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Abstract

This paper describes the implementation of opti-
mization techniques based on control theory for air-
foil design. In previous studies [6, 7] it was .shown
that control theory could be used to devise an ef-
fective optimization procedure for two-dimensional

profiles in which the shape is determined by a con-
formal transformation from a unit circle, and the
control is the mapping function. The goal of our
present work is to develop a method which does not
depend on conformal mapping, so that it can be ex-
tended to treat three-dimensional problems. There-
fore, we have developed a method which can address
arbitrary geometric shapes through the use of a fi-
nite volume method to discretize the potential flow
equation. Here the control law serves to provide
computationally inexpensive gradient information to
a standard numerical optimization method. Results
are presented, where both target speed distributions
and minimum drag are used as objective functions.

Nomenclature

Ai, grid transformation coefficients

b design variable

B generic co-state variable

c speed of sound

C bounding surface of flowfield domain on airfoil

Cd coefficient of drag

C( coefficient of lift

Cp coefficient of pressure
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Cp coefficient of pressure for sonic flow

d modulus of conformal mapping transformation

D flowfield domain

/ control law, control parameter

G generic flowfield variable

h Jacobian of generalized transformation

H grid transformation matrix

/ cost function

J grid transformation matrix

m number of fiowfield evaluations per line search

M local Mach number

A/oo Mach number at infinity

n number of design variables

p pressure

P grid perturbation variational

q speed

<jd desired speed

?oo speed at infinity

Q grid perturbation variational

R generic governing equation for flowiield

5 arc length along airfoil surface

S modified boundary condition for ^

li, (-2 exponents on basis functions

u, v Cartesian velocity components

U, V contra-variant velocity components

z, y Cartesian coordinates

X physical position in flowfield

£,77 body fitted coordinates

a angle of attack

<j> velocity potential

7 ratio of specific heats

0 co-state variable for potential flow

p density

9 angle around circle



Formulation of the design
problem as a control problem

Ultimately, the designer seeks to optimize the geo-

metric shape of a configuration taking into account

the trade-offs between aerodynamic performance,

structure weight, and the requirement for internal

volume to contain fuel and payload. The subtlety

and complexity of fluid flow is such that it is un-

likely that repeated trials in an interactive analy-

sis and design procedure can lead to a truly opti-

mum design. Progress toward automatic design has

been restricted by the extreme computing costs that

might be incurred from brute force numerical opti-

mization. However, useful design methods have been

devised for various simplified cases, such as two-
dimensional airfoils in viscous flows [13] and wings

in invicid flows. The computational costs for these

methods result directly from the vast number of flow

solutions that are required to obtain a converged de-

sign.
Alternatively, it has been recognized that the de-

signer generally has an idea of the kind of pres-

sure distribution that will lead to the desired per-

formance. Thus, it is useful to consider the inverse

problem of calculating the shape that will lead to a

given pressure distribution. The method is advan-
tageous, since only one flow solution is required to

obtain the desired design. Unfortunately, a physi-

cally realizable shape may not necessarily exist, un-

less the pressure distribution satisfies certain con-

straints, thus the problem must be very carefully

formulated.
The problem of designing a two-dimensional pro-

file to attain a desired pressure distribution was first

studied by Lighthill, who solved it for the case of in-

compressible flow with a conformal mapping of the

profile to a unit circle [9]. The speed over the profile

is

lution exists for a given speed }„ at infinity only if

where $ is the potential which is known for incom-
pressible flow and d is the modulus of the mapping

function. The surface value of d can be obtained

by setting q = qj, where qj is the desired speed, and

since the mapping function is analytic, it is uniquely

determined by the value of d on the boundary. A so-

and there are additional constraints on q if the pro-
file is required to be closed.

The difficulty that the objective may be unattain-

able can be circumvented by regarding the design

problem as a control problem in which the control
is the shape of the boundary. A variety of alterna-
tive formulations of the design problem can then be

treated systematically within the framework of the

mathematical theory for control of systems governed
by partial differential equations [10]. This approach

to optimal aerodynamic design was introduced by

Jameson [6, 7], who examined the design problem
for compressible flow with shock waves, and devised

adjoint equations to determine the gradient for both
potential flow and also flows governed by the Euler

equations. More recently Ta'asan, Kuruvila, and

Salas, implemented a one shot approach in which

the constraint represented by the flow equations is

only required to be satisfied by the final converged

solution [16]. Pironneau has also studied the use of

control theory for optimum shape design of systems

governed by elliptic equations [12].

