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Chapter 1 

Summary 

The primary objective of this study was the development of a CFD (Compu
tational Fluid Dynamics) based turbomachinery airfoil analysis and design 
system, controlled by a GUI (Graphical User Interface). The computer codes 
resulting from this effort are referred to as TADS (Turbomachinery Analysis 
and Design System). This document is the Final Report describing the the
oretical basis and analytical results from the TADS system, developed under 
Task 18 of NASA Contract NAS3-25950, ADPAC System Coupling to Blade 
Analysis & Design System GUI. 

TADS couples a throughflow solver (ADPAC) with a quasi-3D blade
to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis 
capability was developed in ADPAC through the addition of blade force and 
blockage terms to the governing equations. A GUI was developed to simplify 
user input and automate the many tasks required to perform turbomachinery 
analysis and design. The coupling of the various programs was done in such 
a way that alternative solvers or grid generators could be easily incorporated 
into the TADS framework. Results of aerodynamic calculations using the 
TADS system are presented for a highly loaded fan, a compressor stator, a 
low speed turbine blade and a transonic turbine vane. 
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Chapter 2 

Introduction 

The aerodynamic design of turbomachinery airfoils is one avenue to improved 
engine performance, efficiency, and weight. Flow over turbomachinery air
foils is 3-dimensional (3-D) and viscous, with complicated :How features aris
ing from shock waves, tip clearances, seal cavities, and cooling passages. 
Airfoil design also involves trade-offs between aerodynamic performance and 
requirements from stress, heat transfer, and other mechanical considerations. 

Traditional airfoil design approximates the 3-D :How by the quasi-3D :How 
in two perpendicular surfaces. One surface (Sl) is in the blade-to-blade plane, 
and models the :How between the airfoils along a streamline in the meridional 
plane. The other surface (S2) is in the meridional plane, and models the 
radial distribution of :How. This is often called the throughflow analysis. The 
shape of the S2 surface is determined from the Sl surface, and the shape of 
the Sl surface is determined from the S2 surface. Convergence of the scheme 
can be achieved by iteration. Frequently, only one iteration is performed: 
the shape of the S2 surface is set from the airfoil shape and deviation and 
loss correlations, and the blade-to-blade conditions are determined from the 
S2 solution. This approach, introduced by Wu, Ref. [21], forms the basis of 
most turbomachinery airfoil design systems in use today. 

In the last few years, advances in CFD have enabled the use of 3-D 
codes to model the :How in turbomachinery blade rows. While modern CFD 
codes are capable of modeling the important features of these complicated 
flows, they are relatively slow and use large amounts of computer memory. 
Advances in computer technology and in solution algorithms are reducing 
the penalties associated with 3-D modeling, but routine design is still not 
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4 Introduction 

practical with these tools. 
The advantage of 3-D modeling is obvious: more of the flow features are 

calculated, instead of being prescribed by correlations. The advantage of 
the traditional approach is that the airfoil can be deSIgned as a stack of 2-D 
sections. There is a large experience base in the design of 2-D sections, and 
the associated design parameters are well understood. While 3-D analysis 
is common, 3-D design is not. Currently, 3-D design is accomplished by 
adjusting 2-D parameters in response to 3-D analysis. 

Recently, there has been considerable interest in updating the traditional 
design methods with modern CFD tools. There is a large gap in capabil
ity between the traditional design system and full 3-D viscous flow analysis. 
Much of this gap can be closed by incorporating the latest CFD techniques 
into the the traditional approach. For instance, the deviation angle in the 
blade-to-blade solution need not be specified if a Navier-Stokes solver is used 
to compute the detailed flow solution for the airfoil section. Similarly, the ef
fects of upstream total temperature and pressure profiles can be captured by 
a CFD based throughflow analysis. The effects of neighboring blade rows can 
also be economically modeled by an axisymmetric representation of the flow. 
The work of Spurr, Ref. [18], and Jennions and Stow, Ref. [9] in the 1980's 
laid the groundwork for a number of recent publications. Yao and Hirsch, 
Ref. [23], developed a throughflow analysis based on CFD techniques. Damle, 
Dang, and Reddy, Ref. [5], developed a throughflow analysis with capability 
for both analysis and design. Sayari and Bolcs, Ref. [15]. investigated the 
effects of different averaging procedures and blockage models in the through
flow analysis. 

These papers on throughflow analysis differ in focus, but follow a com
mon strategy: the presence of the airfoil in the passage is modeled by body 
force terms and a blockage term. As the flow proceeds through the bladed 
region, the body forces model the change in swirl velocity imparted by the 
airfoil. The blockage term models the acceleration and deceleration of the 
flow, caused by the thickness of the airfoil in the passage, and by deviation 
of the flow from the airfoil surface. A new model for body forces and block
age was developed in the ADPAC solver for this purpose. ADPAC is a 3-D 
Euler/Navier-Stokes analysis which is capable of performing axisymmetric 
calculations, Ref. [8]. 

Quasi 3-D blade-to-blade solvers have special features for solving flow 
between airfoils along a meridional streamline. These features include ro-
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tational terms, radius terms, and stream tube thickness terms. The radius 
and stream tube thickness terms differentiate a 2-D solver from a quasi 3-
D solver. These terms allow the blade-to-blade flow to feel the effects of 
the changes in the meridional flow path. The radius terms account for the 
change in blade pitch associated with changes in radius, and the stream tube 
height terms account for the change in the distance between neighboring 
streamlines. RVCQ3D, Ref. [2] and Ref. [3], is a good example of a quasi-3D 
analysis. 

The objective of the present work is to produce a turbomachinery air
foil design and analysis package built on the traditional approach, but us
ing modern analytical techniques. This new Turbomachinery Analysis and 
Design System (TADS) is controlled by a Graphical User Interface (GUI), 
which simplifies user input and automates the many required tasks. TADS 
couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver 
(RVCQ3D) in an interactive package. The coupling is done in such a way 
that alternative solvers or grid generators can be easily incorporated into the 
TADS framework. 
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Chapter 3 

Analysis Coupling 

A coupled throughflow and blade-to-blade analysis requires many steps, re
peated iteratively. Figure 3.1 shows the work flow of a typical analysis. A 
converged analysis is achieved when the meridional streamlines are settled in 
the throughflow analysis and when the mean stream surface is settled in the 
blade-to-blade analysis. Each analysis provides the solution surface for the 
other, and iteration is required to determine the final shapes. In practice, 
only one iteration is required to achieve an acceptable solution in many cases. 

3.1 Solution Procedure 

Since the coupled analysis is an iterative procedure, there is more than one 
possible path. There are two possibilities: start with the blade-to-blade 
analysis, or start with the throughflow analysis. Which one to choose is 
a function of the airfoil shape design program and of user preference. In 
either case, there is some critical information which must be fabricated as an 
initial guess. The throughflow analysis requires a mean stream surface which 
is found from the blade-to-blade solutions, and the blade-to-blade solutions 
are performed along streamlines provided by the throughflow calculation. 
TADS begins with the throughflow analysis, using the mean camber line 
and, optionally, Carter's deviation angle rule to set the mean stream surface. 

The first step in the analysis is to acquire a description of the airfoil 
and of the flow path. Certain aerodynamic data are also required, such 
as the upstream total pressure and temperature, upstream flow angle, and 
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Coupled Throughflow and Blade to Blade Analysis 

START 

STOP 

Blade DesIgn 
(Not yet available) 

Figure 3.1: The coupled throughflow and blade-to-blade analysis is an iter
ative, multi-step process. 
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downstream static pressure. Typically, airfoil design programs specify the 
aerodynamic inflow and outflow quantities at the leading and trailing edges, 
respectively. TADS follows this convention and extrapolates the required 
data to the upstream and downstream grid boundaries when required. Ac
tually, only the throughflow analysis utilizes this aerodynamic data: the 
blade-to-blade analysis takes its aerodynamic input by interpolation from 
the throughflow solution. 

The second step is to generate a grid for the throughflow calculation. This 
requires the flow path and the meridional projection of the airfoil leading and 
trailing edges. The axisymmetric grid generator used in TADS is TIGGC3D, 
which is related to TIGGERC, Ref. [12]. The output is a planar axisymmetric 
grid with grid lines coinciding with the leading and trailing edges. 

The third step is to run the throughflow analysis, ADPAC. ADPAC re
quires as input the grid, an input file containing controlling parameters, a 
boundary condition file, and a body force file. The grid must be modified to 
show the shape of the mean stream surface in the bladed region. ADPAC 
forces the flow to be tangent to the grid in the bladed region, and computes 
the body forces required for flow tangency. A separate program is used to 
apply the mean stream surface shape to the grid from TIGGC3D. Another 
program is used to generate the boundary condition file, and the input file is 
constructed from the GUI. The user sees only the input panel on the GUlj 
the rest is transparent to the user. After the analysis is run, some checking 
is appropriate for convergence and for solution quality. 

The fourth step is to find the meridional streamlines from the throughflow 
solution. Only the number and distribution of the streamlines are required 
as input. The streamlines are found by accumulating flow from hub to tip 
along radial grid lines. The flows are then normalized, and contours are 
traced from inlet to exit at values of constant mass flow. 

The fifth step is to slice the airfoil along the meridional streamlines. This 
step requires no new input. The output of this step are the airfoil sections 
along the meridional streamlines which are to be used in the blade-to-blade 
analysis. 

The sixth step is to generate blade-to-blade grids for each airfoil section. 
The input is controlled by the GUI, and includes parameters for the grid size, 
upstream and downstream extents, number of blades, etc. 

The seventh step is to run the blade-to-blade solver for each airfoil section. 
This step is typically the most time consuming part of the analysis. The 



10 AnalysIs Couplmg 

input is controlled by the GUI, and includes parameters for the number 
of iterations, the size of time step, turbulence model choices, etc. These 
solutions should also be checked for convergence and quality. One good check 
is to sum the mass flows from the blade-to-blade solutions, and compare with 
the output of the throughflow analysis. 

The eighth and final step is to compute the mean streamline between the 
airfoils for each airfoil section. This involves stacking the quasi 3-D solutions 
into an equivalent 3-D file, finding streamlines on the blade-to-blade surfaces, 
and interpolating the shape onto the throughflow grid. This step can be 
omitted if no iteration is to be performed. 

These eight steps can be repeated, iteratively, until the mean stream 
surface used in the throughflow analysis and the radial streamlines used in 
the blade-to-blade analysis are settled. 

3.2 Programming Philosophy and Standards 

The TADS system is an amalgamation of many different programs under a 
single GUI. One of the objectives in the development of TADS was to enable 
new modules to be added to perform any of the tasks without major coding 
effort. That is, additional choices for grid generators or flow solvers could be 
added in a modular fashion. The biggest obstacle to modularity is that each 
program has its own set of standards. Each has Its own input and output 
format, its own coordinate system, its own non-dimensionalization, etc. 

One approach is to make each program a subroutine called by the GUI. 
This way, all data could be passed internally and the system would be tightly 
coupled. There are many disadvantages to this approach, however. First, 
each code would require significant modification to be integrated into the 
GUI. These modifications would need to be remade each time a new release 
of the code was received. Second, if each code is a subroutine of the GUI, 
it is difficult to send calculations to a remote machine to take advantage of 
faster platforms. Finally, each code would no longer work as a stand-alone 
product. The user would be forced to use the GUI to be able to access the 
code. Many of these codes can be used for purposes outside of TADS, and it 
is advantageous to retain access to these unused features. 

A second approach is to leave each code as a stand-alone module, and 
either modify the I/O of the code to conform to some standard, or write 
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conversion modules into the input generators and post-processors for each 
code. Since the grid and solution files are the only link between one program 
and another, it is simpler to modify the I/O than to write special conver
sion routines. TADS follows this approach. The disadvantage to the TADS 
approach is that there are many files created during an analysis, and the 
directory can become cluttered. Although the clutter is unfortunate, these 
files provide a built-in restart capability for the analysis. 

3.2.1 File Naming Convention 

The files created or used by TADS use the casename.extension file name 
convention adopted from ADPAC. The user specifies a case name for the 
problem, and each file needed by TADS assigns a unique extension to it. 
This way, multiple airfoils could be run in the same directory. There is also 
much less confusion about which files were created by TADS. Some pro
grams, notably the grid generators and quasi 3-D solvers expect files with 
specific names for input and output. These files do not follow the convention 
adopted for TADS. This is not a serious problem unless multiple runs of the 
same program must be made in the same directory. Multiple runs would 
require multiple files with the same name, resulting in overwritten data or 
confusion about the contents of files. While it would be possible to write 
scripts to rename or symbolically link files to the expected names, it is clearer 
and simpler to create subdirectories to contain these files. TADS creates a 
subdirectory for each blade-to-blade section to be analyzed. Within the sub
directory, some files do not conform to the naming convention, but confusion 
is avoided because the subdirectories themselves are named descriptively. 

3.2.2 Data Standards 

All files used by TADS are either ASCII text, or binary files written with 
the SDB library. SDB is a library of I/O routines which create platform 
independent binary data. On each platform, an SDB library is available to 
perform the necessary conversions. Using SDB, any platform can read bi
nary data created by any other platform. Supported platforms include Cray, 
Silicon Graphics, IBM RS/6000, Sun, etc. The binary data structure of SDB 
is equivalent to reading and writing binary data in C on a Silicon Graphics 
workstation. SDB is documented in Ref.[20]. All TADS files are platform in-
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dependent, so any program task can be performed on any supported machine 
without loss of generality. 

Most of the binary files used by TADS are geometry or flow data files. 
All geometry or flow data files are written in PLOT3D format using SDB. 
Specifically, all files are 3-D, whole, multiple grid files, in accordance with 
the definitions in Ref. [19], pp 162-165. 

3.2.3 Coordinate Systems 

While PLOT3D files are Cartesian, many of the modules within TADS use 
cylindrical polar coordinates. Most TADS modules read the Cartesian coor
dinates and convert immediately to cylindrical polar for the internal calcu
lations. All output files are converted back to Cartesian for output. 

In the conversion between cylindrical polar and Cartesian coordinates, 
there are two common orientations: place (}=o along the Y axis, or place 
(}=o along the Z axis. The standard orientation in TADS places the R axis 
in cylindrical coordinates along the Z axis in Cartesian coordinates when 
(}=o. This is, in effect, a right handed system in which (X,(},R) corresponds to 
(X,Y,Z). Some TADSmodules, notably TIGGC3Dand ADPAC, operate with 
a left handed coordinate system. Since only two dimensions are used, it is 
relatively unimportant except that the Cartesian orientation of a TIGGC9D 
grid is in violation of the TADS standard. The TIGGC3D mesh is modified 
by the body force calculator, which then sets the (} distribution according to 
the TADS standard. 

