
NASA-CR-199410
Final Report

June 1990 - September 1994
NASA Grant NAG-3-1166

Fault Tolerance in Space-Based Digital Signal
Processing and Switching Systems

Protecting Up-Link Processing
Resources, Demultiplexer,
Demodulator, and Decoder

I
O
o
z

nj
u
c

O
IT*

o
o

<M

O

Robert Redinbo
Department of Electrical Engineering

and Computer Science
University of California

Davis, CA 95616

UJ
u V)

< UJ
QC _) H- O

—I 2 > t-H
O O V) tO

C
l#

u.

0 < x
< K U
U, *-i h-

n X
<~» O to
o
r-4 O D
«if UJ Z
o* to <
O" <
«~4 CO CP
I I Z
K UJ !-i
u o to
1 < to
< Q. LU
to to u
< o
Z Z tfs«< >—i a.

<u
UJ tf ff
U UJ LU
O X O
OC UJ O </>
a. -i u

CL UJ I
it •-• O
z ̂ ~ o
•"•< —J O O*
_» 3 Z O*
i s: <c IH
a. LU
D O » •

a: c
O »O 3

H. UJ <
t~ O -I «•
o a: 3 *^
uj 3 a *-
t~ o o o
o oo 5; a
tt LU LU (P
a. oc o a:

a
m
rs/

September 1994

TABLE OF CONTENTS

ITEM

List of Figures iii

List of Tables iv

Abstract v

I. Introduction 7

II. Protecting Efficient Demultiplexer Filter Banks 18

1. Motivation 18
2. Efficient Implementations of Filter Banks 24

3. Real Convolutional Codes and DSP Operations 32

4. Composite Filtering and Parity Generation 39

5. Protecting a Polyphase Filter Demultiplexing System 43

6. Two Level Demultiplexing 49

7. Protecting Sequential Discrete Fourier Transforms 56
8. Single Parity Channel Convolutional Codes 64

III. Protecting Viterbi Type Convolutional Decoders 71

1. Use of Convolutional Codes 71

2. State Estimation Decoding 72

3. Recursive MAP Implementation - Viterbi Algorithm 81

4. External Protection of Decoder Features 82

5. Internal Protection, High-Speed Implementations 87

IV. Summary 100

References 104

Appendix A: Polyphase, Multirate Decompositions of Infinite Impulse Response (IIR)

Filter Structures 108

Appendix B: Modifying Real Convolutional Codes for Pole Cancellation in IIR Filter

Structures 116

LIST OF FIGURES

Figure 1 Digital Processing and Switching Subsystems in Communications
Satellite 8

Figure 2 Demultiplexing Frequency Division Multiplexed (FDM) Signals 10

Figure 3 Up Link Processing Subsystems 11

Figure 4 Demultiplexer Theoretically Shifts Uniform Filter Producing Lower
Rate Outputs .12

Figure 5 Demodulator Subsystem 14

Figure 6 General Form, Viterbi Type FEC Decoder 15

Figure 7 Protecting Demodulator Using Fault Tolerance in Proceeding
and Succeeding Subassemblies 17

FigureS Polyphase Multirate Filter Bank 21

Figure 9 Principle of Algorithm Based Fault Tolerance 23

Figure 10 Protecting Demultiplexer Channel 25

Figure 11 General Analysis Bank : 26

Figure 12 Block Implementation of Filter Path Hp(Z) 29

Figure 13 Output of p* Channel for Uniform Filter 31

Figure 14 Parity Generation in a Rate (K/K+1) Systematic Convolutional Code 38

Figure 15 Parity Generation for Analysis Bank Outputs 40

Figure 16 Decomposition of Parity Filter for Channel t 42

Figure 17 Parity Generation for Uniform, Critically Sampled Case 46

Figure 18 Protection of Demultiplexer Channels. 47

Figure 19 Totally Self-Checking Comparator 48

Figure 20 Two-Level Multiplexing Hierarchy 50

Figure 21 Filter Characteristics for Extracting Both Wide Band and
Narrow Band Channels 51

Figure 22a Wide Band Channel Demultiplexing 52

Figure 22b Narrow Band Channel Demultiplexing 53

Figure 23 Sequential Vector DFT Processor 60

Figure 24 Parity at DFT Output 61

Figure 25 Protection Through Parity Generation and Regeneration 62

Figure 26 Memory Requirements for Intermediate Values at Index s 63

Figure 27 Convolutional Code Protection of Data Channels 73

Figure 28 Encoding Action, Rate k/n Convolutional Code with
Memory Constraint Parameter m 74

Figure 29a State and Transition Spaces Underlying Trellis Diagram 79

ui

LIST OF FIGURES (cont.)

Figure 29b Path and Branch Metrics for Decoding with Trellis Diagram 80

Figure 30 Truncation Depth in Trellis Diagram 83

Figure 31 Viterbi Decoder Subassemblies 84

Figure 32 Fault Tolerance Using External Features 88

Figure 33 Two Necessary Conditions for Decisions at Truncation Depth 89

Figure 34 Checking Necessary Conditions at Truncation Depth 91

Figure 35 Block Processing Realization of Viterbi Algorithm 95

Figure 36 Checking Path Metrics hi Block Processing Form of
Viterbi Algorithm.. 97

Figure 37 Generating State Parity Vectors in Two Ways 102

Figure A-l Decomposition of IIR Filter Structure. 112

LIST OF TABLES

Table 1 Q(Z) Terms for Rate 5/6 FIR Parity Filter 70

IV

Final Report
June 1990 - September 1994

NASA Grant NAG-3-1166

Fault Tolerance in Space-Based Digital Signal Processing and Switching
Systems

PROTECTING UP-LINK PROCESSING RESOURCES,
DEMULTIPLEXER, DEMODULATOR, AND DECODER

Robert Redinbo
Department of Electrical Engineering

and Computer Science
University of California, Davis

—-^__ ABSTRACT

Fault tolerance features in the first three major subsystems appearing in the next

generation of communications satellites are described. These satellites will contain

extensive but efficient high-speed processing and switching capabilities to support the low

signal strengths associated with very small aperture terminals. The terminals' numerous

data channels are combined through frequency division multiplexing (FDM) on the up-links

and are protected individually by forward error-correcting (FEC) binary convolutional

codes. The front-end processing resources, demultiplexer, demodulators and FEC

decoders extract all data channels which are then switched individually, multiplexed and

remodulated before retransmission to earth terminals through narrow beam spot antennas.

Algorithm based fault tolerance (ABFT) techniques, which relate real number parity values

with data flows and operations, are used to protect the data processing operations. The

additional checking features utilize resources that can be substituted for normal processing

elements when resource reconfiguration is required to replace a failed unit.

The FDM demultiplexer is efficiently implemented by a multirate polyphase filter

bank where segments of a uniform channel extraction are combined with a fast Fourier
«

transform section to process input samples at a reduced rate. The demultiplexers'

operations are protected by a real number convolutional code that produces comparable

parity values at an even slower rate in a parallel similar subsystem. Parity values computed

directly from the output channel's data provide detection when compared in a totally self-

checking checker. The prototype baseband channel separation filters are viewed as finite

impulse response (FIR) types, however, it is also shown how infinite impulse response

(HR) types can be employed. It is further demonstrated that the real convolutional code's

parity filter can be modified, while still preserving its error-detecting capabilities, to

simplify the parity generation processes. In any case, the parallel parity subsystem can

replace any failed subunit in the main demultiplexer. This parity scheme is also effective in

protecting against failures in an A/D converter system employing separate converters in a

rotating fashion. A similar protection method can be applied also in protecting any discrete

Fourier transform realization, detecting failures at the data level in any fast algorithm.

The individual channel demodulators and FEC decoders perform nonlinear

operations and several data channels may share the same processing resources. The

demodulator, while based on a matched filter principle, contains timing and phase tracking

feedback loops that make it very difficult to apply fault-tolerant design techniques.

However, the redundancy inherent in the binary convolutional code used to combat

transmission noise on individual data channels offers features for protecting FEC decoder

realizations. The demodulation operations are protected by the fault tolerance capabilities

designed into the demultiplexer and FEC decoder which surround the demodulator.

Protection methods for Viterbi type FEC decoders rely upon certain invariant internal and

external characteristics of the Viterbi algorithm. The decoder's output data stream is re-

encoded and the successor states' metrics recomputed externally. The relative size of this

metric and its comparisons with the successor's value as furnished by the decoder indicate

whether the decoder has failed or the channel noise has exceed the designed performance

level of the code. The effects of an increase in transmission noise will appear in many

channels simultaneously, while any failure in a decoder will affect only those channels

supported by the failing resource. With a small amount of additional storage, protection

levels are enhanced by checking necessary conditions on the decoder's choice for successor

path. The FEC decoder can also be protected internally by generating real number parity

values related to survivor values in the state space of the decoder. This internal protection

scheme focuses on new high-speed, block-processing parallel Viterbi decoder realizations.

VI

Final Report
June 1990 - September 1994

NASA Grant NAG-3-1166

Fault Tolerance in Space-Based Digital Signal Processing and Switching
Systems

PROTECTING UP-LINK PROCESSING RESOURCES,
DEMULTIPLEXER, DEMODULATOR, AND DECODER

Robert Redinbo
Department of Electrical Engineering and Computer Science

University of California, Davis

I. INTRODUCTION

Communication satellites designed to serve numerous small users, generally termed

very small aperture terminals (VSAT's), will require extensive sophisticated processing in

the space-borne segment. The importance of spot beam switching antenna technology is

one driving factor for VSAT's. Small, low-power terminals can receive adequate signal

strength from orbiting satellites by having the space transmissions concentrated by antenna

radiating patterns of spot beams that dwell on relatively small areas. However, this

approach requires complete demodulation and switching of all users at the satellite, not

common practice today. Furthermore, demodulation and decoding followed by

remodulation and receding after switching on the satellite separates the communications

path into two independent links, basically doubling the overall performance gains possible

through modulation and coding.

The application of fault tolerance design principles to these communication satellites

is studied using realistic system configurations as outlined in an internal NASA planning

document [27] and described in a report on a proof-of-concept implementation by industry

[28]. Figure 1 shows the basic subassemblies associated with a future switching

communications satellite. As will be discussed later, the demultiplexer shown as a single

large block is implemented by a multirate, polyphase filter bank that efficiently extracts

I

'
c.
E
'
c
*!

fc

c
j

c

1

<

1
;
EJ
H

1

3
5
2
3
3

1

^ 1

i <

viA
'
t
M

'
C
c
^
&

1

^

f\
I/
'
J
H

'
3
5
H

J

i

1

>5

(

/

N

H

1 t '-MI I/M

PJHHH&Hh- lWXb

'
C.
M
tl

'
C

>5

t

J

^

'
;
4
H

'
i

5
H
>-
—4

1

I

£*4

r—I

1
00

C/5

So

^O

I
S

a
o

"S ^ p£ x> b

OJD

5

C/3

O
o

3

S

individual users' channels. These channels employ frequency division multiplexing

(FDM), thus avoiding the tight timing synchronization requirements of the alternative

method, time division multiplexing (TDM). In FDM, each user occupies a preassigned

frequency band as depicted in Figure 2, which also outlines how a uniform lowpass filter

can be translated to extract individual channels.

The demodulation and decoding of the forward error-correcting code (FEC) for

each channel are shown in Figure 1 as separate subassemblies although their

implementations undoubtedly will share hardware resources among several channels.

However, there is no current system level subassembly that can perform either of these

channel operations in a combined way as with demultiplexing and its efficient filter bank.

The individual channels are switched according to their respective destinations on

the down link. This link usually employs TDM because the spot beam antennas and their

dwell positions are naturally related to time segments. The necessary timing

synchronization requirements are easily met since all users can observe the down link data

bursts on each dwell. This report concentrates on fault tolerance in the first three parts of

the satellite up-link resources, demultiplexer, demodulator, and FEC decoder because any

fault appearing in these parts corrupt the data irreparably. Fault tolerance techniques for the

latter subassemblies will be examined in future work. However, the fault-tolerant design

techniques explored here have applications in these parts as well. It seems reasonable to

study fault tolerance issues considering the satellite system in natural data flow order.

The three up-link resources being examined in this report are repeated in Figure 3.

Subsequent figures will outline the function and subassemblies within the three subblocks

representing demultiplexer, demodulator and decoder. Theoretically, an FDM

demultiplexer separates channels by frequency shifting across the frequency band a

prototype uniform baseband filter represented by transfer function H(Z) in Figure 4. Since

individual output channels have a much narrower bandwidth due to the constraints of this

filter, a much slower sampling rate at the output still adequately represents the data. This

03

73c
bO• i—<

00

X

O <U•53

oa
0)

.9x
<D

iff ill

t t t T3 , ,
73
O
<L>

C/3
i—I
O

00

TTT

<T-t ^

o 8
O <U
<U Qo2
u1el

00

O

Q
VH J l

f f t -

00

—Iff

^ <D2 n

I
Q

I'

C/3

00

oo

a-

i s - S

O

13

45u

jz;

u

t i
jz;

X" ^

N
ffi

®-^-^ ®^~

^

N
V '

ffi

i

i
ffi

r

°°

gjp
o

o

Q

allows an efficient multirate filter bank to separate channels, a topic to be discussed more

fully in a later section.

The demodulator translates several channel samples into confidence levels

representing baud symbol decisions. Detection theory shows how this is performed by a

coherent matched filter [29-31]; however, timing and phase tracking loops are needed to

establish proper symbol epochs as well as the proper reference phase for the symbol's baud

[28]. This configuration is outlined in Figure 5. The feedback loops greatly complicate the

application of any standard fault tolerance design techniques to this subassembly.

Convolutional codes are generally used to combat channel errors, and the usual

decoder involves a Viterbi algorithm. The implementation of the FEC decoder contains

three parts, as shown in Figure 6 [30,31]. The soft decision variables which convey the

demodulator's confidence level in a baud symbol decision are translated into branch

metrics, the fundamental updating information needed in the Viterbi algorithm. Maximum

path values at internal states are selected in the add-compare-select unit and the optimum

sequence estimate is constructed by the survivor memory unit. The decoder then passes the

possibly corrected data bits to the switch for routing, which may be based upon

information in a header that also passed through the decoder. A major section later in this

report presents novel fault tolerance features for protecting this type of decoder.

Fault tolerance is basically a redundancy management problem: in what form to

obtain the redundancy and where to put it in the system? The first role for this redundancy

is to detect when faulty behavior is occurring, for without adequate failure detection

corrupted data can be passed through the satellite. However, a second role for this

redundancy is equally important for space-borne systems. After failures have been

detected, spare resources must be introduced through system reconfiguration to maintain

data flow through the satellite. One challenge of fault tolerance for space-based systems

involves transferring redundancy included for fault detection into spare resources that can

be employed in reconfiguring the system after failures. Of course, once the redundancy is

13

a>

.2"
'

i_i
O N o
• ' S o

P o

a
<D

GO

10

<D

o
S
(D

Q

I*a>

ô

C
ha

nn
e £ X'Ea^

S 2S§bg 14

83
<L>
Q

CC

a
cd

00

I
O
o
(D
Q
Ue
(D

13
fc

O

oo

§ -0

§ s
,c3 >,
U oo

o

Q̂ o
00

15

transformed into data processing resources, the detection capabilities will be reduced. This

philosophy for dual use of fault tolerance support resources is critical because of the

hardware limitations in orbit. The overhead for fault tolerance must serve dual roles.

Many of the methods described in this paper are in accord with this philosophy.

Convolution codes protecting the data streams introduce redundancy throughout the

front-end processing operations, particularly when these data are being processed in direct

coded form. On the other hand, the demodulator with its two nonlinear tracking loops is

very difficult to protect, even with a combination of conventional fault tolerance techniques.

One way to protect the demodulator is to move detection requirements further downstream,

as outlined in Figure 7. If the demultiplexer and FEC decoders are individually fault-

tolerant and if errors appear in the decoded data bits, while there are no indications of

failures in the other units, either the channel noise has exceeded the convolutional code's

designed performance, or there has been a failure within the demodulator. But

communications theory demonstrates that any errors due to channel noise appear

simultaneously in all data channels using the same transmission medium, and therefore,

adjacent channels will also sense an increase in errors, a situation that is easily determined.

Thus, one cause can be distinguished from the other. This type of fault tolerance can be

termed the "sandwich" method. The difficult subassembly to protect is placed between two

fault-tolerant subsystems, where the coded data pass through all three. When no faulty unit

is indicated but the decoded data indicate errors, the intermediate unit becomes suspect.

The source causing the decoded errors is easily attributed to common channel noise. If not,

a faulty unit is indicated. This reduces the protection of the up-link resources to the major

challenges of guaranteeing fault tolerance in the demultiplexer and the FEC decoders.