Suppose that the boundary is defined by a func-
tion /(x), where x is the position vector, and the

desired objective is measured by a cost function /.

This may, for example, measure the deviation from

a desired surface pressure distribution, but it can

also represent other measures of performance such

as lift and drag. Thus, the problem is recast into a

numerical optimization procedure in which the com-

putationally expensive finite difference gradient of

the objective function with respect to the control or

design variables is replaced by the first variation in

the cost function. Suppose that a variation 5f in

the control produces a variation 67 in the cost.

For flow about an airfoil the aerodynamic proper-

ties which define the cost function are functions of

the flow-field variables (G) and the physical location

Thus,

As pointed out by Baysal and Eleshaky [1] each term

in (1), except for 5G, can be easily obtained. J£



and -jjf can be obtained directly without a flowfield
evaluation since they are partial derivatives. SX can
be determined for each design variable by succesive
grid generation so long as this cost is significantly
less then the cost of the flow solution. SG tradition-
ally requires a flowfield evaluation for each design
variable independantly (brute force gradient meth-
ods). Here we introduce the governing equations of
the flowfield as a constraint in such a way that the
flowfield evaluation is eliminated from the expression
for the gradient. Like the cost function, the govern-
ing equation R is a function of G and X within the
flowfield domain £),

dR
Thus,

KR — ——/if -i_ m^LRY — n o\
dG dX

Next, using a Lagrange Multiplier B we have

51 dl dR dR

Choosing B such that,

gives

dR
(3)

(4)

The advantage is that (4) is independent of 6G,
therefore additional flowfield evaluations are not re-
quired to determine the gradient of / with respect
to any number of design variables. The main cost is
in solving the adjoint equation (3). In general, this
adjoint problem is about as complex as a flow solu-
tion. If the number of design variables is large then
the cost differential between one adjoint solution and
many flowfield evaluations required to determine the
gradient becomes compelling. Instead of intorduc-
ing a Lagrange multiplier, B, one can solve (2) for

6Gas
OR

and insert the result in (1). This is the implicit
gradient approach, which is essentially equivalent to
the control theory approach as has been pointed out
by Shubin and Frank [14, 15].

After making such a modification, the gradient
can be recalculated and the process repeated to fol-
low a path of steepest descent until a minimum is

reached. In order to avoid violating constraints, such
as a minimum acceptable wing thickness, the gradi-
ent may be projected into the allowable subspace
within which the constraints are satisfied. In this
way one can devise procedures which must neces-
sarily converge at least to a local minimum, and
which can be accelerated by the use of more sophis-
ticated descent methods such as conjugate gradient
and quasi-Newton algorithms. There is the possi-
bility of more than one local minimum, but in any
case the method will lead to an improvement over
the original design. Furthermore, unlike the tradi-
tional inverse algorithms, the cost function can be
thought of as any measure of performance provided
the adjoint system can be correctly formulated.

In the present method the steps to obtain (1 - 4)
are applied to the governing differential equations
rather than applying them to the corresponding dis-
crete system. This latter approach is now gaining fa-
vor in the work of Newman and Tayor et al. [11, 8].
The two methods can be very similar, depending
upon the discretization of (3). The current method
has the advantage that the discretization and iter-
ation scheme used to solve the flowfield system can
also be applied directly to the adjoint system (4). In
Jameson's previous application of control theory to
optimal aerodynamic shape design a successful nu-
merical implementation was demonstrated using a
conformal transformation from a unit circle to gen-
erate the profile, so that the mapping function be-
comes the control. In this work, an alternative ap-
proach using a general coordinate transformation is
adopted, and the equations are discretized by a finite
volume method. This is intended to be a precursor
for the three-dimensional problem, where conformal
mapping is less suitable since it could be used only
to provide independent transformations in separate
planes.

Design for potential flow using

finite volume discretization

Consider the case of two-dimensional compressible
inviscid flow. In the absence of shock waves, an ini-
tially irrotational flow will remain irrotational, and
we can assume that the velocity vector q is the gra-
dient of a potential (f>. In the presence of weak shock
waves this remains a fairly good approximation.



Let p, p, c, and M be the pressure, density, speed-
of-sound, and Mach number q/c. The potential flow
equation is then

V- (pVi) = 0,

where the density is given by

. 7- 1 ,,2 /, .
P = 2

(5)

(6)

while

Here Moo is the Mach number in the free stream,
and the equations have been non-dimensionalized so
that p and q have the value unity in the far field.

