
NASA-CR-200023

NASA/WVU Software IV & V Facility
Software Research Laboratory
Technical Report Series

NASA-IVV-95-006
. WVU:SRL-95-006
WVU-SCS-TR.95-26

CERC-TR-TM-95-010

Verification and Validatiop qf $ Reliable Multicast Protocol

by John R. CallaHan and Todd L. Montgomery

'(NASA-CR-200023) VERIFICATION AND
: ;VALIOATION OF A RELIABLE MULTICAST

IPROTOCOL (West Virginia Univ.)
15 p

N96-17784

Unclas

G3/61 0098255

National Aeronautics and Space Administration

West Virginia University

Verification and Validation of a Reliable Multicast Protocol
John R. Callahan Todd L. Montgomery

{callahan,tmont l@cerc.wvu.edu
NASA Software IV&V Facility

West Virginia University
100 University Drive
Fairmont, WV 26554

304-367-8235,304-367-8211 (fax)

Abstract

This paper describes the methods used to specify and implement a complex communications protocol that provides
reliable delivery of data in multicast-capable, packet-switching telecommunication networks. The protocol, called
the Reliable Multicasting Protocol (RMP), was developed incrementally by two complementary teams using a
combination of formal and informal techniques in an attempt to ensure the correctness of the protocol
implementation. The first team, called the Design team, initially specified protocol requirements using a variant of
SCH requirements tables and implemented a prototype solution. The second team, called die V&V team,
developed a state model based on die requirements tables and derived test cases from these tables to exercise the
implementation. In a series of iterative steps, the Design team added new functionality to the implementation while
the V&V team kept the state model in fidelity with the implementation through testing. Test cases derived from
state transition paths hi the formal model formed the dialogue between teams during development and served as
the vehicles for keeping die model and implementation in fidelity with each other. This paper describes our
experiences hi developing our process model, details of our approach, and some example problems found during
die development of RMP.

1.0 Introduction

Much work has been done in the area of verifying that implementations of communication
protocols conform to their specifications [1,2]. Conformance is usually verified through extensive
testing of an implementation in which tests are derived directly from the protocol specification. If
an implementation behaves in a manner predicted by the protocol specification, then the
implementation is said to conform to the specification. If not, then an error exists in the
implementation of the protocol. Although this method does not formally verify that a protocol
specification and an implementation are consistent, it represents the state-of-the-practice in this
domain of software development.

This paper describes our experiences while trying to formally specify and implement a complex
communications protocol that provides reliable delivery of data in multicast-capable, packet-
switching telecommunications networks. The protocol specification, called the Reliable
Multicasting Protocol (RMP), was developed concurrently with its implementation. The
implementation was developed incrementally using a combination of formal and informal
techniques in an attempt to ensure the correctness of its implementation with respect to the
evolving protocol specification. We found that many formal methods did not help us in the
development of the protocol specification nor its implementation. We concluded that the best uses
for formal methods in our situation was in the specification of the protocol requirements and the

generation of tests derived from the specifications applied to prototype versions of the software
during development.

One of the primary goals of our effort was to achieve high-fidelity between the specification and
implementation during development. High-fidelity means that the specification model and
implementation agree regarding the behavior of the protocol. We felt that if fidelity was not a
primary concern, then there existed the strong possibility that the specification and the
implementation would diverge in behavior. This would render analysis of any formal specification
model irrelevant in the development and maintenance of the software since such analysis would
offer little assurance that the actual code behaved in an identical manner.

Our development process involved two teams: a design team and a verification and validation
(V&V) team. These two teams worked in an iterative, interactive fashion that allowed the design
team to focus on nominal behaviors of the software while the V&V team examined off-nominal
behaviors. Nominal behaviors cover conditions in the software that are considered normal, i.e.,
they do not include abnormal (i.e., off-nominal) events such as failures, lack of resources,
conflicts, and other rare events. The task of the design team was (1) to specify the protocol in
terms of mode tables; and (2) implement the protocol in C++ as specified by the mode tables. The
task of the V&V team was to (1) analyze the consistency and completeness of the mode tables by
analyzing "paths" through the mode tables; and (2) generate tests from the mode tables for
suspect conditions. Suspect conditions include those paths identified in the mode table model as
being deadlock, livelock, or potential sources of unexpected behaviors. The V&V team used the
requirements mode model to identify cases that were considered by the design team to be unusual
or virtually impossible. In retrospect, these cases were the source of several errors in the
specification and implementation of RMP.