This report contains two main sections, one describing fault tolerance in the

demultiplexer and the other focusing on protection in implementations of the Viterbi

decoding algorithm. There are several subsections under each section addressing specific

16

ill -HI *

«sQ£
00

oa

4)

iff--
43 c3
Uoo

3*8
S ^

*rj O

J|
£ O,
flj »

o 3

§L O

S5 %

§151

»' •• •• p'»^^ o ^2 u^

| | |

"

<D
O 03
C <D

T3

8 o•»—> -̂>
^ 00

& 17

aspects of the respective topics. Two appendices provide extra details about very

specialized subproblems.

II. PROTECTING EFFICIENT DEMULTIPLEXER BANKS

/. Motivation

Data channels in communication systems are easily combined according to

frequency division multiplexing (FDM). This method is particularly useful because

frequency selectivity is all that is required to extract individual channels from the overall

signal constellation. Many satellite communication systems employ this method of

multiplexing since there is no requirement for common timing synchronization between

data channels. This approach is even more appealing from a hardware implementation

viewpoint because very efficient demultiplexer realizations, called polyphase multirate filter

banks, are available [1-3]. They take advantage of the narrow band nature of the individual

demultiplexed channels, permitting them to be sampled at a relatively lower rate as

compared to the rate required for the wide band constellation.

The basic demultiplexing philosophy envisions a narrow band filter extracting each

channel from the multiplexed signals. Figure 2, shown earlier, visualizes N multiplexed

channels, each with relative bandwidth fB, combined into an FDM signal. It also shows

the basic demultiplexing philosophy where an idealized narrow band filter with Z transform

transfer function H(Z), is shifted in frequency to separate a band of frequencies

corresponding to a channel, in the case shown in the figure from (r-1) fB to rfB. This

multiplexing format utilizes single sideband forms of each user (analytic signal

representation), and therefore, the complete constellation may be reconstructed using a

sampling rate of Nfe [Section 9.2, 1; Chapter 5, 46]. A theoretical view of the

demultiplexer appearing previously in Figure 4 shows how the uniform baseband filter is

effectively shifted to each respective band by the scaling phasors. The symbol -IN

indicates that the output channel only produces samples at a rate l/N1*1 of the input sampling

18

rate [4], Generally, the uniform filter represented by H(Z) in the figure has a finite impulse

response (FIR) configuration with the attendant advantage of linear phase [5].

It is well known [1,4], and will be reviewed later in a subsection of this report, that

the uniform filter banks can be realized by defining certain segments of the baseband filter's

transfer function and then using the outputs from these shorter filters as simultaneous

inputs to a discrete Fourier transform operation. This approach to demultiplexing is

outlined in Figure 8, where a fast Fourier transform (FFT) algorithm realizes the discrete

Fourier transform. The relationship between the new shorter segmented filters H^(Z), r =

0, 1,..., N-l, and the original baseband filter H(Z), will be summarized later. A rotating

A/D subassembly is shown at the input in Figure 8 which translates the analog input into

digital samples by using several A/D converters in a round-robin fashion. A method for

protecting this very important subassembly will be included later. For the purposes of the

intervening development, digital values will be assumed available. This form of polyphase

multirate filtering is called critically sampled [1] because the downsampling rate and the

number of channels are equal. The most important feature of Figure 8 is its slower

sampling rate applied BEFORE the filtering and FFT operations, permitting the digital

hardware implementing these functions to operate at a data rate l/N* that of the input data

sampling rate. Nevertheless, the input is still sampled at a suitably high rate commensurate

with its wider bandwidth. The high rate data input samples are temporarily stored, but no

processing is performed at this incoming rate until the data are routed to the N individual

segmented filters. The efficiency achieved by this form of demultiplexer is a consequence

of the shared processing in the discrete Fourier transform operations.

There are situations where this efficient form of demultiplexer must be highly

reliable- Yet, the very efficient sharing of processing resources makes this form extremely

sensitive to even simple failures which can easily contaminate many data channels

simultaneously. There are several aspects of applying fault tolerance to a demultiplexer

system as described above. The first important consideration is the detection of failures,

19

whether they are permanent or temporary and transient. Once inaccurate performance is

detected, the failed subunit must be identified and located. Finally, if the failures persist,

the system must be reconfigured so that adequate performance is still achieved. This

section concentrates on the first aspect, fault detection. For, without an indication of

improper operation, the other aspects of fault tolerance cannot be invoked.

The detection of failures in digital systems can be applied at various levels of the

implementation from the gate level up through whole digital subsystems [6-8].

Furthermore, there are numerous techniques available at each level. However, in the case

of signal processing where different kinds of application specific integrated circuits (ASIC)

are interconnected to affect the overall processing operation, it is difficult to incorporate

modifications at the digital design level to support fault tolerance. There is an emerging

alternate method of fault tolerance, termed by some Algorithm-Based Fault Tolerance

(ABFT), that views the algorithmic operations and the data sample flow as the important

items to protect regardless of the underlying hardware realization. The first use of this

technique was in protecting matrix operations [9], and there have been many other

applications investigated [10-17]. Most research has been directed to protecting linear

algorithms.

The fundamental approach in ABFT employs real number error-detecting codes to

define parity values associated with a group of data samples. This basic philosophy is

outlined in Figure 9. These codes can be either block or convolutional codes [18-20]. In

either case, the original processing algorithm is combined with the parity generation

process, generally leading to a composite, efficient, simplified parity generation algorithm

that produces independent parity values which are associated with the output data. Then

comparable parity values are computed directly from the original processing algorithm's

output data. The respective parity values, one from each set but computed in different

ways, should be identical, except possibly for some small round-off error differences since

they are evaluated in two dissimilar ways. Errors are detected when the respective parity

20

o
13 <D

03
43
u

03
4=5
U

03
43
U

03
43
U

•a
03

PQ

<D
•4— >

OO

.8
W)

N

ffi

N

ffi

N

II
ffi

I PH

> CO

e

III
0̂3

O
U

21

ffi

T

<D
03
03•g.

O <U

Ifs
^^

values differ significantly. This type of fault tolerance will be applied to protecting the

demultiplexer. The underlying philosophy holds that the processed data samples are the

critical items whose integrity is to be guaranteed. Any failures that cause incorrect data are

to be first detected with appropriate diagnosis and reconfiguration actions to follow.

The complete details of real convolutional codes will be given later, but for the

moment, the form of ABFT to be employed in protecting the demultiplexer will be

explained assuming that the real number parity values are generated by a FIR filter,

represented by transfer function Q(Z). Furthermore, only every K^1 output of filter Q(Z)

represents a parity value associated with the real convolutional code. This implies that the

output of the parity filter Q(Z) is passed through a downsampler at rate K, where K

typically is in the range from 5-10. The fundamental error-detecting approach for one

channel in the demultiplexer is shown symbolically in Figure 10, where this downsampling

operation is denoted as >lK. This theoretical view produces the output for channel r by

passing a frequency shifted data stream through the uniform baseband filter H(Z). The

output is processed by the parity generation filter Q(Z) with only every K1*1 sample

preserved. It will be shown later that H(Z) cascaded with Q(Z) and followed by a

downsampler represents the simplified parallel forward parity generation algorithm. These

two related parity streams are compared and any significant difference between respective

values indicate errors, up to the error detecting potential of the code employed.

22

<D

<D
O
o
4-*
cfl

I
O

t
CO

g
p^

tg E O

U

I
^

I s
C3

CO

fl

15

O

OH CO

fij
*SS "^
^ *J
o J^
O O
O OJD

03
<D

CO

&"S
0

j_^

>-»
TS
d
<D• i—i
O

£M-i
<D

'S g)
•5 -j-jX) ^c ^c w
O . *~ i
o o

c/>
<L)

§̂
00
OM

-J

^J'oJ
• • . . • • • J T

CO

23

«

o
C

£

2. Review of Efficient Implementations of Filter Banks

An analysis bank of filters will be examined where each of the L transfer functions

H0 (Z), Hj(Z),..., HL.^Z) bandlimit their respective signal outputs so that each may be

sampled at a rate 1/N of the input rate. This general setting is depicted in Figure 1 la. The

L transfer functions will be assumed FIR types, for the purposes of the exposition.

(Similar results are possible for infinite impulse response (IIR) filler forms and these

results are developed in an appendix just for completeness.) Each of the L filter paths can

be analyzed separately and the generic situation is isolated in Figure lib, for further

development. The Z transform quantities shown in these figures employ the two-side Z

transform. Infinite limits in the summations are included in its definition below, even

though only a finite number of nonzero terms appear for the FIR filter case

(hp(n)} «-> Hp(Z) = £hp(n)Z-n (1)
n=-

The sequence (hp(n) } is a shifted version of the prototype filter's impulse response:

(h(n)}p

The sampling period is T = Nfe, as noted earlier when discussing the single sideband

nature of the individual data channels.

The output sequence from the filter, denoted by the sequence {£p(r)} in Figure lib,

may be written in terms of the input samples and the impulse response of the filler
+00 +00

hp(m-s)x(s) = hp(s)x(m-s) (2)
S=— oo s=_ oo

The down sampler -IN basically keeps every N* sample of {^ (m)} and its output y (r)

may be written as:
+00 +00

yp(r) = yrN) = £ hp(rN-s)x(s) = £ hp(s)x(rN-s) (3)
S=— oo S=— °°

The summation index s may be decomposed using the Euclidean algorithm and the single

sum replaced by a double summation with one over only N values.

24

c
c

u
fcx

6.SP

W)

O

25

H0(Z)

Hi(Z)

4-N

IN

X(Z)

HL_t(Z)

Bank of L Filters Followed by Downsamplers
Figure lla

X(Z)
Hp(Z)

Sp(Z)
IN

Yn(Z)

Generic Filter Path
Figure lib

General Analysis Bank
Figure 11

26

s = uN + v : v = 0, 1,.... N-l; u = 0, ± 1, ± 2,

N-l +00
r> = X £

V=0 U=—oo

N-l +00

= I Z hp(uN+ v) x(rN-uN-v)
V=0 U=-oo

(4a)

(4b)

(4c)

The impulse response {h (m)} is segmented into N subsequences and the weighting

operation separated into N parallel convolutions. The N parallel convolutions employ

segmented impulse responses related to the original p* channel impulse response in the

following way.

v = 0,1,..., N - 1
(5a)

N-l

I
v=0

+ 00

h < - v) (r - u) x(uN + v)
_U=—oo

+00
V=0 LU=— o

hp<v>(u) x((r-u)N-v) ;r = 0,±l,±2,. (5b)

An important interpretation of the decomposition is shown in Figure 12, describing

the separation of the filtering action of the original path represented by H^(Z). The Z

transform of the N segmented impulse responses, {h_v^(a)}, equation (5a), is defined in an

obvious way incorporating the lower sampling rate caused by the downsampling

H<;>
+00

,-aN
;v = 0, 1,...., N-l- (6)

a=-oo

The sampling reduction by factor N permits the input in equation (5b) to be delayed

according to variable v, and each subsequence so formed weighted by a segmented impulse

response (h^(a)}. The delay line depicted in Figure 12 separates the input stream into

27

these respective subsequences. In this way processing is decomposed into N parallel

paths.

The same number of operations are performed in this approach, but each parallel

self-contained path can operate at a rate reduced by factor N. The ability to use a slower

processing rate in each disjoint parallel path provides a serial-to-parallel tradeoff. Digital

signal processing is now possible, whereas in the original configuration, the speed

requirements because of the input's high bandwidth would have been prohibitive. The

high speed operations are now confined to the analog-to-digital conversion unit, which

must be performed under all circumstances, and the length N shift register type memory

storage. There are dramatic efficiencies possible when L = N and the filters Hj(Z),

i = 0, 1, ..., N - 1, are frequency shifted versions of a single uniform baseband transfer

function.

Demultiplexers can be viewed as a special form of Figure 1 la, wherein L = N and

the N transfer functions are constrained to be related to one common baseband transfer

function H(Z) as shown earlier in Figure 4. It is easy to demonstrate the effects of the
.2*

scaling phase sequence {eJ N pr}£T_« is to shift the filter response;

28

VH
*^s

OH

N

ffi ffiri
N

i
"8

On

ffi

N
OH

K

PL,

,1 f-
I fT1

t

<Ds

PQ

29

ffi

T
g
6
(U

U)

; f is Frequency Variable.

The impulse response (h(r)} corresponds to the transfer function H(Z). Under these

conditions, the output of the p* filter path may be written with the aid of equation (4) as:

N-l +00

ypto = X S h(uN + v)x((r-u)N-v)W'pv

V=0 U=— oo

.2*
W = CJN

N-l +00

= Z S MO- - u>N - v) x<uN + v>wpv (?)
v=0 u=-~

One important feature stands out in equation (7). The scaling phasor is not a

function of the inner summation on variable u and, therefore, may be moved to the output

of each respective filter path. In this regard, the segment impulse response and its

corresponding Z transform may be identified.

h<v>(a) = h (aN + v)

; v = 0, 1,..., N-l (8a)

a = 0,± 1, ±2,

h<v>(a) Z-* (8b)
a=-oo

The pth channel output is the sum of N scaled versions of filter paths with transfer

functions H<°>(Z), H^CZ), ..., H

N-l f +00

yP(r) = 5>PV1 ^h- v(r-u)x(uN + v) (9)
v=0 [u

This is shown in Figure 13.

30

o
0<
£

p.
^

.
o_x
ffi

/^ "\

N

"ffi

U
H

A P<

»-H

O<

N

(N

<D
I I

£
"S£

•a

FnJ

N
T—(

^̂a

i
§

u
XJ

3
Q.
C

<D

31

The final summation over index variable v in equation (9) is equivalent to forming

the p* discrete Fourier transform coefficient for the N outputs of the segmented impulse
r /_v) "|N-1

response filters •{ h (r) > . Furthermore, the only change needed to get an output for
I Jv=0 .2*

a different output, say (ym(r)}, is to modify the scaling coefficients, {eJ^mv}^T0
1, affecting

the outer sum. The same segmented impulse response filters are employed, but the scaling

values change. Thus Figure 8 represents the general case where an FFT form of a discrete

Fourier transform is applied to the respective outputs of the segmented filter functions. All

N channel outputs of the demultiplexer are obtained simultaneously. This is the basis for

the great efficiency of polyphase multirate demultiplexer filter banks.

There are new general lattice decompositions of the indices that lead to even

more efficient realizations particularly when timing and phase tracking compensations are to

be integrated in the demultiplexer [47, 48]. The fault detection schemes developed in

succeeding sections also apply to these more general formulations.

3. Real Convolutional Codes and DSP Operations

Convolutional codes have been defined traditionally over finite field alphabets [21,

22], but recent research results show how they may be extended to systems using either

integer or real arithmetic [18, 20, 14]. Nevertheless, the basic approach to Convolutional

codes remains the same, particularly with regard to a matrix .description of the encoding and

parity checking functions. Only systematic forms of Convolutional codes will be

considered primarily because the normal filtering operations are not altered and such forms

are automatically noncatastrophic [22]. Only the detecting capabilities of such codes are

used; any correcting operations could easily exceed the original processing requirements.

The encoding matrix for a systematic Convolutional code, G, has a block-type

format involving m fundamental finite sized matrices whose dimensions are related to the

32

rate and number of parity check positions in the code. The parameter m determines the

constraint length of the code.

f** f^ f\

G =

GO GI
0 GO
0 0
0 0
0 0

I I

Gm-i
Gm_i -

GO G!
0
0

GO -
0

I I I I I

(10)

The k x m submatrices G:, j = 0, 1,..., m, have distinctive forms and divide into two

types.

GO = (I I P0) ;I, kxk

P0, k x (n - k)

Gj = (01 PJ) ; 0, k x k

Identity Matrix

Parity-Check Matrix

Zero Matrix

(lla)

; PJ, k x (n - k) Parity-Check Matrix

j = 1,2,... ,/n. (lib)

The entries in the parity check submatrices PJ may be either 0 or 1 even for the real Marshal

code case [18,20], or in the more general case, real numbers [14,23].

The parity positions are a function of possibly M = (m + l)k input samples through

the action of the P: parts of each G:. The stack of these parity weighting values will be

denoted by an {M x (n - k)} matrix Q with respective columns {qr}

33

'm-1

= (<7 ; M = (12a)

qL=((qc
(j))) ; j=o , i ,2 M-I

qc M x 1 Column Vector (12b)

c = 0, 1,2, . . . , (n-k- l) .

The (n - k) parity position associated with the input values are obtained by the weighing

action of columns qr. Each parity value may be viewed as the output of an FIR filter,

described notationally using the Z transform of column qc.

FIR Filter Effect, Column c.

QC(Z) =
M-1

j=0
(13)

Real convolutional codes can also be imbued with a distance structure similar to the

usual one applied to finite field symbol codes. It is possible to define a metric in terms of a

real Hamming weight. For illustrative purposes, consider the real code symbols to be

defined with infinite precision real or complex numbers and note that these algebraic

structures have a unique and easily discernible zero element. Let 2L Y and Z be (1 x L)

vectors of numbers where L will be fixed by the context below. The real Hamming weight

is the number of nonzero components in a vector, say Z.