The standard coordinate system and orientation make It simple to graph
ically compare the input and output of the various codes. For example, the 
user can examine the difference between the axisymmetrIc average stream 
surface computed from the blade-to-blade solver and the distribution set ac
cording to the mean camber line. It is also possible to verify that the mean 
camber line lies properly in the original airfoil description. Most of the mod
ules would perform equally well with input files in another orientation, but 
verification would be more difficult. The coordinate system standard was 
adopted so that the geometric information used in each step of the analysis 
could be compared graphically without a coordinate transformation. 
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3.2.4 Shared Routines and Data 

There are many routines which are shared between TADS modules. There 
are also many modules which need the same data structures (common blocks, 
etc) as other TADS modules. These routines and include files are saved in 
a separate subdirectory which is accessible by all TADS modules. This was 
done to eliminate duplicate (and possibly conflicting) copies of subroutines 
and include files. The common routines are bound into a library which is 
linked into each of the TADS modules. The include files are made available to 
the TADS modules through symbolic links. Each module has a makefile, to 
build the executable from the source code. Each makefile has a dependencies 
section which causes routines to be recompiled if an include file has been 
updated. The dependencies section insures that all object code will be up 
to date before an executable is made. These practices dramatically reduce 
the possibility of data errors in the codes. Each module uses the same data 
structures, and only one copy of each routine or include file exists. 

3.3 Input Requirements 

The TADS system requires four things as input: a case name, a Cartesian 
description of the airfoil, a description of the meridional flow path, and aero
dynamic data. The airfoil is input as a 3-D surface in two parameters. One 
parameter wraps clockwise around the airfoil to form a closed surface, and 
the other runs with the span of the airfoil. The meridional flow path is de
fined by two lines in the (X, R) plane. The aerodynamic data contains tables 
of information at the leading and trailing edges. These tables consist of radial 
profiles of total temperature and pressure, static pressure, and Mach number 
components. This file also contains the ratio of specific heats, the number of 
blades, and the tangency points of the airfoil. The tangency points are those 
points in the airfoil description which denote where the leading and trailing 
edges join the pressure and suction surfaces. The User's Manual provides 
details on the contents and organization of the input files. All other infor
mation needed by TADS has either a default value which can be reset in an 
input panel, or is generated by another part of the analysis. 
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Chapter 4 

Development of Program 
Modules 

The TADS system is comprised of many independent modules which are 
linked together by the GUI. This chapter details the development of each 
module, in the order they are normally encountered in an airfoil analysis. 
Many of these modules were developed specifically for the TADS system, 
while others were provided. The user is referred to existing documentation 
for the provided programs for additional details. 

4.1 INTIGG 

INTIGG is an input generator for TIGGC3D. INTIGG takes its input from 
the casename. tdsaxi file and from the airfoil description and flow path files. 
The casename. tdsaxi file is created by the GUI, and contains the user choices 
entered in the TIGGC3D input panel. Included in this information are the 
grid size, indices of the leading and trailing edge, grid extents as a fraction 
of the axial chord, and whether or not to apply Carter's deviation angle 
rule. The Carter's rule trigger is ignored by INTIGG but is used by another 
program module. 

INTIGG requires an axisymmetric representation of the airfoil, which 
consists of the shape of the leading and trailing edges in the meridional 
plane. The meridional projection of the leading and trailing edges is com
puted simply by locating the minimum and maximum axial extents of the 
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airfoil description on each defining slice. If the machine is a centrifugal or 
radial device, then the appropriate radius is found instead. 

It should be noted that this procedure may not yield the same result as 
taking the minimum and maximum values from a grid generated on the same 
surface, Figure 4.1. The true extrema could be yet a third set of values. There 
is no requirement that the airfoil definition explicitly define the minimum or 
maximum axial extent of the airfoil, so small errors are introduced by using 
the the largest and smallest values to represent the meridional projection of 
the leading and trailing edges. 

From the standpoint of the throughflow analysis, the error introduced is 
probably inconsequential. However, from a numerical standpoint, a number 
of potential problems arise. In the TADS system, there are many representa
tions of the airfoil: the definition, the airfoil slices on the meridional stream
lines, the blade-to-blade grids, the meridional projection in the throughflow 
grid, etc. Data is often transferred between the various representations by 
interpolation. Because the endpoints of the domain are different in each 
representation, interpolation errors are possible at the endpoints. This is 
of some consequence, since the largest flow gradients are frequently at the 
leading edge. TADS modules minimize the error introduced by interpolating 
along grid lines where possible, and by using a normalized airfoil chord when 
necessary. This essentially says that the leading edge in one representation is 
equal to the leading edge in another representation, regardless of variations 
in the (X, Y, Z) data which describes it. 

INTIGG also requires the intersection points between the leading edge 
and the flow path, and the trailing edge and the flow path. Again, the airfoil 
description does not necessarily conform to the flow path; the description 
may not even span the entire flow path. Consequently, INTIGG finds the 
intersection points between the airfoil and the flow path by locating the 
intersection of splines through the given data, Figure 4.2. The upstream and 
downstream boundary locations of the grid are then computed using the hub 
axial chord, and the user specified fractional extent. 

TIGGC3D treats the throughflow grid as three blocks: upstream of the 
airfoil, within the airfoil row, and downstream of the airfoil. INTIGG defaults 
to equal axial spacing within each of the three blocks. The spanwise spacing 
is determined by a user defined trigger which indicates whether a viscous or 
inviscid throughflow analysis is to be performed. The default is an inviscid 
analysis, and INTIGG prescribes uniform spacing in the spanwise direction. 



Module Development 17 

Representation of Geometric Features on an Airfoil 

Minimum X from Grid 

Minimum X from Definition 

Leading edge 

• Minimum X values from airfoil definition and grid are different 

• Actual leading edge location may not exist in either description 

Figure 4.1: The various interpretations of geometric features must be care
fully accounted for in the program modules. 
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Meridional Representation of Airfoil in Throughflow Grid 

Upstream grid 
boundary 

Flowpath from definition 

Downstream grl 
boundary 

Trailing edge projected from definition 

Detail of intersection 

Intersection point found from Intersection of splines 

Figure 4.2: The grid extents and airfoil projection are computed from the 
definitional surfaces. 
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TIGGC3D writes out the final grid as a single block. 

4.2 TIGGC3D 

TIGGC3Dis a 2-D/3-D grid generator for turbomachinery applications. It is 
a multiple block H-type grid generator with algebraic and some elliptic capa
bilities. TIGGC3D was originally designed to model multi-row core/bypass 
flows, and the input structure reflects this heritage. The TADS system uses 
TIGGC3D, version 5.2, as an 2-D axisymmetric grid generator for a single 
block algebraic grid. This capability is found in a related code TIGGERC, 
and is documented in Ref. [12]. TIGGERC was merged with TIGGC3D by 
NASA to reduce the code maintenance burden and to provide more capabil
ity in a single code. TIGGC3D is the only module aside from the GUI itself 
which uses graphics in the TADS system. TIGGC3D is also the only graphi
cal module in TADS which does not use the Motif library under X-Windows. 

The graphics in TIGGC3Duse the Forms Library, Ref. [14] which, in turn, 
is programmed in Silicon Graphics GL. There also is an X-Windows version 
of the Forms library called XForms, or the Forms Library for X Ref. [22]. A 
TIGGC3D executable can be made with either Forms or XForms, but only 
the Forms executable has the intended look and feel. 

Unfortunately, some of the drawing routines are programmed directly in 
GL. This is a limitation to porting TIGGC3D to other platforms which do 
not support the SGI GL graphics library. IBM offers a GL graphics board on 
its RS6000 systems, but the IBM implementation is not fully compatible with 
the SGI implementation. While the TIGGC3D executable can be made on 
an IBM workstation with a GL board, the graphics do not perform properly 
on the IBM. 

TIGGC3D has a batch mode option, which does not call the graphics 
routines. This option is particularly useful on IBM RS/6000 systems where 
an executable can be made, but the graphics are not functional. 

Other than the graphics related issues discussed above, the TIGGC3D 
code is used as received from NASA Lewis. Other versions of the code can 
be substituted, if necessary, without modification. 
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4.3 ADPAC Input Generation 

The ADPACthroughflow analysis requires four files as input: a grid, a bound
ary condition file, a body force file, and an input file. 

The input file is created by the GUI based on user choices in an input 
panel, or default values. The input file consists of execution control param
eters and reference conditions. All ADPAC input parameters are described 
in Ref. [7]. Using the default parameters normally results in a successful 
throughflow analysis. However, the eFL number, number of time steps, and 
body force under-relaxation parameters are particularly useful for difficult 
cases. 

The grid file is created by TIGGC3D, and must conform to the ADPAC 
naming convention, casename.mesh. If the batch version of TIGGC3D is 
used, the casename is set by default, but in the interactive mode, the user 
must type in the proper name when prompted. 

The program ADPACBC prepares the boundary condition file for AD
PAC. ADPACBCuses the axisymmetric grid, the user-supplied aerodynamic 
data, and the flow path description as input. ADPAC requires reference 
quantities which are used for non-dimensionalization. These are prescribed 
as the hub values of total pressure, total temperature and Mach number 
specified in the aerodynamic data file. For a throughflow calculation of a 
single airfoil, the ADPACboundary conditions are depicted in Figure 4.3. 

The implementation of the 1-D boundary condition extrapolation re
quired careful attention to geometric issues. For example, the user specifies 
radial profiles of total pressure, total temperature and Mach number compo
nents at the leading edge. These profiles are accompanied by the appropriate 
radii. ADPACBC extrapolates the data from the leading edge (as defined by 
the aerodynamic data) to the upstream boundary of the grid. It is not cor
rect to ratio the areas from the grid and the aerodynamic data file to enforce 
the conservation of mass. Because there is no requirement for the user data 
to span the flow path at the leading and trailing edges, the resulting areas 
may not be correct. This problem was solved by computing the normalized 
distribution of the points on the radial profile based on areas. This normal
ized distribution is then applied to the leading edge and the inlet boundary 
as defined by the grid. The ratio of areas is performed using only areas based 
on the grid, ensuring self-consistency. The exit static pressure is computed 
using similar techniques. 



Module Development 21 

Specifica1tion 40f ADPAC Boundary Conditions 

L4~adnng 

Edge 

Solid Surface (Inviscid or Viscous) 

4liliiii-- Trailing 
Edge 

Solid Surface (Inviscid or Viscous) 

Exit 

• User specifies ~Ierodynamic dalta at the leading and trailing edges 
as radial profiles 

• ADPACI3C extrapolates the data to the inlet and exit boundaries 

• Extrapollation is according to 'I-D gas dynamics, conservation 
of mass and angulal' momentum 

Figure 4:,3: The ADPACboundary conditions are set based on user supplied 
aerodynamic quantities and geometric considerations. 
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4.4 BODYF 

BODYF creates the body force file for ADPAC and applies the mean stream 
surface shape to the axisymmetric grid. The input files for BODYF are 
the axisymmetric grid, the aerodynamic data file, the airfoil definition, and 
the mean stream surface file from MEANSL if available. BODYF is unique 
among the TADS program modules in that it expects to both read and write 
the axisymmetric grid file. There are no other program modules which modify 
a file read as input. 

BODYF has two possible modes of operation: one is to create a mean 
stream surface from the mean camber line and possibly Carter's deviation 
angle rule, and the other is to interpolate a mean stream surface determined 
by MEANSL onto the axisymmetric grid. In either case, the blockage is 
computed and written to the body force file. 

The blockage is defined at each grid cell center as the fraction of the total 
pitch open to flow. Except in the bladed region, the blockage is 1.0. In the 
blade region, the blockage is computed from the 0 values on the pressure 
and suction surface at a given X and R. The difference between 0 values 
is subtracted from the pitch, and normalized by the pitch to arrive at the 
blockage value. 

4.4.1 Airfoil Thickness Determination 

The airfoil description and the axisymmetric grid may have slightly different 
locations for the leading and trailing edges. To avoid interpolation difficulties 
between the different airfoil representations, a new procedure was developed. 
Figure 4.4 shows an axisymmetric grid and the blade geometry description 
projected on the axisymmetric plane. Both grids are defined in two pa
rameters, where the indices i and j run in the axial and radial directions 
respectively. To determine the blade thickness values for the axisymmetric 
grid it necessary to interpolate the circumferential coordinate, 0, from blade 
geometry description. 

The fidrst step is to define a reference line which ·oins the I ~ 
trailing e ge points on the j=constant curves in th xisymmetn id. Next, 
the radial differences between the reference line and t e J=constant curve at 
each i station are computed. This radial difference is then splined versus the 
fractional distance from the leading edge (distance=O.O at the leading edge 
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point and 1.0 at the trailing edge point) using a cubic spline. The next step is 
to define the j=constant curves in the axisymmetric grid on the projection of 
the blade geometry in the axisymmetric plane. Again, radial differences are 
computed from the same reference line used in the axisymmetric grid. This 
time though, they are calculated along i=constant curves at each j station. 
At each station, the fractional distance from the leading edge point is used to 
lookup the radial difference from the spline formulated for the axisymmetric 
grid. A difference of the radial differences is then calculated. A parameter is 
formulated along the i=constant curves which is the linear distance between 
ordered points. The blade coordinates (X and 0) are splined versus this 
length parameter and the length parameter is splined versus the difference of 
the radial differences. Where the difference of the radial differences is zero, 
the j=constant curves in axisymmetric grid intersect the blade geometry. 
Using this fact, the length parameter is easily determined from the spline 
of the differences versus the length parameter. The corresponding blade 
coordinates are looked up from their respective splines versus the length 
parameter. The final step is to formulate a spline of 0 versus the fractional 
distance from the leading edge. This spline is then used to interpolate 0 onto 
the axisymmetric grid. For generality, the procedure has also been coded to 
handle radial turbomachinery using a similar technique. 

4.4.2 Mean Stream Surface Determination 

The mean stream surface between airfoils is approximated by the mean cam
ber line, in the absence of a computed stream surface from MEANSL. Origi
nally, the mean camber line was approximated by the average of the 0 values 
on the airfoil surface used for determining blade thickness. An improved 
procedure was later incorporated which computed the mean camber line as 
the locus of the centers of circles which are tangent to both the pressure 
and suction surface. The difference between these descriptions can be signifi
cant, especially near the leading and trailing edges, Figure 4.5. Of particular 
importance is the fact that the mean camber lined defined by a circumfer
ential average passes through the minimum X point, and not through the 
true leading edge. The result is that the leading edge metal angle is dis
torted, especially at high setting angles, leading to incidence problems in the 
throughflow analysis. 

