohesive stress in the crack surface can be

expresses as

*=/,(!-—), v^c (5-1)
™<

where \vc = 2Gfjft is the threshold value of crack opening beyond which <r= 0.

The stress distribution on the crack surface should include this cohesive stress

that opposites to thermal loading stress and push the crack closure. Now the total

stress distribution on the crack surface can be expressed as
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(5-2)

where F(^)= yf tf(%ld) is the thermal loading stress due to temperature

penetration. For satisfying the strength condition the loading parameter y > 1 is added

here because this thermal loading stress must overcome the opposite effect of the

cohesive stress. Actually the thermal loading have two parameters: the maximum

loading stress y and the loading depth d. They may grow simultaneously with time or

only one of them grows. For simplicity, we choose y as loading parameter because F is

the explicit function of y.

In the previous work, we proposed the three governing conditions for brittle

elastic solid. The first one, the strength condition, can still be used in CCM for the

initiation of process zone. The crack initiation in quasi-brittle structure is a continue

process in which the stress equilibrium condition will be the governing condition

instead of the strength condition. It should be pointed out that the process zone

initiation is not the same as the crack initiation. The second one is replaced by the

condition of finite stress, which is discussed below. The third one is no longer

applicable for the cohesive crack model.

The stress in the cohesive crack model is finite everywhere, thus the total stress

intensity factor at crack tip, which is the sum of stress intensity factor due to the

external load and due to the cohesive stress, must be equal to zero:

K(a) = 0 (5-3)

This condition is initially introduced by Barenblatt (1959, 1962), and is the fundamental

feature of any cohesive crack models. Compared to our previous study with linear
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fracture mechanics, equation (5-3) corresponds to the Griffith theorem, that is, the

energy release rate due to incremental crack growth must be equal to the fracture

energy of the material. Furthermore, equation (5-3) implies that the total energy

release rate is zero, because the energy release rate is proportional to the square of the

total stress intensity factor. The condition that the energy release rate is equal to zero

means that during crack growth (or to be more precise, process zone growth) all

energy released from the deformation energy in the bulk of the structure is transformed,

completely, to the formation of crack surfaces or overcome the work of the cohesive

stress. (Although in linear elastic fracture mechanics the energy is also require to be

converted into surface energy, the process of conversion is not included in the analysis.

In cohesive crack model, the conversion of energy is realized by the work of the

cohesive stress, which is a function of crack opening displacement, in the process zone

ahead of the stress-free crack tip.)

In our previous analysis, the Griffith theorem is not satisfied during the crack

jump, therefore this condition must be supplemented by the condition that the total

energy released during the crack jump must totally converted into the surface energy of

newly created cracks, which is an independent condition. In the case of cohesive crack

model, however, (5-3) is always satisfied. It implies that the third condition is no

longer an independent condition. This difference in the energy consideration makes the

initiation theory based on cohesive crack model fundamentally different from the

initiation theory based on linear elastic fracture mechanics. In the cohesive crack

model, we need to extend our understanding and concept of crack initiation, and find a
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new approach to describe the process of crack initiation. This is the main goal of this

proposed research.

For quasi-brittle materials, the cracking of the material is a gradual process, the

crack opening involves a large process zone in which the microcracks exist. If there is

still cohesive stress acting across the crack surfaces, the crack should not be regarded

as completely opened. In other words, we define that a crack surface is fully created if

the corresponding crack opening displacement exceeds the threshold value \vc. Also we

need to define the crack initiation of the cohesive crack model at the condition of

crack opening. In other words, if crack surface be fully occupied by cohesive zone, the

crack have not initiated yet.

5.2 Cohesive Crack Model with Interactive Cracks

So far we have only considered the case where all cracks grow in equal rate. If

the load can only increase to certain level which has not sufficient energy for all cracks

to initiate, we want to know whether all these cracks stop growing or some cracks stop

or even close in favor of other cracks to grow in a faster rate, resulting in larger crack

spacing. To study this type of crack behavior, it is necessary to study a cohesive crack

model with interactive cracks. In other word, we must study the cohesive crack model

in which different cracks can have different lengths. These cracks may grow

simultaneously, or some cracks may close in favor of other's growth. For simplicity we

assume the every another crack has the same length, see Fig 5-2(a).
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When a structure contains more than one crack, the question of how cracks

interact must be answered. In the framework of linear fracture mechanics, Bazant

(1977, 1979), Nemat-Nasser et al. (1978) have studied the alternative crack growth by

differentiating the stress intensity factors with respect to crack lengths. However, the

cohesive crack model with multiple interactive cracks has not been studied. The

method mentioned above by other authors is no longer useful in cohesive crack model

because the stress intensity factors equal zero. Two basic conditions: the stress

equilibrium condition and crack tip conditions are the basic tools to probe the

phenomena and help us to find out new condition in our problem.