34

W(Z) = # NONZERO COMPONENTS IN Z (14a)

A valid distance function (obeying the usual mathematic requirements of nonnegativeness,

symmetry and the triangle inequality, [21]) may be defined using the additive operator and

the Hamming weight.

d(X,Y) = W(X-H (14b)

In practical systems, the precision of the arithmetic implementation will dictate the

occurrence of zero components. However, that does not limit the theoretical view being

presented here.

A convolutional code produces ever lengthening output vectors as more input digits

pass through the encoding process. In order to describe this behavior, variable length

vectors will be used and so appropriate notation will be established. The 1 x [(i + l)k]

vector [u]{ represents an input of (i + 1) subblocks each of length k.

; u^r) r* Digit of Subblock j.

In a similar way [v] p , a 1 x [(i+ l)n] vector, corresponds to the output of the encoder

flrtwhen [u]V ' is the input

(15b)

; v^ r* Output Digit of Subblock j.

The encoding action is described through a truncated form of the encoding matrix G,

equation (10). This truncated submatrix is denoted by [G]j and is extracted from G as the

upper left {(i+ l)k x (i+ l)n} elements.

[u]j [G]t = [v]^ . Encoding Action (15c)

The minimum column distance associated with (i + 1) input elements is labeled by d| and is

formally defined as:

35

dj = min{ d ([u']<k> [G]i, [u"]Sk) [G]j)} (16)

aU [ui^ and [u"]f}

The infinum is over the distance between encoded output sequence corresponding to input

sequences that certainly differ at least somewhere in the first subblock of k input digits.

Because the code is linear, this equivalent to an infinum over encoded sequences

originating with inputs nonzero in at least the first k digits.

dj = min|w([u]Sk)[G]i)} (17)

all [u]p>

such that [u]J,k) * 0

The column distance dj is a nondecreasing function of index i. Hence, the minimum free

distance is a natural definition as the limit is approached.

,00
r

all [u]jk)

t4k) * o
Another aspect of finite field convolutional code theory that carries over directly to

real convolutional codes is the concept of a dual code (space). For example, there is a dual

matrix H such that

G HT = 0 ; HT denotes Hermitian transpose (19)

where the matrices are infinite dimensions. However, this theory also applies to the

submatrices extracted as the upper left corner such as those involved in the definition of the

36

column distance. (In fact, this is the motivation for calling this value the column distance as

will be seen shortly.)

[G]i [H]T = 0 (20)

As in the usual development for block and convolutional codes over finite fields,

for every codeword piece of weight w, there exists a dependency relationship among w

columns of [H]j, [21]. Hence, if the minimum column distance for length (i+1) input

subblocks is w, every (w-1) columns of [H^ must be linearly independent [21]. It is also

easy to show that any code over finite fields can be regarded as a code over the real

numbers translating the field integers into the integer subset of the reals. The distance

properties of this real code will be at least as good as those for the finite field code in its

algebraic structure [23].

High rate convolutional codes with only one parity channel will be used for

protecting output data channels emanating from a demultiplexer. Binary-based codes, for

which there exist tables of high performance codes [24], will be chosen. In particular, a

rate K/(K +1) systematic convolutional code is defined by a single parity weight filter,

equations (12) and (13). A single parity value for every K input sample is produced by

sampling an FIR filter with transfer function denoted by Q(Z), equation (13) without a

subscript. A convenient view of the parity production process is shown in Figure 14. The

data flow normally and are simultaneously tapped to this FIR parity filter, Q(Z). The

downsampling symbol iK indicates that after every K data samples, one parity value is

produced. The previously adopted notation may be used to explicitly show the components

of the output codeword. The parity values are labeled v&\ i = 0,1

rvl(K+l) _ / (0) (1) U(K-1) V(K) (0) (1) U(K-1) V(K)LVJi - ^u0 , u0 ,...,u0 , VQ , Uj , Uj ,... UL , Y! ...

(0) (K-l) (K)....,Ujuj v, ;

37

c/>

J
OH

H
<
Q

•3
3S

2 <s
* H

w

a

38

where the input data that passes directly through to the systematic codeword values are

4. Composite Filtering and Parity Generation

This section develops methods for combining the parity generation operations with

filter banks, such as shown in Figure 11, forming a cascaded system, depicted in Figure

15. A generic channel with signal value notation overlaid is presented in the middle of this

figure. The output of the Ith filter, Ht(Z) , is denoted by Yt(Z) <-» (yt(r)}. The parity

output (pt(a) } , after downsampling by factor K, may be written in terms of the Ith channel

signal (yt(r)}.

Pt(a) = KI1 +f q((a - c) K - d) yt (cK + d)
d=0 C=°o

a = 0,±l,±2,...
t = 0,l,...,L-l ^ '

K-l +00

= £ £ Q(cK + d) yt ((a-c)K-d)
d=0 C=oo

A substitution from a previous result, equation (4), shows how the input is

effectively weighted by a composite of the filter and parity weighting functions.

N-l +00

(V)v) gt (aK-u) (22a)
v=0 u=-«

The composite weighting functions (g(v\r)} contain every Nth sample of the filter

weighting, properly offset by index v.

+ 00

giv)(s) = ^L q(r)M(s-r)N-v) v = 0, 1,..., N-l (22b)
r=-oo

39

I

K
H

I

£
c
j
K

j

x-

[>
<

s
j

t
4f
5
>f?j
?

f
•s

^
o
H

<-*•

s_
4.

>-v

(-*-
^rt^_.

•4-
J>.

<-«r

i

N
X

c:
v»

•J

>-y

-1

s
_>

_l

1

/

^

J

L

^
l-»

1
fc

1
?

C
I
H

1

x-

S
•4

n
J

^

1°
4'>
5
>

[>̂
?

f
•s

3
1— »
H

k

*

i

-1

N

N

1̂
i
f
s.

C
i

h-

1
x—

N
r

h

H
J

[̂
!

'
J*/
y

\
r

>

\
•s

I
— (

J
•1
4

L

03
+— i

O

PQ
•i— i
W5

C^3

VH

£
o• I— (

•4— >

J-H

G

^

OH

40

The output sample index a is scaled by K in the argument of g^ () inside the definition of

pt(a), equation (22a), while it is further scaled by N in this definition, equation (22b). The

net effect has the input data weighted by values every N* point, in steps of KN with

respect to the data indices. There are alternate ways of rearranging the above equations to

demonstrate this more clearly, however, the overall weighting functions do not reduce as

compactly. In this alternate arrangement, the input data are weighted at sample instances in

multiples of KN even though the summations employ values at steps of N, for all fixed

offset indices v and d. A schematic description of the parity generation associated with

filter Ht(Z) is shown in Figure 16, where the Z transform of the composite weighting

functions are employed.

_ +£ g;
v>(s)z-^ To!'""?"! (23>

t — U, 1, . . . L- — 1S=— oo

The real savings in computing the respective channel parities occur for the case of

uniform filters at the critically sampled rate, L = N. With the filter bank as in Figure 4, the

outputs of each Ht(Z) are scaled by a complex phasor, {Ww} , as in equation (7). This

translates the parity channel output pt(a) into a modified equation (22).

N-l -H~

V=0 U=—oo

p t(a)= X £[x(uN + v)Wtv]g(v)(ak-u) (24)

The uniform filter weighting function g^(s) is defined similarly to equation (22b), with

index t dropped. The complex roots of unity are functions only of the outer index v, and,

when all N channels are considered, the complete set of parity values may be calculated by

a DFT operation, as described earlier with regard to the polyphase multirate filter banks.

The calculation rate is reduced by a factor KN, even though the individual composite

channels accept data at intervals of N. The index v in gM(s) determines the offset in the

composite weighting function and the data, seen in equations (22b) and (24). The effective

41

ed

U 1 J* o>

N

O

O

S
T— (

0rl
N

I
fc

PTlJI

60

S

>, &g* |
> 00

1
o

o
•4— >
O

oo

I
o
-a
U

£ W> c
. ̂ H r^ £3
55.5 o
O -S -*3

tfi6^^

U

-

o

_o

'oo
O

^

O
O
<D
Q

42

computational rate for the composite parity calculation process is indicated in Figure 17,

showing how all parity values are obtained simultaneously through the DFT.

5. Protecting a Polyphase Filter Demultiplexing System

The basic protection philosophy was outlined previously in Figure 10 which

depicted the method by showing a generic channel. The parity values are calculated in two

ways, one by a parallel composite parity generation process as described in the last section.

The second comparable parity values are computed directly from the channel's

demultiplexed output. The first set of parities are calculated according to equations (22)

employing the composite weighting. The other parity estimates are computed by a formula

following the form of equation (21). These two versions of pt(a), labeled pt'(a) and pt"(a)

are compared in a totally self-checking comparator. The combined protection system is

detailed for generic channels r in Figure 18; identical calculations for each of the N outputs

would be made. This figure also includes an A/D subassembly based on the rotating use of

a small number of A/D converters as noted earlier with regard to Figure 8. The protection

of this important unit will be presented at the end of this section.

The full details of this generalized version of a totally self-checking equality checker

[7] are contained in a forthcoming book chapter [25]. A description of this self-checking

comparator is presented in Figure 19. The threshold value A is selected to allow small

differences between the two versions of comparable parity samples, accounting for

roundoff noise discrepancies arising because they are computed by different subsystems.

The parity weight filters, G^V^(Z) blocks in Figure 18, combine the effects of Q(Z) and

H(Z), equations (22) and (23). However, the computational rate is reduced further by a

factor of K, making this scheme an efficient protection approach. Since each channel

compares a pair of parity values every K* output value, errors are detected with a latency

of at most K output samples. The detecting capability of the code is sometimes specified in

43

terms of the minimum distance for a constraint length (i = m in equation (17)) implying that

a group of errors up to the level of d^ in each constraint length can be discerned.

The A/D conversion process which translates analog signals into corresponding

digital sample approximations can be a source of a single point failure from which no

recovery is possible. However, for practical high-speed applications separate A/D

converters are combined and operate in a rotating round-robin fashion. Such a

configuration is indicated at the beginning of Figure 18, and, for the sake of discussion, it

will be assumed that the subassembly employs s A/D converters accepting successive

analog values in a round-robin fashion. The input sampling rate can be s times the

maximum capability of a single A/D converter. Typically s can range from 2 to 8.

The output of the A/D subassembly is the sequence (x(k)} where x(k) <-> digital

sample x(t) at t = kT. If a single converter in the round-robin arrangement fails, the values

(x(k)} have a possibly random sequence added that can have only nonzero values every 8th

sample. The new output of the subassembly may be modeled as the sequence (w(k)}

which contains sequence (ap(k)} representing the possibly random error values.

w(k) = x(k) + (Xp(k) ; A/D Outputs, p* Converter Failed

p = 0, 1,..., (s-1).

Several realistic assumptions concerning the statistical properties and relationships of the

input and error sequence will be made.

The input samples are drawn from a zero-mean, wide-sense stationary sequence
•*

with autocorrelation function Rx(m). The additive error sequence however is nonzero only

possibly for every 5th value depending on the index of the failed converter.

ed k = ds + p

(k = p mods)
ap(k) = P • =01 (s-1)

0 k^pmods d, INTEGER

44

Furthermore, the error values {6d}, viewed as a decimated sequence, is also wide-sense

stationary with mean TJ and autocorrelation function re(b). The failure of a specific A/D

converter is equally likely and uncorrelated with the input sequence (x(k)}.

The autocorrelation function of the composite sequence {w(k)} may be developed.

E[w(k) w(k+m)] = Rw(m) = Rx(m) + Re(m)

The function R^ (m) is time-varying but is not dependent on the A/D failure index because

of the averaging effects in the autocorrelation function's definition
E[eaeb] k = as + p

= E[ap(k)ap(k + m)] = < m = (b-a)s

[0 OTHERWISE

Hence, Re(m) = re(b) for m = bs. The Z transform of the autocorrelation sequence Rw(m)

may be separated in two pieces, one associated with the data sequence (x(k)}, SX(Z), and

the other related to the error autocorrelation function re(b).
+00

m=—oo

The s exponent in Se(Z
s) is due to the separation of error values by s.

The effects of a single A/D converter are apparent from these developments. The

spectrum of the corrupted sequence, SW(Z), contains s copies of the error spectrum, Se(z
s)

SwCeJ®1') = SxCeJaT) + Se(eJwsT) ; T SAMPLING PERIOD.

The resulting additive influence due to an A/D converter's failure appearing in a generic

demultiplexer channel, say channel q, is determined by the cascade of Hq(z) and Se(Z
s)

where Hq(z) represents the prototype filter shifted to channel q. This spectral density is

|Hq(z)|2se(z2).

A protection scheme for the A/D subassembly employing the parity checking

approach outlined earlier may be given. Firstly, at least one demultiplexer channel is kept

vacant in the multiplexing format. This means that, except for noise, only zero values

should be present at its demultiplexer output. However, the parity values associated with

45

s s
^6

•

H _

I 9
00

s^ Hp 5
HH CL

£ fc
^ ô

8

a-

t-S pi
&

c3

£

O

W
0

T̂3
<U

^-
1 I1fnl 1

o

"8

ae J

<D
oo

U

OH

1
00

•c
Uc-

a
0

G
O
O

OH

46

o

T

o e-ci

4U
u

03

PK

<y

2
O

T1

03

«3
O,

I
U

Tl f
•p* 5

T

1 1

U

Q PQ

X— \

N

B
0

N"
G^
O

47

t

if
J

-

O

T .T3 4>
•^ b'B,

<i— C^ 4> g
6 ^ «I e3 W co

<y>

N

00

13a

43u
xju

^
oo

so

TJ

• rH S•5 ft
•Sx «

"S
O•*—>
o

PH

M g NN
"6 as

A |inHtz^)MU

V0. -^.fa\-^ej=p5(a)-pj(a)

THRESHOLDS
0, + A

0 IF 6j<0

1 IF ei>0

OUTPUT IN
1 OUT OF 2 CODE

0 IF dj<-A

1 IF -A<dj<0

0 IF 0<dj<+A

1 IF +A<d

CO=1
trtcn
o§§
LUQ-h-

R|=<
0_C\J<

LLtL

os
hrO
^DC
OUL

O
O

COMPARATOR 0
OUTPUT

COMPARATOR!
OUTPUT

COMPARATOR N-1
OUTPUT

£

*

1 OUT OF 2
CONCENTRATOR

O-1-
00

«MP mnv

H>O
HO
00
3Jm

Totally Self-Checking Comparator
Figure 19

48

this vacant channel, say index q, is represented by I Hq(Z)Q(Z)|2 S6 (Z)2. Because the

convolutional code is linear, the parity values associated with channel q that are produced in

parallel should be zero too. For failure detection purposes, these conditions may be

checked by a comparator judging against one zero input Therefore, protection of the A/D

subassembly is accomplished by vacating a multiplexer channel and checking the output

parity stream for zero, allowing a small tolerance for channel noise effects. One guide for

selecting the channel q to be vacated is to pick a channel where I Hq(Z) Q(Z)| 2Se(Z
s)

contains large energy.

6. Two-Level Demultiplexing

There are different bandwidth requirements for various data channels in a

multiplexed system. A high-speed channel will require the same spectral space as a number

of the more common, low-speed channels. Hence in many multiplex schemes, a two-tiered

hierarchical approach is adopted. Several wide band (WB) channels, each occupying the

bandwidth of a fixed number of narrow band (NB) channels, are extracted by the first level

of demultiplexing, and for any WB channel carrying NB channels, a second level of

demultiplexing is applied.

A spectral view of the hierarchical channel configuration is demonstrated in Figure

20, where the possible total number of NB channels is N, but allocated into L WB channels

each capable of containing M NB channels. This requires the arithmetic relationship

N = ML. In the first level of demultiplexing, the L individual WB channels are removed by

filtering with a shifted prototype baseband filter having typical idealized transfer functions

F(Z), depicted in Figure 21 a. When a WB channel carries M NB channels, a second

demultiplexer filter bank employing prototype baseband filter H(Z) is used. Such a typical

filter characteristic is contrasted against F(Z) in Figure 21b. The L WB channels are

separated by a familiar form, polyphase, multirate filter bank displayed in the upper part of

Figure 22, producing outputs at a rate downsampled by factor L. Any WB channel

49

I

ca

§ 85!
U PQ !3 •

KJ

PQ

PQ

rr—

I

03

13

a43
U

13
G
d

PQ

* Ipj p
c3 cd

d|
I-I^^ C^
S»_—X 4.J

•o §fiu03
PQ

<L>
T3

G
c3
U

^ wJJ
U
T3
§

PQ
<D

73

45
O
c3
W

I
<D• I-H

ffi
W)

•So
g^

r^H 0)

•&sa 3)

•J
O

0

CO
50

Spectral

Amplitude

f

M Frequency

f

F(Z), Baseband Filter For Separating Wide Band Channels
Figure 21 a

Spectral

Amplitude
f

Frequency

f

H(Z), Baseband Filter For Separating Narrow Band Channels
Figure 21 b

Filter Characteristics For Extracting Both
Wide Band and Narrow Band Channels

Figure 21

51

Input

Taped
Delay
Line,

Length L

F(0)(z)

FFT
SizeL

F(i)(Z) Segment Of F(Z)

Wide Band Channel Demultiplexing
Figure 22a

Two Tier Demultiplexing Approach
Figure 22

-WB#0

-WB#i

-WB#(L-1)

52

Input
From WB#i

Taped
Delay
Line,

Length M

H(r)(Z)
FFT

Size M

H(r)(Z) Segment Of H(Z)

Narrow Band Channel Demultiplexing
Figure 22b

Two Tier Demultiplexing Approach
Figure 22

-NB#iM

-NB#(iM+r)

53

requiring further demultiplexing passes through a second similar filter bank operating at a

rate additionally reduced by factor M. This bank is depicted in the lower part of Figure 22.