The new procedure finds circles which are tangent to both surfaces at a 
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Figure 4.4: The airfoil thickness is determined by an interpolation procedure 
which handles differences in airfoil descriptions. 
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Figure 4.5: The procedure for determining the airfoil mean camber line 
strongly affects the incidence angle. 
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number of axial locations. The airfoil is considered to be made of three parts: 
the body, and the leading and trailing edges. The beginning and end of the 
body of the airfoil is determined from the tangency points. Only the body 
of the airfoil is used to determine the mean camber line. The leading and 
trailing edge angles are extrapolated from the spline of the mean camber line 
through the body of the airfoil. Using this procedure, a good representation 
of the mean camber line can be found, even for airfoils with non-circular 
leading and trailing edges. 

4.4.3 Carter's Rule 

Carter's deviation angle rule is often used in the design of compressor blades 
to account for the deviation of the mean stream surface from the mean cam
ber line. Accounting for deviation with Carter's rule leads to more realistic 
throughflow solutions. 

Carter's deviation-angle rule is a correlation which relates the deviation 
angle to the airfoil camber, solidity, the blade-chord angle (the angle between 
the blade chord line and the axial direction), and an experimentally derived 
factor. The details of Carter's rule are presented in Ref. [10]. 

Carter's rule specifies the deviation at the trailing edge, but does not 
specify the growth of the deviation along the airfoil chord. In the current 
work, the distribution is patterned after the method used in other design 
systems. Namely, the growth of deviation is specified as a parabola start
ing value at the trailing edge. This distribution is smooth and grows most 
strongly at the trailing edge, as is observed in experimental airfoil data. 

4.4.4 Mean Stream Surface from MEANSL 

The mean stream surface description found by MEANSL is defined only along 
the meridional streamlines from the blade-to-blade analyses. This description 
must be interpolated onto the full axisymmetric grid, which normally has 
more points in the radial direction. The interpolation is one-dimensional 
because the points in the MEANSL description of the mean stream surface are 
aligned with the radial grid lines in the axisymmetric grid. The interpolation 
assumes that the hub and shroud adhere to the same flow path. A linear 
interpolation is performed along the radial grid lines, using radius as the 
common parameter between the two representations. 
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4.5 ADPAC 

ADPAC is a general multi-block 3-D Euler/Navier-Stokes solver capable of 
operating in either Cartesian or cylindrical-polar coordinates, Ref. [8]. AD
PAC employs an explicit four stage Runge-Kutta algorithm to solve the fi
nite volume representation of the governing equations, and uses a variety 
of convergence acceleration techniques, such as multigrid and implicit resid
ual smoothing. While the existing ADPAC code could solve axisymmetric 
problems, it did not incorporate the blockage or body forces required for a 
throughflow analysis. 

4.5.1 Body Force Implementation 

At this point, some explanation of the various approaches to body forces is in 
order. The idea of using body force terms to simulate the presence of bodies 
in a flowfield is not new, nor is it unique to TADS. Recently, two main types 
of body force models have been employed in CFD codes. 

A review of the literature shows that most previous authors add a force 
term to each momentum equation to account for the force exerted by the 
airfoil on the fluid. Frequently, these force terms are computed as pressure 
differences between the pressure and suction sides of an airfoil projected onto 
an element of area in each coordinate direction. Additionally, a blockage term 
is computed based on geometric quantities and is applied to the continuity 
equation. Any physical force could be modeled by these body force terms, 
simply by computing the magnitude and direction of the force. 

In 1985, J. Adamczyk of NASA Lewis proposed a method of modeling 
the presence of neighboring blade rows in turbomachinery calculations with 
what he termed an "average-passage" representation, Ref [1]. In the Adam
czyk scheme, the body force terms have a less physical interpretation. They 
are computed as the difference between an axisymmetric solution, and the 
axisymmetric average of a 3-D solution. A source term is computed for each 
conserved quantity and for pressure. A blockage term is also computed to 
account for the presence of the body in the flow. The source terms are not 
computed as forces acting on the faces of the control volume, but are accu
mulated as flux differences at each grid cell. In this procedure, the source 
terms automatically account for deviation and other phenomena which are 
not direct results of the pressure difference across the airfoil. However, this 
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procedure requires a full 3-D solution to compute the body force terms. 
The present work follows a similar project in which researchers at NASA 

Lewis employed VIADAC as a throughflow solver, Ref. [11]. VIADAC and 
VSTAGE are two codes which use the Adamczyk body force approach. In 
VIADAC, the body forces are computed from stacked blade-to-blade solu
tions by the accumulation procedure outlined above. The original intent 
was to employ Adamczyk style body forces in an ADPAC-based throughflow 
analysis. While ADPAC does not have the full average passage algorithm, 
the coding already existed to create and use Adamczyk-style body force files. 
It was hoped that simply verifying the existing code would provide a suitable 
throughflow analysis. After further study, it was concluded that the original 
blockage/body force term implementation in the ADPAC code required some 
reformulation in order to be consistent with the design system strategy. 

The original blockage/body force implementation in the ADPAC code 
was based on the scheme developed for the VSTAGE and VIADAC codes. 
This approach results in a coupled blockage/body force representation which 
did not permit accurate solutions for cases involving blockage alone without a 
pnon knowledge of the flowfield. Consequently, it was not possible to impose 
a geometric blockage (such as the global effects on channel flow due to an 
internal strut) in the axisymmetric flow unless the resulting axisymmetric 
flow is already known. This is contrary to the design system philosophy, and 
resulted in the reformulation of the blockage representation. 

A simple 2-D derivation of the revised ADPAC blockage term implemen
tation is given below. Starting with the continuity equation in Cartesian 
coordinates modified for blockage represented by the term A: 

(4.1) 

Next, taking the x momentum equation in nonconservation form we have: 

au au ap au 
p- + pu- + - + pv- = 0 at ax ax ay (4.2) 

If we multiply the continuity equation by u, and add to A times the x mo
mentum equation, collect terms, and recast in conservation form, the result is 
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apu).. a(pU2 + p).. apuv).. a).. 
--at + ax + ay = p ax 

Similarly, the y momentum equation becomes 

apv).. apuv).. a(pv2 + p).. a).. 
--at + ax + ay = p ay 

Finally, the energy equation is 

ape).. au(pe + p).. av(pe + p) .. _ 0 
81+ ax + ay -

29 

(4.3) 

(4.4) 

(4.5) 

It is clear that the addition of the blockage term results in a source term 
which must be added to the solution scheme in order to properly account for 
the effects of geometric blockage. 

The reformulated analysis utilizes a three-dimensional blade definition in 
the form of a mean camber surface (which must be accurately represented in 
the two-dimensional mesh) and a specified blockage (thickness) distribution 
over the bladed region. The body force utilized in the circumferential mo
mentum equation is updated iteratively during the ADPAC time marching 
solution using a simple under relaxation procedure such that, at convergence, 
the resulting predicted relative flow stream surface is tangent to the local 
blade camber surface over the entire blade. The corresponding axial and ra
dial momentum equation body force terms and energy equation source term 
are also updated consistently based on the components of the local blade 
surface unit normal vector. This implies that the body forces thus represent 
the idealized pressure forces imparted by the airfoil on the mean flow. The 
overall procedure is based on the analytical technique described by Damle, 
Dang, and Reddy [5]. It is relatively easy to upgrade the analysis to include 
more sophisticated body force models including the effects of local loss [5]. 

The ADPAC multigrid and grid sequencing capabilities were modified 
to incorporate the new throughflow analysis technique, providing a nearly 
threefold improvement in the convergence rate. 

The final ADPAC code retains the Adamczyk capability, but also offers 
the reformulated approach. Both approaches use the same body force file 
format, but different meaning is attached to the variables. In addition to the 
source terms associated with the momentum and energy terms, there is also a 
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pressure "body force" term in the Adamczyk approach which is unnecessary 
in the reformulated approach. The ADPACUser's Manual, Ref. [7], explains 
the operation of these features. 

4.5.2 Verification of Blockage Model 

A sample application representing 2-D inviscid planar flow in a channel is 
presented in Figure 4.6. The channel has a linear variation in cross sectional 
area due to converging sidewalls. It follows that the blockage term ..\ should 
also have a linear variation from inlet to exit in the duct. In this example, 
..\ was set to 1.0 at the duct inlet and 0.7 at the duct exit. Since the flow 
is inviscid and 2-D, the solution is essentially I-D and can be determined 
based on area change and inlet Mach number alone. Due to the coupling of 
blockage and body forces in the VSTAGE and VIADAC codes, this type of 
flow cannot be accurately represented by specifying the geometric blockage 
alone. However, the predicted Mach number contours presented in Figure 4.7 
based on the revised ADPACformulation accurately reproduce the effects of 
the linear area variation with blockage specification only. 

4.5.3 Verification of Body Force Formulation 

Two test cases have been run to verify the body force terms: an annular 
twisting channel (S-duct) and NASA Rotor 67. 

The S-duct, Figure 4.8, was chosen for its simplicity. It is an annular 
sector which has been twisted into a partial helix. A 49x9x9 grid was gener
ated for an Euler calculation. The duct has constant width, so no blockage 
is encountered. The solution was run as a static geometry (no rotation), 
and the pressure body force term was omitted from the calculation. The 
body forces were computed using a full 3-D solution from the ADPAC-APES 
(Average Passage) code, and used in an axisymmetric run of ADPAC. The 
ADPAC solution converged easily. Figure 4.9 shows a comparison of the re
sulting ADPAC solution and the axisymmetric average of the 3-D solution. 
Clearly, the body force terms are working as hoped. 

NASA Rotor 67 provides a much more meaningful and difficult test of 
the body force formulation. An existing three-dimensional mesh was selected 
and altered to describe the airfoil in the mean stream surface/blockage for
mat defined above. Computational results were collected from a 3-D solution 
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Figure 4.6: Simple channel flow with linear variation in cross sectional area 
results in a linear variation of the blockage term A. 
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Figure 4.7: Predicted Mach number contours for simple channel flow with 
linear area variation using revised ADPAC formulation. 

based on the original (3-D) mesh, an axisymmetric solution based on the ap
parent body forces computed from the 3-D solution, and the new throughflow 
analysis based on the mean camber surface mesh. It should be noted that 
the 3-D solution and the axisymmetric analysis with body forces computed 
from the 3-D solution result in, by default, identical axisymmetric flowfield 
representations, Therefore, only the axisymmetric solution is presented. 

The axisymmetric representation of the mesh used for this comparison 
is given in Figure 4.10. For the axisymmetric solution utilizing body forces 
derived from the 3-D solution, the mesh can have any variation in the circum
ferential direction as only the meridional portion of the grid is used during 
the numerical solution. However, for the new throughflow analysis capabil
ity, the mesh must conform to the mean blade surface in the vicinity of the 
embedded blade row. The mesh surface is used to approximate the mean 
blade surface to properly update the body forces for the momentum and 
energy equations. In this initial set of calculations, the body forces for the 
new throughflow analysis were updated using an ad hoc under relaxation 
procedure defined by: 

I 
I 
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S-Ouct Geometry 

S-Ouct Is an annular channel with twisting. The Inlet and exit are 
parallel to the machine axis so no body forces are present near the 
boundaries. The width Is constant, so there Is no blockage. 
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Figure 4.8: S-Duct geometry is a partial helix constructed from an annular 
sector. 
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Body Force Implementation in ADPAC, S-Duct 
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Figure 4.9: The axisymmetric solution with body forces and the axisymmet
ric average of the full 3-D solution are in good agreement. 



Figure 4.10: Axisymmetric Mesh System for NASA Rotor 67 Test Case. 

(4.6) 

where Bo and B;+1 represent the previous and updated circumferential mo
mentum body forces, respectively, Vob1ade is the apparent circumferential ve
locity required for How tangency at the mean blade surface, Voactual is the 
actual circumferential velocity from the How solution, and q is the under 
relaxation coefficIent (0.5, in this case) used to update the body force. The 
body forces were updated at every iteration of the time marching solution. 

The convergence history for the new throughHow analysis is given in Fig
ure 4.11. Solution convergence was naturally slowed by the constant manip
ulation of the body force terms, but convergence is ultimately achieved after 
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approximately 400 iterations. 
Figure 4.12 shows the predicted absolute total pressure contours using 

body forces from three different sources. The top plot shows the contours 
with body forces derived from the 3-D solution imposed on the axisymmetric 
solution. The middle plot shows the corresponding contours from the new 
throughflow analysis using the iterative body force calculation. The mean 
stream surface to which the flow was forced to be tangent was derived from 
the 3-D solution. Finally, the bottom plot shows the total pressure contours 
from the new throughflow analysis with the mean stream surface derived 
from the mean camber line of the airfoil and Carter's deviation angle rule. 
In general, the predictions compare well qualitatively, but show some discrep
ancy quantitatively. The top plot shows a smeared shock near the trailing 
edge because this solution is equivalent to an axisymmetric average of a 3-D 
solution. Since the shock is not aligned with the circumferential direction, 
the average tends to diffuse the shock. The center and bottom plots show a 
sharp shock at the trailing edge because the shock is axisymmetric, a con
sequence of the axisymmetric analysis. The bottom plot also shows a total 
pressure gradient at the leading edge. This indicates that the mean camber 
line is not actually the mean stream surface. Between the various solutions, 
the mass flow agrees within 2% of the axisymmetric average from the 3-D 
solution. 

4.6 Streamline Finder and Airfoil Slicer 

The blade-to-blade analysis is performed along streamlines in the meridional 
plane as found by the throughflow analysis. This requires that the meridional 
streamlines be located in the throughflow solution, and that the airfoil be 
sliced along these streamlines. TADS uses two separate programs to accom
plish this purpose: RADSL and SLICER. 

4.6.1 RADSL 

RADSL locates the streamlines in the throughflow solution according to a 
distribution specified by the user in a CUI input panel. The user specified 
distribution is a normalized distribution which is applied at either the leading 
or trailing edge. The user selects whether the distribution is applied based 
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Figure 4.11: Convergence history for ADPAC based throughflow analysis 
applied to NASA Rotor 67. 
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NASA Rotor 67 Axisymmetric Throughflow Analysis 
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on percent mass, percent span or percent area. The user selects the number 
of streamlines and the percentages where streamlines will be located. 

For example, if five equally spaced streamlines are to be placed at the 
leading edge on a percent area basis, the procedure is as follows. The nor
malized mass flow is computed from hub to shroud at each axial grid station 
in the throughflow solution. At the leading edge, the values of mass flow are 
found, corresponding to the five locations: 0%, 25%, 50%, 75%, and 100% 
area. These streamlines are then traced through the entire domain. It should 
be noted that the chosen area distribution is applied only at the leading edge: 
elsewhere in the flowfield, the streamlines may not correspond to that par
ticular area distribution. The percent span option functions similarly. If the 
percent mass option is chosen, then the the distribution is held throughout 
the flowfield. 