The protocol specification as expressed in the mode tables helped us organize and structure tests
while developing implementation prototypes. Testing formed the dialogue by which the two teams
communicated about the intended behavior of the protocol and its implementation. This paper
relates our experiences in developing our approach and describes details of our model-based
testing methods. We do not claim to have "formally verified and validated" the RMP specification
and its implementation, but rather we have developed a strategy and process by which the
evolution of RMP is enhanced by testing and verification. Our approach has been to study the
problems that have occurred during development, testing, and operation of RMP. Through a post-
mortem analysis of problems, we are trying to find methods that may have discovered problems
earlier in the development lifecycle, then to feed this information back into the process to improve
the protocol development and design.

2.0 The Reliable Multicasting Protocol (RMP)

The Reliable Multicasting Protocol (RMP) [3] is a unique, industrial-strength protocol developed
at West Virginia University in cooperation with NASA that will soon be adopted as an Internet
standard and is being used currently in many network software applications. RMP is based on an
algorithm originally developed for reliable delivery of data in broadcast-capable, packet-switching
networks [4]. The original algorithm, which we call the Token Ring Protocol (TRP), allows sites
in a packet-switching network to establish a token ring for distributing responsibility for

acknowledgments. A single token is passed from site to site around the ring and only the holder of
the token (called the current token site) needs to acknowledge certain data packets. RMP has
high-performance characteristics because acknowledgments themselves are multicast to all other
token ring sites. This approach orders the data packets at consistently across all sites and
provides a means of passing the token to a new token site.

When a site gets the token (i.e., it becomes the current token site), it multicasts an
acknowledgment if and only if it has seen all data packets since the last acknowledgment it
received. The token is passed in the multicast acknowledgment packet. The acknowledgment
packet includes the source and sequence numbers of data packets it is acknowledging. This allows
each site to detect if any packets are missing. A site will use negative acknowledgments to request
retransmission of any missing packets. When all packets since the last acknowledgment received
have been received by the current token site, then that site can multicast its acknowledgment and
thus pass the token to the next site on the ring. When a token site sends an acknowledgment, it is
guaranteed that all data packets since it last held the token have been received by all sites.

The sender of a packet assumes that all messages since it last had the token have been received by
the other sites within a requested quality of service (QoS) level. A packet is marked delivered if
and only if it satisfies its QoS level of delivery. The QoS level allows for resilience of the protocol
in the presence of site failures and network partitions. In the case of failures, the token ring
reforms itself around the failed site. In the presence of persistent failures, the application program
using RMP must decide to degrade the QoS level or try again.

RMP differs from previous reliable broadcast protocols like TRP in that an acknowledgment
packet may acknowledge an arbitrary number of data packets. Previous protocols specified that
each data and acknowledgment packets have a one-to-one relationship. Our approach, however,
improves throughput in networks with sporadic losses.

Each site in a token ring maintains a data structure called an Ordering Queue (OrderingQ) in
which acknowledgments and data packets are organized based on times tamps. An Ordering
Queue is consistent if and only if there are no missing data packets for pending acknowledgments.
A missing packet will appear as an empty slot in the OrderingQ that must be filled. When a site
becomes the token site, all empty slots in the OrderingQ since the last acknowledgment received
must be filled. For example, in Figure 1 we show 3 sites of a token ring and a global sequence of
events. No site has complete knowledge of this sequence. It is only shown to illustrate a possible
scenario. Next to each site is a list of the messages sent by that site. First, site A sends a data
packet signified as Data(A,l) where the first parameter is the sending site and the second is the
sequence number of the message. Sequence numbers are unique to individual sites. Second, site B
sends a data packet (Data(B.l)). The initial token site is site B who then acknowledges both data
packets and passes the token to site A. The Ack((A,l),(B,l),A,l) message contains a list of
source identifiers and sequence numbers for two packets, followed by the next token site and the
timestamp of the acknowledgment.