At first, it would seem that parities generated for protecting WB channel outputs

could be processed further directly obtaining parity values associated with individual NB

channels. However, the downsampling operations make this approach inefficient as the

development in this section demonstrates.

Let the output of a parity generating filter associated with WB channel s,

(s = 0, 1, L-l) be denoted by sequence {a(s)(r)}. These parities are needed for

checking the L outputs of Figure 22a. They may be expressed in terms of the input

samples, (x(r)}, and the baseband filter impulse response (f(v)} and convolutional code's

parity channel weighting (q(v)}.

L— 1 +00 +00 2jJ

«(s)(r) = Z 2 5>((rK-t)L-c)WLSC ; WL=eJT
C=0 t=— oo u=— oo

{q(u)f((t-u)L + c)} ; s = 0, 1, ...,L- 1. (26)

The downsampling of the parity values by factor KL is evident in the argument of the

inputs. The parity outputs for all L channels can be generated using a discrete Fourier

transform (usually an FFT algorithm) as before.

On the other hand, parties associated with the M NB channels possibly occupying

WB channel number s will be denoted by the sequence Ip/^) (r)| where m ranges 0, 1,...,

M-l. The NB prototype filter impulse response is labeled as (h(r)}.

M-l L-l +00 +op +00

£ I I I I x([(rK-t)M-c-p]L-d)
c=0 d=0 u=-°° t=-°° p=-oo

(27)

2ic

WM = ej~s?

54

;s = 0, 1.....L-1 , WB Channel Index

m = 0, 1,..., M- 1 , NB Channel Index

Incidentally, this equation shows how a two-dimensional discrete Fourier transform enters

naturally when two-tier demultiplexing is examined in this way. Note that the channel

indices s for WB and m for NB, appear separately in the discrete Fourier transform

kernels.

There are significant differences between these last two equations. In the NB case,

equation (27), the parity filter weighting is interwoven first with the NB prototype impulse

response (h(r)} and then coupled to the input data downsampled by factor rate ML.

However, in the WB situation described by equation (26), the parity filter weighting is

applied at a downsampled rate of only factor L. The data enter each composite filter

channel at totally different rates, and it does not appear appealing to further process and

downsample the (a^(r)} outputs to obtain the channel parities, |p@\(r)|.

It is a natural question to try to find a linear filter that may be downsampled at its

output such that processing {a(s)(r)}, the sth WB channel output through it and

downsampling by factor M, yields one of the NB channel parity values |p£^(r)>. Let

{O(r)J denote this desired impulse response and label the downsampled output when

processing (a^(r)} by the sequences

M-l L-l +00 +00 +00

MS)(r)} = Z I £ X I x([(rM-tM-c)K-p]L-d)
C=0 d=0 U=-oo t=-oo p=-oo

0(tM + c)q(u)f ((p - u)L + dJW^WL*1. (28)

The goal of finding an impulse response (O(r)} making {vK(m)(r)j e(lual to (P(m)(

equation (27) is frustrated by different samplings of the data, appearing in their respective

arguments. In equation (28) there is a scaling by K which is not present in the earlier

equation (27).

55

7. Protecting Sequential Discrete Fourier Transforms with Real
Convolutional Codes

The discrete Fourier transform (DFT), generally implemented through some form of

fast algorithm, is central to many signal processing systems, including the polyphase filter

bank implementation. This section describes how real convolutional codes can be

employed to protect any discrete Fourier transform realization. Input data are grouped and

then transformed, by weighting with appropriate roots of unity and summing, into another

group which represents a spectral decomposition of the original data. A common

viewpoint considers the input data as a vector with the resulting transformed output

providing the respective weights attached to sinusoidal basis vectors in a spectral

reconstruction. In numerous cases, the input data represent a segmentation of the

sequential data flow with the DFT continuously operating on input data vectors as they are

formed.

The discrete Fourier transform of N data samples, possibly complex-valued, uses an

N1*1 root of unity W in the following sum formula

N-l .2^
Yp = £ X.Wip ; W = e N (29)

i=0 p = 0,1,..., N-l.

The N data samples XQ, X1? ..., XN-1, produce N transform coefficients YQ, Yj, ...,

"YN-! which describe the contribution of powers of the complex phasor W~P in the

reconstruction of the data samples. This reconstruction is defined through the inverse

transform employing the complex conjugate of W unity and contains a normalizing factor,
J_

- N -

P
w~p ; i = 0,1,..., N-i.

P=° (30)

Vector and matrix notation provides a compact equivalent representation of the DFT,

viewing the input data as the Nxl column vector X. The resulting transform coefficients

appear in Nxl vector Y after applying the NxN DFT matrix Q.

56

Y = fiX ; fl = ((Wij)) (31)

row index i, column index j,

i,j = 0, 1, N-l

If the data are segmented sequentially into blocks of size N, the input and transform

vectors may be indexed with superscripts indicating the sequential progression. The DFT

operation matrix Q is applied to each input vector in succession.

Y< r >=QX (r) ; Sequential index r (32)

r = 0, 1, 2, ...

A systematic convolutional code determines the parity samples to be associated with a

stream of data by finite impulse response (FIR) linear filters.

Q(Z) = qo + qjZ-1 + q2Z~2 + . . . + q^^-^-D ; M = (m+l)K. (33)

The most recently arrived input data samples are weighted by q0, qj, ..., q^-i.

respectively; the next most recent group are weighted by qK, qx+i, ••., q2K-i» etc>> w^

the m01 most recent block scaled by qmK, qmK+i. • • • » q(m+i)K-l-

The first step towards protecting the outputs of the DFT operation, Figure 23, is to

consider the parity generation process using the outputs { Y^r)}, the 1th component of the

transform vector Y_(r) with r representing the sequential index. The respective output parity

(s)values will be labeled P • , where sequence index s refers to the parity associated with

current input group YJS K), Yf K~1}, ..., y<&--&--V\ The parity value P^s), also involves

previous samples of the i* transform coefficient due to the FIR filter memory.

. 04)
a=0

This parity generation process is depicted in Figure 24a for one stream of output transform

coefficients, where the symbol ^K denotes that the output is decimated by a factor K.

The N parity values associated with every new group of K output transform

coefficients are denoted by parity vector P®, containing the N elements P>s% i=0, 1, ,

N-l.

57

, . M— 1
P(s) = I qa IN Y(sK~a). (35)

a=0

This is shown in Figure 24b. The algorithm-based fault tolerance philosophy requires also

that comparable parity values be generated directly from the input data { X_(r) } , hopefully in

an efficient manner. In order to understand how comparable parity estimates { Y(sK~a)}

may be generated directly, substitute the respective values of Fs) from equation (32).

M— 1

?(*> = I qaINQX<sK-a>. (36)
a=0

This may be rewritten because the matrix identity commutes with all matrices, showing

how the parity estimate vector is associated with input vector X.(r).

). (37)
La=0 J

An algorithmic fault tolerance approach is shown in Figure 25 which contains the

parity generation process with the embedded DFT operation according to equation (37).

Since there is a new parity estimate vector produced only every K vector inputs, the DFT

operation, no matter how it is implemented, is performed at a rate reduced by a factor K

with regard to those in the normal processing channel. The two parity vectors P® and P(S)

are compared in a fault- tolerant totally self-checking comparator (see Figure 19) which

permits a small threshold A to exist between related components. The comparable parity

components are computed by two methods and therefore may incur different roundoff

errors. These small errors could be mistaken for system failures without this threshold.

The use of binary convolution codes over the real numbers eliminates the need for

multiplications in the parity generation FIR filters. On the other hand, the necessity of

storing (mK) values for each parity channel in implementing the FIR filter actions can be

mitigated by forming the (m+1) sums associated with every group of K data values as they

arrive. Consider the operations for encoding the input data stream according to equation

(37), ultimately producing an element of Fs). Similar approaches apply to the FIR filtering

58

needed to apply to the transform coefficients Y(S) yielding parity values in p(s), equation

(35). Suppressing the subscripts indicating vector components for the moment, but

retaining the superscripts indexing the arrival sequence, the arriving data X(sK), X^sK-1\

.... xKs~1)K+1) are used in forming intermediate sums, C , that will be used shortly in

forming parity values.

Ks)=
Kf1X<sK- i)q jK+i ; j = 0,l, . . . ,m. (38)

J i=0

These segment sums will be used in subsequent parity estimates according to the following

correspondence:

The parity estimate at index s, P®, is formed from (m+1) of these intermediate sums.

p(s) = | ̂ (s-r) (39)

r=0

When a new segment of K input values arrives, (m+1) intermediate values are formed

(sand Of is used currently in p(sX However, the remaining m intermediate values, £• , j =

1,2, . . ., m are saved. The array intermediate values needed for each new parity estimate

P® is indicated in Figure 26. They form a triangular array at each moment with the current

parity estimate formed by summing on the diagonal as shown by the arrow in Figure 26.

The number of intermediate values carried forward to be used when the next group of K

values arrives can be computed by the following equation; they are grouped above the

dotted right angle in Figure 26.

m— 1 , .,
^T (m-i) = — ̂ r — - ; Number of Intermediate (40)
i=0 Values Carried Forward

An approximation of the number of operations needed to compute the two comparable sets

of parities, P® and P®, may be developed. For each group of K input data vectors, there

are at most 2N((m+l)(K-l) + m) summations. Assuming that an FFT is used to

59

-(r) DFT

Q.

Sequential Vector DFT Processor
Figure 23

60

Q(Z)
{if'}

Parity Generation for Transform Coefficient i
Figure 24a

X (D DFT

Q.

Y«

1
_^"«" •

rii
O(Z) O(Z)Vi.) \£\)

TTIK IK

T T(s^ Ts^

V.
•

'^k

{y(r) }„-,
------ OCZ1

i
4.K

pi

p(s)

Parity Generation at Transform Output
Figure 24b

Parity at DFT Output
Figure 24

61

•(r) DFT

Q

to- C\(7\ to* IK" tor-

to* C\(7\ to* ift" tor-

1
1
1

-Q(Z) -^-lK-~

(r)

V
f "\
' ("r^ fr^ fr^l •rV^ ' i rV^ ' i rV*- > -\

1Y0 Hxl > {YN-1>

JLJL I
orz) orz) --_--_____ orz)

TT TIK IK IK

pi, PT) pi
V.

L
| COMPARATOR

p(s)E

IK

Protection Through Parity Generation and Regeneration
Figure 25

v-
'

(s-m)

Storage Needed
to Form ^

Sr
£(s-m+l) *\

r
'

(s-D
m

r(s+D
'm

... £(s+D

Memory Requirements for Intermediate Values at Index s
Figure 26

63

implement the DFT operations, giving about Nlog2N additions and multiplications, a

comparison of the parity overhead is possible. Including the 4N differences required in the

totally self-checking comparators, Figure 19, the totals, normalized by factor K because of

the lower computational rate in the parity channels are at most

— [(m +1) (K -1) + m + 2 + Y Iog2 N~| SUMMATIONS

and

jFlog2N MULTIPLICATIONS.

On the other hand, the DFT implementation employs Nlog2N summations and

multiplications. Hence the scaling factor K plays a significant role in lowering the parity

computational overhead on a per-input sample basis. Unfortunately, the storage

requirements are roughly 2N —^-~—- , whereas a standard FFT with interstage storage

uses about Nlog2N locations.

8. Single Parity Channel Real Convolutional Codes

The protection methods presented for filter banks and discrete Fourier transform

realizations employ single parity channel convolutional codes. This subsection

demonstrates that such codes exist in abundance. In particular, an especially useful class of

burst correcting convolutional codes are described in detail to exemplify code construction

techniques. As noted earlier, the generalized concept of distance is interrelated with the

linear independence of columns of the parity-check matrix for these kinds of codes. The

easily proved result, stated formally in [23], guarantees that real codes constructed by

directly mapping prime finite field elements into the integers in a natural way have

minimum distance properties at least equal to the original finite field code.

The real codes are utilized so that a single parity sample is produced for every group

of k data samples (see Figure 14). Thus, any combination of failures in every group of k

64

processed data samples needs to be detectable. The concept of burst errors covers this

error situation very nicely. A burst error is a contiguous inclusive group of possible errors

always starting and ending with an error. This model handles the onset of errors in a group

of processed data without constricting the exact nature of individual intervening errors.

This model contrasts with the situation where errors occur randomly in unspecified

positions throughout a constraint length of processed data. Since the detection procedure

checks parity validity in a continuous block fashion, the onset of a burst of errors up to the

full length of (k+1) samples is detected regardless of the failure mechanism.

An (n,k) convolutional code with constraint block length parameter m is defined by

the encoding matrix G, equation (10) and subsequent equations. However, this matrix is

fully defined by a submatrix containing only the upper left (km x nm) elements because of

the repeating subblock structure. This finite size matrix is denoted by [G]m. The

corresponding parity-check ((n-k)m x nm) submatrix denoted by [H]m obeys the

annihilating requirements first given in equation (20).

The starting position of any burst may be assumed to be on a boundary related to

subblocks of length as dictated by the encoding action. Using the same indexing notation

for the encoded digits of equation (15b), a single burst error E of length b may be

exemplified by

SINGLE BURST OF LENGTH b

E = (0 0 0 e(0) e(1) e^0^ 00 0)E — {U, U, ..., U, C- , C • , ...,C- k , U, U, ..., U, ...)

b = b0n + c0 ; 0 < c 0 < n , b£ 1

There are several classes of well-known burst-correcting convolutional codes such as

the Berlekamp-Preparata-Massey codes and the Iwadare codes, well-documented in

standard textbooks [21, Chapter 14; 22, Chapter 14]. The code design relies on showing

65

that the effects of a burst of length b starting in one code subblock can be distinguished

from another nonoverlapping burst starting elsewhere, provided there is suitable guard

space containing no bursts in between. For fault protection purposes, detection properties

are all that are needed, but these classes are very efficient so they represent good choices.

However, the possibility of single burst correction capabilities may be useful if temporary

errors should need to be removed. Correction procedures are described briefly at the end

of this section.

The design for burst convolutional codes starts with the parity-check matrix [H]m,

expressed here in one of its systematic forms. The parity submatrices Pj, i = 0,1,..., m,

appeared earlier in equations (11).

Jn-
(

(

-k -F

) -I

) -I

> i
0

>T
1

0 C

'n-k -F

0 -I

o -P]

0 0

0
I k

[(n - k)m x nm]
(41)

Each P.T is (n - k) x k

The stacks representing the parity filter weighting function Q(z) are obvious in this format.

As an example of an efficient burst-correcting high rate, k/k+1, convolutional codes,

the Berlekamp-Preparata-Massey class will be designed. This presentation is similar to the

one in [21, Chapter 14], where the parity channel weighting positions are slightly different

from those indicated in equation (10). Since the parity values are generated in parallel, this

is of no consequence. The constraint parameter for this class is m = 2(k+l) and the parity-

check matrix's first 2(k+l) columns are given by a special [2(k+l) x (k+1)] submatrix BQ.

66

B_ =

I.
k+1

0 0 • • • 0
0

0

2(k + l)x(k + l) (42a)

T is a k x k skewed triangular matrix with the only possible nonzero elements below the

skew diagonal, i.e.,

T =

ro o
o o
0 0

q<k-p.

••• 0 a'

0 c b

f e d
k x k (42b)

Elements a, b, c, d, e, ... indicate the possible nonzero positions. How they are

determined will be discussed shortly.

The complete construction of parity-check matrix [H]m proceeds by adding new

groups of n = (k+1) columns by using shifted versions of BQ. Each new group is derived

from the previous (k+1) columns by shifting that submatrix down one row and inserting an

all-zero row at the top. The [H]m that emerges has each group of successive columns

represented by [2(k+l) x (k+1)] submatrix Bi+1 obtained from the preceding Bj by

applying a row shift operator R.

R =

[H]m = (B0

fO Q 0

I

... B2k+1)

0

0

i = 0,1, ...,2k+l

(k + 1) x (k + 1)

ROW SHIFT OPERATOR

(43a)

(43b)

(43c)

67

The unspecified possibly nonzero entries in T, defining BQ, are determined by the

requirements that all (2k+l) submatrices of the form (BQ Bj), i = 1, 2, ..., 2k+l be

nonsingular (a square [2(k+l) x 2(k+l)] matrix). The fact that each Bj is a shifted version

allows these (2k+l) conditions to be ordered so that the individual possibly nonzero terms

in T can be found in succession starting from a, b, c, etc. (See equation (42b).)

