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Abstract: This paper describes the process of implementing a complex communications protocol
that provides reliable delivery of data in multicast-capable, packet-switching telecommunication
networks. The protocol, called the Reliable Multicasting Protocol (RMP), was developed
incrementally using a combination of formal and informal techniques in an attempt to ensure the
correctness of its implementation. Our development process involved three concurrent activities:
(1) the initial construction and incremental enhancement of a formal state model of the protocol
machine; (2) the initial coding and incremental enhancement of the implementation; and (3)
model-based testing of iterative implementations of the protocol. These activities were carried out
by two separate teams: a design team and a V&V team. The design team built the-first version of
RMP with limited functionality to handle only nominal requirements of data delivery. This initial
version did not handle off-nominal cases such as network partitions or site failures. Meanwhile,
the V&V team concurrently developed a formal model of the requirements using a variant of
SCR-based state tables. Based on these requirements tables, the V&V team developed test cases
to exercise the implementation. In a series of iterative steps, the design team added new
functionality to the implementation while the V&V team kept the state model in fidelity with the
implementation. This was done by generating test cases based on suspected errant or off-nominal
behaviors predicted by the current model. If the execution of a test in the model and
implementation agreed, then the test either found a potential problem or verified a required
behavior. However, if the execution of a test was different in the model and implementation, then
the differences helped identify inconsistencies between the model and implementation. In either
case, the dialogue between both teams drove the co-evolution of the model and implementation.
We have found that this interactive, iterative approach to development allows software designers
to focus on delivery of nominal functionality while the V&V team can focus on analysis of off-
nominal cases. Testing serves as the vehicle for keeping the model and implementation in fidelity
with each other. This paper describes (1) our experiences in developing our process model; "and
(2) three example problems found during the development of RMP. Although RMP has provided
our research effort with a rich set of test cases, it also has practical applications within NASA. For
example, RMP is being considered for use in the NASA EOSDIS project due to its significant
performance benefits in applications that need to replicate large amounts of data to many network
sites. The RMP source code and documentation are currently available on the WWW via
http://research.ivv.nasa.gov/.

This work is supported by NASA Cooperative Agreement NCCW-0040 under supervision of the
NASA Independent Software Verification and Validation (IV&V) Facility, Fairmont, WV.



1.0 Introduction

Much work has been done in the area of verifying that implementations of communication
protocols conform to their specifications [1,2]. Conformance is usually verified through extensive
testing of an implementation in which tests are derived directly from the protocol specification. If
an implementation behaves in a manner predicted by the protocol specification, then the
implementation is said to conform to the specification. If not, then an error exists in the
implementation of the protocol. Although this method does not formally verify that a protocol
specification and an implementation are consistent, it represents the state-of-the-practice in this
domain of software development.

This paper describes our experiences while trying to formally specify and implement a complex
communications protocol that provides reliable delivery of data in multicast-capable, packet-
switching telecommunications networks. The protocol specification, called the Reliable
Multicasting Protocol (RMP), was developed concurrently with its implementation. The
implementation was developed incrementally using a combination of formal and informal
techniques in an attempt to ensure the correctness of its implementation with respect to the
evolving protocol specification. We found that many formal methods did not help us in the
development of the protocol specification nor its implementation. We concluded that the best uses
for formal methods in our situation was in the specification of the protocol requirements and the
generation of tests derived from the specifications applied to prototype versions of the software
during development.

One of the primary goals of our effort was to achieve high-fidelity between the specification and
implementation during development. High-fidelity means that the specification model and
implementation agree regarding the behavior of the protocol. We felt that if fidelity was not a
primary concern, then there existed the strong possibility that the specification and the
implementation would diverge in behavior. This would render analysis of any formal specification
model irrelevant in the development and maintenance of the software since such analysis would
offer little assurance that the actual code behaved in an identical manner.