The crack initiation of cohesive crack model is a complicate problem that may

involve crack growth, crack bifurcation and crack jump.

Also we need define the crack unloading condition to discuss the phenomena of

the crack closure. A cohesive crack is called in loading condition if its crack opening

displacement increases, otherwise it is called in unloading condition. For simplicity it is

assumed that all cracks are in loading condition in the preceding discussions. It is

usually sufficient for CCM to study the load-deflection curve with a single growing

cohesive crack. This is perhaps the main reason why there is little study about the

unloading behavior of CCM. When there are more than one cracks, it is possible that

some cracks are in loading condition while the other in unloading condition, even when

the applied load increases.

When a cohesive crack is in unloading condition, the cohesive stress does not

follow function a to increase when the crack opening displacement \v decreases. The
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material in the process zone is partially damaged, and the damage can not be reversed

by crack closure. While the actual behavior of the unloading stress-displacement

relation is a subject of experimental study, a simple relation is proposed as shown in

Fig.5-l(b). Upon closing, the stress reduces linearly back to the origin. If the crack is

reopened, the stress increases along the unloading line until the softening curve /is

reached, then it decreases again following the softening curve <r. This relation implies

that the material can close perfectly to its original position. In reality the fractured

surfaces are rough, the crack opening displacement may be unable to return to zero.

One may need to use more sophisticated unloading relation to describe the immature

crack closure. However, the precise nature of the unloading is beyond the my research.

The cohesive stress at the crack unloading condition (in the linear assumption)

is calculated as

(5-4)

where w* denotes the crack displacement at the bifurcation point and wu of unloading

cracks. This formulation insure the cohesive stresses linearly return to zero when the

crack is finally closed.

A loading crack implies a propagating crack. When a crack propagates, one

requires that the total stress intensity factor be zero. The position of the process zone

tip is unknown for a propagating crack, so the condition of zero stress intensity factor

can be viewed as a condition to determine the crack tip position. On the other hand, if

a crack is unloading, it no longer propagates. The process zone tip position of an
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unloading crack is thus not a variable, and its correspondent crack tip equation is

t

redundant. Consequently, whenever a crack is in unloading condition, the

corresponding component in the crack tip equations must be discarded so that the

number of equations and the number of unknowns match.

5.3 Mathematical Formulation and Numerical Method

The problem of a half-plane weakened by a system of equidistant parallel

surface cracks with alternative lengths a, and a2 can still be formulated in terms of a

system of singular integral equations. The stress equilibrium conditions may be written

as follows:

a> t— f\

for Q<

and

n=-co /F s\(5-6)

for 0 < y < a 2

where cr, (y), <J2 (y) are cohesive stresses at corresponding crack surfaces. The

function £), (t), D2 (/) represent dislocation densities and the kernel g is given by

gCM) = ,.~.V^2 '/..2 - **,'.. rf++X*?X + ty yV + f V * + X 2 1 3) j i^ ; (5_?)
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Since g is an even function of x, the series in (5-5) and (5-6) may be written as

2 g(t, 2nb,y) = g(t, Q,y) + 2% g(t, 2nb,y) (5-8)
n=l

(5-9)
n=l

The above series can be summed in closed form by using same technique in chapter HI

and written as

t 2 - * -

n=l

n=\

It is further convenient to represent the kernel function as

bn=\ b

b
,

b

0"r3. ..^_y+t _^_y + t
2b3

i f
y-t

b

(J
/•
2

4

*11 /(• ^Ulll/i.

26 2b

b C0i * 2b [ 2b J C*C * 2b

\_^_y + t , (y+3t)x* U2 _^ + r
2b

\bz 2b

r t\M^h-iy~ t

b[ 2b

4b2 2b

, y + t
2b

y- t 2 , 2 y - t
+ TT or*r»ri -tr

Z> 26

(5-10)

(5-11)

(5-12)

(5-13)

where the function g} ,g2 can be written as
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— — [l-2(.v-OcothO> -
y-t

(5-14)

f + 2 tanhCy + f ) - ty + 3/) tanh2 (y + /) - 4ty tanh(j + /){!- tanh2 (3; + /)}

(5-15)

The crack opening displacements can be represented by the dislocation density D(y)

[Keer et al. 1975] as

Thus cohesive stresses at crack faces then can be expressed as

cr, 00 = /,{!-

Because functionZ),,D2 are singular at crack tips, it is now convenient to introduce

new unknown function C,, C2 :