There is one additional option: the user can find slices based purely on 
geometry, ignoring the flow solution. This option is triggered by selecting 
"Everywhere" as the location at which to hold the specified distribution. In 
this release, the only available distribution function is percent area. This 
option is useful in cases where the throughflow solution is suspect, or where 
there is some reason to want the blade-to-blade solutions along a constant 
area slice instead of along a streamline. The GUI input panel defaults to five 
equal slices at constant percent mass, with the streamlines anchored at the 
leading edge. 

In all cases, the first and last streamlines are assigned to the hub and 
shroud as defined in the throughflow grid. User input which conflicts with 
this standard is ignored by RADSL 

Finally, RADSL interpolates the throughflow solution onto the stream
lines. The output file is a PLOT3Dflow file whose dimensions are the number 
of axial points in the throughflow grid, and the number of streamlines. This 
information may be used by the blade-to-blade analysis to set boundary 
conditions. Because the blade-to-blade analysis acquires its boundary condi
tions directly from the throughflow solution, the throughflow calculation is 
normally run in Euler mode. It is not clear how to set the total pressure, tem
perature and flow angle on the hub and shroud, when the velocities are zero 
on viscous surfaces. The current version of TADS expects the throughflow 
analysis to be run as an Euler calculation. 
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4.6.2 SLICER 

SLICER uses the original airfoil description and the streamlines found by 
RADSL to find the airfoil cross-sections to be used in the blade-to-blade 
analysis. SLICER also reads in the aerodynamic information file and inter
polates flow conditions from the radial profiles onto the streamlines at the 
leading and trailing edges. This information may be used instead of the 
PLOT9D file interpolated from the throughflow calculation to set boundary 
conditions in the blade-to-blade analysis. 

The process of slicing the airfoil along the streamlines involves repeatedly 
finding the intersection of two splines. Along each spanwise line in the airfoil 
definition, the intersection with each streamline is computed. The resulting 
airfoil description has the same number of points around the airfoil as the 
original definition. This airfoil description is used as the airfoil definition 
by the blade-to-blade grid generator. One limitation on the TADS system 
is imposed here: the spline along the span of the airfoil uses the radius as 
parameter. This means that centrifugal and radial devices cannot be handled 
by SLICER. 

4.7 GRAPE 

The blade-to-blade analysis uses the GRAPE code to generate a grid con
forming to each axisymmetric surface defined by the meridional streamlines. 
GRAPE was originally written by Reese Sorenson at the NASA Ames Re
search Center as a 2-D Cartesian grid generator, Ref. [16] and Ref. [17]. The 
code was subsequently modified for cascades of airfoils by R. Chima of NASA 
Lewis Research Center, Ref [4]. TADS uses GRAPEto generate C-type grids 
which are later used by RVCQ9D. A aUI input panel provides choices and 
defaults for the important input parameters. The user selects the grid size 
and adjusts various parameters to improve grid quality. 

GRAPE remains a 2-D Cartesian grid generator. However, a cylinder 
can be mapped directly into a plane by "unrolling." This is equivalent to 
using the quantity Rcyl * () in place of Y. where Rcyl is the radius of the 
cylinder. GRAPE can also be used for arbitrary surfaces of revolution by 
projecting the arbitrary surface onto a cylinder. The radius of the cylinder is 
set to the mean radius of the streamline. Further, the meridional distance is 
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substituted for the X value in the grid so that the grid is along the streamline. 
RVCQ3D expects the grid in this format, and remaps it to the proper radius 
internally. 

A number of modifications were made to GRAPE for use in TADS. The 
output routine was rewritten to produce platform independent binary files by 
incorporating the SDB library. Also, user experience led to changes in some 
of the GRAPE input parameters. These changes make it easier to specify a 
set of defaults which yield acceptable grids over a wide range of shapes. 

In the original code, some of the input parameters were inter-related. This 
was a source of user confusion, and proper handling of inter-related variables 
would require dynamic linkages between fields in the GUI. This capability is 
not available in the current release of TADS. In most cases, new parameters 
were introduced in the input routine, replacing similar parameters in the 
original code. The original parameters are then computed from the new 
parameters, leaving the internal workings of GRAPE basically unchanged. 

For example, GRAPE originally had parameters for the number of points 
around the leading edge and the spacing between grid points around the 
leading edge. To increase the point density around the leading edge, the 
user needed to decrease the spacing parameter, and also increase the number 
of points around the leading edge. To create suitable grids from default 
parameters, the revised code expects the user to specify the leading edge arc 
length and the number of points around the leading edge. The arc length of 
the leading edge region is computed internally by the GUI from the airfoil 
tangency points, which are specified in the casename. tdsaro file. The user 
specifies the number of points around the leading edge, and the spacing is 
computed by GRAPE. This change removes the inter-dependence between 
variables, and simplifies user input by computing a reasonable default value 
for the leading edge arc length. A similar approach was taken with the 
trailing edge parameters. 

The GRAPE code also requires the user to specify the grid index of 
the trailing edge. In a C-grid, there are two grid points which define this 
point, one on the lower surface and one on the upper surface of the airfoil. 
Originally, GRAPE required the user to specify both. Since the upper surface 
trailing edge index can be computed from the grid size and the lower surface 
trailing edge index, the upper surface parameter was eliminated from the 
input. The input routine computes the upper surface trailing edge index, 
and passes the value to the rest of the GRAPE code. 
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In the GRAPE code, the leading edge point distribution is set by clus
tering points around a certain point on the airfoil surface. This point is 
specified as a fraction of the arc length around the airfoil, starting from the 
trailing edge. This parameter is named dsra, and has a default value of 0.5. 
The default value clearly inadequate for sharp airfoils with camber, because 
the cluster point will be located on the suction surface, rather than on the 
leading edge. However, it is difficult for the user to choose the proper value 
for dsra. The GRAPE input generation subroutine computes an appropriate 
value for this parameter from the airfoil geometry and the airfoil tangency 
points. The leading edge is taken to be at half the arc length between the 
leading edge tangency points. Figure 4.13 shows a comparison between grids 
generated using the the default value of dsra and the value computed by the 
GUI for the hub section of NASA Rotor 67. 

Finally, the original GRAPE code expected to receive the location of 
the upstream and downstream grid boundaries, specified in inches. These 
quantities are difficult for the user to specify, and different values should 
be specified for each meridional streamline to achieve suitable grid quality. 
Some other blade-to-blade grid generators locate the boundaries as a fraction 
of the airfoil axial chord or the pitch between airfoils. These parameters are 
an improvement, but user intervention is still required. For a compressor fan, 
for example, specifying the boundaries as a constant fraction of axial chord 
results in grids with too much space upstream of the leading edge at the 
hub, and too little space upstream of the leading edge at the tip. Conversely, 
specifying the boundaries as a fraction of the airfoil pitch results in grids 
with too little space at the hub, and too much space at the tip. 

For the purposes of TADS, the boundaries are specified as a fraction of 
a distance. This distance is defined as the average of the axial chord and 
the airfoil pitch at each meridional streamline. In the cases tested, this has 
produced acceptable grids with minimal user effort. Two new parameters 
were introduced to GRAPE: xupfrc is the fractional distance of the upstream 
boundary, and xdnfrc is the fractional distance of the downstream boundary. 
Default values have been set for these parameters, but these may need to be 
adjusted depending on the shape of the airfoil (e.g. compressor blades nor
mally require a smaller upstream fraction than turbine vanes). In GRAPE, 
the original parameters xleft and xright are computed from the new parame
ters and passed to the rest of the code. 
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GRAPE Grids for NASA Rotor 67 Hub Section 

Default Surface Point Distribution 

Improved Surface Point Distribution 

Figure 4.13: Comparison of airfoil surface point distributions in the GRAPE 
code. 
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4.8 RVCQ3D 

RVCQ3D is an Euler/Navier-Stokes analysis capable of analyzing the quasi 
3-D blade-to-blade flow in turbomachines, Ref. [2], and Ref. [3]. The input to 
RVCQ3D is specified in a GUI panel. RVCQ3D uses C-type grids generated 
by the GRAPE code. The input grid is not along the streamline, but is 
along a cylinder with radius corresponding to the mean streamline radius as 
described above. RVCQ3D also reads a table of values describing the radius 
and stream tube height distribution along the streamline. 

The I/O routines in RVCQ3Dwere modified to utilize the SDB library in 
conformance with the TADS standard. Also, a change was made in the way 
that RVCQ9Dsets boundary conditions at the upstream boundary. RVCQ9D 
expects to receive aerodynamic information at the leading edge and it ex
trapolates to the upstream grid boundary. The procedure is similar to the 
way that ADPACBC extrapolates data for the throughflow analysis. Since 
the blade-to-blade flow conditions are interpolated directly from the through
flow calculation, there is no need for RVCQ3D to perform an extrapolation. 
These modifications are limited and could be easily made to future releases 
of RVCQ3D. 

4.9 Locating the Mean Stream Surface 

Once the blade-to-blade analysis is completed, the last task is to determine 
the mean hub-to-tip stream surface between the airfoils. This task has two 
components: first the individual blade-to-blade solutions must be restacked 
into a 3-D representation, then the axisymmetric average of the solution must 
be computed, and the mean stream surface integrated from the averaged 
velocities. 

4.9.1 RESTACK 

RESTACK assembles the various blade-to-blade grids and solutions into 
PLOT3D X and Q files. This is a rather simple program: the only com
plication is in the conversion of data from the blade-to-blade representation 
to a true 3-D representation. 
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The blade-to-blade solutions are not computed on a true (X, Y, Z) rep
resentation of the data: the two dimensions are (M, R x 0). These coordi
nates reflect what the flow actually "sees" along a streamline. Additionally, 
the velocities output by the throughflow analysis are (Vm' Ve) The merid
ional coordinates and velocities must be converted to their 3-D cylindrical 
polar equivalents, and then converted to Cartesian coordinates for output. 
The streamline file written by RADSL provides the data needed to trans
form meridional coordinates back to 3-D cylindrical polar coordinates. The 
meridional velocity is converted to V:r; and v,. by multiplying the meridional 
velocity by the unit vector tangent to the streamline. RESTACK is subject 
to alteration if other blade-to-blade analyses are incorporated into TADS. 

RESTACK is programmed to expect data in the form written by RVCQ3D. 
In particular, RVCQ3D normalizes the aerodynamic quantities using a ref
erence total temperature and pressure. For uniform upstream conditions, 
these reference quantities are normally set to 1.0, but radial profiles can be 
accounted for by setting different references on each streamline. TADS takes 
advantage of this capability. The hub streamline references are set to 1.0, 
and the other streamlines are set proportional to it according to the up
stream profiles. No additional work is required to renormalize the flow on 
each slice to a consistent reference quantity when creating a 3-D file. The 
3-D files created from RVCQ3D solutions are naturally self-consistent. Some 
other blade-to-blade solvers normalize the flow by setting the upstream total 
pressure and temperature to 1.0 internally. These solutions would have to 
be renormalized to a consistent reference before restacking. 

4.9.2 MEANSL 

MEANSL finds the shape of the mean hub-to-tip stream surface between 
adjacent airfoils starting with PLOT3D X and Q files. To perform this cal
culation, the grid and flow data are converted to cylindrical polar coordinates. 
The averaging is performed in the 0 direction at axial locations chosen from 
the throughflow grid. The result is an axisymmetric averaged flow solution 
on a 2-D grid: one dimension is the number of points in the axial direction, 
the other dimension is the number of meridional streamlines. 

The averaging procedure minimizes the dependency on the type or quality 
of the grid. MEANSL does the averaging as an accumulation of flow along 
a line, and not as an accumulation through 2-D faces. By formulating the 
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average along a line, the dependence upon neighboring slices is removed. 
For each desired axial location along a streamline, two sweeps of the 

grid are performed: the first finds all of the intersections with the grid lines 
which wrap around the airfoil (contours), and the the second finds all of 
the intersections with the lines emanating from the airfoil (normals). The 
intersections are then sorted by 0, in the passage between adjacent airfoils. 
The axisymmetric averages are then computed by accumulating the fluxes 
along the sorted line. 

This averaging procedure has a number of advantages. The procedure 
does not expect any particular grid topology, simplifying the job of adding 
different blade-to-blade analyses. The accumulated fluxes are comprised of 
as much data as possible because every intersection between the grid and 
the line of interest is used. Therefore, boundary layers or other flow features 
are resolved as well in the accumulation of fluxes as they are in the solution. 
This would be of particular benefit for blade-to-blade analyses with adaptive 
gridding. 

The axisymmetric average data is used to determine the shape of the 
mean stream surface between the airfoils. The averaged velocities are, by 
definition, tangent to the mean stream surface. An integration is performed 
along each meridional streamline to find the shape of the mean blade-to-blade 
stream surface from the averaged velocities. The tangent to the mean stream 
surface is formed as the angle between the circumferential velocity and the 
meridional velocity. By integrating the angle with respect to the meridional 
distance along the streamline, a mean stream surface is determined. The 
output of MEANSL is a PLOT3D X file containing an axisymmetric grid, 
warped into the shape of the mean stream surface. This shape would be 
interpolated onto the full throughflow grid by BODYF to apply this stream 
surface shape in the throughflow analysis. 



Chapter 5 

Development of G VI 

The Graphical User Interface (GUI) for the TADS system controls the oper
ation of the program modules. It organizes the work flow into logical pieces, 
and provides a simple way to select or modify program input parameters. 

5.1 Panel Overview 

The GUI consists of a number of interactive panels with push buttons, pull
down menus, text fields, etc. These panels allow the user to select which 
programs to execute, create input sets for the chosen modules, and config
ure remote hosts on which modules can be executed. The GUI is written 
using the Motif widget library under X-Windows. Motif and X-windows are 
highly portable, having become a de-facto standard among workstation and 
supercomputer vendors. 

5.1.1 Main Panel 

A main panel controls the operation of all other panels within the aUI and 
all program module execution, Figure 5.1. There are three groups of buttons 
on the main panel: the group on the left is the "program mode selector" , the 
buttons on the right are the "component group controls" , and the buttons on 
the bottom are the "action buttons." The program mode selector determines 
the appearance of the main panel, and the behavior of the component group 
controls. The component group controls allow the user to make choices 
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regarding each functional task in the analysis. The action buttons allow 
the user to define remote hosts, open a UNIX shell, or exit the GUI. 