The potential flow equation can be written

where u and v represent the cartesian velocity com-
ponents. The coordinate transformations may be

defined

u
V

J

[ 0r "

0yU -

dx dx

SL 22
dy dy

' *'

.** .

(8)

and also

dx

3l

= HT

where x and y represent the physical plane, and £
and rj represent the computational plane. By defin-

ing the Jacobian

_ dx dy dx dy
"^~ ~^^^ rt rt f\jt )

we can write

^(phU) + -jj(phV) = 0 inD. (9)

Here, U and V represent the contravariant velocities

and

with

Thus,

n

= An0e-j-A12<p,, (10)

(U)
Consider first the case in which the cost function

is defined such as to achieve a target speed distribu-
tion:

I = \

where qj is the desired speed distribution and C is
the airfoil surface.

The design problem is now treated as a control
problem where the control function is the airfoil
shape, which is to be chosen to minimize / subject to
the constraints defined by the flow equations (5-11).
The first variation of this cost function is

51 =

+ -

since on the wall

- « > < «• <«>

ds

In general we need to find how a modification to
the airfoil geometry causes a variation 50, as well
a variation in the grid parameters 8 AH, 6 AW, 6 AM,
and 8h. Consider

SU = S (Au

6V = 6 (Ai2

5 (A12) 0,

5 (A22) 0n

5p =- ' k/^ + v^U0

It follows that 50 satisfies

L6+ = -4



pVSh

or. defining the right hand side with P and Q,

d

d_

"dj (14)

with

(15)

If ^ is any periodic function vanishing in the far field,
equation (14) can be multiplied by i/> and integrated
overothe domain. After integrating the right hand
side by parts we arrive at

= / ^Q + ̂ -Jo »£ dy

+ I
Jc

Now subtracting (16) from (13),

SI = _ I
Jc

- I i>L8<j>df.di]

+ I
Jc

Then setting up the adjoint system we have

Lt/> = 0 i nD, (17)

with the boundary condition

After appling the second form of Green's theorem to
(17) we get

/ iJ>L6<f>dS=
Jo

[
Jc

I
Jc

Finally the variation can be defined as

'ds

^

51 =

ds

(19)

For this finite volume formulation no general ana-
lytic grid transformation is available. Furthermore,
the variation with respect to the grid quantities is
now spread into 8AH, <5A12, <5A22, and 8h instead of
just the modulus of the transformation as was the
case for conformal mapping. Therefore, we adopted
a more conventional method to construct 81. First,
an independent basis space of perturbation functions
6(t) , i = 1,2, . . . ,n (n = number of design vari-
ables) is chosen that allows for the needed freedom
of the design space. Thus, the shape / now becomes
f(b(i)) with b(i) being the control. Once 81 is ob-
tained, any optimization procedure can be employed
to minimize the cost with respect to the given basis

If the flow is subsonic, this procedure should con-
verge toward the desired speed distribution since
the solution will remain smooth, and no unbounded
derivatives will appear. If, however, the flow is tran-
sonic, one must allow for the appearance of shock
waves in the trial solutions, even if q& is smooth. In
such instances q — qd is not differentiable. This dif-
ficulty can be circumvented by a more sophisticated
choice of the cost function. Consider the choice

where AI and A2 are parameters, and the periodic
function 5(£) satisfies the equation

'. fS (20)

Then,

81 =

= J S (\i6S- \Tjp

Thus, S replaces q — qt in the previous formula and
one modifies the boundary condition (18) to

= -—(S] onC. (21)



For the case where the cost function is drag, (12)
is replaced by,

/ = / P|«. (22)
Jc vt.

The first variation of the cost function is now,

51 =

r
Jc

/."(* * (23)

Thus, (19) becomes

... dody51 = - * K **
^Ln + ^Lp dtdr,, (24)
9£ drj

where the boundary condition on ip, (18) or (20), is

replaced with

= ~ pq- (25)
"s

or

"^ j77 ~ PI a •d£2 OS

The entire procedure can be summarized for the cost
function based on target speed distribution as fol-
lows:

1. Solve the flow equations (5-11) for <j>, u, v, q, p,
U, and V.

2. Smooth the cost function if necessary by (20).

3. Solve the adjoint equation (15 and 17) for ifi
subject to the boundary condition (18) or (21).

4. For each : independently perturb the design
variables, b(i), and calculate the necessary
metric variations (6AH, 6AH, 6An, Sh, and

v3f)) ky recalculating the perturbed grid
with automatic grid generation.