Event Ordering \SJ Nack(C,l,3)
Data(A,l) / Ack((A,2),B,5)
Data(B.l) X
Ack((A,l),(B,l),A,l) C Multicast
Nack(C,l,3) /—X I Media
Ack(NULL,C,4)
Data(B.l) [retransmit] \J* 7 __ Data(B.l)
Data(A,2) Data(A,l) / ^\ Ack((A,l),
Ack((A,2),B,5) Ack(NULL,C,4) (B J Data(B,l)

Data(A,2)

Figure 1: An example of an RMP token ring and events

We assume that site C missed the data packet Data(B.l). Table 1 shows a snapshot of the
OrderingQ data structure at site C after it receives the Ack((A,l),(B,l),A,l) message. Upon
receiving this acknowledgment, site C realizes it has missed the Data(B.l) message that should fill
the third slot of the OrderingQ. It knows this because the Data(B,l) packet is listed in the Ack
message from B. Each slot in an OrderingQ corresponds to a timestamp whether explicit in the
case of Ack messages or implicit in the case of Data packets. Site C will multicast a Nack
message to request the data packet to fill the one slot in its OrderingQ at timestamp 3.

After a period during which no data packets are transmitted, Site A will time-out and
subsequently send a multicast NULL Ack packet with timestamp 4. This NULL Ack passes the
token to site C. Site B responds to the Nack by retransmitting the Data(B,l) message. The
sequence number identifies this message uniquely to distinguish it from new messages. After the
retransmission of Data(B.l), site A multicasts another data packet with sequence number 2 as
Data(A,2). Since site C's OrderingQ is consistent, it multicasts an acknowledgment of the
Data(A,2) packet and passes the token to site B. Table 2 shows the final configuration of site C's
OrderingQ.

3.0 Verification and Validation of RMP

A formal proof of correctness for the original TRP protocol specification exists [5], but we also
wanted to ensure a high degree of fidelity between the specification and implementation of the
protocol. To achieve this fidelity, we adopted a mode-based, tabular approach based on a variant
of SCR-based tables [6] to express the protocol specification instead of the axiomatic approach in
the original proof.

Table 3 shows a small portion of the protocol specification tables for RMP. The first column
shows the current mode. A mode is a superstate that encapsulates a larger set of specific states of
an implementation [7J. While an implementation may change specific variables and thus move
from state to state, the mode may remain unchanged until a major event and condition occur.
Modes allow the specification to view states of the protocol machine at an appropriate level of

Packet
Ack
Data
Data

Times tamp
1
2
3

Token Pass or Data
B->A
(A,l)
missing

Number of Packets
2

Table 1: Ordering Queue for Site C with empty slot

Packet
Ack
Data
Data
Ack
Ack
Data

Times tamp
1
2
3
4
5
6

Token Pass or Data
B->A
(A,l)
(B,l)
A->C
C->B
(A,2)

Number of Packets
2

0
1

Table 2: Final Ordering Queue for Site C

abstraction for our analysis. Mode names in Table 3 include TokenSite (the site holds the token),
NotTokenSite (the site does not hold the token), and Getting (the site holds the token, but must
retrieve missing packets before it may generate an acknowledgment message). The second column
specifies the event which includes the arrival of a packet (data or acknowledgment (ACK)) or a
time-out alarm. The third column specifies the condition under which a mode transition will occur
given the event. In Table 3, we show conditions including checks for consistency^ the Ordering
Queue and checks to see if an incoming acknowledgment packet names this site as the new token
site. We considered using condition tables [8] but our approach is currently sufficient for our
protocol specification. The fourth column specifies the new mode if the event and condition are
true. Finally, the fifth column specifies the action that takes place upon the mode transition. An
action includes variable settings, conditions, and output events.

The RMP specifications provide a common view that design, development, testing, and
verification can share. In our case, conflicts that arose between our development groups were
based on completeness and consistency problems rather than differing semantic interpretations of
the specifications. The specification serves as a common language that all entities involved used to
communicate effectively.

We used model checking to explore potential problems in the requirements mode model and used
testing to explore suspect cases in the implementation. These tests helped verify that the
implementation had the same behavior as the specification in specific cases. We tried several
different specification methods for RMP including PVS [9], Murphi [10], SMV [11], and SPIN
[12]. We settled on the use of modified versions of Murphi and SPIN since (1) they are amenable
to our tabular specifications and (2) both include temporal logic operators for verification of
liveness, deadlock, and invariant properties of the specification. Tests were generated by hand
from suspect cases and added to the test suite based on analysis of the Murphi models of the RMP
specifications. In this manner, testing served as the vehicle for keeping our evolving
implementation and specification in fidelity with each other.