There are many choices for the variables in T that satisfy the conditions, but a set that

uses binary values is particularly appealing. There are tables of solutions [21], [22] and an

example for burst correction up to 6 samples (k = 5) is given below. One possible set of

nonzero values in T gives values for a through j with all being 1 except i = 0. The parity

submatrices may be listed and the corresponding parity filter weighting terms are given in

Table 1.

-Pj = 000 00 -Pg = 000 00

-Pi = 10000 -P^ = 00001

-Pj = 01000 -Pg =00011

-Pj = 001 00 -Pj = 001 11

-pj = oooio -P]Q = 01011
-PS = ooooi -p̂ j = 10011

These codes also have a simple correcting procedure. First a syndrome S is formed by

assembling the data and parity samples for a constraint length of m = 2(k+l) blocks of

(k+1); these are denoted by the vector r.

r lxm(k+l) SAMPLES (44)

m(k+l) x m Parity Check Matrix

This 1 x m syndrome vector S may be separated into two (k+1) parts.

S = (£', S") £', £" 1 x (k+1) Components of Syndrome (45)

68

If the burst is confined to the first subblock of length (k+1), these two groups of syndrome

positions must be interrelated, as will be demonstrated next. Let E be a 1 x (k+1) vector

representing a burst in the first (k+1) positions of the constraint length of symbols being
Tconsidered in r. Then the rows of [H] corresponding to these positions in product (44)Jm

are represented by B!. Hence the syndrome for this special case has the form:

S = EBj. (46a)

Also under these same conditions the two parts of S., S.'» S."»take the following form

because of the format of B0, equation (42a).

(46b)

S"= E

'0

0

0

0 ... (T

T (46c)

Note that the burst error E appears intact in the first part, S', which is easily identified in the

syndrome S computed from the assembled positions in r. However, combining equations

(46b) and (46c) shows how the two parts of S. must be related.

fO 0

0
S" = S' T (47)

The code design guarantees that if condition (47) is verified using syndrome J>, the first

part S.' gives the burst values which are confined to the (k+1) positions of the first

subblock. This can be performed for each subblock as it is processed, so the scheme will

catch and correct the onset of errors up to the burst correcting capability of the code, (k+1).

However, extra calculations are required to generate the syndrome from the combined data

and parity positions.

69

Table 1: Q(Z) Tenns for Rate 5/6 FIR Parity Filter

0 1
1 1
0 1

q19-» 0 044-* 0

1 0
0 1
0 1
0 0
1 0
0 0
0 0
0 1
1 q34-» 0

0 0 0
0 0 1
0 0 1_
0 0 0
0 0 1
0 0 0
0 0 1

70

HI. PROTECTING VITERBI TYPE CONVOLUTIONAL DECODERS

1. Role of Convolutional Codes

Each data channel passing through the satellite is encoded with a binary convolutional

code for combating noise introduced by the transmission medium. This noise is generally

modeled as white Gaussian noise (WON) added to the outputs of the demultiplexer. The

demodulator's operation is predicated on this assumption of WON affecting the samples

from the demultiplexer. A simplified overview of one data stream's convolutional code

protection is shown in Figure 27. At the encoder, data are grouped by subblocks of k bits

while the n binary digits actually transmitted are a function of the present k bits and the m

previous subblocks, the memory in the encoder. Thus, the rate of the code is k/n. Figure

28 explicitly shows the bits in the encoder memory that are used in determining each group

of n output bits.

The algebraic description of the encoding operation is almost identical with that

explained in Section II, with the exception that the systematic encoding is not enforced

here. The information bits are not necessarily separately identifiable. This only constrains

the exact forms of the submatrices Gj in equation (10); they are no longer required to have

the structures in equations (11). It is the distance structure of these codes that determines

performance improvements when employed through a WGN environment with the signal-

to-noise ratio at the demultiplexer the determining factor. In particular, if the noise power

level changes temporarily, this performance level changes accordingly, and the output of
*

the decoder can produce undetected errors because the correcting capability of the code has

been exceeded. These errors are determined in a statistical fashion. The assumption

underlying the code design choices directly affect the probability of bit error at the FEC

decoder's output.

The demodulator for a coherent system produces decision variables that represent the

relative confidence that a transmitted symbol over a baud was sent as a particular binary

71

value. The match filter's output is a random variable which may be described in part by a

conditional Gaussian density function [31, Chapter 1]. However, these variables are

generally quantized so that they are adequately represented by a few bits of precision: three

to four bits per sample are an adequate number [31, Section 1.3.5]. Nevertheless, the

decision variables corresponding directly to confidence levels of n code symbols may be

viewed as an n-tuple of real numbers, as indicated in the upper part of Figure 27. Each n

vector p. corresponds to the original n bits in vectors Vj comprising the encoded stream.

The role of the decoder is to decide which related information bits in Uj originally entered

the encoder by only observing the output confidence levels from the demodulator. The

decoding is optimal in some statistical sense, and there is a delay between the original input

bits entering the encoder in the earth resources and the associated decoded bits leaving the

decoder, besides the long propagation delay in the transmission path for satellites.

2. Decoding Convolutional Codes

Optimal decoding involves the maximum a posteriori (MAP) estimation of the

encoder's state sequence given the observation of the demodulator's soft decision outputs

[21-22, 30-32]. This MAP estimator minimizes the uniform cost function wherein all

errors are equally costly [29, Section 2.4]. The first step in establishing the decoding

operations centers on the concept of an encoder state. As indicated in Figure 28, the

encoder determines the n outputs bits, y^, based upon the present k input bits in Uj and the

m groups of previous input bits contained in the k vectors, u.j_j, u.j_2, ..., Hi_m. This

suggests a natural definition of a physical encoder state as determined by the (mk) bits in

this latter group of memory bits. The state vector is denoted by Xj.

Present Present Encoder
Outputs Inputs Memory

72

£
03

e
\3
00

w

O
O

PQ W
P* Q
W O
H

00

03

O• i—i
00

'I—(
O

a
U

ir

S
A

T
E

L
L

CN
00
<U

c
•T—(

PQ
ffip
HO

73

oo
13

U

03
Q

(D
•*->
O

O
U

W)

o
U

o
x

o
4—<

03

C
<D

V)
<D
oo

<D
TJ
O
O

13
G
O

•£J
3i—H
O
>
G
O
O

•-1 : o
00 • ^~^1—» . I-

o : "
•rH "
> r-H

P +

S /*^ \̂
-T"

lafll 7s I

i ̂ e
0 1

O
Os
G

o

o

S
<De
00

>G

0

§
\3
oi
too
C• i—<

T3
O
O

s
o
03
<D

C/3

05

<D
E

oo
Co
U

o

8

oo

C
03

§
o

I
U

X <£
<D O

Bô

74

0

>i

03
oo

ftj

The encoder state space at the index i is labeled X,; it contains 2"^ possible elements.

Two adjacent states Xj and x^j overlap in (m-l)k vectors, including the k present

input bits at index i, Uj. Thus, it is reasonable to define a transition as the couple of

adjacent states.

= MBits (49)

where xi+1 = (Uj Uj_j Uj

Because of the duplication of many k-bit input groups, the encoding operation, denoted

here by function f(), is definable directly on the transition space.

; ENCODING FUNCTION f () (50)

The transition space, labeled Sj, contains 2va+1'k vectors because of the overlapping inputs

contained in the defining couple, equation (49).

The demodulator outputs preserve the integrity of the bit positions as dictated by the

encoder output v^ Furthermore, the statistical properties of the channel may be taken as

memoryless [30-32], implying that the conditional probabilities associated with related n

vectors through the medium may be factored into probability functions describing

individual components.

n-1 .
p(P- /Ii) = IT P(P.- A-) (51)

r=0

The notational conventions established earlier and appearing in Figure 28 are used,

particularly with regard to the components of the subblocks.

The decoder examines the soft decision variables from the demodulator over a long

sequence of samples in order to estimate the state sequence over the comparable space of

state transitions. Generically, a span of L transition vectors in the encoder is considered

75

§M = % ̂ ^_L+1) (52)

The related soft decision variables, after the effects of these transitions are transmitted,

demultiplexed and demodulated are consolidated in a sequence of n-tuples.

Individual n-tuples directly correspond to encoded bits which are in turn related to

individual transitions.

(v<°>, vf), , v^) = y, = f(|.) « p. = (p<°>, p«, , p'"-1') (54)

The memoryless property of equation (51) translates into a factorization of the conditional

probabilities associated with the decision sequence, p(L^, given by the transition sequence,

P(P[L)/^L)) = n'pCP: : A :) (55)
-1 ' -1 j=o -1 J/ ~! J

The MAP estimation goal is to find a good replica of the original transition sequence ^"\

It is assumed that the probability of the initial state XI_L+I' ^(^i-L+l)' *s kn°wn f°r all
*ri \

values in the state space XJ_L+I- The sequence estimate Q' is denoted by £. , with all

of its vector components carrying a circumflex too.

-(L) - -
li (Ii' li-r ' Ii-L+l) MAP ESTIMATES (56)

The minimum uniform error estimates required in MAP dictates a search over a finite,

although large, group of transitions.

P(ljL), PJL)) = max{PO;<L), p[L>)} ; Provided P(Xi.L+1) known . (57)
-i

The state transition sequence depends on the progression of states because of relationships

(49).

~ (xi+l 5i •"' ». *i_LHl) (58)

76

Furthermore, the encoding operation guarantees a Markov property among the progression

of these states:

(59)

The usual simplifications lead to the factorization and separation of probability expressions

where the probability of the initial state P(>^^+1) is assumed known [30-32].

L= max P(xi+1_L). n P(xi+1_j/xi_j) • fl
 p(Pi_rA r» (60)

V|<L> [j=o r=0 ~l -1

The maximization process required to find the MAP sequence is not altered by

mapping the argument of the max{ } operation using any function that is monotonic on the

unit interval. A logarithm function has the additional feature of transforming products into

summations.

ln[p(§|L), p<L>)] = maxj P(xi+1_L) + L£ln[P(xi+l_^/xH)] + f' ln[P(p._r/|._r)] 1 (61)
_1 v. J J

The individual terms identified with the soft decision variables from the demodulator and

the transitions in the encoder may be given symbols called branch metrics, a descriptive

name whose purpose will be developed next.

i_j)] + ln[P(p._ /|-_r)] ; (62)

BRANCH METRIC ASSOCIATED WITH TRANSITION £._.

The maximizing process may be done recursively and incrementally by attaching

values to the finite states in each state space X.j_L+1, Xi_L+2' • • • > ^i' ^i+i underlying all

possible transition sequences. A useful aid in visualizing this sequential maximization

process is the concept of a trellis diagram [30-32]. At each index i, there are 2"* states in

space 2£i> each being assigned an individual node and with each connected by a directed arc

to those states in state space Xj+i that constitute elements in the transition space Sj dictated

by the encoding action. These transitions, labeled generically as ^., connect states x.j and

77

xi+1. A description of the spaces involved in a trellis diagram for transitions between states

at adjacent indices i and i+1 is given in Figure 29a. A complete trellis diagram starting

from states at index (i-L+1) through those at index (i+1) displays all transitions in

sequence ^L'. The Viterbi algorithm relies on the fact that only paths from the beginning

to states at intermediate indices which yield maximum values need to be preserved [30-32].

The cumulative maximum metrics at each intermediate state will be denoted

where the initial values at the states in space Xj+1_L
 are given by the known quantities,

The new path metrics at intermediate states are defined recursively from path metrics at the

state level just preceding using the branch metrics, equation (62):

r(xr+1)= max [r(xr) + *(p (63)

Part of Jf = (xr+1,xr)

The path and branch metrics involved in the Viterbi algorithm are shown in Figure 29b

where the input patterns that govern each transition are indicated also. As new demodulator

soft decision variables are considered, the combination of branches from beginning states at

index (i+l-L) define paths forward through the trellis diagram. At each new state index

and for each state node at this level, a path called the survivor will be selected. The

survivor path at each state is determined by choosing the path that has the highest path

metric impinging on this state. The input k subblock that defines the branch back one stage

level on the maximum path is appended to the previously selected maximum path up to that

stage's path. These paths may have common branches, particularly the further removed

from the present state under consideration. The final MAP decision for the sequence of
a ^ ?(L)decision variables in pr^ is the path q. with the largest path metric among those at state

index (i+1), rmax(xi+1).

78

s
_[Il

»N

•i-H

m
wu
2
00

£g
HH
00£

Q P*
W H
Uoo
D^; ^
go «
SH +
gse^
S
8n^
§

X

o o

Q ^

o o o

o o

o o

o o

00

00

Q
03

W).s

O
<
Q
00

o
catyj ^ L ;_;

8 w> & Si^E °fc
00 CO

§ g
•^H rrl,̂ ĵ . ^^^J
• ̂ H f ^
03 Z

O O o o o

u

a
cd

cd
-4—>

00

O
U

79

00

1
00

CM

CO

_L~r

COŝ +<f J-l

H &

co
CO

+

c3-*—<
CO

O

o o o

<N
80

ao
a
PH

CO

•4_>

CO

o
CO

3
O

£
•g
§
V-l

O
co
CO
<D
O
O

rf\

t-<

CO

3
^
*0
co

S i—i

1 *'

|

•\ ^^

T-H

ei
J
•*
.
•
r,

T"jH

t-H

CH T7<

• rH *^~ »\

§ xT J

S
c3

^^H C \̂

i «^« s
CO

1
H
'Tj^ j

D S»X v^^/ >

^
<Î

O
HH

Q
CO

VH
4JLP|

co
O

•S *c0 aj £
Ps

[-H

O .
CO
O

2 <^>
PQ S

ULPI

CO
O

TiH «rH »-i
t3 ^ XI
n <L> >-'

O
C

PQ

co /-^
O 1"H

•d ii3 Jb1

<D Ai-n

O ON
O <N

fs<§ Jp
co

•I

J

0
CO

ON

t>JO
E

o

VH

I 1w
iz:o

ou

PH

3. Recursive MAP Estimation—The Viterbi Algorithm

Normal communication deals with a continuous stream of data symbols. There is no

finite sequence that returns to a known state periodically. This finite sequence approach

would be a very inefficient coding method, particularly when it is well-known that very

good performance is achieved by accepting common survivor branches several paths back

from the current processing point in the recursive algorithm [30-32]. There is a very high

probability that all paths pass through common branches from three to five constraint

lengths back. The depth at which a final branch decision will be accepted as part of the

optimum sequence estimation is called the truncation depth of the decoder.

In continuous operation, the Viterbi algorithm keeps a record of survivor paths back

A branches for each current state in the trellis diagram. A is the truncation depth parameter.

The decoder survivor selection function is denoted by SUR^Gc^j). The decoder examines

all survivors and presents the optimum decoder output if all survivors have a common

branch back A branches, or it indicates a decoding failure if there are any uncommon

branches. This path selection process is visualized in Figure 30.

Any implementation of the Viterbi algorithm generally has three identifiable

subassemblies that parallel the three aspects of the calculations and selection: branch

calculations, state maximum selections and survivor path records. These three units are

distinguished in Figure 31, which also characterizes their interconnections. The Branch

Metric Unit (BMU) computes values relating the likelihood of a particular branch transition

to the soft decision variables from the decoder as in equation (62). A transition is

determined by present and next state nodes while the demodulator's variables are rough

estimates of the symbols observed over the communication medium. The add-compare-

select unit (ACSU) performs the recursive update according to equation (63) and passes

information about survivor branches into each new state to the survivor memory unit

(SMU). The feedback path around this unit indicates the recursive nature of the algorithm.

81

The SMU keeps current survivor paths for each state back as far as the truncation depth A

and establishes the common branch decoder value for the decoder output

There are many implementation options and details are contained in textbooks [30,31]

and in the literature [33-35], For example, the path metrics must be renormalized

periodically to avoid numerical overflow. However, such details, while important in actual

practice, are easily incorporated in the protection techniques discussed in the next sections.

Many internally computed values are not observable from outside the decoder. The

mapping from soft decision variables to branch metrics is nonlinear and the maximization

decisions have a profound thresholding effect. The fault tolerance design challenges can be

divided into two categories, depending on whether the features to be checked are

observable externally or not

The fundamental definition of the decoder as a MAP sequence estimator implies

certain features of any realization leading naturally to an algorithm-based fault tolerance

approach. On the other hand, parts of a decoder's units have internal characteristics that are

not easily available externally. Furthermore, high-speed block realization of these types of

decoders place special constraints on the internal variables. The next section addresses the

external protection methods. The following section deals with decoders operating in a

block processing fashion and shows how they can be protected primarily with internal

features.

4. External Protection of Decoder Features

The MAP sequence estimation procedure selects one of a finite but large number of

choices in producing the maximum value. The decoding algorithm partitions the finite

dimensional vector space defined by the soft decision variables in p^L^. The region over

which one set of transitions represents the proper decoder's choice generates path metric

values that exceed metrics computed for all other regions given the subspace of soft

82

§
2;
2
H
<

I
o o

o o o o

o o o o

5 +< »-l
> H XI

CO

00
O
toO

to

<

on

ao

HH
C^ <

H VH
co ,X|.