5. Directly evaluate SI by equation (19).

6. Project SI into a feasible direction subject to
any constraints to obtain SI.

1. Feed SI as the gradient with respect to 6 (i) to
a quasi-Newton optimization procedure.

8. Calculate the search direction from the quasi-
Newton algorithm and perform a line search.

9. Return to 1 if not converged.

In practice the method resembles those used by
Hicks et al. [13] with the control theory replacing
the brute force, finite difference based, gradient cal-
culation. The current formulation has an advan-
tage by requiring computational work proportional
to 2+m flow solver evaluations (m being the number
of calculations required per line search) per design
cycle as opposed to 1 -t- m + n. Thus, unlike con-
ventional design optimization programs, the current
method's computational cost does not hinge upon
the number of design variables provided the grid re-
generation is fast and automatic. The method also
has the advantage of being quite general in that ar-
bitrary choices for both the design variables and op-
timization technique are admitted. Finally, unlike
the conformal mapping based method this approach
can be directly extended to three-dimensions.

Implementation of the generalized
potential flow design method

The practical implementation of the generalized po-
tential flow design method, as with the conformal
potential method, relies heavily upon fast accurate
solvers for both the state (<j>) and co-state (ip) fields.
Further, to improve the speed and readability of
the methods, a robust choice of the optimization
algorithm must be made. Finally, appropriate de-
sign variables must be choosen which allow suffi-
cient freedom in realizable designs. In this work,
Jameson's FL042 full potential computer program
and the QNMDIF (by GUI, Murray and Wright [2])
quasi-Newton optimization algorithm are employed.

In FL042 the flow solution is obtained by a rapid
multigrid alternating direction method. The orig-
inal scheme is described in [5]. The scheme uses
artificial dissipative terms to introduce upwind bias-
ing which simulates the rotated difference scheme [4]
while preserving the conservation form. The alter-



nating direction method is a generalization of con-
ventional alternating direction methods in which the
scalar parameters are replaced by upwind difference
operators to produce a scheme which remains stable
as the equations change type from elliptic to hyper-
bolic in accordance with the flow becoming locally
supersonic [5].

QNMDIF is an unconstrained quasi-Newton
optimization algorithm that calculates updates
to a Cholesky factored Hessian matrix by the
DFP (Davidon-Fletcher-Powell) rank-two proce-
dure. Hence, information about the curvature of the
design space feeds in through the successive gradient

calculations.
Since the primary computational costs arise from

not only the flow solution algorithm but also the
adjoint solution algorithm, both need to be compu-
tationally efficient. The adjoint equation has a form
very similar to the flow equation. While it is linear in
its dependent variable, it also changes type from el-
liptic (in subsonic zones of the flow) to hyperbolic (in
supersonic zones of the flow). Thus, it was possible

to adapt exactly the same algorithm to solve both
the adjoint and the flow equations, but with reverse
biasing of the difference operators in the downwind
direction for the adjoint equation, corresponding to
its reversed direction of the zone of dependence. A
multigrid method is used to accelerate the conver-
gence of a generalized alterating direction scheme in
a manner similar to the flow solver.

Design variables are chosen with the following

form, suggested by Hicks and Henne [3]:

b (x) = sin

6 («) = *'• (I-*)«-'",

where t\ and <2 control the center and thickness
of the perturbation and x is the normalized chord

length.
When distributed over the entire chord on both

upper and lower surfaces these analytic perturbation
functions admit a large possible design space. They

have the advantage of being space based functions,
as opposed to frequency based functions, and thus

they allow for local control of the design. They can
be chosen such that symetry, thickness, or volume
can be explicitly constrained. Further, particular
choices of these variables will concentrate the design

effort in regions where refinement is needed, while
leaving the rest of the airfoil section virtually undis-
turbed. The disadvantage of these functions is that
they do not form a complete basis space, nor are
they orthogonal. Thus, they do not garantee that a
solution, for example, of the inverse problem for a
realizable target pressure distribution will necessar-
ily be attained. Here they are employed due to their
ease of use and ability to produce a wide variation
of shapes with a limited number of design variables.