12 Va, r / \ / \ I a r / \
jJ-5- C,(/), D2( t)= —i— Ca(/), (5-18)

1 ^

which are smooth functions. Equations (5-5), (5-6) are thus transformed into the

following equivalent integral equations:
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Next, extending the interval into (-1, 1) and employing the same technique used in

chapter III we can convert the singular integral equations into discrete forms as

. EV * E (* N*«2 „ {m*Si m^\
*2( j )~2b 8 2b ' 2b

(5-24)

E * mm E * ™ ™2* * " * '

v d ) YYC ,.=,

(5-25)

where vi are integral coefficients corresponding integral point i (because of the integral

interval is not (-1, 1) we can't use Erdogan's integration formula for this part). Where

x /=cos

*i+1,

In

let

a, a2 d
, e2= ' & - — >

b b b (5-27)
ne, ne.

** £*

and introduce
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(5-28)

4(211,+!)/, "'"

then equation (5-24) and (5-25) may be written as

^^^ ^^ 7 1=1

* = 1,2, ..... /»,
(5-29)

1=1 1=1 v* y i=i

/ = 1,2,....,

(5-30)

where

^i ('..V; e) = — {4/ + 2 coth^ + /) - (y + 3/) coth2 (y + 1)

+4ty coth(y + /)[coth2 (y + t)-\]-2 coth(y -t) + (y-t) coth2 (y - /)}

(5-31)

and

H2(t,y;e) = — {4t + 2tar\h(y + t)-(y + 3t)tanh2(y + t)

+4ty tanh(y + /)[tanh2 (y + 1) - 1] - 2 tanhO/ - f) + (y - /) tanh2 (j - 0).

(5-32)

and in deriving the last terms of these two equations the expressions for wc and /„ have

been taken into account of.

Also it is convenient to write the stress equilibrium condition in the matrix form as:

[H]{A}+a,*[V]{A} = {F} (5-33)
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where

__ . . C5-34)

Note that only at a, = a2 (or e}=e2) and w, = Wj

Hn = Hn, H12 = H21, V, = V2, f, = f2 (5-35)

In the cohesive crack model the stress intensity factor K is always zero. This crack tip

condition is equivalent to

4(1) = 0 (5-36)

and 4z (1) = 0 (5-37)

This is our second condition that should be satisfied. 40) an(^ AO) can be

obtained by extrapolating the A(SJ). The equations (5-33) and one of (5-36), (5-37) can

be arranged as a system of equations from which one can solve for A(SJ) and the

loading parameter 7. And rest one of equation of (5-36), (5-37) can be used as a

checking condition.

5.4 Computational Procedure and Observation

Through these two conditions or four governing equations we can find some

very interesting phenomena and fracture behavior.

To solve the problem, the following procedure are used:

(1) give value of space b* and load depth d*;

(2) Select a value of crack one length a,* ;
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(3) For a guessed value of crack two length a2 * solve the Eqs.(5-33) and (5-

36) for {A} and the loading parameter y.

(4) Adjusting a2 * to satisfy the equation (5-37) based on the solution obtained

in step (3), go back to (3). Repeat this loop until all the equations are satisfied.

(5) Choose another value of a,* and go back step (3).

We did check the crack opening displacement of crack two at every step in the

unloading condition and see if it gradually close when crack one still keep growth.

In practice we use the same number of integral points on each crack surfaces,

thus «, =«2 =/H. Also the size of the system of equations (5-33) is denoted as n,

which is equal to 2m. The initial results are plotted in Fig.5-3 The following phenomena

are observed:

(1). In the range from the origin to point G,,/ (a) cracks grow stably at the same

length with increasing of load and (b) no crack closure is observed. The solution (a) is

checked by setting cracks at different lengths. They come out to be the same and

satisfy all four conditions, (b) is checked by setting crack two unloaded. But the crack

opening displacement at crack two still keep growth after the unloading. It means that

the crack two cannot stop growing at this range.

(2). After point B the crack growth has at least the two possible paths: top one

from point Ci,/to Cmax in which cracks grow in same lengths and bottom one from Cbp

to Cmi in which one of cracks, say, crack two, stop growing at point Cbif and start to

gradually close up thereafter, while the crack one continues to grow (possibly at a

faster rate). It is a possible that crack two unloading at any point between Cbif and
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Cmax The upper curve corresponds to the condition that the applied load is maximized

when the crack length is equal to the given value for a given crack spacing. Obviously

the load required for the unloading path right at bifurcation point (bottom one) is less

than anyone else. One can easily understand why one crack unloading is more likely to

happen in the real situation.