Current Mode
NotTokenSite

NotTokenSite
NotTokenSite

Getting
TokenSite

Event/Alarm
Ack

Ack
Ack

Data
Pass Alarm

Condition
OrderingQ consistent
and named token site
Not named token site
OrderingQ inconsistent
and named token site

OrderingQ consistent
OrderingQ consistent

New Mode
TokenSite

NotTokenSite
Getting

TokenSite
Passing

Action
-

-
Send Nack
for missing
packets
-
Send Null
Ack

Table 3: Fragment of BMP specification mode tables

This type of approach to analysis played a major role in our effort even though we hoped that
formal methods would reduce the need for testing. We discovered, however, that testing did not
help us validate the protocol after its completion but rather it helped us to discover problems
during the concurrent specification and implementation. To execute these tests on the evolving
implementation, we built a test scaffold for RMP by creating a low-level network stub and
annotated the code with debugging statements that produced a trace of events and conditions.
Such traces were compared against the specification tables to validate the behavior of the
implementation relative to the formal model. This approach proved to be very useful since the
formal model helped us organize our test suite and provided an abstract model for analysis.

We built the protocol specification and its implementation concurrently because pragmatic
constraints of implementing the protocol had a feedback effect on the protocol specification.
Performance requirements, programming language peculiarities, and other pragmatic aspects of
the implementation forced us to consider changes to the requirements during implementation. We
adopted an iterative approach to development because we expected these types of problems to
occur. The design team built the first version of RMP with limited functionality to handle only
nominal requirements of data delivery. This initial version did not handle off-nominal cases such
as network partitions or site failures. Meanwhile, the V&V team concurrently developed the
Murphi model of the requirements using the existing mode tables. Based on these requirements
tables, the V&V team developed test cases to exercise the implementation. In a series of iterative
steps, the design team added new functionality to the implementation while the V&V team kept
the Murphi state model in fidelity with the implementation. This was done by generating test cases
based on suspected errant or off-nominal behaviors predicted by the current model. If the
execution of a test in the model and implementation agreed, then the test either found a potential
problem or validated a required behavior. However, if the execution of a test was different in the
model and implementation, then the differences helped identify inconsistencies between the model
and implementation. In either case, the model-based testing created a dialogue between teams that
drove the co-evolution of the model and implementation.

These are all aspects discussed in more detail in the following sections. The first section discusses
our experiences with formal models of RMP. The second discusses the test scaffolding designed
for RMP to ensure fidelity between the implementation and model. The last section discusses the
generation of test paths based on the specification state model.

3.1 Formal Model(s) of RMP

Based on the RMP requirement tables, we constructed a formal model of RMP using different
model checkers to explore potential problems in the specification. We tried several different
specification methods for RMP including PVS, SMV, Murphi, and SPIN. After trying all these
tools and comparing their performances, we finally settled on Murphi and SPIN. Both of them
have the following desired properties:

• Both are automatic model checkers and the RMP specifications can be easily transferred to
the tool-specific specification language, i.e. PROMELA for SPIN,

• Both of them support high-level language features, such as user-defined data type,
procedures, structures, and

• Both are designed for the verification of asynchronous concurrent systems, including detecting
the absence of deadlock, unexecutable code, incomplete specification, non-progressive loops
and the validation of system invariants.

To construct a formal model with high fidelity to the specifications requires a suitable level of
abstraction. If the model is too abstract, the model checker may not be able to supply useful
information. On the other hand, if the model is too detailed, the model checker may not be able to
handle the state-explosion problem and the large memory requirement. It is important to make
this decision on the right level of abstraction so that the protocol specification can be fully
described by the model checker and the formal model can supply useful feedback to the protocol
design.

Due to the complexity of the protocol and the limitations of the existed tools, we adopted a two-
step method. First, a high-level single-site state-machine transition model was constructed using
Murphi. Murphi is specifically designed for the high-level finite-state concurrent systems, and it
supports the verification of liveness specifications written in linear temporal logic (LTL) and the
specification of fairness properties. This high-level model served to check the completeness of the
specification of state transitions as well as some invariants conditions. After specifying fairness
properties on events, we are confident that the protocol does preserve the required properties if
the fairness properties hold. These properties are crucial to the services that RMP attempts to
provide. For example, properties relating to passing the token and eventually getting the token
are inherently crucial for RMP to meet its requirements of ordered, atomic delivery of data.