Numerical tests of the generalized
potential flow design method

Several test cases are presented for the generalized
potential flow design algorithm based on the finite
volume scheme. These test cases can be catagorized
into three basic groups. First, are non-lifting cases,
where a symetric target pressure distribution is spec-
ified and the optimization is started from an arbi-
trary symetric initial guess.

The first non-lifting example shown in Figure 1,
illustrates that for subsonic flow, Mm = 0.2 and a =
0°, a given airfoil shape, in this case a NACA 64012,
can be recovered by starting from an arbitrary shape
and specifying the target pressure distribution. A
close look at the final solution shows that a small
discrepency is evident at the trailing edge. This
may be associated with the lack of completness of
our basis space. In the next example, see Figure 2,
the design takes place at MO, = 0.8, a = 0°, where
the initial NACA 0012 airfoil is driven towards the
subsonic pressure distribution of the NACA 64021.
In this case the target pressure distribution exceeds
Cp* for MM = 0.8. Therefore, the pressure distri-
bution represents shock free transonic flow. Since,
in general, such a pressure distribution may not be
realizable, the program approaches the target with
the nearest feasible pressure distribution. An exam-
ination of Figure 2 demonstrates that a very weak
shock in the designed pressure distribution replaces
the smooth transition to subsonic flow seen in the
target distribution. In the final example non-lifting
case of Figure 3, an arbitrary pressure distribution
which does contain a shock wave and is realizable,
is used as the target. Here the computer program

was able to obtain the corresponding airfoil geome-
try along with the correct shock wave location with



a high degree of accuracy, as can be seen both in the
pressure distribution and in the airfoils.

The second group of test cases address the prob-
lem of attaining a desired pressure distribution for
lifting airfoils. The most convienient method of
obtaining such solutions with the present design
method is to determine the lift coefficient associated
with the target pressure distribution, and match this
lift with the initial airfoil. The design progresses
with the flow solver and the adjoint system being
driven by constant circulation instead of fixed an-
gle of attack. The first example using this tech-
nique, shown in Figure 4, drives the NACA 0012
airfoil toward the target pressure distribution for
the NACA 64A410 airfoil at Mm = 0.735, a = 0°,
and C( = 0.75. This case requires a shift in the
shock location and a significant change in the pro-
file shape such that the target pressure distribution
is obtained. The final solution almost exactly recov-
ers the pressure distribution and the airfoil shape.
In the next example, Figure 5, the NACA 0012 air-
foil is again used as the starting condition to obtain
the pressure distribution of the GAW72 airfoil oper-
ating at MOO = 0.7, a = -2°, and Ci = 0.57. This
case is difficult since the target airfoil has a cusped
trailing edge while the initial airfoil has a finite trail-
ing edge. As was seen in some of the non-lifting
cases, there are small discrepencies evident near the
trailing edge that may be due to the incomplete ba-
sis of the chosen design variables. The difference
in the profiles between the final design and actual
GAW72 is partly due to the fact that the GAW72
cordinates place the trailing edge at a non-zero y or-
dinate while the NACA 0012 places the trailing edge
at y = 0. Also, the designed airfoil is subject to an
arbritrary rotation since the angle of attack is free
during optimization. The last test case in which the
design program is run in inverse mode involves driv-
ing the NACA 0012 airfoil at M^ = 0.75 to obtain
the target pressure distribution of the RAE airfoil
at the same Mach number, a = 1.0°, and Ci = 0.80.
Due to the steep favorable pressure grardient at the
leading edge upper surface and the strong shock ex-
hibited (see Figure 6) by the RAE airfoil at these
conditions this case represents quite a difficult test

for the program. In the observed results, discrepen-
cies are evident between the target and the final de-
signed pressure distributions in both the leading and

trailing edge regions. A comparison of the profiles
reveals that the floating a in the design process has
resulted in a rotation between the target and the
final design. Looking at the final angle of attack
of 0.74° which is slightly off the a = 1.0° of the
target reveals that the rotation is compensated in
large degree by the floating a. However, both air-
foils have leading and trailing edges at 0.0; hence,
the difference between the airfoils is not a simple
rotation. This result, combined with an incomplete
basis space, may account for the observed differences
in pressure distributions.