Ifeb

3)
Q

mo

o

83

•o .2
O </)

+

W3
O>

•4^

+2S
o

£5
E

.§*c

QJ
§ 1i 3 I

•̂ OJ fa^^ CQ

"s?"/N

too.a
N

CQ

Q O

00

CO

03

00
00

en

<D
T3
/••s

8
<D

Q
•i— i-e

84

decision variables [29]. There is also a lower bound for each decoder region which is

related to the concept of minimum free distance of the code.

The decoder can select an incorrect set of branches because the channel noise has

increased statistically causing larger excursions in the symbol demodulator's decision

variables so that they fall in different regions with higher probability. While this causes

incorrectly decoded outputs, the decoder is still functioning properly and the resulting

decoded errors are within the theory used to design such decoders. On the other hand,

failures in the hardware implementing the decoding algorithm can produce the same effects.

Any temporary change in the level of channel statistics will affect many adjacent channels

similarly, producing a large number of incorrect decoder outputs with higher probability.

This can be viewed as changing the variance of the variables emanating from the matched

filters in all the demodulators, thus increasing the probability that the resulting soft decision

variables will favor incorrect symbol levels.

The decoder output values may be re-encoded into an allegedly correct code

sequence, corresponding with the information symbols produced by the decoder at

truncation depth A. So if soft decision variables from the demodulator have been saved

back to depth A, the successful common path can be used to recompute the path metric at

this state. This recomputed path metric should be identical with the one originally

computed by the decoder. This checking procedure requires that path metrics for survivor

paths in the decoder must be saved back to the truncation depth A. However, the survivor

paths going back from each state begin to converge to common paths several constraint

lengths back, reducing these backward storage requirements drastically.

One method for protecting the decisions of a Viterbi decoder using the principles just

described is outlined in Figure 32. There are two comparisons of the recomputed path

metric for the selected decoded state at truncation depth A. One is with the value preserved

in the decoder's survivor path memory unit, while the other is against a common lower

bound developed from the statistical properties of the MAP estimation regions. This bound

85

could be made conservatively larger using the concept of the minimum distance of the code

[31,32].

The Viterbi decoder exhibits other useful features at the truncation depth A primarily

concerning the values of other path metrics impinging on the selected state on the common

path. The path metrics on two successively chosen states can be reconstructed using the

soft decision variables stored from the demodulator. Figure 33 depicts two necessary

conditions occurring at these successive choices. It is known that the next choice on an

optimal path is one of the survivor states from the presently chosen one. The path metrics

are easily recomputed for all of these 2k successor states. On the other hand, the selected

next state must have the largest path metric coming from this previously decoded state,

among all the 2k precursor states that impinge upon it. The recomputation of these values

needs (2k-l) path metrics from these precursor states at this previous stage level. These

values would have to be stored by the Viterbi decoder itself.

Another set of protection checks based on the observations above are shown in

Figure 34. However, they represent validation of certain externally observable features,

and there are many path metrics at unselected states that could be in error due to internal

failures. Yet, these calculations provide checks on internally computed values that are

critically important to the chosen path. Some failures in the BMU and ACSU are detected

by these checks and in some instances they can indicate which units have failed. These

protection procedures are very efficient to implement because they use relatively few

calculations and only a small amount of extra storage is needed since this may be

compressed as choices are made. Only precursors to states on common paths in the

decoder's SMU are required. The simple protection schemes outlined here provide good

coverage for maintaining the performance of the decoder, producing decoded output

symbols within the design parameters of the code.

86

5. Internal Protection, High-Speed Implementations

The feedback loop around the decoder implementation shown in Figure 31,

representing the recursive aspect of the Viterbi algorithm, limits the operating speed for this

type of configuration [36]. Very recent work demonstrates new structures for high-speed

implementations that ameliorate this limitation [36,37]. However, these new realizations

introduce additional fault tolerance challenges. This subsection first outlines these new

design approaches and then develops internal protection schemes which, while not as

efficient as the simple external detection methods described earlier, fully protect the new

structures.

There is an algebraic setting for expressing the Viterbi algorithm that leads to a natural

decomposition of the recursive structure. Previous literature in combinatorial optimization

and work on networks and graphs has examined the kind of maximization procedures

encountered in the Viterbi algorithm [38-40]. The useful algebraic structure is a semiring

[41,42] where both the additive and multiplicative semigroups are commutative. The

underlying motivation for the two operators concerns addition and maximization. These

new operators, multiplication, ®, and addition, 0, are defined over the real numbers with

the respective identities also chosen for this set.

ADDITION 0 MULTIPLICATION <8>

IN REAL NUMBERS IN REAL NUMBERS

0 <-» max(,) <8> 4-> + (64)

Identity Identity
U<-»-<» Ef-»0

Based on these definitions, it follows that

U®a = U ; Vae Reals (65)

The usual associative and distributive properties hold even though the existence of inverse

elements is not guaranteed because the underlying structures are only semigroups.

(a 0 b) 0 c = a 0 (b 0 c) ASSOCIATIVE (66a)

87

L
T

 T
O

L
E

R
A

N
C

E
 C

H
E

C
K

D
ec

od
ed

D
ec

is
io

ns

FA
U

1
V

IT
E

R
B

I
1

So
ft

D
ec

is
io

n

a

Is!& so
•8 ^^^

08 8 c
•rj 1> ^H ^

I.S >
43 ""O ?* ro^2 <D »- W
C3 c/3 W t 1

\

B >—
0 P^
0

IT"
L

^•ri., wfrj r j
S^ H^

§§ §oS_^^ l_§gg
!G 8§^
ww SS^^Q SS«g

... A
rt
I §<

i§/^s ^ 03Q c/2

1 I

V
ar

ia
bl

es
 g

.

o•»— i
<D /-^

j T

* j «

5 1 1 1!_, 0 g O

*£ < Ws g so w n
- fe I<D HH Q

1 !.a
_ cc __j C> ^vi

" • •
.« c»

<D W

1 ^^ u
r-i HH•I i
O HH

*" :̂
03 ^c3 O

4^ HH

0
0 oo

M
A

P
E

st
im

at
or

A
 D

E
C

IS
IO

N
 I

N
 A

 D
IF

FE
R

E
N

T
 R

E
G

a
cd
<D

E
3
X

)

Oa
g

G
O

•a
C/3

£
cd•t—»

t/>
g
C/3

IH
XI

C/3

O

£
C/3
PH

I i.
CX5 £<D .a
O ed" t;3 <D

00 O

XI

fi
I

ei
00

.« O-a -^
C c3 CO
O O CO

XI

§)

?? «»ii
O «r-(
. O

^ ^H Q

89

a ® (b © c) = (a ® b) © (a ® c) LEFT DISTRIBUTIVE (66b)

(b 0 c) ® a = (b <8> a) © (c ® a) RIGHT DISTRIBUTIVE (66c)

The recursion in equation (63), the heart of the Viterbi algorithm, may be expressed

in that algebraic setting. The maximization operation © is used to combine the 2k precursor

states to state x^, part of the legitimate choice for transition £ . Denote these precursor

transitions as ^«i)) = (xr+1,xr«J))); j = 0, 1, ..., (2k-l).

r(xr+1) =

© . . . © x - 0 x - (67)

Of course, it is possible to append (or intersperse) the additive identity U a number of times

to this expansion without affecting the value of the new path metric r(xf+1). This equation

is reminiscent of the inner product of one vector containing branch metrics with another

vector of path metrics for all previous states wherein U values are inserted for nonexistent

transitions.

With this motivation in mind, it is possible to define vectors arid matrices containing

semiring elements along with associated operations based on the fundamental semiring

operators <8> and ©. Matrix multiplication ® and matrix addition © are established for
Mtrx Mtrx

appropriately sized rectangular arrays in a similar way to normal matrix operations [39,42].

® MATRIX MULTIPLICATION INVOLVES <8> FOLLOWED BY ©
Mtrx

(68)

© MATRIX ADDITION INVOLVES COMPONENTWISE © OPERATION
Mtrx

A©B = D <=> d.. =a..©b.. ViJ (69)y y y

90

04

Selections

O
U

I
W3 <x>
V« -*^
O 03

*3 U

S -flo ti
u £ ^- o

O H

O
u

S
• v« O

ft

I S

^^r ^^

4>

1«
•4-*

•4^c
en

°^

4— <
03
O

I
C/3

C
O

ffi u

S S
O •—"

C/5
<D
O

.s
•S<u^3
U

a
O)
fejQ

C3
03o

tt
91

Analogous operations exist for vectors since they are rectangular arrays of size 1 in one

dimension. It will be convenient later when discussing parity generation to employ a

componentwise multiplication of vectors. This operation, which has no counterpart in

usual matrix theory, is denoted by <8> .
Compnt

<8> VECTOR COMPONENTWISE MULTIPLICATION
Compnt

X <8> Y = Z <=> z = x ,®y . Vt (70)
Compnt i l l

The Viterbi algorithm may be expressed using vectors and matrices associated with the path

and branch metrics. The basic array dimension is N, the number of states: N = 2" .̂ The

path metrics at states index r, {Xj.} , are contained in a vector Ox,.), while the branch metrics

ascribed to transitions are placed in a square array A(£). Any nonexistent transitions are

given the © identity U in this matrix.

; N x 1 VECTOR OF PATH METRIC VALUES AT STAGE r

; N x N MATRIX OF BRANCH METRIC VALUES AT STAGE r

ELEMENT ij IS X(^i>j)) WHERE |(i'j) = (x^f, x<(j))) ;

i,j = 0, 1, ...,(N-1)

Each matrix A(£) is fairly sparse since there are only 2k nonidentity elements in each row

or column because of finite memory span in the encoder. The Viterbi recursion (63) is

written compactly using the matrix vector notation.

r(xr).
"•• Mtrx

A block processing form for the Viterbi algorithm can be developed because of the

associativity and distributivity of the related semiring operations. As a first step, the next

state path metrics may be expressed using path metrics for states two state indices removed.

92

The generalization to updating the path metrics in groups of R is straightforward

E(xr+R) = RA(£) <8> F(xr) ; UPDATE STATE IN INCREMENTS OF R (73)
~* NItrx

where

RA(E) = A(E) ® A($) ® • ® A(£) (74)R -r — r+K-i — r+K-z Mtrx — r

R BRANCH METRIC UPDATES

The individual branch metrics define each A(£ .) , j = 0, 1, . . ., (R-l), in succession, and

the R product represents the limited path metric maximums, starting from each state at state

index r proceeding through to the states at state index (r+R). The combined matrix R A(£)

is called the R-step branch metric matrix.

The feedback computational requirements are lengthened in this viewpoint, an

appealing feature since it eases the timing constraints imposed by needing the next state

path metrics before the next calculation can begin. This block processing approach is

shown in Figure 35, where a new subunit is inserted to compute the R-step branch metric

matrix. The add-compare-select unit makes decisions for path metrics in steps of R. Since

the survivor memory unit needs path metrics for each step to establish the surviving paths

at each stage, the individual branch metrics are passed directly to it from the branch metric

, unit, a new path in the figure. The intervening path metric vectors are constructed directly

from these and the R-step path metric vectors. This duplication of computational effort has

one major advantage: these calculations are feedforward and can be performed

independently in parallel just as the feedback path now permits R more index epochs

allowing parallel paths. The potentials for high-speed realizations based on these type of

decompositions are examined in a series of articles [34-37,43,44].

93

There are opportunities for checking the internal operations in such high-speed

realizations of the Viterbi algorithm while at the same time there is a greater need to protect

these expanded structures. All the external methods for protection described in earlier

sections are assumed to be applied so that there are adequate checks on the survivor

memory unit Hence, the major uncovered failures concern path metric calculations and the

maximization choices in the add-compare-select unit

It should be noted that several fine points of standard implementations [30,31] have

not been mentioned. However, they do not change the protection levels afforded by the

techniques proposed. One typical example is that of the normalization of path metric

values. As the path metric values develop, they grow larger in magnitude, possibly

overflowing the finite word size available in computer storage elements. Practical

implementations have control facilities for reducing all path metrics when one grows close

to the upper limit for overflow [30,31]. However, any normalization actions can be

signaled to the checking facilities in a feedforward fashion. If this action is erroneous, the

checking system will not be able to produce similar results for comparison purposes,

leading to mismatches.

The calculation of the path metric vectors spaced at intervals of R are checked

efficiently employing a feature of the survivor memory unit. This unit computes

intermediate path metrics independent of the block processing associated with the add-

compare-select unit and its recursion. Only one additional matrix calculation is needed to

determine a new path metric vector at step interval R from the end of the sequence of

intermediate vectors F(XJ), E(*i+i)> • • • > Etei+R-i)-

) (75)

This gives an alternative calculation of F(xi+R) which may be compared with the similar

value emanating from the block processing step around the add-compare-select unit using

R-step branch metric matrix RA(^.) , equation (74). Such an internal check is shown in the

94

+

.£
ULfT

<T

• I-H

£S
u

00
V-(
O

«

<D
Q

<D X

•a
O

•e

'CO |-l

.a 3>

05
00
<U
OI
•a

95

upper right part of Figure 36. Once this protection technique is in place, it is only

necessary to check the block processing updates of the path metric vectors at indices pR,

i.e., {T(xpR)} multiples of index R. The protection of these vectors is addressed next

The path metric vectors contain real number components representing parallel number

channels, and therefore, may be protected efficiently by real convolutional codes, a familiar

approach by now. A rate (k/k+1) binary-based real number code has several appealing

features. The parity values related to each component of the vectors are produced

infrequently, one parity vector for every k R-step path metric vectors. Since only R-step

vectors are considered, each new group of k vectors E(xpR), r(x.(p+1)R),...,

C(^(p+k-l)R) *s processed before a parity vector is calculated. Of course, the error-

detecting capabilities of the code rely on memory in the parity generation process. The

choice of binary-based codes eliminate scaling operations. However, there is a mixing of

operations when protecting path metric vectors which are calculated based on semiring

operations. The parity vectors are computed by summing path metric vectors with indices

determined by the nonzero values in the code's parity filter transfer function Q(Z),

equations (12) and (13). These real number summations correspond with the semiring

multiplicative operation <8>, equation (64). Therefore, the parity vector at index jR is

equivalent to the vector componentwise multiplication of selected vectors as dictated by the

nonzero positions in Q(Z). The path metric vectors at index multiples of R that fall in the

code's encoding memory span and their respective parity weight locations are given below.

96

+

II

KU

w«iS
pa 2

a 8

97

Parity
Filter

Weights State Vectors

q(m+l)k-2

(76)

An algorithm based fault tolerance protection method applied to this situation involves

computing comparable parity vectors in two ways. The first calculations use R-step path

metric vectors directly from the operating Viterbi algorithm as in equation (76). The other

parity vectors are computed in parallel employing branch metric matrices rederived from the

soft decision variables from the demodulator. An additional refinement that leads to

consolidation later may be introduced. The R-step path metric vectors may be computed

using only previous path metric vectors at indices multiples of kR, the code parameter k

times the step size R.

"(k-s)

Mtrx'
t=l

Mtrx
r(x(j_1)kR) (77)

"s = 0, 1 (k-1)

The R-step branch metric matrices are constructed from the individual branch metric

matrices, in turn based directly on the soft decision variables from the demodulator.

(fc-0

Mtrx
r=l

(78)

98

The direct computation of the parity vectors employs R-step branch matrices and R-

step path metrics as determined by the decomposition of the indices of nonzero parity

weighting coefficients {q:} 4-» Q(Z).

Compnt
s=0,lK fn;

t=0,l,K ,(k-l)

such that

<isk+t=1

Mtrx R \2 [(j- l-s)k+p-l] R

•Mv
INDICES s,t
BOTH HERE

IT
(79)

ONLY INDEX s
HERE

(k-t)
However, the inner product of R-step branch matrices, _® pA(£r,. , ., ,,_,),

Mtrx K —[(j-l-s)k+p-lJR

eventually expands out to include all k such R-step matrices which, in turn, allow the next

kR indexed path metric vectors to be computed directly.

k

,)E(X(j-s)kR) - Mtrx
(80)

The two ways to generate parity vectors for protecting R-step path metric vectors are

shown in Figure 37. The subunits are easily related to respective equations (76) - (80).

The upper path to the comparator determines parity vectors in a straightforward way,

equation (76), using path metric vectors from the operating Viterbi realization, Figure 36.

The larger lower portion shows how the similar parity vectors are generated in parallel

starting from soft decision values in {p.}. The ever increasingly larger products are

computed by a running block update section that incorporates those R-step matrices that

correspond to the s and t indices satisfying qsk+t = 1. (See equation (79).) These matrices

are used to form the parity vectors in the componentwise vector product unit, and

simultaneously, the necessary groups of products are sent to the kR-step vector update

unit. This latter subunit generates the kR-step path metric vectors for inclusion in the

running componentwise vector product unit that produces the comparable parity vector.