Secondly, we constructed a lower-level, multiple-site interactive model using SPIN. Even though
the current version of SPIN supports linear temporal logic specifications, it is better utilized as a
tool for validating data communication protocols through simulation. Consequently, it has explicit
support for processes communications, i.e. asynchronous message channels and synchronization
by rendezvous. At this lower-level model, we were more interested in the mutual-interactions
between different site members in order to verify that the protocol specifications are correct to the
extent that they guarantee the reliable delivery of data packets among token ring members.
Combining the SPIN and Murphi models, we made significant progress in verifying the state-
transitions as the result of site event-response and the interaction between sites.

The model checkers have been used in two ways: checking deadlock and checking invariants. By
default, checks for deadlock conditions are performed by an exhaustive search of all possible state
transitions. This is used to determine the completeness and consistency of the specification. The
system invariants and state-assertions are used to verify the required properties of the protocol.
During the initial development of the formal model, deadlock or failed assertions are almost
unavoidable due to overly pessimistic analysis of the state space and the lack of appropriate
fairness conditions. Through interactions with the protocol designers and the iterative
improvement of the formal model, those deadlock conditions and failed assertions were elided
with appropriate changes and fairness conditions added (e.g., that the network will eventually
deliver a message). Consequently the specification and the formal model were refined in the
process. After the model has been established in the deadlock-free state, more modifications and
fine-tuning were required to put system-wide and state-specific invariants into the model. In this
way, we successfully identified some incomplete specification and design flaws. Some examples of
problems found using this approach are discussed in section 4.

3.2 Test Scaffold and Scripting Framework

While maintenance of the formal model through testing the evolving implementation took
considerable effort, it also required work to develop a testing framework. This framework was
designed to be able to simulate any path through the specifications and show that the
implementation exhibits a specific sequence of events and state transitions. In the implementation,
the actual components that are responsible for protocol operation (i.e., the OrderingQ, DataQ,
and event handling routines) were implemented with an interface that provides a generic way of
handling any event specified in the specifications. With this interface in place, the development of
the testing framework was facilitated. In addition, a scripting language was developed based on
the event interface that allowed every aspect of the implementation's state to be examined
between events. These included the ability to examine RMP data structures, such as the
OrderingQ, the ability to force specific conditions to be true or false based solely on the event
type and event data, and the ability to control the order and frequency at which events are
processed. In contrast to the year of development and 22,000+ lines of C++ code for the RMP
implementation, the scripting code was developed in three days and consists of about 1,200 lines
of yacc, lex, and C++ code. Much of the scripting code was enhanced as needs arose to examine
the state of the test relative to the formal model. Our approach proved to be a valuable
development tool as well as an indispensable testing and verification tool during development.

The scripting framework developed for RMP has general purpose applications because the same
methodology can be applied to other implementations of event-based systems. Event-based
mechanisms are becoming increasingly popular programming approaches for many developers.
For example, many window-oriented operating systems require programming in an event-based
paradigm. Such systems allow programmers to design systems that respond specifically to certain
input conditions and events. However, event-based systems have several problems. First, event-
based systems must carry large amounts of state around between events. This makes it difficult to
express event-based systems using functional specifications because the entire state must be
passed as an argument to each function.

The need to examine the state of objects and ask "what if' questions of the RMP implementation
has proven to be one of the most valuable features of the testing framework used by both RMP
development teams. The framework allows questions to be asked that would be difficult to
duplicate in actual application execution. Any formal model can address only limited levels of
detail to avoid state explosion problems, but the scripting framework can continue to ask
questions at relatively detailed levels. For example, the V&V team often developed "what if'
questions based on intuition and tested the implementation for conformity to their expectations.
Subsequently, the test results were compared to the formal model for conformity to the
specifications. This approach complemented the analysis of the formal model and further helped
refine the specifications.

The scripting language made test management simpler by automating test generation and
organizing the execution of regression tests. The ability to make assertions on the state of data
structures allowed scripts to be developed that contained key assertions checked during test
execution. If a script passed all the assertions, then the test passed. This provided an efficient
means of detecting problems but it also gave convenient clues as to the source of errors. The
scripting framework also helped as a configuration management tool. The set of scripts used for
regression testing became larger over time. In an effort to control this expansion, scripts were
given versions to show the relevance that a particular sequence of events had on the current
model. Some scripts were outdated as the specifications changed to meet problems. Typically,
these scripts would fail as they no longer were valid with the current specifications. These scripts
were then updated to meet the new specifications. Other configuration management issues have
also been applied to the scripting framework, such as date/time stamps on scripts to examine the
effects of changes. The scripting framework also had a reverse effect into the implementation
development as assertions were placed directly into the code to check for dangerous conditions
during actual operation. The placement of these assertions was dependent on problems
previously encountered in scripts. In this way, the scripting framework has acted as a catalyst to
spark development into thinking about possibly errant conditions in the design.