There are five modes of operation available in the program mode selec
tor. The selected mode determines how the GUI will respond when program 
modules are selected. The first mode, labeled "Edit Programs," causes the 
component modules to change appearance from push buttons to pull-down 
menus, Figure 5.2. The pull-down menus allow the user to select a pro
gram module to perform each task (e.g. TIGGERC or Batch TIGGERC can 
be chosen for the axisymmetric grid generator). At present, most compo
nent modules have only one working choice, but the capability was added 
so that users could easily incorporate their favorite grid generators and flow 
solvers into the TADS system. The program modes labeled "Edit Data," 
"Edit/Run," and "Run" cause the component modules to appear as either 
push buttons or toggle buttons. These modes control input creation and pro
gram execution of the component modules. In the "Edit/Run" and "Run" 
modes, a small green button labeled "Run" is enabled at the bottom of the 
component group controls as seen in Figure 5.1. The user selects which mod
ules are to be run using toggle buttons to the right of each component. When 
all of the desired modules have been selected, the user selects the "Run" but
ton to start the execution process. In the "Edit/Run" mode, the input panel 
for each selected module is brought up starting at the top of the component 
groups and working down. After the user finishes with the input panel, the 
program module is run. The program modules are run sequentially until all 
selected modules have been completed. In the "Run" mode, no input panels 
are brought up, the selected modules are simply run starting at the top and 
continuing down the component group. 

In the "Edit Data" mode, the user selects push buttons which bring up 
the appropriate input panels, Figure 5.3. The input data is created and saved 
for that module only, and no execution is performed. The user may select 
these panels in any order. One strategy for running the GUI is to use the 
"Edit" mode to define all of the input parameters needed for each program 
module, and then the "Run" mode is used to execute the entire analysis. 
This keeps the user from having to wait for programs to finish before setting 
up the next program module. 

Another strategy is to use the "Edit/Run" mode to perform the analysis 
piecemeal. It is frequently convenient to select only the modules associated 
with the throughflow analysis to be sure that an acceptable solution has 
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Figure 5.1: The Main panel of the GUI controls the complete analysis. The 
"Edit /Run" mode is shown here. 
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Figure ,5.2: In the "Edit Programs" mode, the user selects program modules 
from a pull-down menu for each component of the analysis. 
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Figure 5.3: Input data panels for the program modules can be accessed from 
the main panel in Edit/Data mode. 
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been obtained before attempting to run the airfoil slicer and blade-to-blade 
modules. The remaining modules can be executed as a second step. The 
advantage of this strategy is that later modules will not have to be rerun be
cause of errors in an early module. Because of its flexibility, the "Edit/Run" 
mode is the most common approach to controlling an analysis. 

The final mode of operation in the main panel is labeled "Edit Machines." 
This panel is shown in Figure 5.4. This mode allows the user to select which 
host is to perform the calculations for each program module. It is often 
advantageous to run the longer running portions of the analysis (e.g. the 
throughflow and blade-to-blade flow solvers) on a remote machine to take 
advantage of faster processors. This option is only functional if hosts other 
than the local machine have been configured in the remote host setup panel. 
At present, all slices in the blade-to-blade analysis must be run on the same 
host. 

In addition to the main panel, a status panel is created whenever the 
GUI is executed. This panel gives information about the function of certain 
buttons, and indicates when a program module is being executed. It displays 
the name of the module, the host on which it is being run, and the pathname 
to the current working directory. This panel is for display only, and no user 
input is accepted in this panel. 

5.1.2 Remote Host Setup Panel 

The action button labeled "Setup" opens a display panel for defining remote 
hosts, Figure 5.5. All modules within the GUI can be executed either on the 
local host or on a remote host. The remote hosts must be configured so that 
the GUI can call the appropriate executables in the appropriate directories. 
The text block labeled "Hosts" lists the available hosts for execution. Only 
hosts on this list can be accessed for remote execution. The radio button 
group labeled "Type" specifies the vendor and machine type for each host. 
At present, the panel has choices for Silicon Graphics and IBM RS/6000 
workstations. There are two possible SGI choices to differentiate between 
the SGI R4000 chip and the R8000 chip. The SGI Power Challenge selection 
uses executables which have been optimized to run on the RBOOO chip. The 
text boxes at the bottom right of the panel specify the paths to the executa
bles and to the working directory for the highlighted host. Each host can 
have different paths for both executables and working directories. This was 
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Figure 5.4: In the "Edit Machines" mode, the user selects a host processor 
for each program module. 
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Figure 5.5: Program modules can be run on remote hosts configured using 
the Setup Panel. 

designed to work with NFS mounted file systems which may have different 
pathnames to the same directories on different machines. The buttons at the 
bottom of the screen are action buttons which handle the saving and restor
ing of data, and allow the user to return to the main panel. A similar set of 
buttons exists in all input panels. The specific function of these buttons is 
discussed in Section 

501.3 Input Panels 

Most of the panels in the CUI are for creating input files for program mod
ules. These input panels are similar in form and function, but some control 
multiple executions of the same program. Specifically, the panels associated 
with the blade-to-blade analysis have additional features to deal with the 
fact that the program modules they control must be run once per stream
line. These panels, called "slice-dependent" panels, are discussed in the next 
section. Examples of simple input panels are the TIGGC3D input panel and 
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the ADPAC input panel, shown in Figure 5.6. The GRAPE and RVCQ9D 
input panels are slice-dependent panels. 

An input panel is essentially a container widget which holds other widgets 
corresponding to input variables in the program modules. Action buttons at 
the bottom of the panel control the saving of data and closing the panel. The 
control widgets are most often editable text fields, but can also be pull-down 
menus or toggle buttons. The control widgets are laid out in a row-column 
matrix with labels indicating their significance. 

Each input parameter has a separate controlling widget and label. Pro
vision has been made to include a brief description of the highlighted input 
parameter on the screen as a reminder of its function. This reminder appears 
at the top of the screen, adjacent to the casename, and it changes with the 
input focus. This provision has not been fully implemented, but it is avail
able in all input panels. All that is required is to add a text string for each 
variable in the GUI panel code. 

In the case of text fields, provision has also been made for input data 
checking for valid types and ranges. For example, an integer field will not 
accept fractional entries or character data. Also, the entered value must lie 
within an acceptable range, or the entry is not accepted. An error dialog 
widget indicates the proper data range. In the input panel source code, a 
range of acceptable data is not required, and defaults to all inputs. The 
values typed into a text field are checked and accepted whenever the input 
focus changes. 

Focus changes when the enter key, tab key or mouse input is received 
by the GUI. This does not mean that the data has been saved permanently, 
or that it will be written to an input file, but merely that it is part of 
the current data set. Data saving and input file creation are accomplished 
through the action buttons. The point here is that the user can create and 
view a complete input set before committing to the changes. Provision is 
made to abandon all changes made since the last save through the action 
buttons. 

For variables with few options, pull-down menus and toggle buttons are 
employed. Toggle buttons are used in cases where the variable is either "yes" 
or "no," "true" or "false." Examples of this are triggers to generate a restart 
file, run viscous or inviscid, etc. The actual input variable may be an integer, 
but in each case, the input parameter controls an either/or choice. 

Variables with limited options are well suited to the pull-down menu. 
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Figure .5.6: The ADPAC input panel is an example of a simple input panel. 
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Pull down menus display the values of the available choices, and a brief 
description of each choice. For example, the RVCQ3D input panel uses a 
pull-down menu to select the type of upstream boundary condition to be 
employed: subsonic flow holding inlet flow angle, supersonic flow, or subsonic 
flow holding circumferential velocity component. The descnption fields are 
especially helpful for variables which are rarely changed. 

Each input panel has a default dataset which is part of the initialization 
code. This default data is the most basic default: other defaults are used 
when available. Some of the input panels have database files associated with 
them which keep track of previous user choices for a particular case. Other 
input panels use the input files created in previous runs of the same case. 
When available, data from these files are loaded into the input panel and 
form the initial data set. The idea is to minimize user input requirements by 
using the results of a previous run as the initial data set for the current run. 

Some input variables in one program must be consistent with input to 
other programs. For example, the grid size for the blade-to-blade solver is 
set when generating the blade-to-blade grid. Therefore, the user is prevented 
from changing the grid size in the blade-to-blade solver input panel: the value 
input to the grid generator panel is displayed, but can't be edited. When a 
text box can be edited, the background of the box is white. When a text 
box is for display only, the background is the same as the background color 
of the container widget. 

Where possible, the input parameters are grouped as they appear in the 
program module documentation, or in sample batch input files. This may be 
a drawback for inexperienced users, especially in cases where the organization 
of the input files is poorly conceived. For the user who is used to running the 
programs outside the GUI, it is beneficial to group them in the customary 
order. 

5.1.4 Slice-Dependent Panels 

There are a number of additional features and complications associated with 
slice-dependent panels. Figure 5.7 is an example of a slice-dependent panel. 
The most important aspect of slice-dependent panels is understanding how 
data is used and saved between slices. In simple input panels, there is no 
ambiguity; values are set and used in the normal manner. However, in dealing 
with slice-dependent panels, there are some variables which are the same for 
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all slices, and some which vary from slice to slice. For example, the number 
of blades on the wheel is a constant along the span of an airfoil, but the axial 
position of the inflow boundary may vary between meridional slices. It is 
important to know when a variable is set for all slices, and when it is set for 
only the current slice. 

In slice-dependent panels, there is an additional widget in the upper right
hand corner which indicates which slice is being edited. This widget is a 
pull-down menu with an entry for each slice plus an entry for "All Slices." 
When "All Slices" is selected, the variables which are changed in the panel 
are set as constants for all slices. When data is saved, it is saved for all slices, 
any individual slice modifications are lost. A warning panel is displayed to 
alert the user, and a confirmation is required before data is overstored. In 
any event, only editable variables are propagated for all slices; parameters 
which are not editable are set internally for each slice. 

Variables which are set individually for each slice are not editable in the 
"All Slices" view. When an individual slice is selected, only the variables 
which can vary among the slices are editable. When data is saved from the 
individual slice view, only the data for the current slice is affected. There are 
some variables which are frequently constant for all slices, but are sometimes 
slice-dependent. There is a provision for treating a single variable as either 
constant or variable among the slices, but most of these have been converted 
to slice-dependent variables to remove the confusion surrounding their use. 

The slice-dependent panels make use of a relational database which is 
maintained for each slice dependent panel. The database files are random 
access binary files, containing the values of all parameters for all slices. The 
database files follow the naming convention casename.program-Ilame.db (e.g. 
rotor67.grape.db). When data is saved, it is written to the database file, 
and when data is restored, it is re-read from the database file. When a 
slice-dependent panel is exited, new input files for the program module are 
created for each slice. Simple input panels do not employ a database, but 
rather work directly with existing input files, when available. 

The recommended procedure for setting data in slice-dependent panels 
is to set the values for "All Slices" first. After saving the "All Slices" data, 
then select the individual slice panels which require modification. Save each 
of these panels and return to the main panel. 

As before, not all parameters can be set by the user. Some are computed 
from known data (such as the number of blades and the airfoil pitch), and 
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Figure 5.7: The GRAPE input panel is an example of a slice-dependent 
panel. 
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some are set in other panels and may not be modified (such as grid sizes, 
etc). , 

Another feature is provided in slice-dependent panels which is not avail
able on simple panels. When viewing the input panel under the "Edit Data" 
mode selected in the main panel, an additional action button is displayed. 
This button, labeled "Run," allows the user to execute the program module 
for a single slice instead of for all slices. This is particularly useful when the 
user is unsure of the parameters chosen for the blade-to-blade grid generator 
or flow solver. Instead of waiting for all slices to run before discovering an 
input error, the user can execute a single slice and check the results before 
executing the other slices. This is also useful, for checking the sensitivity of 
an analysis to a particular parameter (such as incidence angle). A single slice 
can be run repeatedly without running any other slices. To avoid confusion, 
the "Run" button is de-activated when" All Slices" is selected from the pull
down menu. The button is activated only when the user is viewing the data 
for a single slice. 

5.1.5 Action Buttons 

All of the input panels in TADS have a row of action buttons located across 
the bottom of the panel. Generally, these action buttons control file creation 
and modification. Some buttons also initiate program execution. Generally, 
these buttons behave as described in Table 5.1. The few exceptions are 
documented in the User's Manual. 

5.2 Programming Philosophy 

The programming philosophy used in creating a GUI can make the difference 
between an intuitive, easily maintained interface, and a confusing interface 
built on tangled code. Recognizing the importance of standardizing the look 
and feel, the structure of routines, and the exchange of data between pro
grams, the TADS system follows an object-oriented approach. 

Conceptually, an object oriented approach means that the program mod
ules are designed around the function they perform instead of the data on 
which they operate. Most codes are built around the data. This means that 
each routine is specific for the job it performs. In this model, it is often dif-
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Table 5.1: Action buttons on standardized input panels control file creation, 
modification and restoration 

Save Overstore current panel data to a file if changes have been 
made. If no changes have been made, then no action is 
taken. 

Restore Restore current panel data from a file. Any changes not 
saved prior to a restore are lost. This action button is 
only active if the input file exists (from a previous save). 

Default Reset current panel data to default values. These de-
faults are setup specifically for TADS. This means they 
are not necessarily the same as the defaults stated in the 
formal documentation of the individual component mod-
ules. Any changes not saved prior to a default are lost. 

Done Save current data and then exit current panel. In some 
instances, this action button will force the execution of 
secondary component programs such as preprocessors. 
Also, a message will appear in the message panel indi-
cating any programs being executed. 

Cancel Exit current panel without saving current changes. If a 
save has been done prior to cancel secondary programs 
will be executed (if appropriate) as described above for 
done If changes have been made to the data without a 
save being done, the user will be so informed and given 
the option to return to the current panel. 
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ficult to re-use code because the data structure is embedded in the routine. 
A slightly different problem requires all new code. Under the object-oriented 
approach, the routines are written around the function they perform. Code 
re-use is planned from the start. The GUI is programmed In C, which is 
not an object-oriented language, but object oriented philosophy was adopted 
where possible. 

An object oriented approach was used in generating the panels: each 
panel can be considered to be an instance of a model. That is, each panel 
is patterned after a model with changes only to the data to suit a particular 
use. The code interprets the data structure and creates appropriate objects 
for each input parameter. 