99

The comparator checks for close agreement between respective components of the two

differently generated parity vectors, allowing proper thresholds for tolerating roundoff

errors as discussed earlier.

SUMMARY

Communications satellites will contain extensive high-speed data processing

capabilities permitting the interconnection of very small aperture terminals (VSAT's). Fault

tolerance design features for protecting the uplink processing resources, demultiplexing,

demodulating and decoding have been presented. Algorithm-based fault tolerance

techniques typify the fundamental protection methodology. However, any additional

protection subassemblies must be compatible with functional units, allowing them to serve

as replacements during any reconfiguration phase. These new generations of satellites

require complete detection and switching of individual data user's channels in space in

order to take advantage of spot beam antenna technology, where the limited orbit power is

focused into narrow spots for downlink transmission. Complete data switching in space

doubles the performance capabilities permitting the use of VSAT's. Individual users

employ frequency division multiplexing (FDM) on the uplinks because of its simplified

synchronization requirements whereas downlink retransmission uses time division

multiplexing since system timing is visible to all VSAT's in the antenna's field of view.

The uplink processing resources offer a significant fault tolerance challenge because

undetected failures can overwhelm the data retransmission system. The FDM channels are

first separated into individually modulated streams by a highly efficient polyphase multirate

demultiplexer when many processing elements are shared including the data passing

through a fast Fourier transform (FFT) section. Symbols are extracted from the

demultiplexed streams by demodulators, matched filters, which contain nonlinear feedback

phase and timing tracking loops. Finally, a forward error-correcting decoder yields the

original data for subsequent switching and retransmission. Severally these data are

100

encoded at the VSAT using a convolutional code and the effects of system noise are

combated by Viterbi decoders in the satellite.

Novel fault-tolerant features have been developed within and around these three

uplink resources. First, the multiple channels from the polyphase multirate demultiplexer

are protected by algorithm-based fault tolerance (ABFT) techniques employing real

convolutional codes to produce low rate parity samples in parallel with the normal

demultiplexer. These parities are generated in a subsystem virtually identical with the

original demultiplexer implementation, except operating at a very much lower rate.

Comparable parity values are easily generated from the output channel streams using a

finite impulse response filter with 0, 1 weightings, also operating at the same slower rate.

101

^-^

>S

u

s1
g (T»O..H

_

v

vl
o

CU

n m

r ™^

g
O^

sou

<L>

3^E

>-§^ .B

00

M

O

o-
aw «o a> T±

ea
-4^

Ofl

T

a ^D '̂
•»H "̂"̂ f^/

|8^r i ^j^ X|^^X

e^w
p S
£•8o

<D

CO

OH

^
00

H
.3

CO
«-H

O

• S - 3 - S - s

r^-
.2
•S

00

s
<U
«
CDa

-

00 > 102 T ^

Comparisons of the two differently generated parity streams in threshold checkers provide

detection capabilities. The parallel parity subassembly may be substituted into the original

demultiplexer when reconfiguration is necessary.

The demodulators are not protected efficiently internally because of the timing and

phase tracking loops. However, since the demodulated outputs contain redundancy

because of the data convolutional code, if the demultiplexer before and the decoder

following these units are protected, any errors appearing at the decoder outputs are due to

either excessive uplink noise or failed demodulators. A "sandwich" protection principle

prevails: If preceding and succeeding units in a data flow are fault-tolerant, any errors

observed in the decoded outputs, not attributable to channel noise, indicate a failed

intermediate unit.

The data convolutional code is decoded by a realization of the Viterbi algorithm

which also contains internal and external redundancy features due to the code structure.

The algorithm performs a maximum a posteriori sequence estimation recursively, selecting

outputs corresponding to the highest values internal to the algorithm, unless the channel

noise has exceeded designed levels of the code. This attribute is checked by reconstructing

the algorithm's internal metrics direcdy from decoded decisions. Furthermore, the chosen

metric should exceed a lower bound, an easily checked condition. The verification of the

maximum path metric selections during algorithm operation is accomplished by

recalculating these branch metrics from the decoded state sequence. The additional

processing resources used for protection are very small .and identical with subassemblies

normally used in a Viterbi decoder, thus providing extra resources for use in

reconfiguration.

103

REFERENCES

[1] M. Bellanger, Digital Processing of Signals: Theory and Practice (2nd Edition).
New York: John Wiley & Sons, 1989.

[2] M. Bellanger and J.L.Daguet, "TDM-FDM Transmultiplexor: Digital Polyphase
and FFT," IEEE Transactions on Communications, Vol. COM-22, pp. 1199-
1205, 1974.

[3] M. Bellanger, G. Bonnert and M. Coudreuse, "Digital Filtering by Polyphase
Network: Application to Sample-Rate Alteration and Filter Banks," IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-24, pp.
109-114, 1976.

[4] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing.
Englewood Cliffs: Prentice-Hall, 1983.

[5] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.
Englewood Cliffs: Prentice-Hall, 1989.

[6] D. K. Pradhan, Editor, Fault-Tolerant Computing Theory and Techniques, Vol.
1., Englewood Cliffs: Prentice-Hall, 1986.

[7] J. Wakerly, Error Detecting Codes, Self-Checking Circuits and Applications.
New York: North-Holland, 1978.

[8] B. W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems.
Reading, MA: Addison-Wesley Publishing Company, 1989.

[9] K.-H. Huang and J. A. Abraham, "Algorithm-Based Fault Tolerance for Matrix
Operations." IEEE Transactions on Computers, Vol. C-33, pp. 518-528, 1984.

[10] J.-Y. Jou and J. A. Abraham, "Fault-Tolerant Matrix Arithmetic and Signal
Processing on Highly Concurrent Computing Structures," Proceedings of the
IEEE (Special Issue on Fault Tolerance in VLSI), Vol. 74, pp. 732-741, 1986.

[11] J. A. Abraham, "Fault Tolerance Techniques for Highly Parallel Signal Processing
Architectures," SPIE Highly Parallel Signal Processing Architectures, Vol. 614,
pp. 49-65, 1986 (K. Bromley, Editor).

[12] C. J. Anfinson and F. T. Luk, "A Linear Algebraic Model of Algorithm-Based
Fault Tolerance," IEEE Transactions on Computers, Vol. C-37, pp. 1599-1604,
1988.

[13] F. T. Luk and H. Park, "An Analysis of Algorithm-Based Fault Tolerance
Techniques," SPIE Advanced Algorithms and Architectures for Signal
Processing, Vol. 696, pp. 222-227, 1986.

[14] W. G. Bliss, "Area-Time Efficient and Fault-Tolerant VLSI Arrays for Digital
Processing," Ph.D. Thesis, Department of Electrical and Computer Engineering,
University of Colorado, 1988.

104

[15] C. J. Anfinson, R. P. Brent and F. T. Luk, "A Theoretical Foundation for the
Weighted Checksum Scheme," SPIE Advanced Algorithms and Architectures for
Signal Processing, Vol. 975, pp. 10-18, 1988.

[16] R. P. Brent, F. T. Luk and C. J. Anfinson, "Choosing Small Weights for Multiple
Error Detection," SPIE High Speed Computing, Vol. 1058, pp. 16-1-16-7, 1989.

[17] F. T. Luk, "Algorithm-Based Fault Tolerance for Parallel Matrix Equation
Solvers," SPIE Real-Time Signal Processing, Vol. 564, pp. 49-53, 1985 (W. J.
Miceli and K. Bromley, Editors).

[18] T. G. Marshall, Jr., "Coding of Real-Number Sequences for Error Correction: A
Digital Signal Processing Problem," IEEE Journal on Selected Areas in
Communications, Vol. SAC-2, pp. 381-392, 1984.

[19] J. K. Wolf, "Redundancy, the Discrete Fourier Transform, and Impulse Noise
Cancellation," IEEE Transactions on Communications, Vol. COM-31, pp. 458-
461, 1983.

[20] T. G. Marshall, Jr., "Real Number Transform and Convolutional Codes,"
Proceedings 24th Midwest Symposium on Circuits and Systems, Albuquerque,
NM, pp. 650-653, June 1981.

[21] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes (Second Edition).
Cambridge, MA: The MIT Press, 1972.

[22] S. Lin and D. J. Costello, Jr., Error Control Coding Fundamentals and
Applications. Englewood Cliffs: Prentice-Hall, 1983.

[23] V. S. S. Nair and J. A. Abraham, "Real Number Codes for Fault-Tolerant Matrix
Operations on Processor Arrays," IEEE Transactions on Computers, Vol. C-39,
pp. 426-435, 1990.

[24] J. Hagenauer, "High Rate Convolutional Codes with Good Distance Profiles,"
IEEE Transactions on Information Theory, Vol. IT-23, pp. 615-618, 1977.

[25] G. R. Redinbo "Real Codes in the Fourier Domain for Fault-Tolerant Signal
Processing." Chapter in Spectral Techniques: Theory and Applications. C.
Springer- Verlag: Berlin, 1991. (Moraga and R. Creutzburg, Editors.)

[26] M. G. Bellanger, G. Bonnerot and M. Coudreuse, "Digital Filtering by Polyphase
Network: Application to Sample-Rate Alteration and Filter Banks," IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-24, pp.
109-114, 1976.

[27] W. D. Ivancic and M. J. Shalkhouser, "Destination Directed Packet Switch
Architecture for a 30/20 GHz FDMA/TDM Geostationary Communication Satellite
Network," NASA Lewis Research Center, Space Electronics Division, Cleveland,
OH, August 1991.

105

[28] TRW, "Multichannel Demultiplexer Demodulator Project, Preliminary Design
Review," TRW, One Space Park, Redondo Beach, CA 90278, November, 1990.

[29] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I, New
York: John Wiley & Sons, 1968.

[30] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding,
New York: McGraw-Hill, 1979.

[31] G. C. Clark, Jr. and J. B. Cain, Error-Correction Coding for Digital
Communications, New York: Plenum Press, 1981.

[32] G. D. Forney, Jr., "The Viterbi Algorithm," Proceedings of the IEEE, Vol. 61,
pp. 268-278, 1973.

[33] C. M. Rader, "Memory Management in a Viterbi Decoder," IEEE Transactions on
Communications, Vol. COM-29, pp. 1399-1401, 1981.

[34] P. G. Gulak and T. Kailath, "Locally Connected VLSI Architectures for the Viterbi
Algorithm," IEEE Journal on Selected Areas in Communications, Vol. 6, pp.
527-537, 1988.

[35] G. Fettweis and H. Meyr, "High-Rate Viterbi Processor: A Systolic Array
Solution," IEEE Journal on Selected Areas in Communications, Vol. 8, pp.
1520-1534, 1990.

[36] G. Fettweis and H. Meyr, "Parallel Viterbi Algorithm Implementation: Breaking
the ACS Bottleneck," IEEE Transactions on Communications, Vol. 37, pp. 785-
790, 1989.

[37] G. Fettweis and H. Meyr, "High-Speed Parallel Viterbi Decoding: Algorithm and
VLSI Architecture," IEEE Communications Magazine, Vol. 29, No. 5, pp. 46-
55, 1991.

[38] B. Carre", Graphs and Networks. Oxford: Clarendon Press, 1979.

[39] U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic
Structures. New York: North-Holland, 1981.

[40] R. A. Cunningham-Green, "Minimax Algebra," In: Lecture Notes in Economic
and Mathematical Systems. Berlin: Springer-Verlag, Vol. 166, pp. 11-23, 1970.

[41] H. J. Zassenhaus, The Theory of Groups (Second Edition). New York: Chelsea
Publishing Company, 1958.

[42] M. Yoeli, "A Note on the Generalization of Boolean Matrix Theory," American
Mathematical Monthly, Vol. 68, pp. 552-557, 1961.

106

[43] G. Fettweis and H. Meyr, "A Modular Variable Speed Viterbi Decoding
Implementation for High Data Rates," In: Signal Processing IV: Theories and
Applications (Proceedings of Fourth European Signal Processing Conference),
Ed. J. L. Lacoume, A. Chehikian, N. Martin and J. Malbos. Amsterdam: North-
Holland, pp. 339-342, 1988.

[44] G. Fettweis and H. Meyr, "A Systolic Array Viterbi Processor for High Data
Rates," In: Systolic Array Processors (International Conference on Systolic
Arrays), Ed. J. McCanny, J. McWhirter and E. Swartzlander, Jr. New York:
Prentice-Hall, pp. 195-204,1989.

[45] L. Thiele and G. Fettweis, "Algorithm Transformations for Unlimited Parallelism,"
Archiv fur Elektronik und Ubertragungstechnik (Electronics and
Communications), Vol. 44, pp. 83-91, 1990.

[46] T.T. Ha, Digital Satellite Communications (Second Edition). New York:
McGraw-Hill, 1990.

[47] W.H. Yim and P.P. Coakley, "Filter Banks with Rational Decimation and
Interpolation Rates," Electronics Letters, Vol. 28, No. 8, pp. 726-727, 1992.

[48] W.H. Yim and P.P. Coakley, "Polyphase Matrix and Lattice Decomposition for
Multirate Filters and Filter Banks," Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, Vol. 4, pp. 625-627,
1992.

[49] P.E. Beckmann and B.R. Musicus, "Fault-Tolerant Round-Robin A/D Converter
System," IEEE Transactions on Circuits and Systems, Vol. 38, pp. 1420-1429,
1991.

107

APPENDIX A

POLYPHASE, MULTIRATE DECOMPOSITIONS OF INFINITE IMPULSE
RESPONSE (IIR) FILTER STRUCTURES

This appendix describes how a channel filter with a rational Z transform transfer

function may be separated to achieve parallel processing employing segmented filters

similar to the popular polyphase multirate filter banks based on finite impulse response

(FIR) filter structures. IIR filters can have very sharp bandlimiting characteristics and are

therefore attractive candidates for baseband prototype filters. The extension of polyphase

multirate filter banks for demultiplexing applications to those with IIR filters was first

suggested by Bellanger [26] and is later described in his text [1]. The baseband transfer

function, H(Z), will be decomposed in the Z transform domaining producing N parallel

filters each operating at a rate reduced by N.

The rational transfer function H(Z) has coefficients related to the different equation

description of the filter; the number of zeros, v is assumed less than the number of poles,

8, to avoid any FIR part in the transfer function.

n O. n 7~^A. J-r» 7~v
v~rsr-*\ •*•*• ^-**ft ** **1 £-* ""• * • • • •"• *™V^^ i <i ^ V ^ A .« \.H(Z) = K —" *—= *—jj- ; b0 = 1, v < 8 (A-la)

* " "~*—-1 t i K ^—O+ +DgZ.

An alternate equivalent view involves pole and zero roots now considering the polynomial

factors expressed in the indeterminant Z, as opposed to Z'1 as above. This requires a

scaling constant, K', containing a factor Zs"v; repeated roots are allowed.

H(Z) = K'-ifi - (A-lb)
Il(Z-pj)
j=i

A key rational function identity, that will be applied to each pole factor is given by

N-l
« X'VT + _\

(A-2a)
T=0

108

which may be written as a rational function too.

(A-2b)

T=0

This identity may be incorporated in the pole representation of H(Z), equation

(A-lb), producing only powers of ZN in the denominator

H(Z) = i=l
8

j=l

5n 'N-l
L i (A-3)

The new denominator, being a function of

polynomial D(ZN) to emphasize this point

terms only, will be identified by the

s c

£>(ZN) = IT(ZN -pf)= A IdjZ^
j=l i=0

(A-4)

; A.constant containing

On the other hand, the numerator of equation (A-3) when expanded, may contain terms of

degree up to [8(N-1) + v], and when scaled by factor Z"^N can be written as a polynomial

in indeterminant Z"1.

N(Z) =
8n

8=1 |

= B c Z - m
m

m=0
(A-5)

This numerator polynomial may be separated into N pieces by taking subsequences of the

coefficients {cm} using the Euclidean algorithm on index variable m.

109

m = TN + s ; T = 0,l,...,a

= -j-j- ,where a = --- , the greatest integer part.

N(Z) = *£ Z~S j S CTN+S Z- = Z-s N (Z) (A-6)
s=0 U=0 J s=0

where the polynomial factors

"(S)(ZN) -
T=0

A parallel decomposition results when equations (A-4) and (A-6) are combined.

Each parallel IIR section, identified as T®(ZN) below, operates at a reduced rate.

N-l f - / N M
H(Z) = K" S Z~sf ^ U = K" I Z~ST(S)(ZN) (A-7a)

s=0 [£>(ZN) J s=0

where for convenience individual IIR sections have the notation

(A-7b)

The implication of this decomposition is outlined in Figure A-l. As before, there is no

savings in total operations, however, each section operates in parallel at a rate reduced by

factor N. The significant savings occur when a uniform filter bank of size N is

implemented. A development similar to the one in the text takes advantage of the shifting

property coming from multiplying by a phasor. In particular, if the input of each filter with

baseband response H(Z) is scaled by a phasor {e N j^~_<x, the Z transform of the overall

filtering and scaling operation is H(Ze N).