3.3 State Exploration and Test Path Generation

To this point, testing of RMP has consisted of deriving tests from the requirements state machine.
This entails the creation of test scripts that define paths through the state machine. Traditionally,
testing along these paths is used to increase confidence that the implementations meets the
specifications. We felt, however, that this process best serves to help refine the requirements
themselves. The scripts derived from these requirements are executed in the scripting framework
on the evolving implementation.

One major problem has been determining which paths constitute an adequate test suite. Initially,
we created paths starting at an initial state and continuing until the path had reached a state that
had been previously visited. These paths only focused on the gross state transitions of the
protocol engine rather than changes to specific variables. These test paths form a test tree with
the initial state at the root.

We used the method described above primarily to examine the reformation aspects of RMP.
Reformation is the process by which an RMP token ring adapts to network partitions and site

failures. We began our testing on reformation aspects of RMP because we were still developing
the reformation specifications of the protocol. We felt that testing would give us the insight
necessary to refine the requirements and the implementation concurrently. This method served
its purpose and we were able to find many problems. Again, a few of these will be described in
the next section.

However, this method of test suite generation was unacceptable for the remainder of the RMP
specification. Since RMP has such a large state space, 12 states, and a large number of events,
15, we decided that the test suite would contain more than 80,000 separate test paths even when
limited to gross state transitions. The state explosion problem forced us to look for another
approach. We needed a method that would be powerful enough to find errors, but have a
relatively small test suite.

The W methods [1] of test suite generation is a powerful technique for finding operational and
transitional errors. The partial W method has the same power and generates fewer test paths in
the suite. However, we did not used these methods for two reasons. First, the methods only
characterize a state machine by its inputs and outputs. The methods assume that the state of the
machine cannot be known at any time. In our case, however, the scripting framework does allow
the tester to examine the state between events. Furthermore, the W methods work well only for a
restricted set of state machines. This includes small state machines with no global variables.
RMP was too large and depends on the state of the Ordering Queue as a global variable. If our
RMP model was restricted within these limits, we felt that the new state machine would no longer
be representative of the implementation.

We were able, however, to restrict exploration of paths based on a transition cover of the state
machine. A transition cover consists of examining each state's behavior to all possible events
regardless of whether or not an event causes a transition or not. The cover starts at the initial
state and continues until all states have been explored. Verifying the completeness of the
implementation in this manner has given us confidence that each state behaves as the
specifications require. In addition, the number of tests needed for the cover was less than 200,
which was not an unreasonable amount.

We have recently begun the process of building a graphical user interface (GUI) to visualize and
manage exploration of test paths derived from the specifications. The GUI tool will display the
test tree, allow the user to explore any state that is a leaf on the tree, and create a test template
from any path in the tree.

4.0 Types of Problems Found During Development

Most of the problems found in the RMP specifications and implementation were caused by
incomplete requirements where it was assumed that certain conditions could not occur but
actually did occur in practice. Sometimes, the implementation was coded before the specification
was updated if a pragmatic consideration made such a change expedient in the code. Other times,
we explored solutions in the tables before coding it. Again, the testing between the specification
and implementation during incremental development helped reveal these problems much earlier
than if the process had been more linear.

10

4.1 Lack of Fidelity between the Specifications and Implementation

As shown in Table 3, a site will transition from NotTokenSite mode to TokenSite mode if the
OrderingQ is consistent. If the OrderingQ is not consistent, then the site will enter the Getting
mode while retrieving missing packets. Once the OrderingQ is consistent, the site will transition
from Getting mode to the TokenSite mode. This fact was correctly specified in our mode tables,
but the implementation was incorrect because a portion of code for the Getting mode did not
check for consistency of the OrderingQ and did not transition into the TokenSite mode. The
implementation livelocked in the Getting mode in the case of missing packets.