To clarify the idea behind object-oriented programming, consider the fol
lowing example. Suppose that two input panels are to be created. The first 
panel requires a pull-down menu for the first input item, and text fields for 
all others. The second panel requires a pull-down menu for the second and 
fourth items and text fields for all others. Traditional programming would 
write two separate routines to handle these cases. While much of the two 
routines would be common to both, custom coding would be used to handle 
the special cases. The traditional approach is data-oriented programming: 
routines are written specifically for the data that they handle. In the obJect
oriented approach, only one routine would be written, capable of handling 
each case. Each input item has associated data which indicates the desired 
type of widget. The code simply knows that each input item will require an 
object on the display panel. The type of object to be used is interpreted for 
each parameter. With the object oriented approach, the data structure is 
larger, but there is very little redundant code. A further benefit is realized in 
the object-oriented approach in that changes to the objects are automatically 
effective for all panels, minimizing code maintenance. 

5.2.1 Panels as Objects 

There are four model panels in TADS: the main panel, input panel, slice
dependent input panel, and the remote host setup panel. Each model panel 
has flexible data structures which are used in each panel of its type. A new 
instance of the structure is created for each panel, and the particular data is 
loaded into the structures, but the function and nature of each structure is 
the same in all panels. The data structures are comprised of many records, 
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one for each input parameter on the display. Included in the data structure 
is the parameter name, the value, the valid limits for the values, the type of 
widget to be displayed, and some information about initialization. 

5.2.2 X-Windows/Motif Widget Implementation 

The GUI is programmed with the Motif widget library running under X
Windows. As is customary with X-Windows/Motif applications, a resource 
file controls the colors, fonts, borders, and other aesthetic features of the 
individual windows and widgets. One weakness of the X-Windows system is 
that there is no standard way to refer to font names, and no guarantee that 
the fonts used by an application exist on a particular machine. In particular, 
SGI and IBM differ on the proper names for fonts. A separate resource file 
is provided for SGI and IBM implementations of the GUI. If other types 
of workstations are to be used, there may be some modification required to 
achieve a working set of fonts. One point of confusion is when the GUI is 
run on a remote machine with the panels displayed on a local machine. In 
X-Windows, the fonts are resolved on the local machine. That is, if the user 
is sitting at an SGI workstation, the SGI resource file should be used, even 
if the GUI is run as a remote process on an IBM workstation. 

Most of the objects which appear in the GUI panels are conglomerations 
of Motif widgets. There are many instances where widgets were combined 
or customized, but the following four examples are most often used. The 
ability to enable or prevent editing of a parameter was required to prevent 
users from specifying contradictory input. Part of the data structure de
termines the conditions under which a particular parameter is editable. A 
special widget was made which contains both a text entry field and a label. 
The ability to group widgets was required in the airfoil slicer input panel, 
Figure 5.8. Pulldown menus were customized to cause the background color 
to change when the widget is enabled or disabled. In each case, the under
lying routines for the screen objects are pure Motif widgets. Following the 
object oriented philosophy, new objects were created from existing objects 
to minimize coding and maximize the clarity of the main routines. 
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Figure 5.8: The Slicer panel of the aUI enables the user to control the 
location of the meridional streamlines for blade-to-blade analysis. Radio 
buttons are grouped and interconnected to insure consistent input. 
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5.2.3 Scope of Data 

A common issue when coupling codes into an integrated system is that of 
the scope of data. The basic question is: "If a parameter is changed in 
one routine, do all other routines receive the changes?" Most parameters 
are strictly local. The advantage of local parameters is that there are no 
unintended side-effects. Often, two programs will have a variable of the same 
name with different meanings. Local variables keep the modules isolated. 

Certain parameters have been identified within the GUI which have global 
scope. These parameters are available to all routines within the GUI. Among 
them are the number of airfoils, grid sizes, reference total pressure and tem
perature, and the wheel speed. The global parameters are listed in the routine 
globals.c. There are other parameters which are shared between routines, but 
are not global in scope. Most data sharing is accomplished through I/O in 
shared files. An example of this sharing is the axisymmetric grid. Many 
routines read the grid as input, and two routines write out the file. This 
type of data sharing is not truly global in that only routines which read the 
file receive updates to the data. 

This means that it is a simple matter to generate a new panel of a given 
type. The changes consist of filling the data structure with the input pa
rameters for the particular application, and adding a new stanza to some 
conditional blocks to show the new choice on parent menus. New stanzas 
must be added to the call-back block to show how the application is exe
cuted, and some parameter statements need to be added to a header file. 
Adding a new panel can be accomplished in about two hours if a suitable 
model exists. 
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Chapter 6 

Modification of TADS 

The TADS system is built on program modules with data transfer via files 
and flexible data structures. This architecture was adopted to minimize the 
effort required to extend or modify the system. The TADS system is divided 
into two parts: the CUI and the program modules. The program modules 
are loosely coupled to one another through files and are separate executables 
from the CUI. The CUI is more tightly coupled with data sharing through C 
structures. Object oriented programming concepts were employed to maxi
mize modularity in the CUI. The program modules written specifically for 
the TADS system are modular, but the flow solvers and grid generators are 
used as received from the authors. Details about the program modules are 
found in the chapter" Analysis Coupling". The CUI calls the program mod
ules via the C "system" function, which forks a new process as a child of the 
CUI process in the UNIX system. 

6.1 Program Module Modifications 

Program modules can be added to the TADS system, but some modification 
to the CUI and the module source code will be required. This section deals 
with the modifications required to the program module itself. 

The required modifications to program modules are normally straightfor
ward. The program module should perform I/O to named files following the 
casename.extension standard, should read and write mesh and flow data to 
PLOT9D style files using the SDB library, and should take all required input 
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from files, rather than from screen input. All I/O that does not use the SDB 
library should be ASCII text. 

Of course, there are exceptions to the above rules. The blade-to-blade 
analyses are run in subdirectories of the main directory, and the file nam
ing convention is relaxed in the subdirectories. Also, some programs are 
inherently interactive (e.g. TIGGC9D), and naturally require keyboard and 
mouse input. 

Program modules with their own graphics or graphical interfaces are a 
special case. The ideal situation is for graphics in a program module to be 
programmed in X-Windows using the Motif widget library. These programs 
will be fully portable across all machine types supported by the GUI itself. 
Programs using strictly XForms graphics calls are also portable. Program 
modules with Silicon Graphics GL or other proprietary graphics library rou
tines will generally limit the portability of the module. Obviously, portability 
is not an issue in homogeneous systems of workstations. Also, GL applica
tions can be run on remote SGI machines so long as they are displayed on a 
local SGI machine. 

Currently, there are very few places in the TADS system where the user 
can specify contradictory input between program modules. One objective of 
any extension of the system should be to prevent contradictions with existing 
data or programs. This could easily occur for program modules with their 
own graphical interfaces. For example, TIGGC9D has its own interface and 
takes most of its input from a file. When TIGGC9D is executed, the user 
must specify the name of the input file to load the data, and must also 
specify the name of the output grid. These names must be the ones that 
other program modules expect in the TADS system, or the other program 
modules will not find their input files. For example, the ADPAC flow solver 
expects the mesh to be in a file called casename.mesh. There is no simple 
means to enforce the TADS requirement for file names in TIGGC9D. This is 
a fairly minor point, but it illustrates how two uncoupled interfaces can lead 
to multiple specifications of the same parameters and contradictions between 
modules. If a new program module calls for interactive input of data which is 
already known to the GUI, a mechanism needs to be developed for the GUI 
to output the required information to a file, and for the program module to 
use the contents of that file as the default values in its interface. Otherwise, 
the user must be educated about the connections between the new module 
and existing modules in TADS. 
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6.2 Adding Program Modules to the GUI 

A number of modifications need to be made to the CUI to add a program 
module. These consist of creating an input panel, adding the program module 
to the list in the main panel, creating subroutines to read and write the 
program module input files, and updating the global parameters. 

6.2.1 Creating an Input Panel 

The object oriented philosophy used in the CUI greatly simplifies the task 
of generating new a new input panel. The best procedure is to make a copy 
of a similar panel and modify it for the new application. 

Since the blade-to-blade tasks are the most likely place for new modules 
to be added, the RVCQ3D input panel will be used as an example of how 
to create a new panel. The RVCQ3D input panel code is called rvcq3dgen.c 
in the gui subdirectory of the TADS system. In this file are many variables 
which start with the letters "rvc". A three letter abbreviation of the new 
application should be chosen to replace "rvc" in the variable and function 
names. This will insure that all new variable and function names are created, 
and that there will be no side effects between functions. There are many other 
variables in the code, but they are either global already, or are local to the 
RVCQ3D input panel code. 

Action Buttons 

For every panel there is a structure for the action buttons named BTNSJ)ATA. 
There is also a manifest constant (RVC-BTN_CNT in rvcq3dgen.c) which is 
defined to be the number of action buttons on the panel (6 for RVCQ3D). 
The BTNSJ)ATA structure defines the widget name and the placement of 
each action button. The specific form of this and all other data structures 
is found in the guilib subdirectory in a file called ltds.h. The actions of the 
buttons are defined in the function "rvcjnp_dec_pbCB". The BTNSJ)ATA 
structure and call back function generally do not require modification, except 
for changing the variable names as discussed above. 
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Input Panel Data Structures 

There are two data structures which need to be tailored to the new module: 
GROUP J)ATA and GROUP .J>NTRS. These structures control the names, 
contents and behaviors of the individual parameter widgets on the input 
panel. The manifest constant "RVC_CNT" sets the number of input groups 
to be displayed on the input panel. The groups are arbitrary divisions of 
the input parameters, which are grouped and titled on the input panel. For 
RVCQ3D the groups correspond to the members of each input namelist. If 
the FORTRAN namelist style input is used in the program module, the input 
groups should be defined by the namelist members. Each group can have as 
many as 30 parameters associated with it, as defined by the MAX_CELLS 
constant in the file ltds.h. The constant "RVC_CNT" is defined in the file 
constants.h. A new constant needs to be defined for the new panel in the 
form of "RVC_CNT" (use the three letter abbreviation chosen above). 

For each input group there are two sets of parameters encased in curly 
braces. The first set of parameters describes the characteristics of the group: 
the group title, namelist name (if applicable), position, size and margins, the 
number of input variables in the group, and the number of columns to be used 
by the widgets on the input panel. The second set of parameters is repeated 
for each input variable. The first three parameters are the variable name and 
two widget id parameters. The widget id parameters are set internally by 
the aUI and the user should initialize them to O. The fourth parameter is a 
Boolean variable which determines whether the widget is active (editable) or 
not. This parameter may be reset internally, but the specified value is used 
initially. 

The fifth parameter determines the behavior of the widget for slice
dependent input panels. A value of 0 means that the widget is active or 
inactive regardless of whether the panel is in "All Slices" mode, or is set to a 
specific slice. A value of 0 effectively means that the fourth parameter con
trols the behavior of the widget (used for slice-independent data). A value of 
1 means that the widget is active in "All Slices" mode and inactive for any 
individual slice. Conversely, a value of 2 means that the widget is inactive in 
"All Slices" mode and active for any individual slice. 

The sixth, seventh and eighth parameters are values of the input variable. 
The sixth parameter is a pointer to the current value of the input variable. 
The seventh parameter is the default value of the input variable. The eighth 
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parameter is used internally to determine whether or not the value has been 
changed on the input panel. This parameter should be initialized to the 
default value. 

The ninth parameter is the number of decimal places to be displayed in 
the input panel. The number of decimal places is also used when generating 
the input file for the program module. The tenth and eleventh variables 
are pointers to the minimum and maximum acceptable values for the input 
parameter. 

The twelfth parameter specifies the type of data range checking to be 
performed. A value of 0 means no data checking. A value of 1 means check 
a range between the minimum and maximum. A value of 2 means the input 
value must be greater than or equal to the minimum value. A value of 3 
means the input value must be less than or equal to the maximum value. 

The thirteenth parameter specifies the type of widget to be displayed on 
the input panel. A value of 0 means that a text box will be displayed. A 
value of 1 indicates a pulldown menu, and a value of 2 specifies a toggle 
button. 

The GROUP ..PNTRS data structure has a record for each input variable 
divided into groups like the GROUP -DATA structure. The parameters in 
the GROUP ..PNTRS structure are the pointed-to locations of the pointers 
in the GROUP -DATA structure. The three parameters are the current value, 
minimum and maximum for the input variable. The current value is a place
holder for a variable which is set internally, and should be initialized to o. 
The minimum and maximum values should be set to the valid limits of the 
parameter whenever possible. In the event that the range is unknown, the 
values should be set to 0, and the data checking parameter in GROUP -DATA 
(twelfth) should be set to o. 

The reason for the GROUP ..PNTRS structure is that it provides a conve
nient mechanism for creating and using the database files associated with the 
slice-dependent input panels. The contents of these databases are read and 
written directly from the GROUP ..PNTRS structure. The whole GROUP -DATA 
structure is not part of the database because some parameters, such as the 
widget id, have different values for each execution of the TADS system. If 
these were part of the database, then the widget id numbers would be cor
rupted on restart. Other parameters are constant and need not be part of 
the written database. The GROUP ..PNTRS structure avoids unnecessary 
storage and corruption of internally generated values. 
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Implementing Callback Functions 

Once the new panel has been created, variable names changed, and data 
structures specified appropriately, the next step is to add callback functions. 
Callback functions are the pieces of code which perform actions in response 
to various events. Examples of events are opening the input panel, quitting 
the input panel or pressing an action button. Without the callbacks, the 
input panel is not connected to the GUI or the program modules. 

Most of the changes to the new input panel function code required to im
plement callbacks are accomplished by the variable name changing described 
above. The bulk of the effort is in writing the functions required by the call
backs. There is a function for reading data from an existing input file and 
recomputing special input parameters, and a function for writing new input 
files. 

The file input function is called when the input panel is opened, and when 
the TADS system is initialized. The file input function obviously contains 
coding to read an input file for the program module. However, the values 
from an existing input file are not appropriate for some input parameters. In 
the case of the blade-to-blade flow analysis, the reference conditions, bound
ary conditions, and geometric information should be computed from values 
known in TADS, rather than used directly from an existing input file. Gen
erally, if an input parameter can be computed, the computed value should be 
used rather than the read value. This eliminates the possibility of specifying 
conflicting data in the GUI. The computation of input parameters frequently 
requires reading other TADS files, and working with globally defined data 
(such as a grid size). 

Frequently, the file input function is written in FORTRAN, while the 
GUI is written in C. C codes can call FORTRAN subroutines provided that 
two issues are resolved. First, all elements in FORTRAN argument lists are 
passed by reference, and not by value. Therefore, the C code must specify all 
arguments as pointers. For simplicity, current functions pass all arguments 
as float (real) values. If the actual argument is an integer, temporary vari
ables are used inside the function, and assignments are made appropriately. 
It is not necessary to follow this strategy, but it simplifies the writing of the 
C statement to call the FORTRAN subroutine. Second, FORTRAN compil
ers use different naming conventions for modules, depending on the vendor. 
For example, the SGI compiler refers to subroutines by their name in lower 
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case post-pended with an underscore. The IBM compiler can be forced to to 
the same, with compiler options. Other vendors use different naming conven
tions, and that affects the way that the C code calls the FORTRAN routines. 
Some experimentation may be required before the various modules will link 
into an executable. 