Our development process involved two teams: a design team and a verification and validation
(V&V) team. These two teams worked in an iterative, interactive fashion that allowed the design
team to focus on nominal behaviors of the software while the V&V team examined off-nominal
behaviors. The task of the design team was (1) to specify the protocol in terms of mode tables and
(2) implement the protocol in C++ as specified by the mode tables. The task of the V&V team
was to (1) analyze the consistency and completeness of the mode tables by analyzing "paths"
through the mode tables and (2) generate tests from the mode tables for suspect conditions.
Suspect conditions include those paths identified in the mode table model as being deadlock,
livelock, or potential sources of unexpected behaviors. The V&V team used the requirements
mode model to identify cases that were considered by the design team to be unusual or virtually
impossible. In retrospect, these cases were the source of several errors in the specification and
implementation of RMP.

We use the terms "verification and validation" in a different context from their typical usage
because of our bipartite, prototyping development process. In our case, the term "verification"
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refers to activities that help in the identification of off-nominal behaviors of the software based on
analysis of the specification model. We use the term "validation" to refer to activities that involve
testing the implementation for properties based on potential problems revealed through
verification analysis.

The protocol specification as expressed in the mode tables helped us organize and structure tests
while developing implementation prototypes. Testing formed the dialogue by which the two teams
communicated about the intended behavior of the protocol and its implementation. This paper
relates our experiences in developing our approach and describes details of our model-based
testing methods. We do not claim to have "formally verified and validated" the RMP specification
and its implementation, but rather we have developed a strategy and process by which the
evolution of RMP is enhanced by testing and verification. Our approach has been to study the
problems that have occurred during development, testing, and operation of RMP. Through a post-
mortem analysis of problems, we are trying to find methods that may have discovered problems
earlier in the development lifecycle.

2.0 The Reliable Multicasting Protocol (RMP)

The Reliable Multicasting Protocol (RMP) [3] is based on an algorithm originally developed for
reliable delivery of data in broadcast-capable, packet-switching networks [4]. The original
algorithm, which we call the Token Ring Protocol (TRP), allows sites in a packet-switching
network to establish a token ring for distributing responsibility for acknowledgments. A single
token is passed from site to site around the ring and only the holder of the token (called the
current token site) can acknowledge certain data packets. RMP has high-performance
characteristics because acknowledgments themselves are multicast to all other token ring sites.
When a site gets the token (i.e., it becomes the current token site), it multicasts an
acknowledgment if and only if it has seen all data packets since the last acknowledgment it
received. The token is passed in the multicast acknowledgment packet. The acknowledgment
packet includes the source and sequence numbers of data packets it is acknowledging. This allows
each site to detect if any packets are missing. A site will use negative acknowledgments to request
retransmission of any missing packets. When all packets since the last acknowledgment received
have been received by the current token site, then that site can multicast its acknowledgment and
thus pass the token to the next site on the ring. When a token site sends an acknowledgment, it is
assumed that all data packets since it last held the token have been received by all sites.

The sender of a packet assumes that all messages since it last had the token have been received by
the other sites within a requested quality of service (QoS) level. A packet is marked delivered if
and only if it satisfies its QoS level of delivery. The QoS level allows for resilience of the protocol
in the presence of site failures and network partitions. In the case of failures, the token ring
reforms itself around the failed site. In the presence of persistent failures, the application program
using RMP must decide to degrade the QoS level or try again.

RMP differs from previous reliable broadcast protocols like TRP in that an acknowledgment
packet may acknowledge an arbitrary number of data packets. Previous protocols specified that
each data and acknowledgment packets have a one-to-one relationship. This dramatically



Event Ordering

Data(A,l)
Data(B.l)
Ack((A,l),(B,l)AD
Nack(C,1.3)
Ack(NULL,C,4)
Data(B,l) [retransmit]
Data(A,2)
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Ack(NULL,C,4)
Data(A,2)

Nack(C,l,3)
Ack((A,2),B,5)

Data(B.l)
Ack((A,l),
Data(B.l)

Figure 1: An example of an RMP token ring and events

improves throughput in networks with sporadic losses and allows an application to tradeoff
performance and quality of service requirements.