(3). When we solve the system of equation (5-33) we actually first triangulate

[H] as [Q][P], where [Q] is lower triangle matrix and [P] is upper triangle matrix

with Pij=l. So one can obtain the determinant of [H] by multiplying all Qi;. Instead

of checking det.[H] one only need to check QJJ. It is observed that all Qi; are positive

before point Cbif, Qnn is almost zero at point Cbif then changes to negative sign after

Point Cbif • That means det.[H] becoming negative. From Cfc,/to Cmax the negative QJJ

moves up from bottom position. When reaching point Cma there are two Q,i becoming

negative but det[H] change back to the positive sign.

On the contrast, det[H]jj (take unloading equation (5-4) into account) is

positive between C*,/and Cm/ until reaching Cm/ where Qmm starts become negative.

Mathematically there must be a some equation, which can decide the position

Cbif, Cmax and Cm/ where det.[H] change its sign. This work will greatly simplify the

fracture analysis. We no longer need step-by-step to search these critical points.

5.5 Rate Equation of CCM

To study these solution behavior, one needs to study the rate form of the basic

equations. For developing the rate equation of CCM in the initiation problem with two
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cracks the stiffness influence functions will be utilized in our basic conditions. The

stress equilibrium conditions at crack faces can be written in terms of stiffness function

as

(5-38)

where x, (i = 1,2) are the coordinates measured along crack one and crack two. The

stiffness functions S\j(xit x,) ( force at x, generated by a unit displacement at x;.) is

symmetric with respect to / andy due to the assumption of linear elasticity in the bulk

material. The above conditions can be simplified by using the summation convention as

G, =F(x i)-o(>v1(x /)) + Jo
fl^0.U.,x)W;.(x)^ = 0 (5-39)

where / =1, 2. The summation convention in this section only apply to the repeated

subscript j.

The total stress intensity factor in each crack tip must be zero, which can be

expressed as

*, = f ' *,, (*)>", (*)* + f *,2 (*K (x)A = 0
Jo Jo (5-40)

K, = *,, (x) w, (x)dx + 2 ̂  (x) wa (x)A = 0

where Ar,.;(xy) = stress intensity factor at the tip of crack / due to a unit displacement at

the position Xj. Also crack tip conditions can be simplified in same way as

0 (5-41)
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Equation (5-39) and (5-41) are the basic equations of CCM with two cracks. If

there are more than two cracks, one can simply extend the range of index/ If the range

of/' is from 1 to n, then i = l,2,...,2n, so there are just enough number of equations to

solve the unknown crack opening displacement w, and crack length a/ , It is useful to

call qt = (wt , af ) the state variables, for the system is totally determined once the state

variable is specified.

The rate equations can be obtained by considering the basic unknown variables

to be the function of time t, which is only for the purpose of keeping the sequences of

the system development. When a, changes the stiffness functions also change.

The derivatives of the stiffness functions with crack length or, can be expressed

in terms of stress intensity factors as

No summation over m is implied. This relation is given, for instance, by Okamura

(1975), and (5-42) is simply a generalization to the case of multiple cracks.

The time derivative of (5-39) can be expressed as

SS. (X ^ (5'43)

' "

where a dot denotes derivative with respect to time /. cf denotes the derivative of

softening function a with respect to its argument w. However, at crack tip
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displacement w, is zero, thus the last term can be dropped. The next last term can be

changed due to (5-42) and (5-41) as

(5-44)

This term is also equal to zero due to Km = 0 .

Thus, equation (5-43) reduces to the form

= 0 (5-45)

which is still independent of dm. If there are unloading cracks, the rate equations should

be modified accordingly. In other words, a* should be calculated according to

unloading curve.

The time derivative of (5-41) can be expressed as

0 (5-46)

In calculating the last term, we deliberately avoid expanding the derivative into the sum

of the derivative with respect to the integral limit and the derivative of k-,j with respect

to am, because each term will be unbounded. However, since we expect the final result

to be bounded these singular terms must cancel each other to yield a bounded value.

Equations (5-45) and (5-46) are the rate equations of CCM for the thermal

loading problem. They depend on the state variable q{ , but is linear in the rate of state

variables. When the system is normal, there is only zero solution to the rate equation.