The file output routine contains coding to write an input file for the 
program module. If the program module uses namelist style input, the func
tion "punchJlamelist" can be used, following the model in rvcq3dgen.c. If 
not, then custom coding must be written and linked to the GUI. The above 
discussion about mixing C and FORTRAN applies here also. 

Modifying the Main Panel 

Changes must be made to the main panel source code main.c to add the pro-
gram module to the appropriate component group. In the function "iniLguiJnput_panels" 
is a case block which determines which input panel is initialized for each 
component group. The new module should be added here under the ap-
propriate case. Similar changes must be made to a case block in the func-
tion "dec_btnCB" which initializes the program module input data in the 
"Edit/Run" and "Run" modes. The function "runCB" contains a case block 
which initializes the input data and runs the appropriate program module. 
Again, the new module needs to be added, following the example of other 
modules. There will be multiple changes to this function because there are 
multiple events which cause the execution of a program module. Also, proto-
types of the new functions need to be added to the header section of main.c. 

6.2.2 Finishing the Installation 

The TADS system must know where the executables can be found for each 
supported platform. The source code for the new program module should be 
placed in the modules subdirectory with the other modules. Also, symbolic 
links to the executables should be placed in the apl subdirectory. At present, 
executables are required for SGI R4000 and R8000 workstations, and IBM 
RSj6000 workstations. 

This completes the addition of a new program module to an existing 
component group. Adding a new program module following an existing model 
can be accomplished in about a day by an experienced programmer. 
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6.3 Component Group Modifications 

Adding a component group is a more complicated exercise, and may require 
new coding for which no model exists, depending on the function of the com
ponent. An example of a new component would be a blade shape generation 
code for the design system. The majority of the effort will be in modifying 
main.c to handle the new capability. If the new task fits in one place sequen
tially in the work flow, the changes will mostly involve expanding existing 
decision blocks. On the other hand, if the new module is callable in many 
places during the analysis sequence, then whole new decision structures will 
be required. 

New interface routines may also be needed between the new component 
and existing components of the analysis. These routines should be placed 
with the program modules in the modules subdirectory. The common direc
tory under modules is a valuable source of routines for reading and writing 
TADS files, and converting data between various coordinate systems. 

6.4 Adding New Host Types for Remote Ex
ecution 

Adding new host types is relatively straightforward. An example of this 
would be to add Cray computers to the list of supported execution platforms. 
This involves changing the configgen.c source code in the gui subdirectory. 
In the function "configuregen" is a case block which identifies the supported 
platforms ("Silicon Graphics", "IBM", etc.). The new host type should be 
added to this list, and the loop index should be increased to reflect the new 
choice. Also, the file config.h has an enumerated type "mach_types" which 
needs to be updated following the pattern of the case block modification. 
The maximum number of supported platforms is specified by the manifest 
constant "MAX..NO..MACHINES" in the file constants.h. 

The program modules are executed via "system" function calls from the 
GUI. The "system" is used to invoke the UNIX shell script rsh_tds from the 
apl subdirectory. The shell script tests to see which machine type is required, 
and creates the appropriate execution statement. The test logic must be 
updated to show the new machine type. The machine types correspond to 
the enumerated type mentioned above. The script interprets the type of 
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input and output files required from the number of arguments received by 
the shell script. Some modification may be necessary to create the proper 
execution statement. The script then executes the statement on the local 
machine, or starts a remote shell to run on the specified host. 

6.5 Afakennake 

Makemake is a UNIX shell script to create makefiles for TADS program 
modules. It is run in the source directory of a program module and creates 
a new makefile named Makefile.new. 

Makemake offers many features for managing coupled codes. One diffi
culty in supporting multiple platforms is keeping the object files segregated 
in the source directory. Makemake applies different suffixes to the object files 
from each compiler to avoid problems with linking dissimilar objects. 

Also, targets are provided in the makefiles for checking source codes into 
and out of the Revision Control System. RCS allows the evolution of a code 
to be tracked by managing different releases of each source code in a special 
subdirectory. Any previous release of a subroutine can be recalled so that 
older capabilities are always recoverable. A release numbering scheme enables 
incremental improvements to be distinguished from major new releases. All 
program modules written for TADS use RCS. 

A dependencies section is generated in the makefiles so that if a file is 
updated, all objects dependent on that file will automatically be re-compiled 
when the next executable is made. Dependencies are identified in either the 
C or FORTRAN syntax. A reliable dependencies list greatly reduces the 
time (or uncertainty) involved with creating new executables. 

The ability to create archive libraries of subroutines is also incorporated 
into makefiles created by makemake. These libraries are identified with the 
associated revision level of the code so that executables can be created easily 
for older releases. 

Program modules written for the TADSsystem share include files between 
modules. In each source directory, a symbolic link is made to the include files 
in the common dIrectory. To avoid entering the include files into multiple 
RCS directories, the symbolic links should be removed before running Make
make. A UNIX shell script rmlinks accomplishes this job. Similarly, the 
script linkinc restores the links. 
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Makemake requires a makefile template. The resulting makefile is effec
tivelyan edited version of the template. To create a different style of makefile, 
the user simply supplies a suitable template. Makemake and the associated 
tools and templates are found in the TOOLS subdirectory. 
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Verification 

The coupled throughflow and blade-to-blade analyses have been successfully 
applied to four cases which will be reviewed here: NASA Rotor 67, the fifth 
stator from an 8-stage core compressor (AST), the first rotor from the Purdue 
Low Speed Turbine Rig, and the vane from a turbine stage tested in a shock 
tunnel (VBI stage). These four cases represent vanes and blades from both 
compressors and turbines, and span the spectrum of turbomachinery flow 
conditions from incompressible to transonic. The purpose of these studies is 
to verify the operation of the TADS system. Euler results from the ADPAC 
throughflow solver are compared with the axisymmetric average of a full 3-D 
Euler ADPAC solution, demonstrating the performance of the body force 
and blockage implementation in the throughflow analysis. Euler solutions of 
individual blade-to-blade streamlines are compared with the corresponding 
results from the full 3-D Euler analysis, to verify the sharing of boundary 
condition information between the throughflow and blade-to-blade analyses. 
The sum of the mass flows from the blade-to-blade analyses are compared 
with the mass flow from the throughflow calculation and with the full 3-D 
calculation to verify the internal consistency of the coupled system. 

7.1 NASA Rotor 67 

NASA Rotor 67 is a transonic fan which has been studied extensively both ex
perimentally and analytically. The highly loaded rotor was tested by Pierzga 
and Wood at NASA Lewis in 1985, Ref. [13]. Analytical researchers have had 
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difficulty matching the data from the experiments, leading to the conclusion 
that the reported "hot shape" of the airfoil was inadequate. Since then, a 
new "hot shape" for the rotor was generated from the cold coordinates us
ing finite element methods at Allison, and subsequent analytical results were 
significantly better. This redefined "hot shape" was used in the current work. 

Contour plots of absolute total pressure are shown for the throughflow 
and 3-D analyses in the section "Verification of Body Force Formulation." 
The 3-D and throughflow analyses have been rerun using finer grids, and 
those results are presented here. 

The analysis was run for three full iterations: that is, the throughflow 
analysis and blade-to-blade solvers were run three times each, updating the 
meridional and blade-to-blade stream surfaces each iteration. Figure 7.1 
shows the relative Mach number contours from the throughflow analysis at 
each iteration. As seen, the shock spreads down the span of the airfoil and 
a radial gradient forms downstream of the airfoil as iterations progress. The 
changes are smaller between the second and third iteration, indicating that 
the total system is converging. The large change between the first and second 
iteration is largely due to changes in the mean stream surface near the leading 
edge. The mass flow varies with iteration, and is closest to the mass flow from 
the full 3-D Euler solution after the third iteration. The pressure ratio drops 
and the efficiency rises with each iteration. The magnitude of the changes 
decreases between iterations. 

Figure 7.2 shows the comparison of the relative Mach number contours 
between the third iteration through TADS and the axisymmetric average of 
the full 3-D Euler solution. The general trends are the same between solu
tions, but the details are different. The contours upstream and downstream 
of the rotor are in good agreement. In the bladed region, the differences are 
much larger. To some extent, these differences are expected because of the 
different solution procedures used. In the full 3-D solution, there is a shock 
structure, but the axisymmetric average de-emphasizes the shocks because 
the shocks are not aligned with the circumferential direction. On the other 
hand, the throughflow analysis is incapable of producing an oblique shock be
cause the flow is assumed axisymmetric. This explains why the strong shock 
is present in the throughflow solution and not in the axisymmetric average. 
The presence of the shock accounts for most of the difference between the 
two solutions. 

The throughflow solution is used primarily to provide the meridional 
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Figure 7.1: The relative Mach number contours show how the throughflow 
solution responded to changes in the mean stream surface between iterations. 
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Figure 7.2: The relative Mach number contours from the third iteration 
and the axisymmetric average of the full 3-D solution are in good agree
ment outside of the bladed region. The presence of the normal shock in the 
throughflow analysis accounts for differences in the blade row. 
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streamline shapes and boundary conditions for the blade-t<rblade analysis. 
If the upstream and downstream solutions are in good agreement, and the 
streamlines from the throughflow solution are close to the streamlines from 
the 3-D solution, then the differences between the solutions are not terribly 
important to the overall analysis. However, the shape and distribution of 
the streamlines have a first order effect on the blade-t<rblade solutions. The 
rate of change of radius (dr / dx) and the rate of change of stream tube height 
(db/dx) appear in the source terms in the quasi-3D analysis. Small irreg
ularities in the streamline shape or the stream tube height can cause large 
differences in the blade-t<rblade solutions. 

Figure 7.3 shows the meridional streamlines computed three ways: from 
the axisymmetric average of the full 3-D Euler analysis, from the third itera
tion of the coupled throughflow and blade-t<rblade system, and from purely 
geometric considerations, saying that flow is directly proportional to area. 
As seen, the streamlines from the TADS solution have nearly the same shape 
as streamlines from the axisymmetric average. The radial locations of the 
streamlines are slightly different, indicating that there is more flow near the 
tip in the full 3-D Euler solution. This relates to the differences in the shock 
structure between the two solutions. 

A second flow feature also affects the distribution of the streamlines in 
the meridional plane. In the blade-t<rblade plane, there is a flow separation 
at the hub region of the rotor, Figure 7.4. The extent of the separation is 
influenced by two factors. First, the radial distribution of the streamlines sets 
the stream tube height in the blade-t<rblade flow, which in turn, influences 
the diffusion near the trailing edge. Second, all of the results presented in 
this report are solutions of the Euler equations. Since the flow is inviscid, 
the separation seen in the solutions is largely a function of the artificial 
dissipation in the various codes. The artificial dissipation scheme in RVCQ3D 
produces more losses than the scheme in ADPAC. It turns out that the 
RVCQ3D solution is quite similar to the hub section of a full 3-D Navier
Stokes solution, because of the artificial dissipation in RVCQ3D. The grids 
used in the blade-t<rblade analysis are clustered near the airfoil surface, which 
exacerbates the problems associated with artificial dissipation in RVCQ3D. 
However, less refined meshes resulted in poor solution quality near the airfoil 
surface due to lack of resolution. 

Figure 7.5 shows the comparison of the midspan sections from the blade
t<rblade analysis and the full 3-D Euler solution. The agreement between 
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Figure 7.3: The meridional streamlines from TADS differ slightly from the 
full 3-D Euler streamlines because of differences in the shock structure be
tween the two solutions. 
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Figure 7.4: The relative Mach number contours at the hub section are similar, 
but significant differences arise because of the separation at the trailing edge 
in the RVCQ3D solution. 
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these solutions is not particularly good, for many of the reasons already 
discussed. The shape of the midspan streamline is different between the 
throughflow analysis and the full 3-D Euler analysis, Figure 7.3. In transonic 
flow, small differences in flow area can have a dramatic effect on the location 
and strength of shock waves. In fact, in the first iteration through TADS, 
it was necessary to use the streamline definition based purely on geometry 
in order to get the blade-to-blade analysis to converge on some streamlines. 
The mean blade-to-blade stream surface was based on the mean camber line 
and Carter's rule in the first iteration, because no blade-to-blade solution was 
available at that point. This stream surface was not correct, and resulted in 
inaccurate positions of the meridional streamlines found from the throughflow 
solution. The blade-to-blade analysis was not able to find a stable solution 
along some of these meridional streamlines. 

Figure 7.6 shows the comparison of the tip sections from the blade-to
blade analysis and the full 3-D Euler solution. These solutions are in rather 
good agreement both qualitatively and quantitatively. Again, the larger wake 
in the RVCQ3D solution is the result of the higher dissipation near the blade 
surface resulting from the damping scheme in RVCQ3D. The tip solutions 
are less influenced by the streamline definition from the throughflow analysis 
because only the blockage is different between the solutions. The location 
of the hub and tip streamlines are fixed to the flow path definition. In light 
of this, it is expected that the hub and tip solutions would be in better 
agreement with the full 3-D solution than the interior streamlines. 

Generally, the TADS solution of NASA Rotor 67 shows that the cou
pling of the program modules within the TADS system is correct. Boundary 
condition information is properly passed between the various codes, and the 
conversions between the non-dimensionalization schemes used in the codes 
are correct. Table 7.1 shows the comparison between successive iterations 
through TADS and the ADPAC 3-D Euler solution for Rotor 67. The agree
ment between the overall performance quantities in TADS and the 3-D Euler 
calculation is quite good. This is remarkable in that there are significant 
local differences between the various solutions, as discussed above. 
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Figure 7.5: The relative Mach number contours at the midspan section are 
different because of differences in the meridional streamlines and stream tube 
heights between the solutions. 
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Table 7.1: Comparison of TADS iterations with ADPAC 3-D Euler solution 
for NASA R t 67 h d t o or sows goo agreemen. 

Flow (lbms/sec) Pressure Ratio Efficiency 
TADS Iter. 1 77.57 1.781 87.8% 
TADS Iter. 2 76.73 1.696 90.9% 
TADS Iter. 3 77.83 1.692 92.2% 
ADPAC3-D Euler 78.52 1.695 92.6% 

7.2 AST Compressor Stator 5 

The fifth stator from the Allison candidate engine for the NASA Advanced 
Subsonic Technology (AST) program was also analyzed with the TADS sys
tem. The AST compressor is an eight stage high speed machine (19000 rpm) 
and is representative of current core compressor designs. The fifth stator was 
chosen because the flow is in the high subsonic range and the flowpath has 
significant contraction. The TADS analysis was performed for three full iter
ations through the throughflow and blade-to-blade analyses, and an ADPAC 
3-D Euler calculation was run for comparison. 