Each site in a token ring maintains a data structure called an Ordering Queue (OrderingQ) in
which acknowledgments and data packets are organized based on timestamps. An Ordering
Queue is consistent if and only if there are no missing data packets for pending acknowledgments.
A missing packet will appear as an empty slot in the OrderingQ that must be filled. When a site
becomes the token site, all empty slots in the OrderingQ since the last acknowledgment received
must be filled. For example, in Figure 1 we show 3 sites of a token ring and a global sequence of
events. No site has complete knowledge of this sequence. It is only shown to illustrate a possible
scenario. Next to each site is a list of the messages sent by that site. First, site A sends a data
packet signified as Data(A,l) where the first parameter is the sending site and the second is the
sequence number of the message. Sequence numbers are unique to individual sites. Second, site B
sends a data packet (Data(B,l)). The initial token site is site B who then acknowledges both data
packets and passes the token to site A. The Ack((A,l),(B,l),A,l) message contains a list of
source identifiers and sequence numbers for two packets, followed by the next token site and the
timestamp of the acknowledgment.

We assume that site C missed the data packet Data(B,l). Table 1 shows a snapshot of the
OrderingQ data structure at site C after it receives the Ack((A,l),(B,l),A,l) message. Upon
receiving this acknowledgment, site C realizes it has missed the Data(B,l) message that should fill
the third slot of the OrderingQ. It knows this because the Data(B,l) packet is listed in the Ack
message from B. Each slot in an OrderingQ corresponds to a timestamp whether explicit in the
case of Ack messages or implicit in the case of Data packets. Site C will multicast a Nack
message to request the data packet to fill the one slot in its OrderingQ at timestamp 3.

After a period during which no data packets are transmitted, Site A will time-out and
subsequently send a multicast NULL Ack packet with timestamp 4. This passed the token to site
C. Site B responds to the Nack by retransmitting the Data(B.l) message. The sequence number
identifies this message uniquely to distinguish it from new messages. After the retransmission of
Data(B.l), site A multicasts another data packet with sequence number 2 as Data(A,2). Since site
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Ack
Data
Data

Timestamp
1
2
3

Token Pass or Data
B - > A
(A,l)
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Number of Packets
2

Table 1: Ordering Queue for Site C with empty slot

Packet
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Data
Ack
Ack
Data

Timestamp
1
2
3
4
5
6

Token Pass or Data
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(A,l)
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A->C
C->B
(A,2)

Number of Packets
2

0
1

Table 2: Final Ordering Queue for Site C

C's OrderingQ is consistent, it multirasts an acknowledgment of the Data(A,2) packet and passes
the token to site B. Table 2 shows the final configuration of site C's OrderingQ.

3.0 Approaches to Verification and Validation of RMP

A formal proof of correctness for the original protocol specification exists [5], but we also wanted
to ensure a high degree of fidelity between the specification and implementation of the protocol.
To achieve this fidelity, we adopted a mode-based, tabular approach based on a variant of SCR-
based tables [6] to express the protocol specification instead of the axiomatic approach in the
original proof. Table 3 shows a small portion of the protocol specification tables for RMP. The
first column shows the current mode. A mode is a superstate that encapsulates a larger set of
specific states of an implementation [7]. While an implementation may change specific variables
and thus move from state to state, the mode may remain unchanged until a major event and
condition occur. Modes allow the specification to view states of the protocol machine at an
appropriate level of abstraction for our analysis. Mode names in Table 3 include TokenSite (the
site holds the token), NotTokenSite (the site does not hold the token), and Getting (the site holds
the token, but must retrieve missing packets). The second column specifies the event which
includes the arrival of a packet (data or acknowledgment (ACK)) or a time-out alarm. The third
column specifies the condition under which a mode transition will occur given the event. In Table
3, we show conditions including checks for consistency of the Ordering Queue and checks to see
if an incoming acknowledgment packet names this site as the new token site. We considered
using condition tables [8] but our approach is currently sufficient for our protocol specification.
The fourth column specifies the new mode if the event and condition are true. Finally, the fifth
column specifies the action that takes place upon the mode transition. An action includes variable
settings, conditions, and output events.