When a system is critical, there can be a non-zero solution to the rate equation. In this

way, one can study the behavior of CCM by study the behavior of its rate equation.
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One can find the rate equations (5-45) in the matrix form as

(5-47)

To solve it for a non-zero solution is a difficult task. However, the problem is

simplified if (5-47) is viewed as an eigenvalue problem. In particular,, we are interested

only in the smallest eigenvalue of a*.
t

5.6 Maximum Load and Bifurcation

A symmetric solution, in which the two cracks are of equal length and same

crack displacement, was plotted in Fig.5-3 as the curve on top. The system is at critical

condition when the applied load is at its maximum, and the corresponding crack length

is denoted as Cmox, which is smallest eigenvalue that corresponds to the eigenvector

{A,} = {A2} (equivalent to w, = w2). For different crack spacing these crack lengths, at

which the applied load is at its maximum, compose a right curve in Fig 5-4.

The maximum load can be calculated directly using the eigenvalue solution. It is

obtained by multiplying the stress equilibrium condition (5-39) with eigenfunction and

integral it along the crack surface as

"I

Wc

,. (*,)<&,=() (5-48)

By changing the integral order and using the rate equation (5-46) to cancel relevant

two terms, we find that the loading parameter can be computed from the expression

(5-49)
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In deriving this equation, we have utilized the critical condition (5-46) and the

symmetric property of the stiffness functions, as well as the symmetry condition of the

eigenfiinction. This solution is useful if one need to know the maximum load as a

function of crack length.

The left curve in Fig. 5-4 corresponds to the bifurcation point for a given crack

spacing, and the corresponding crack length is denoted as Ci,y in Fig. 5-3. This curve

corresponds to the eigenvector {A,} =-{A2} (equivalent to w l=-w2), so the

corresponding load parameter cannot be calculated using a relation similar to (5-49).

The symmetric solution is the unique solution if a/ is less than the bifurcation length.

When passing the bifurcation length, one of the cracks may unloading, leaving only the

other one to grow in response to the loading. Consequently, the solution lost its

symmetry. The load required to propagate only one crack is usually less than that of a

symmetric solution. Although both solution are stable , the asymmetric solution is more

likely to be actually followed.

5.7 Maximum Load with One Crack Unloading

The unloading stress-displacement equation (5-4) need to be used in crack

unloading condition. The solution procedure must be modified because zero K

condition for unloading crack must be discarded. The load parameter as a function of

the active crack length is shown in Fig.5-3 as the curve in the bottom.

With one of the cracks unloading and the other growing, load reaches a

maximum value, which corresponds to yield another critical condition. The critical
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condition can again be characterized by the rate equation (5-45) or its matrix form (5-

47), in an expanded form, as

^A,} = -*,'[¥,]{ A,} (5-50)

' (5-51)

where [v%] is modified according the unloading stress-displacement equation (5-

4).This system equation cannot be simplified into a proper linear eigenvalue problem,

because there is a negative sign in right hand side. But one can eliminate {A2} from (5-

51)

{A2} = -([H22]-a;[v*2])"'[H21]{A1} = -[Q]{A1} (5-52)

[Q] can be solved from the following equation

([H22]-a,*[VI])[Q]=[H21] (5-53)

substituting the (5-52) into (5-50), a well-posed eigenvalue equation for solving {At}

can be obtained as

([H12][Q]-[H11]){A1} = a;[V1]{A1} (5-54)

The solution strategy is: (1) assume initial a*; (2) calculate [Q] from (5-53); (3) solve

the eigenvalue problem through (5-54), and corrected value of a*obtained; (4) use this

new a* and repeat step (2) and step (3) until the value a' is converged. This procedure

usually takes only very few steps, typically 2 or 3 for 4 digit accuracy in a*. Since the

singularity condition is mainly determined by crack one and the influence of crack two

on crack one is not very substantial.
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The smallest eigenvalue of the singularity condition yields yet another critical

crack length for crack one, which corresponds Cmi in Fig. 5-3 and the curve plotted in

the middle of Fig.5-4. It is interesting to note that this curve is virtually the same as the

right curve if its crack spacing b* is multiplied by a factor of 2. In fact, the crack

spacing should be doubled when the crack one keeps growing and the crack two

unloads at early stage. I would explain it later. The corresponding maximum load can

also be obtained by multiplying the eigenfunction to the equilibrium equations and

integrating along the crack surface

HV(X)/(X

In above section, we have assumed that crack two starts to unloading right at

the point of bifurcation. Although this is most likely the case, it does not have to be this

way. Actually, a2 can be any value between Cbtf and Cmax. In this sense, the solution is

not unique once the crack lengths exceed the bifurcation point. This is very similar to

the case of the buckling of an elastoplastic column (Bazant and Cedolin, 1991): once

the applied load exceeds the tangent modulus load, there are more than one solutions

bifurcating from the original symmetric solution.