We were able to discover the problem during analysis for livelock modes using temporal
assertions. A pessimistic analysis yielded potential off-nominal paths in the specification. Under
ideal operating conditions of the protocol, no site should have to enter the Getting mode since no
loss occurs. Indeed, the problem was not discovered in testing on a Local Area Network where
there was no loss of packets unless the network was congested (a rare condition). Subsequently,
no sites ever entered the Getting mode to retrieve missing packets. The mode specifications do
not explicitly model the loss of a packet, rather the condition of an inconsistent OrderingQ is an
off-nominal behavior when a site becomes the token site. We constructed a test ;ase for this
scenario and found the problem in the implementation.

Another inconsistency between the protocol specification and its implementation was found
during implementation of the fault recovery process for RMP. The fault recovery process in
RMP, called reformation, is of critical importance to the protocol's specification and
implementation. Fault tolerant applications are, by their very nature, difficult to develop and
specify in terms that are generic enough to be useful to allow any implementation to interoperate
with another. Because of these facts, RMP's fault recovery process has undergone and continues
to undergo very serious examination. RMP uses a two-phase commit protocol to recover from
non-corruptive failures. Non-corruptive failures are those problems encountered during execution
that do not corrupt continuous protocol operation. In brief, RMP's fault recovery process does
two steps: (1) attempts to generate a valid view of the current membership, (2) install this
membership view at all sites in the membership view. In the face of arbitrary messages being
dropped, duplication of messages, and multiple points of failure within the protocol operation and
network topology, these two steps become complicated to perform in an efficient manner.

While constructing tests to explore the state space of the RMP implementation, the verification
team came across several state traces that did not execute through the set of states as predicted by
the specification model. For these cases, the development team traced execution through both the
model and implementation. This trace revealed inconsistencies and led to an expanded and
improved fault recovery process. Both the specifications and implementation have been expanded
to include several cases not originally expected.

4.2 Lack of Detail In the Specifications

RMP relies on an unreliable IP Multicasting layer [13] in which packets have a time-to-live (TTL)
field that controls their propagation in Wide Area Networks. At each router, the TTL field of a
packet is decremented by a metric and checked to see if it is above or below the router threshold.

11

If the TTL is above the threshold, the router forwards the multicast packet. If not, the packet is
not forwarded. This allows control of the propagation of multicast packets to local, national, and
world-wide distribution.

RMP extends the original TRP work by allowing for the initial formation and subsequent
modifications to the token ring membership list during execution. RMP allows sites to join and
leave the token ring dynamically. Our implementation, however, overlooked the fact that token
rings sites can be local to one another (i.e., at low TIL, values), but new sites can be very far
away (i.e., at high TTL values). When the far site tries to join a ring, the far site will not see any
messages due to the low TTL values at which they are being sent. Subsequently, the ring fails to
pass the token to the far site. This failure will trigger the initiation of the fault recovery process.
Since the fault recovery process uses explicit unicast messages, the far site will see the fault
recovery process start and will participate. However, once the process completes, the multicast
packets will not arrive at the far site and the fault recovery process will start again. This situation
can repeat itself ad infinitum as long as the far site keeps trying to join the ring.

Time-to-live information was not included in the mode specifications. Therefore, no analysis of
the formal model could have revealed this problem and we could not construct a test for this
condition from the model. We feel, however, that this problem would have been detected during
implementation when the design team needed to fill in the TTL field of the packets. The designers
should have noted that the requirements are silent on how to fill-in the TTL field of any packet
constructed. This silence invites a designer to make inconsistent assumptions about the behavior
of the protocol machine. In the current implementation and specifications, the case outlined
above is left up to the actual application to control. The application has the ability to deny
membership based on several factors, one of them being the TIL, specified by the member
requesting to join. Also, when a site is added that is out of TIL, range from the group, then the
application can request that the TTL of the group be raised to include the new member.

4.3 Specification Errors

When a token site tries to leave a ring in a controlled fashion (i.e., rather than an abrupt site
failure), it must wait until the token completes a cycle of the remaining ring sites before actually
leaving the ring. The reason for this restriction is due to the fact that the departing site may hold
packets that are missing at other sites. If the departing site leaves too soon, then some empty slots
in the Ordering Queues of other sites cannot be filled.

The specifications incorrectly stated that a site may leave the ring when it has seen N timestamped
packets where N is the number of site remaining on the token ring. The problem with this
approach is that timestamps and number of token passes do not coincide in any sort of predictable
fashion. By basing the leaving criteria solely on timestamps, the site may leave before the token
has passed around the ring. As a result, the ring can be wedged in a livelock state because sites
cannot fill some empty slots in their Ordering Queues if the departing site was the only site
holding a needed packet.