We used model checking to explore potential problems in the requirements mode model and used
testing to explore suspect cases in the implementation. These tests helped verify that the
implementation had the same behavior as the specification in specific cases. We tried several



Current Mode
NotTokenSite

NotTokenSite
NotTokenSite

Getting
TokenSite

Event/Alarm
Ack

Ack
Ack

Data
Pass Alarm

Condition
OrderingQ consistent
and named token site
Not named token site
OrderingQ inconsistent
and named token site

OrderingQ consistent
OrderingQ consistent

New Mode
TokenSite

NotTokenSite
Getting

TokenSite
Passing

Action
-

-
Send Nack
for missing
packets
-
Send Null
Ack

Table 3: Fragment of RMP specification mode tables

different specification methods for RMP including PVS [9], Murphi [10], SMV [11], and SPIN
[12]. We settled on a modified version of Murphi since (1) it was amenable to our tabular
specifications and (2) includes temporal logic operators for verification of liveness, deadlock, and
invariant properties of the specification. Tests were generated by hand from suspect cases and
added to the test suite based on analysis of the Murphi models of the RMP specifications.

This type of approach to analysis played a major role in our effort even though we hoped that
formal methods would reduce the need for testing. We discovered, however, that testing did not
help us verify the protocol after its completion but rather it helped us to discover problems during
the concurrent specification and implementation. We built a test scaffold for RMP by creating a
low-level network stub and used testing as the vehicle for keeping our evolving implementation
and specification in fidelity with each other. The code was annotated with debugging statements
that produced a trace of events and conditions. Such traces were compared against the
specification tables to validate the behavior of the implementation relative to the formal model.
This approach proved to be very useful since the formal model helped us organize our test suite
and provided an abstract model we could analyze.

We built the protocol specification and its implementation concurrently because pragmatic
constraints of implementing the protocol had a feedback effect on the protocol specification.
Performance requirements, programming language peculiarities, and other pragmatic aspects of
the implementation forced us to consider changes to the requirements during implementation. We
adopted an iterative approach to development because we expected these types of problems to
occur. The design team built the first version of RMP with limited functionality to handle only
nominal requirements of data delivery. This initial version did not handle off-nominal cases such
as network partitions or site failures. Meanwhile, the V&V team concurrently developed the
Murphi model of the requirements using the existing mode tables. Based on these requirements
tables, the V&V team developed test cases to exercise the implementation. In a series of iterative
steps, the design team added new functionality to the implementation while the V&V team kept
the Murphi state model in fidelity with the implementation. This was done by generating test cases
based on suspected errant or off-nominal behaviors predicted by the current model. If the
execution of a test in the model and implementation agreed, then the test either found a potential
problem or verified a required behavior. However, if the execution of a test was different in the
model and implementation, then the differences helped identify inconsistencies between the model



and implementation. In either case, the dialogue between both teams drove the co-evolution of the
model and implementation.

4.0 Lessons Learned

Most of the problems found in the RMP specifications and implementation were caused by
incomplete requirements where it was assumed that certain conditions could not occur but
actually did occur in practice. Sometimes, the implementation was coded before the specification
was updated if a pragmatic consideration made such a change expedient in the code. Other times,
we explored solutions in the tables before coding it. Again, the testing between the specification
and implementation during incremental development helped reveal these problems much earlier
than if the process had been more linear.

4.1 The Perpetual Getting Problem

As shown in Table 3, a site will transition from NotTokenSite mode to TokenSite mode if the
OrderingQ is consistent. If the OrderingQ is not consistent, then the site will enter the Getting
-node while retrieving missing packets. Once the OrderingQ is consistent, the site will transition
from Getting mode to the TokenSite mode. This fact was correctly specified in our mode tables,
but the implementation was incorrect because a portion of code for the Getting mode did not
check for consistency of the OrderingQ. The implementation livelocked in the Getting mode in the
case of missing packets.