5.8 Post-critical Behavior and Lower Crack Spacing Limit

We are also interested in the crack growth after these critical points. From

Fig. 5 -5 a the view is very clear that, there will be a jump in crack growth if every

another crack is unloaded at the bifurcation point. Note that the crack opens fully at
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a, * = 0.734, which is halfway during the jumping, therefor it cannot stop at that point.

The crack length at the post-initiation state should be measured from the surface to the

point Cmh where the load once again becomes the same value as the peak load. Before

this point crack would not stop and after this point the crack would -not grow without

further increase of load level. The crack mouth opening displacement of crack two is

reduced to below 0.1 while that of crack one is increased to 2, see Fig.5-5(b). When

crack two is compared with crack one, both crack length and crack opening

displacement are very small. This means that practically the cracking spacing is

doubled. The equal length cracks (upper curve) will grow slowly and require much

higher level of load to initiate the cracks will not actually happen.

When the crack spacing is small, like the previous example, the cracks become

highly interactive, and some cracks stop while the others grow at a much faster rate.

When the cracks are far apart, say b*>20, their interaction is weak and , therefore, they

grow at equal rates. A question therefore naturally arises: does the crack spacing have

a lower limit? The lower limit is defined as the least crack spacing the cracks can

initiate. In other words, even denser cracks may exist in initial stage, some of them will

stop in the process of crack initiation and thus should not be counted when measuring

the spacing in the final stage of crack initiation.

The lower limit of crack spacing is found to be 2, as can be seen from Fig. 5-4.

This lower limit for quasi-brittle material in cohesive crack model is the same as the one

for brittle material discussed in the previous chapter. The reason is as follows. The

process zone length, although varies with structure size, has an upper limit. When a
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crack length is very long and the relative process zone becomes vanishing small. As a

result, the behavior of the cohesive crack model converges to that described by linear

elastic fracture mechanics when the crack length becomes very long. For the lower

limit, the crack depth approaches infinity, that is why both theories have the same lower

limit value for crack spacing.

5.9 Concluding Remarks

The crack initiation is a complicated problem. Although we have established a

theory to determine initial crack spacing based on linear fracture mechanics, such a

theory cannot be applied when material is not perfectly brittle. In real world, there is

no perfectly brittle material. Cohesive crack model is the simplest possible nonlinear

fracture mechanics available to study this problem. With cohesive crack model, the

crack tip is replaced by a nonlinear process zone and the concept of fracture is

extended. With such a model it is possible to treat the initiation problem at a more

realistic level.

It is observed that there is always a considerable amount of randomness

associated with initial crack spacing. In reinforced concrete, the crack spacing is

described, not by a determined value, but by a lower limit. In the light of cohesive

crack, the initial development of the nonlinear process zone obviously will start from

the weakest point of material. Those weakest point of the material are, usually called

the defects, are randomly distributed. Such a point of view is adopted by Weibull

(1951) in his analysis of statistical behavior of material strength. However, as we have
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known from our preliminary study, not all defects will develop into macrocracks. The

geometry as well as the loading process has an effect on which defect will become

activated. Our main goal is to understand the basic mechanisms of this selection

process and find a way to model these mechanisms.

The crack initiation described by the cohesive crack model with alternative

crack length is much more complicated than the one for brittle materials. It is a gradual

process that may involve propagation as well as crack closure. In the example

problem, both bifurcation and stability limit can happen before the crack mouth opening

exceeds the threshold value wc. Based on the rate equations of the cohesive crack

model, mathematically it is shown that the critical • conditions of the cohesive crack

model can be determined by considering only the homogeneous rate equation of the

stress equilibrium equation.

The external loading providing the energy for crack initiation includes two

parameters. They adjust each other: the longer the penetration depth d, the less the

maximum loading stress y. Because the homogeneous rate equation does not include

the external loading, crack lengths of bifurcation, critical points determined by the rate

equation depend only on the crack spacing, except when there is an unloading crack

(but the effect due to the external loading in the unloading crack has negligible

influence on the crack spacing, as has been mentioned before).
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

The study of crack initiation from a smooth surface is still at its infant stage,

many problems are still not fully understood and require further researches. However,

now it has been established in this study that in order to describe the initiation, the

strength criterion and the fracture mechanics theory must be combined. Strength

theory can only mark the starting point of cracking, while the fracture mechanics

determines what would happen after the cracking is started. In the general situation,

the material under consideration always have defects to begin with, so the strength of

the material varies from point to point, and cracks of small sizes will start where the

strength criterion is first reached. In this sense, the crack initiation is a random

phenomena. However, not every small crack develops into a crack of macroscopic

sizes, most cracks will be unloaded and yield themselves to a few cracks of larger sizes.