_; f Bp
H(Z) -»H(Ze N)

110

When incorporating the shifting due to phasor scaling in decomposition (A-7b), only the

Z~s terms are affected because of the ZN functional dependence in all other parts.

_jJB_p N-l + jli_Ps /x XT

H(Ze N) ^K" £ Z-se N T
(s>(ZN) (A-8)

s=0

The resulting implementation resembles Figure 8, with T(S)(ZN) functions substituted for

the respectively indexed H®(Z) function there.

The effects of introducing N* powers of the poles, appearing in the denominator

polynomials D\Z J is an issue. For poles very close to the unit circle (and inside this

circle for stability reasons), using the Nth power has a positive impact from an

implementation view [Sect. 10.7, 1]. Under these conditions, the effective poles move

further from the unit circle producing a favorable influence on roundoff noise [Sect. 7.5,

1]. In order to see this, consider a pole with root p that is very close to the unit circle,

within e away for example.

p = eje(l-e) e>0, every small. (A-9)

The Nth power of p changes the angle and scales the distance from the circle

The binomial expansion may be applied to the (l-e)N factor which because of the smallness

of e can be accurately approximated as:

(-e)a(N| = l-Ne (A-ll)

W is binomial factor
W

It is instructive to examine the impulse response associated with the decomposition

using the ZN terms. This will demonstrate how the rational function decomposition

produces a time sampling effect. The first step is to locate the roots of D (ZN), which

could number up to &*. Each factor (Z - Pj) may be viewed equivalently as

111

i 1 1

2S *
s £
H i

ij
.7 -

< , N

•+-»

a ^x
HH

j t

P^

J L

r :T :
SI N
^ S — X '

^ ^H H !

L L ,
r—t r— I T— (,-H

_ | _ | |

N N N N

73 £» aTjz;CJ TO S p '

-QJI

S
' i C

6^

Is S
-^ o

£
^^J
•1-1

* « o

- £l s— p S o
1 > 5 ^J w Q

_Lb
jzT" «s
N £

^ 1^ 1
112

00

(f ^N N

4*) -
that the roots are:

, suggesting these roots resemble N* roots of unity. It is easy to show

U = PJWN (A-12)

, N root of unity.

For a fixed index j, the N roots are distinct, as may be demonstrated

%q-^> = P j (W N -WP)*0 (A-13)

q,p = 0,l,2,..

In order to gain insights without cumbersome notation for considering numerous special

cases, assume that all roots are distinct; this restriction implies that the roots are not

separated by an N1*1 root of unity.

j,i, j = 0,1,..., 6 (A-14)

The next step is to perform a partial fraction expansion of H(Z) based on the roots

of D(ZN) in the denominator [5]. From equation (A-3), using the distinct roots given in

equations (12), this expansion involves determining coefficients h: t.

(A-15a)(7\ -\4-) -

h-UJ,t

8

8n
k =
k*

K"//(Z) » N-l[hjit

f Nn(z-p.wN)l ^ ^O '(Z-PJWN)

N(Z)
N-l m

1 m = 0
j and m * t Z = pjWjsj

(A-15b)

The numerator and denominator terms involved in the evaluation of the h; t terms,j>1

equation (A-15b), will be examined separately.

113

AJ..
8n N-ln

k = l m = 0
k * j and m * t

sn
k^jand

8 N-l

m=0

N-l/1, n l1-=lq=(A
pf-i

The last product term in the last line accounts for cases where k = j but m * t and is the

result of a change of variables to T = m -1 with m & t. The only dependency on index t is

the scaling factor Wj^1 in front. On the other hand, substitutions in numerator, employing

its form given in equation (A-6), leads to a constant depending on the indices j and t of

hj 'f

N(Z)
[N-l

N ctN+s Pj
-TN (A-17)

The partial fraction expansion may be written consolidating all terms dependent on

index t into an inner sum.

H(Z) =

N-l

S
s=0

D -(s-D r y cPj ^^ mN4-sJ |_m=0

N-l

n d-w
N)

8n
k=l

- -|N-1

J t=0

N-l .n (i-wSV ^
q=0

W-(s-l)t |̂

l ^ - P j W ^ J

(Pk/Pj))

-

(A-18)

Further grouping of all factors continuing indices s and j into terms labeled T- leads to a

more compact form of the expansion.

114

8 N-l N-l T
H(Z) = S Sr j>s I N (A-19)

j=l s=0 t=

In the sample sequence domain, each transform domain term

w-(s-t)t ^
— — - — corresponds to a causal sequence on index m.

; u^m), unit step function

For fixed indices j and s, combining this inverse transform with the summation over index t

introduces a "sifting" operation, modulo N.

5 KH ** prv.cn-.^wr)—
N-1 rn dt fl n = s MODN
£oWNM=|0 n^ MQDN

The index s in equation (A-19) corresponds to the branch s in Figure A-l. Hence, noting

equation (A- 20), each branch effectively only produces a nonzero sample every Nth

position viewed as sequence with index n. This becomes more visible by expressing the

impulse response corresponding to H(Z) as:

H(Z)~h(n) = . s - > u _ l (n - l) s , n MOD N
j=l S=Q J>S10 s*n MODN

Thus, each branch indexed by s produces samples on every Nth index n, offset by the

respective value of s.

115

APPENDIX B

MODIFYING REAL CONVOLUTIONAL CODES FOR POLE
CANCELLATION IN IIR FILTER STRUCTURES

When a filter transfer function H(Z) contains poles, the cascade of H(Z) with a single parity

weighting function, Q(Z), dictated by a real convolutional code can be simplified by

modifying Q(Z) to cancel denominator factors in H(Z). Then the modified composite parity

generation system becomes an FIR filter, greatly simpler to realize, This appendix presents

the theory of how this can be accomplished by changing the weights represented in Q(Z),

without altering the error-detecting capability of the code. For future reference the rational

transfer function will be given.

D(Z) b 0+b 1Z-+b 2Z-+
(B-i)

Real codes may be scaled by real values in an effort to simplify the cascade of it with

function H(Z). The most important characteristic of the code to be preserved is its

systematic form. Hence, any row operations on its generator matrix must be confined to

simple scaling so that there are no alterations to the data samples in the filtering operation.

The semi-infinite generator matrix, equation (10), may be modified by scaling each

respective row in the group of k rows associated with input data. The scaling values

ak-l» ^k-2'"-» al, °~0 ̂ 11 be applied to form a new equivalent generator matrix G',

formally defined mathematically as:
(so
05

G' = where I, = 0

0
(B-2a)

5 = diagonal (ojt_1,a)t_2,...,ci1,a0) ; kxk BLOCK DIAGONAL (B-2b)

116

The semi-infinite block diagonal matrix £ applies the k sealers to each row of G.

The basic coding effects of the generator matrix are completely described by the

action of the code segment matrix G^ that represents mapping (m + 1) groups of k digits

in a constraint length segment of input data onto n code digits.

fo p
m ^

0

0

0

V7*

M x n

CODE SEGMENT MATRIX (B-3)

The rightmost (n — k) columns of this matrix are the columns of Q, equation (12a) in the

text, affecting the (n - k) parity values. The modified code has a related code segment

matrix G'^m' that contains the effects of sealers cy^-l' a£-2> • • • > °i» °0 as expressed in

matrix S, equation (B-2b).

'0

0

0
1
1
0

"'i.

SPm '

1

1

1

SP,

SP«

M x n

MODIFIED CODE

SEGMENT MATRIX

(B-4)

Hence, the new (n - k) FIR parity channel filters are represented by Q .

117

fSP

Q' =

m

SP2

(B-5a)

Af-1

M x 1 Column Vector.

7=0,1 ,2 M-l

Z TRANSFORM CONVENTION

(B-5b)

7=0

The new parity filters represented by the transfer functions (Q'(Z)} arec c=0

governed by the scaling values in 5. The goal is to simplify the parity generation process.

If each of the new parity channel's transfer function contains D(Z), the denominator of

H(Z), equation (B-l), the poles are effectively removed from the parity generation filters.

Q'c(Z) = D(Z)Rc(Z)

Implies

H(Z)Q'c(Z) = RC(Z)N(Z) ^Sc(Z)

c = 0,l,2 (n-k-1) . (B-6)

The parity channels only need to implement the FIR filter described by the transfer

functions S^Z). In addition, the decimation operation i jfc may be moved back through

the FIR structures greatly reducing the parallel parity generation computational rate [1-4].

The scalings of the data samples as exemplified by the SIk part of G^m' are not actually

performed for the data being processed by the composite filter //(Z). The effects on

118

individual k samples scaled by the respective a,- values may be included in the parity

regeneration filters, the Q' (Z) transfer functions in equation (B-6).
C

The basic theory and fundamental approach for guiding the desired code modification

is described first for a single parity channel filter, a rate (n - l)/n convolutional code. The

extension to similar results for a general k/n rate real convolutional code is then discussed.

The new single parity transfer function Q'(Z) = D(Z) R(Z) where D(Z) is the

denominator for the filter's transfer function and R(Z) is another factor. This may be

restated in a matrix equation where polynomial factor R(Z) is represented by vector R and

matrix B contains the effects of multiplying by the denominator D(Z).

/

1
1 = Q' = BR
1

qi
,q& >

RT = (RM_&_l,R

\ =

f b§ 0 0 0

bg-i bg 1 1

1 b5_! - 0

b2 1 ' b§

bi b2 — bg_!

1 DL — —

0 1 — —

0 0 — —

- - - b2

1 1 ! b,

— — 0 1

0 0 0 0

0 ^
I
0
0

b8-l
I

b3

b2

bi
1

X

Mx(M-6) MATRIX

(B-7a)

(B-7b)

(B-7c)

119

On the other hand, the new desirable filter weights (2'are related to the original weights

through the scaling effects in (k x k) matrix S.

(B-8a)

(B-8b)

'50
OS

0
01*

0
OS

(m+l) Blocks of 5 on diagonal
SisAf x M

The B matrix can be transformed to a particularly simple form by row operations

only. These row operations are represented by matrix F.

(0
TB =

M-S
; 0 5 x (M-6) ZERO MATRIX

FMxM ROW OPERATIONS
(B-9)

Applying this row operation matrix to a combination of equations (B-7) and (B-8) exposes

the unknown factors in vector R on the right, leaving the unknown scaling factors

sandwiched between two known quantities on the left

(0 ^
R (B-10)

A/-S,

However, the top 8 rows on the right produce homogeneous equations involving the

unknown sealers contained in matrix S. The row operations matrix F is partitioned so that

these homogeneous equations may be explicitly written.

r _ (T\ T, 8 x A/TOP ROWS HJ n N
1 t I * \15" 113J
V J L, (M - 8) x MLOWERROWS

TEQ = 0 ; 0 is 8 x 1 ZERO VECTOR (B-l Ib)

The k unknown sealers a^, ok_2, ..., alf a0, repeated along the diagonal of E are

intertwined with the known entities in F and the original parity filter weights in Q. This

equation may be consolidated by defining a new matrix U in terms of these known

120

quantities. The elements of T and the new consolidated matrix U are denoted by t^ and u^

respectively, where both indices start from 0 to be compatible with Z transform definitions.

= 0 ; U kx 6 CONSOLIDATED MATRIX (B-12a)

HOMOGENEOUS CONSTRAINT

where a = (a^, vk_2, alf a0)

M_l 7 = 0, 1, (5-1)

and u.. = 2, 'je^M-l-l ' » s 0, 1, ...,*-! (B-12b)
/=0 ^ such that I = i MOD k

The solutions to homogeneous equation (B-12a) represent constraints among acceptable

choices for the code modification scaling coefficients in vector o. These components in a

must all be nonzero for proper code modification. Assume that 8 < k, i.e., the number of

filter poles is less than the number of information positions in the code. Initially the

consolidated matrix U will be assumed to have maximum row rank of 8. It will be noted

later that if this rank is smaller, a larger number of solutions will be possible. Employing

row permutations and column operations it is possible to bring U to the following form:

,A, A (k-8) MATRIX

F,£/F=| 7 ; E kxk ROW PERMUTATIONS (B-13)
^ 8' F 8x8 COLUMN OPERATIONS

The two operation matrices are nonsingular, and because E represents a permutation, its

transpose is its inverse. The homogeneous equation (B-12a) may be recast where the

inverse permutation of the components of a lead to a vector A,.

aETEUF = Q => A. k = 0 (B-14a)

T
A = oE ; Permutation of unknown sealers. (B-14b)

The components of A, may be separated into independent and dependent parts with equation

(B- 14a) providing a relationship between these parts.

121

(B-15a)

A^ - (B-15b)

The scaling choices in a are only a permutation of the elements of A..

G = X£ (B-15c)

In the parlance of dual spaces, a setting in which homogeneous equation solutions are

often viewed [21, 22], the solution space is the annihilator subspace generated by the (k -

8) rows associated with the matrix A in the Jt-dimensional dual space. The additional

requirement that a contain only nonzero entries is not represented directly. (Neither is the

practical property that the sealers be neither exceptionally large nor small.) Once the matrix

A is determined, acceptable choices are quickly developed. Furthermore it is easy to show

that if the row rank of U is less than 8, say p, the corresponding annihilator space has

increased dimension of k - p. The solution process still proceeds in the same way with a

larger subspace.

Once the scaling choices in a have been made, all required to be nonzero, the matrix

S, equation (B-2b), and its extension E, equation (B-8b), are defined. The new parity

channel filter weights are then fixed by equation (B-8a). The remaining unknown

quantities in vector R, corresponding to the factor polynomial R(Z) in equation (B-6), may

be found from equations (B-10) and (B-l la).

LQ ' = R } L, (M - 8) x M lower rows of T. (B-16)

A simple example employing one parity channel filter associated with a rate -

convolutional code will be outlined. A digital filter design having four poles and zeros with

transfer function H^Z) is selected.

H (z) =_ _ 0.001836(1 +Z-1)4 _

" (1 - 1.49237 Z~ l+ 0.85011 Z~2) (1 - 1.56200 Z'1 + 0.64780 Z~2) (B-17)

122

Its poles lie within the unit circle and are listed as:

Poles
J 0.78101 ±j 0.19457 1
[0.74618 ± j 0.54159 j

A high-rate binary code was selected from a published list of rate (n-l)/n convolutional

codes [24], This rate •= code with constraint parameter m = 3 has constraint length

M = 24. The single parity channel has transfer function Q(Z).

Q(Z) = i+z- l+z-2 + z-3+z^ + z-5 + z-1+z-
+ Z~12 + Z~15 + Z~16 + Z~17 + Z~18 + Z~20

A computer program was used to perform the various manipulations to determine the

annihilator subspace from which all modification choices may be derived. The condensed

matrix U for this case is given:

f-3.691820 13.436189 -17.729437 8.676580^

-3.659183 12.801716 -14.161996 6.328707

-3.485219 10.864257 -12.434132 5.170306

1.031917 -3.377532 3.748684 -0.465057

0.806807 -2.330170 2.232918 -0.726626

-2.147091 6.171027 -7.224210 3.867608.

U = (B-19)

The annihilator subspace is generated by the following rows presented in matrix form.

(" i'*-
f-0.021927 -0.201627 1.000000 0.788640 0.000000 -0.862873^ _ „.; = (B-20)
^ -0.157595 0.152349 0.000000 -0.263590 1.000000 0.260440j

The independent components of a are a3 and Oj and their choices of 1.000000 lead to the

following scaling coefficients:

a = (-0.179522,-0.049279, 1.000000, 0.525091, 1.000000,-0.602433) (B-21)

The modified parity channel filter weights are easily calculated. Note that one of the scaling

values is relatively small. The interactive nature of the program allowed all choices to be

explored. Changing the independent variables Oj = 1.3 and a3 = -1.5 yields scaling

values of a more uniform size.

a = (-0.171984, 0.500494,-1.500000,-1.525574, 1.300000, 1.632882) (B-22)

123

The corresponding components of the other factor/?(Z), written in column vector form for

this choice is given:

0.000000

0.908833

3.787247

6.691858

6.591124

3.254148

-2.343565

-7.077143

-9.836500

-10.685218

-11.125820

-10.805311

-9.068048

.̂051392

3.718312

10.218611

13.079967 (B'23>

11.429131

6.287963

1.632882

R =

The modification procedure can be extended to general rate — convolutional codes.
n

A condensed matrix U^n~k\ k x (n -k)8, can be formed using the original (n - k) parity
«

channel filters and the top 8 rows of the row reduction matrix F, equation (B-20). In turn,

this condensed matrix may be transformed to a convenient form by row permutations and

column operations yielding the solution space for selecting the scaling weights in CT.

A' [k-an-ke5] x (n-k)5 MATRIX
n-lOp, f A\ E/ kxk ROW PERMUTATION MATRIX (B-24)

F' (n - k) 8 x (n - k) 8 COLUMN OPERATION MATRIX

124

The annihilator subspace corresponding to the solution space is generated by the rows of

the following matrix easily constructed from quantities determined above.

This solution space exists if k > (n - k)8.

125