We were able to discover the problem during analysis for livelock modes using temporal
assertions. A pessimistic analysis yielded potential off-nominal paths in the specification. Under
ideal operating conditions of the protocol, no site should have to enter the Getting mode since no
loss occurs under ideal conditions. Indeed, the problem was not discovered in testing on a Local
Area Network where there was no loss of packets unless the network was congested (a rare
condition). Subsequently, no sites ever entered the Getting mode to retrieve missing packets. The
mode specifications do not explicitly model the loss of a packet, rather the condition of an
inconsistent OrderingQ is an off-nominal behavior when a site becomes the token site. We
constructed a test case for this scenario and found the problem in the implementation.

4.2 The Time-To-Live Problem

RMP relies on an unreliable IP Multicasting layer [13] in which packets have a time-to-live (TTL)
field that controls their propagation in Wide Area Networks. At each router, the TTL field of a
packet is decremented by 1 and checked to see if it is above or below the router threshold. If the
TTL is above the threshold, the router forwards the multicast packet. If not, the packet is not
forwarded. This allows control of the propagation of multicast packets to local, national, and
world-wide distribution.

RMP extends the original TRP work by allowing for the initial formation and subsequent
modifications to the token ring membership list during execution. RMP allows sites to join and
leave the token ring dynamically. Our implementation, however, overlooked the fact that token
rings sites can be local to one another (i.e., at low TTL values), but new sites can be very far



away (i.e., at high TTL values). When the far site tries to join a ring, the far site will not see any
messages due to their low TTL values. Subsequently, when the ring fails to pass the token to the
far site. This failure will trigger a reformation of the ring to exclude the far site. This situation can
repeat itself ad infinitum as long as the far site keeps trying to join the ring.

Time-to-live information was not included in the mode specifications. Therefore, no analysis of
the formal model could have revealed this problem and we could not construct a test for this
condition from the model. We feel, however, that this problem could have been detected during
implementation when the design team needed to fill in the TTL field of the packets. The designers
should have noted that the requirements are silent on how to fill-in the TTL field of any packet
constructed. This silence invites a designer to make inconsistent assumptions about the behavior
of the protocol machine.

4.3 The Leaving Ring Tlmestamp Problem

When a token site tries to leave a ring in a controlled fashion (i.e., rather than an abrupt site
failure), it must wait until the token completes a cycle of the remaining ring sites before actually
leaving the ring. The reason for this restriction is due to the fact that the departing site may hold
packets that are missing at other sites. If the departing site leaves too soon, then some empty slots
in the Ordering Queues of other sites cannot be filled.

The specifications incorrectly stated that a site may leave the ring when it has seen N timestamped
packets where N is the number of site remaining on the token ring. The problem with this
approach is that any intervening data packet can fill a timestamp slot causing the departing site to
exit the ring before all remaining sites have acknowledged. We incorrectly assumed a one-to-one
relationship between timestamps and acknowledgment packets. As a result, the ring is wedged in
a livelock state because sites cannot fill some empty slots in their Ordering Queues.

The problem was found through direct analysis of the formal model and testing revealed the
problem in the implementation. It took unusual conditions, however, to reproduce this problem in
practice because the network had to be congested before the behavior appeared. The formal
model produced a suspect path and the corresponding test produced a livelock condition. We feel
that this problem was easily revealed by analysis of the formal model. In addition, the formal
model helped structure exploration of test conditions during the resolution of the problem after its
initial discovery.

5.0 Conclusions

We do not claim that RMP has been "verified and validated" to the extent that it is totally correct,
rather that we have developed a technique that strengthens analysis and testing in the long-term
development of our software. Short term problems did occur, but they helped us to evolve a
specification model in high-fidelity with an implementation. Co-evolution of the formal
specification model and the implementation was the most useful result of our study. Our technique
allowed our two teams to structure their tests and other analysis activities. Their activities
supported each other in the development of the implementation and refinement of the
specifications.



In the future, we will continue to use RMP as a testbed problem and explore new specification
and analysis techniques that complement incremental software development activities. We are
continuing to evolve the specifications even though the software has been released in a Beta test
version. This type of release scheme limits the use of RMP to non-critical projects and helps us
explore operational problems. When a problem in operation does occur, we are using the mode
tables to trace where the problem occurred. This has been useful in understanding problems,
finding why problems were or were not detected earlier, and refining the specification
incrementally.
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