In other words,,the structure appears to have the ability to select, from a large number

of cracks of microscopic sizes, a few cracks that will eventually grow into macroscopic

sizes. Although the overall initiation process is random, this structural effect is

deterministic in nature and is the main reason why its average behavior can be studied

by a deterministic approach.

123
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If the material can be modeled as linear elastic and perfectly brittle, the crack

initiation can be summarized as three conditions between the two states of the initiation

process. The first condition is the strength criterion, which determines the stress level

at which the pre-initiation state. This stress level is assumed to be kept constant during

the whole the initiation process. The second is the condition that the Griffith condition

be satisfied at the post-initiation state. This condition is important not only because it

marks the end of the initiation process, but also because it determines the total amount

of the elastic strain energy the structure can release. The third condition is required

due to the fact that the crack initiation is not an equilibrium state. Cracks are often

occur suddenly, indicating the process is more like a jump than gradual growth. In

fact, because the energy release rate is a linear function of crack length if the length is

very small, the Griffth condition cannot be satisfied during the early stage of the crack

initiation. That is why it is essential to supplement the condition that the total energy

released during the process of crack initiation must be converted into surface energy.

The study of crack initiation from the surface of an elastic half plane is related

to the crack initiation from the surface of a large structure, such as the top surface of a

large concrete block. The solution can be related to the spacing and the depth of

cracks that are some distance away from the side wall. It is interesting that the crack

spacing has a lower limit of 210. The same lower limit of crack spacing can be obtained

by using just the first and the third condition. This result should be explored further.

The case of infinite crack spacing warrants further attention. According to our

assumption, the crack will not propagate if the loading depth is very short, even though



125
the stress level may exceed the tensile strength. Further experimental study is needed

to clarify the situation.

The problem of crack initiation in the pavement is interesting not only from

mechanics point of view, but also from the practical point of view. Cracking is one of

the main factors that cause damage to the highway pavement. The study represents the

first step to a better understanding of the behavior of cracking in the pavement. For

Portland concrete pavement, joints must be provided in the pavement so that random

cracking can be controlled. The theoretical result may help engineers to design the

joint placement on a physically sound basis.

From the mechanics point of view, pavement is a non-homogeneous structure:

the material properties of the top layer is quite different from its subbase. Therefore,

the half-space solution cannot be directly applied. However, since the typical crack

spacing is large compared to the pavement thickness, the plate assumption can be

advantageously be used to simplify the analysis. The nonlinear process zone is

important because the zone size is not small compared to the pavement thickness. As

an approximation, it is assumed that in the third condition, the fracture energy should

be determined by the work-of-fracture method, while in the second condition, the

effective fracture energy. The modification is necessary because the effective fracture

energy is usually significantly different from the fracture energy calibrated by the work-

of-fracture method for pavement material.

This brings us to the discussion of crack initiation by the cohesive crack model.

Concrete and asphalt concrete are classified as quasibrittle materials, meaning that
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cracking is the main failure mechanism. In the cohesive crack model, the crack is a

gradual process. Once the tensile stress reaches the tensile strength of the material, the

process zone, where bridging stress decreases with increasing crack open displacement,

starts to elongate until some limit size is reaches which corresponds to the maximum

loading value. The first condition remains the same if one assumes that the pre-

initiation state can be marked by the starting of the process zone. The second

condition is essential unchanged, except now it is in the form of the condition of zero

total stress intensity factor at the tip of process zone. The third condition can also be

translated into the language of the cohesive crack model if we could define the total

energy of the cohesive crack model. However, the total energy cannot be meaningfully

introduced if there is crack closing. This is perhaps the main reason why more study is

needed along this direction. Nevertheless, the cohesive crack model can successfully

be used to identify the moment when uniform cracks growing bifurcate to only every

another crack grow while the rest stop and unloading. Such phenomenon is believed to

be important to fully understand the crack initiation process with more realistic detail.

When the loading depth is increased, it is seen that both cohesive crack model and the

theory of linear elastic fracture mechanics yields the same lower limit for crack spacing,

no matter whether unloading is considered or not.

For further research directions, we may note that the crack initiation theory has

not been established, as yet, for the cohesive crack model. The difficult lies in the fact

that the very concept of initiation becomes blurred once the cohesive crack model is

introduced. Because the material is still stable when the process zone is just started,
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the stress level must be raised further to make the cracks to grow. In other words,

there is no jump of crack propagation before the maximum load is reached. Since there

is no stage during which the incremental energy balance condition is violated, the third

condition of the crack initiation theory may not be an independent condition, at least

from the physical point of view.