Figure 7.7 shows the Mach number contours from the throughflow analysis 
for each TADS iteration. As seen, there are differences between the first and 
second iteration but the second and third iteration are very similar. Unlike 
the Rotor 67 case, the first iteration, which uses the mean camber line and 
Carter's rule as the mean stream surface, is a good approximation to the 
converged solution. 

Figure 7.8 shows the comparison between the converged throughflow anal
ysis and the axisymmetric average of the 3-D Euler solution. The two so
lutions are in good agreement, both inside and outside the bladed region. 
There are no strong shock waves or large separated zones in either the blade
to-blade or throughflow solutions as there were in the Rotor 67 study. As 
discussed above, strong shocks tend to be misrepresented by the axisym
metric assumption in the throughflow analysis. Also, the losses caused by 
large flow separations are not modeled in the current analysis. The fact that 
losses computed in the blade-to-blade analysis are not communicated to the 
throughflow analysis leads to inconsistencies between the two analyses. In 
the absence of these factors, the coupled system performs well. 

Figure 7.9 shows the meridional streamlines computed from the TADS 
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Figure 7.7: The Mach number contours show little difference between itera
tions, indicating that the initial stream surface (the mean camber line plus 
Carter's rule) is a good approximation to the converged solution. 
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Figure 7.8: The Mach number contours from the converged TADS analysis 
and the axisymmetric average of the full 3-D solution are in good agreement 
both inside and outside the bladed region. 
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Table 7.2: The TADS iterations show good convergence, and reasonable 
agreement with the ADPAC 3-D Euler solution for the AST Compressor 
Stator 5. 

Flow (lbms/sec) 
TADS Iter. 1 68.42 
TADS Iter. 2 69.19 
TADSIter.3 69.18 
ADPAC 3-D Euler 67.58 

analysis and from the axisymmetric average of the 3-D Euler calculation. 
The TADS streamlines are from the first iteration, which is essentially the 
same as the converged solution. As seen, the streamlines are essentially par
allellines, and there is good agreement between the two analyses. Generally, 
the streamlines from the TADS analysis are at slightly higher radii than the 
streamlines from the 3-D solution. These differences have only a minor effect 
on the blade-to-blade solutions. The source terms in the quasi-3D analysis 
contain derivatives of the streamtube height and streamline shape. Because 
the throughflow streamlines are essentially parallel to the axisymmetric av
eraged streamlines, the derivatives are the roughly equal. Thus a quasi-3D 
analysis run with either streamline definition will produce the same result. 

A comparison of the hub, midspan and tip Mach number contours be
tween the two analyses are presented in Figures 7.10, 7.11 and 7.12, respec
tively. In all three cases, there is excellent agreement between the blade-to
blade analysis (RVCQ3D and the ADPAC 3-D Euler analysis. The minor 
differences in the streamline shapes are the cause of the small differences in 
Mach number levels between the solutions. In the hub and tip sections, the 
Mach numbers from the TADS analysis are slightly higher than from the 3-D 
solution. 

Table 7.2 shows the mass flows after each iteration through TADS and 
from the ADPAC3-D Euler solution for the AST fifth stator. The consistency 
between iterations indicates that the TADS analysis has converged, and that 
the first iteration is a good approximation to the converged solution. The 
mass flow from the converged TADS solution is within 2.5% of the full 3-D 
analysis, which is consistent with the blade-to-blade comparisons presented 
above. A small adjustment to the exit static pressure would eliminate this 
difference. 
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1. Streamlines are computed from throughflow solution which used 
the mean camber line plus Carter's deviation angle rule as the 
mean stream surface. 

2. Streamlines are computed from the axisymmetric average of a full 3-D 
Euler solution. 

Figure 7.9: The meridional streamlines between the two analyses are in good 
agreement. 
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Figure 7.10: The Mach number contours at the hub section are in good 
agreement. The quasi-3D solution is at a slightly higher flow rate than the 
3-D Euler section. 
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Figure 7.11: The Mach number contours at the midspan section are in ex
cellent agreement. 
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Figure 7.12: The Mach number contours at the tip section are in good agree
ment. The quasi-3D solution is at a slightly higher flow rate than the 3-D 
Euler section. 
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Table 7.3: The TADS iterations show good convergence for the first rotor of 
the Purdue LSd T b· R· ow ,pee ur me IJ!:. 

Flow (1 bms / sec) Pressure Ratio 
TADS Iter. 1 5.447 .9361 
TADS Iter. 2 6.657 .9326 
TADS Iter. 3 6.765 .9329 
TADS Iter. 4 6.774 .9329 

The AST fifth stator calculations show that the TADS analysis is ca
pable of accurately predicting the flow through a modern compressor stator. 
Carter's deviation angle rule performs well in the absence of shock waves and 
separated zones, yielding effectively the converged solution. In cases such as 
this, it is appropriate to run the TADS system for only one iteration. 

7.3 Purdue Low Speed Turbine Rotor 

The first rotor from the Purdue Low Speed Turbine Rig was chosen as a 
test case because of the high camber of the airfoil. The flow is basically 
incompressible, with a peak Mach number of around 0.3. The flowpath is 
annular, and the wheel spins at 2500 rpm. 

The meridional Mach number contours from the throughflow analysis are 
shown for each iteration of the TADS system in Figure 7.13. The mean 
camber line was used as the initial mean stream surface because Carter's 
deviation angle rule IS not applicable to turbine airfoils. As seen, the TADS 
system converges on the third iteration. Judging from the downstream Mach 
number distribution, the second iteration would be an acceptable stopping 
point for normal design work. Table 7.3 shows the mass flows and pressure 
ratios from each iteration. 

Figure 7.14 shows the meridional streamlines after the first and second 
iterations through the TADS system. The third and fourth iteration are es
sentially replicas of the second iteration, and are not shown. The streamlines 
from the first iteration sag at the trailing edge, probably due to the fact that 
the flow does not follow the mean camber line near the trailing edge. Near 
the hub, the flow is being turned too much, the mass flow will be too high at 
the hub compared to the tip. Most likely, this is the cause of the small dip 
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Figure 7.13: The relative Mach number contours from each iteration show 
that the TADS system is converged after three iterations. 
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in the streamlines near the trailing edge. 
Figure 7.15 shows the blade-t<rblade solutions for the hub, mean and tip 

sections of the Purdue Low Speed Turbine Rig first rotor. ThIs turbine was 
designed to be tW<rdimensional: there is little radial migration of flow, and 
the loadings at each section are approximately the same. There is very little 
difference between the solutions for each section, indicating that the design 
intent was achieved. 

The TADS results show the expected behaVIOr for the Purdue Low Speed 
Turbine Rig. This case has much greater blockage than the compressor cases 
presented above. The success of the analysis indicates that the blockage 
terms are performing as designed in the throughflow analysis. 

7.4 VBI Turbine Vane 

The fourth test case selected to verify the operation of the TADS system is the 
Vane-Blade Interaction (VBI) turbine vane. The VBI turbine is a single stage 
transonic turbine, which spins at 11,400 rpm in an annular flowpath. The 
steady and unsteady performance of the VBI turbine has been investigated 
at the Calspan Research Center by M. Dunn. Reference [6] documents the 
geometry, the experimental apparatus, and presents both experimental and 
analytical aerodynamic data for the VBI turbine. The VBI vane makes a 
good test case because of the significant airfoil thickness and the transonic 
flow. 

The TADS system was run for four full iterations. Figure 7.16 shows the 
Mach number contours from the throughflow analysis after each iteration. 
The solution is converged in three iterations, but the first iteration is a rea
sonable approximation to the converged solution. The meridional streamlines 
found from the throughflow analysis after the first and fourth iterations are 
shown in Figure 7.17. The only difference in the streamlines between the first 
and fourth iterations is near the trailing edge. In turbine airfoils, however, 
the trailing edge is the critical area because the throats are typically set at 
the trailing edge. Changes in the stream tube height at the trailing edge can 
have a significant effect on the Mach number levels seen in the blade-t<rblade 
solutions. In this case, the differences in the midspan solutions between the 
first and fourth iterations are minimal, Figure 7.18. 

Table 7.4 shows the mass flows after each iteration through TADS and 
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Figure 7.14: The meridional streamlines computed from the throughflow 
solution are constant after two iterations. 
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Figure 7.15: The relative Mach number contours from the blade-to-blade 
analysis show that the loading is essentially constant from hub to tip. 
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Figure 7.16: The meridional Mach number contours from each iteration of 
the throughflow analysis show that the TADS system is converged after three 
iterations. 



Venjicatl0n 

Leading 
Edge 

VBI Turbine Vane 
Meridional Streamlines 

Iteration 1 

Meridional streamlines are computed two ways: 

101 

Trailing Edge 

iteration 4 

Iteration 1. Streamlines are computed from the throughflow solution, 
which used the mean camber line as the mean stream 

surface 

Iteration 4. Streamlines are computed from the throughflow solution, 
which used the mean stream surface calculated from the 
blade-to-blade solutions In Iteration 3. 

Figure 7.17: The meridional streamlines from the first iteration are a good 
approximation to the final solution. 
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Figure 7.18: The midspan Mach number contours from the blade-to-blade 
analysis are effectively the same between the first and fourth iteration of the 
TADS system. 
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Table 7.4: The TADS iterations show good convergence, and reasonable 
agreement with the ADPAC 3-D Euler solution for the VBI Turbine Vane. 

Flow (lbms/sec) 
TADS Iter. 1 22.89 
TADS Iter. 2 22.04 
TADSIter.3 24.78 
TADS Iter. 4 24.80 
ADPAC 3-D Euler 23.67 

from the ADPAC3-D Euler solution for the VBI vane. The mass flow reaches 
the converged value on the third iteration, consistent with the meridional 
Mach number contours presented in Figure 7.16. The converged mass flow 
is also in reasonable agreement with the 3-D Euler solution. 

Figures 7.19, 7.20, and 7.21 show the comparison between the RVCQ9D 
blade-to-blade solutions and the ADPAC 3-D Euler prediction for the hub, 
midspan, and tip sections, respectively. As seen, the solutions are generally 
in good agreement, although there are minor differences in the position of 
some contours. 

7.5 Summary 

In each test case, the TADS system predictions are reasonable, and agree 
with 3-D Euler solutions at the same conditions. The good agreement demon
strates not only that the blade-to-blade solver is functioning properly, but 
that the system coupling is correct as well. The TADS system is a coupled 
system of quasi-3D solvers: the throughflow and blade-to-blade analyses both 
solve the governing equations in two dimensions, and rely on outside infor
mation to model the third dimension. The blade-to-blade analysis takes 
its boundary condition information from the throughflow analysis, and the 
throughflow analysis enforces flow tangency to the mean stream surface shape 
found by the blade-to-blade analysis in the bladed region. In order for the 
blade-to-blade results to agree with the 3-D results, the static pressure passed 
from the throughflow analysis must be correct. The static pressure in the 
throughflow solver is set by radial equilibrium at the grid exit. The radial 
equilibrium equation in the throughflow solver predicts the static pressure, 
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ADPAC Full 3-D Euler Solution RVCQ3D Blade-to-Blade Euler Solution 

Hub Section 

Figure 7.19: The Mach number contours from the hub section blade-to-blade 
analysis agree well with the 3-D Euler results. 
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ADPAC Full 3-D Euler Solution RVCQ3D Blade-to-Blade Euler Solution 

Midspan Section 

Figure 7.20: The Mach number contours from the midspan section blade-to
blade analysis agree well with the 3-D Euler results. 
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ADPAC Full 3-D Euler Solution RVCQ3D Blade-to-Blade Euler Solution 

Tip Section 

Figure 7.21: The Mach number contours from the tip section blade-to-blade 
analysis agree well with the 3-D Euler results. 
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accounting for swirl in the flow. 
The test cases presented here demonstrate convincingly that the coupling 

between the analyses in TADS is done correctly. Further, the TADS anal
ysis is applicable to a wide range of problems in turbines and compressor 
airfoil design. There are some difficulties with transonic fans, due to the 
shock structure. Because the actual shock structure is not axisymmetric, 
the throughflow analysis does not predict the the same flow pattern as the 
axisymmetric average of a 3-D prediction in the bladed region. This affects 
the location of the meridional streamlines, and in turn, the blade-to-blade 
analysis. The TADS predictions are good within the limits of the assump
tions in the analysis, but oblique shock waves are not modeled properly in 
an axisymmetric calculation. 
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Chapter 8 

Conclusions 

A turbomachinery airfoil analysis system has been developed by coupling 
a throughflow analysis with a blade-to-blade analysis. This analysis, the 
Turbomachinery Analysis and Design System TADS, enables a designer to 
analyze airfoil shapes without the expense of a full 3-D calculation. A aUI 
was developed to assist the user in controlling the work flow in the analysis. 
Input panels were developed for each task in the analysis, and capability 
was included to run each task on a remote host. Programs were developed to 
link the various grid generators and flow solvers, passing information between 
them by way of files. The system was designed to enable new codes to be 
added to the list of choices for any of the major tasks (e.g.grid generation, 
throughflow analysis, or blade-to-blade analysis). 

The throughflow analysis was developed by adding body force and block
age terms to the ADPAC code. These terms model the presence of the airfoil 
in the axisymmetric flow: the body force terms enforce a turning distribu
tion, and the blockage term simulates the airfoil thickness. Convergence ac
celeration techniques such as multigrid and implicit residual smoothing were 
preserved in the throughflow analysis. The newly developed throughflow 
analysis was verified with simple test cases and with NASA Rotor 67. 

The total coupled analysis was applied to four test cases: NASA Rotor 
67, the AST compressor fifth stator, the Purdue Low Speed Turbine Rig first 
rotor, and the VBI turbine vane. These cases spanned the flow speed regime 
from incompressible to transonic flow. The body force and blockage terms 
were verified with highly cambered, thick airfoils as well as thin low camber 
shapes. In each case, the TADS system converged to a reasonable solution, 
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comparing favorably with 3-D Euler calculations performed at the same flow 
conditions. As a coupled system of codes, iteration is required to converge 
the TADS analysis. In all cases, TADS converged in three or fewer iterations 
through the coupled throughflow and blade-to-blade solutions. With the 
exception of flows with strong shock waves, the analysis has been shown to 
be a good approximation to a 3-D analysis. 
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