The problem was found through direct analysis of the formal model and testing revealed the
problem in the implementation. It took unusual conditions, however, to reproduce this problem in

12

practice because the network had to be congested before the behavior appeared. The formal
model produced a suspect path and the corresponding test produced a livelock condition. We feel
that this problem was easily revealed by analysis of the formal model. In addition, the formal
model helped structure exploration of test conditions during the resolution of the problem after its
initial discovery. Resolution of this problem caused a rewriting of the affected parts of the
specifications.

5.0 Conclusions

We do not claim that RMP has been "verified and validated" to the extent that it is totally correct,
rather that we have developed a technique that strengthens analysis and testing in the long-term
development of our software. Short term problems did occur, but they helped us to evolve a
specification model in high-fidelity with an implementation. Co-evolution of the formal
specification model and the implementation was the most useful result of our study. Our technique
allowed our two teams to structure their tests and other analysis activities. Their activities
supported each other in the development of the implementation and refinement of the
specifications.

In the future, we will continue to use RMP as a testbed problem and explore new specification
and analysis techniques that complement incremental software development activities. We are
continuing to evolve the specifications even though the software has been released in a Beta test
version. This type of release scheme limits the use of RMP to non-critical projects and helps us
explore operational problems. When a problem in operation does occur, we are using the mode
tables to trace where the problem occurred. This has been useful in understanding problems,
finding why problems were or were not detected earlier, and refining the specification
incrementally.

References

[1] Luo, G., G. v. Bochmann, and A. Petrenko, Test Selection Based on Communicating
Nondeterministic Finite-State Machines Using a Generalized Wp-Method, IEEE Transactions on
Software Engineering, Volume 20, Number 2, February 1994, pp. 149-162.

[2] Sidhu, D. P. and T.K. Leung, Formal Methods for Protocol Tetsing: A Detailed Study,
IEEE Transactions on Software Engineering, Volume 15, Number 4, April 1989, pp. 413-426.

[3] Montgomery, T., Design, Implementation, and Verification of the Reliable Multicasting
Protocol, M.S. Thesis, West Virginia University, December 1994.

[4] Chang, J.M. and N.F. Maxemchuk, Reliable broadcast protocols, ACM Transactions on
Computer Systems, Volume 2, Number 3, August 1984, pp. 251-273.

[5] Yodaiken, V. and K. Ramamritham, Verification of a Reliable Net Protocol, Formal
Techniques in Real-Time and Fault-Tolerant Systems, January 1992, pp. 193-215.

13

[6] Heninger, K.L., Specifying softwrae for complex systems: New techniques and then-
application, IEEE Transactions on Software Engineering, Volume 6, Number 1, January 1980.

[7] Jahanian, F. and A. K. Mok, Modechart: A Specification Language for Real-Time
Systems, IEEE Transactions on Software Engineering, Volume 20, Number 12, December 1994,
pp. 933-947.

[8] Leveson, N. G., M. P. E. Heimdahl, H. Hildreth, and J. D. Reese, Requirements
Specification for Process-Control Systems, IEEE Transactions on Software Engineering, Volume
20, Number 9, September 1994, pp. 684-707.

[9] S. Owre, N. Shankar, and J. M. Rushby, User Guide for the PVS Specification and
Verification System (Beta Release), Computer Science Laboratory, SRI International, 1991.

[10] D. Dill, A. Drexler, A. Hu, and C. Yang, Protocol Verification as a Hardware Design Aid,
IEEE Conference on Computer Design: VLSI in Computers and Processors, IEEE Computer
Society Press, October 1992.

[11] J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill, Symbolic Model Checking for
Sequential Circuit Verification, IEEE Transactions on Computer-Aided Design, Volume 13,
Number 4, April 1994.

[12] G. J. Holzmann and D. Peled, An improvement in formal verification, Proceedings of the
7th International Conference on Formal Description Techniques, FORTE 94, Berne, Switzerland,
October 1994.

[13] Deering S., E., Multicasting Routing in Internetworks and Extended LANs, ACM
SIGCOMM '88 Symposium, August 1988.

14

304367-8348 Q FAX 304367-8211 Q 100 University Drive d Fairmont WV 26554
Equal Opportunity/Affirmative Action Institution