In addition to the problems that related to the cohesive crack model, the theory

still needs to be further generalized to cover more complex situations, among them the

following can be mentioned:

1) The crack initiation theory of composite material. One of the main energy

absorption mechanism is multiple lateral cracking along the fiber-matrix interface.

Dense multiple cracking is a desirable phenomena in certain applications. It seems that

the research idea developed here can also find application in that area. The main

modification would be the consideration of the shear force that is transferred from fiber

to matrix or vice versa. The crack initiation problem in reinforced concrete belongs to

the same category.

2) In this study we have only considered the solution of one dimensional crack

initiation pattern. The pattern in two-dimensional plane is known to hexagonal, but the

proper equation has yet been set up for this interesting problem.

3) Another generalization is the problem of non-uniform solution. We have

been able to obtain the uniform solution as the average behavior of cracking pattern,

but it will be a big step further if we can also know something about the non-uniformity

of the crack pattern, and understand what we can do to control the situation.
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4) The problems discussed in this study is defined on a surface extending

infinitely in both direction. If there is boundary that ends the extension of the free

surface, then the crack initiation theory developed here must be modified, because the

crack pattern may not be uniform any more. This problem is thus also connected to the

previous problem. For a non-uniform pattern of cracks, the parameters that

characterize the pattern is more than two, so the theory developed herein is not

sufficient to determine any crack pattern that needs more than two parameters to

define. This seems to be the most urgent problem that must be solved.

5) At present research stage only mode-I crack is considered. For mixed-mode

cracking (for example, half-plane with a system of parallel incline cracks) the shear

cohesion should also be included. The stress-displacement relation for the shear

cohesion may have a similar form as the one for the tensile cohesive stress. The number

of the basic equations are doubled but the solution procedure remains the same.

However, since shear deformation is often associated with friction, which consumes the

released energy, the energy conservation equation must be modified accordingly.
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APPENDIX 1

THE STRESS INTENSITY FACTOR

We note that, except for the first term in gj (given by equation (3-14)) function

gj is bounded. (The last term in gj is bounded that can be proved by expansion of

hyperbolic functions in power series.) Also the unknown function C is a bounded

function. Once the unknown function is solved, the stress intensity factor can be

calculated as

, . ^\n
dt

t-y
(1-1)

If we prove any term in the brace is bounded the corresponding product in K

will be equal to zero because lim ̂ (y - a) = 0.
y—>a*

Now we prove the last term in brace is bounded function.

C(t) is a smooth function that will satisfy the Holder condition (Muskhelishvili,

1992, page. 11):

\C(t)-C(y)\<M\t-yf (1-2)

where M and |i are positive constants.
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By using this condition the absolute value of the last term in the brace can be

found as

' C(/)-coo — (1-3)

Because the exponents (1-/^)<1, this generalized integral is finite (bounded). As a

result, the corresponding term in K is equal to zero and only the first term in the brace

need further consideration.

The first term in the brace can be expressed as

The last term in equation (1-4) obviously is a bounded function. For the first term in

equation (1-4), we first normalize the integral interval as (r = t/a):

a

When y — » a* according to Delale and Erdogan (1977), the integral above is equal to

coo

where function R is bounded at a1" . So the final result of K is

-y
(1-7)



APPENDK2

ADDITIONAL COMPLIANCE FUNCTIONS

The additional compliance functions can be calculated according the formulas given

by (4-42) to (4-44) using numerical integration method. Where the stress intensity factors

are defined by (4-25) and (4-26). Specifically, we use Simpson's rule to perform the

quadrature with the integral domain [0,1] subdivided into 200 intervals. The obtained

numerical results are used as a basis to construct approximate expressions for the

compliance functions.

The nondimensional compliance function for tension, given by the handbook, is

V)] (2-1)
(l-x)2 U x "

which is very close to our numerical integration result. Using the following form of the

expression, we obtain the optimum fit as

AW Q_ x^ 2

Although visually indistinguishable, (2-2) is more accurate than (2-1).

For bending, the compliance function given by the handbook is

) (2-3)
( l -x) 2 V
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which correlates reasonably well with the result of numerical integration. However, the

following expression yields a far better approximation to the numerical results:

<M)

especially in the range where x is close to 1.

For the mixed compliance function, there is no expression listed in the handbook.

Based on the result of numerical integration of the stress intensity factors, we obtain the

following expression:

24 Y2

AL/(x) = T=- [0.988-x(l-x)(0.578-0.689x + 0.196x
2)] (2-5)

I I . ™ ^ I \ L ~i~ £^ J

In the actual calculation, we use our own expressions (2-2), (2-4) and (2-5). The forms of

these expressions ensure the correct asymptotic limits for at both x —> 0+ and x -> 1~.