The last group of results introduces drag as the
cost function. Again the design process is carried
out in the fixed lift mode. In Figure 7, the first
drag minimization example, a NACA 0012 is again
used as a starting airfoil. The design takes place at
A/oo = 0.75 and C\ = 0.50 where a strong shock
causes considerable wave drag in the initial airfoil.
To make the problem interesting, the optimization
is carried out such that symetry of the design is
perserved. The final design is a symetric airfoil with
an increased maximum thickness that operates at
the same lift coefficient, but has a reduction in drag
from Cd = 0.0127 to Cd = 0.0016. In the final
test case (see Figure 6) the camber distribution is
optimized insted of thickness distribution. The de-
sign starts from a NACA 64A410 airfoil operating at
MO, = 0.75, and Cj = 0.60 which displays 42 counts
of drag according to the potential flow calculation.
By allowing only changes to the camber distribution,
a final airfoil is produced which maintains C\ — 0.60
but does so with only 4 counts of drag.

Conclusions and recommendations

We have developed a control theory based airfoil
design method for a two-dimensional finite volume
discretization of the potential flow equation. The
method represents an extension of Jameson's pre-
vious work on the design of a confonnally mapped
airfoil. The new method is both efficient and robust,
combining the versatility of numerical optimization
methods with the efficiency of inverse design meth-
ods. The motivating factor behind this work is its
direct extendability to three-dimensions. The ulti-
mate goal of this effort is to create practical aero-
dynamic shape design methods for complete aircraft



' configurations.
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la: Initial Condition
C, = 0.0000, Cd = 0.0001

Ib: 7 Design Iterations
C, = 0.0000, Cj = 0.0000

Figure 1: Subsonic Non-Lifting Design Case, M = 0.2, a = 0°.
—, x Initial Airfoil: NACA 0012.

- - -, + Target CP: NACA 64012, M = 0.2.
Inverse Design

2a: Initial Condition
C, = 0.0000, Cd = 0.0063

2b: 7 Design Iterations
C, = 0.0000, Cd = 0.0003

Figure 2: Transonic Non-Lifting Design Case, M = 0.8 a = 0°.
—, x Initial Airfoil: NACA 0012.

- - -, + Target Cp: NACA 64021, M = 0.2.
Inverse Design
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3a: Initial Condition
Ct = 0.0000, Cd = 0.0063

5 -

3b: 8 Design Iterations
C, = 0.0000, Cd = 0.0015

Figure 3: Transonic Non-Lifting Design Case, M = 0.8, a = 0°.
—, x Initial Airfoil: NACA 0012.

- - -, + Target Cp: NACA 64X, M = 0.8.
Inverse Design

»;

4a: Initial Condition
C, = 0.7315, Cd = 0.0252, a = 2.664°

f f I -

4b: 20 Design Iterations
Ci = 0.7334, Cd = 0.0086, a = 0.032°

Figure 4: Transonic Lifting Design Case, M = 0.735 Fixed Lift.
—, x Initial Airfoil: NACA 0012.

- - -, + Target Cp: NACA 64A410, M = 0.735, C, = 0.73.
Inverse Design
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a- ? -

5a: Initial Condition
C, = 0.5492, Cd = 0.0047, a = 2.709°

5b: 30 Design Iterations
C, = 0.5496, Cd = 0.0045, a = -1.508°

Figure 5: Transonic Lifting Design Case, M = 0.70, Fixed Lift.
—, x Initial Airfoil: NACA 0012.

- - -, + Target Cp: GAW72, M = 0.70.
Inverse Design

a- ? -

6a: Initial Condition
C, = 0.7946, Cd = 0.0358, a = 2.364°

6b: 27 Design Iterations
C, = 0.7970, Cd = 0.0116, a = 0.737°

Figure 6: Transonic Lifting Design Case, M = 0.75 Fixed Lift.
—, x Initial Airfoil: NACA 0012.

, + Target Cp: RAE, M = 0.75.
Inverse Design
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7a: Initial Condition
C, = 0.5037, Cd = 0.0127, a = 1.856'

5- 4 -

7b: 2 Design Iterations
d = 0.5042, Cd = 0.0016, a = 1.990°

Figure 7: Transonic Lifting Design Case, M = 0.75, Fixed Lift.
—, x Initial Airfoil: NACA 0012.

Symetric Drag Minimization.

& 3

I -

8a: Initial Condition
0.5964, Cd = 0.0042, a = -0.464°

8b: 2 Design Iterations
Ci = 0.5966, Cd = 0.0004", a = 0.175°

Figure 8: Transonic Lifting Design Case, M = 0.735 Fixed Lift.
—, x Initial Airfoil: NACA 64A410.
Camber Only Drag Minimization.
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