
NASA-CR-20002^

NASA/WVU Software IV & V Facility
Software Research Laboratory
Technical Report Series

NASA-IVV-95-007
WVU-SRL-95-007

'CERC-TR-TM-95-011

Fault Recovery in the Multicast Protocol

by John R. Callahan, Todd Lr Montgomery, and Brian Whetten

(NASA-CR-200024) FAULT RECOVERY IN
THE RELIABLE MULTICAST PROTOCOL
(West Virginia Univ.) 17 p

N96-17785

Unclas

G3/61 0098256

National Aeronautics and Space Administration

West Virginia University



Fault Recovery in the Reliable Multicast Protocc-r

Todd Montgomery, John R. Callahan, Brian Whetten
(tmont,callahan}@cerc.wvu.edu, whetten@tenet.cs.berkeley.edu

NASA/West Virginia University Software IV&V Facility
100 University Drive
Fairmont, WV 26554

304-367-8235, 304-367-8211(fax)

December 14, 1995

Abstract

The Reliable Multicast Protocol (RMP) provides a unique, group-based model for distributed
programs that need to handle reconfiguration events at the application layer. This model,
called membership views, provides an abstraction in which events such as site failures, network
partitions, and normal join-leave events are viewed as group reformations. RMP provides access
to this model through an application programming interface (API) that notifies an application
when a group is reformed as the result of a some event. RMP provides applications with reliable
delivery of messages using an underlying IP Multicast [12, 5] media to other group members in
a distributed environment even in the case of reformations. A distributed application can use
various Quality of Service (QoS) levels provided by RMP to tolerate group reformations. This
paper explores the implementation details of the mechanisms in RMP that provide distributed
applications with membership view information and fault recovery capabilities.

1 Introduction

Many distributed programs need to be reconfigured while continuing to provide ser-

vices, but how a system is reconfigured is often specific to a particular application.

Therefore, any application programming interface (API) to a distributed environment

should provide an abstract model of reconfiguration because applications will differ in

how they handle changes in a distributed environment. For example, teleconferencing

applications should be highly resilient to site failures or network partitions because such

failures can be modeled as normal join-leave changes to the group of conference partic-

*This work is supported by NASA Grant NAG 5-2129 and NASA Cooperative Research Agreement NCCW-0040.
More information pertaining to RMP can be found at http://research.ivv.nasa.gov/projects/RMP/RMP.html



ipants. However, distributed database systems that require atomic transactions will be

highly sensitive to such failures. In either case, the application must decide what levels

of fault tolerance it needs and how to handle changes to other sites and the network in

order to continue service.

The Reliable Multicasting Protocol (RMP) [10, 2, 3] is a unique, high-performance

protocol developed at West Virginia University in cooperation with NASA that will

soon be presented for consideration as an Internet standard and is being used currently

in many network software applications. RMP presents an API that provides applica-

tions with a simplified model of dealing with complex changes in distributed, group

communication environments. RMP provides a programming abstraction, called mem-

bership views, for handling reliability, resiliency, fault recovery, and ordering issues in a

distributed application.

RMP is based on an algorithm originally developed for reliable delivery of data in

broadcast-capable, packet-switching networks [4]. The original algorithm allows sites

in a packet-switching network to establish a token ring for distributing responsibility

for acknowledgments. A single token is passed from site to site around the ring and

only the holder of the token (called the current token site) needs to acknowledge certain

data packets. RMP has high-performance characteristics because acknowledgments

themselves are multicast to all other token ring sites. This approach orders the data

packets consistently across all sites and provides a means of passing the token to a new

token site.

When a site gets the token (i.e., it becomes the current token site), it multicasts an

acknowledgment if and only if it has seen all data packets since the last acknowledg-

ment it received. The token is passed in the multicast acknowledgment packet. The

acknowledgment packet includes the source and sequence numbers of data packets it is

acknowledging. This allows each site to detect if any packets are missing. A site will use

negative acknowledgments to request retransmission of any missing packets. When all



packets since the last acknowledgment received have been received by the current token

site, then that site can multicast its acknowledgment and thus pass the token to the

next site on the ring. When a token site sends an acknowledgment, it is guaranteed that

all data packets since it last held the token have been received by all sites. The sender

of a packet assumes that all messages since it last had the token have been received by

the other sites within a requested quality of service (QoS) level. A packet is marked

delivered if and only if it satisfies its QoS level of delivery. The QoS level allows for

resilience of the protocol in the presence of site failures and network partitions. In the

case of failures, the token ring reforms itself around the failed site. In the presence of

persistent failures, the application program using RMP must decide to degrade the QoS

level or try again.

RMP differs from previous reliable broadcast protocols in that an acknowledgment

packet may acknowledge an arbitrary number of data packets. Previous protocols spec-

ified that each data and acknowledgment packets have a one-to-one relationship. Our

approach, however, improves throughput in networks with sporadic losses. Each site in

a token ring maintains a data structure called an Ordering Queue (OrderingQ) in which

acknowledgments and data packets are organized based on timestamps. An Ordering

Queue is consistent if and only if there are no missing data packets for pending acknowl-

edgments. A missing packet will appear as an empty slot in the OrderingQ that must

be filled. When a site becomes the token site, all empty slots in the OrderingQ since the

last acknowledgment received must be filled. For example, in Figure 1 we show 3 sites

of a token ring and a global sequence of events. No site has complete knowledge of this

sequence. It is only shown to illustrate a possible scenario. Next to each site is a list of

the messages sent by that site. First, site A sends a data packet signified as Data(A,l)

where the first parameter is the sending site and the second is the sequence number of

the message. Sequence numbers are unique to individual sites. Second, site B sends a

data packet (Data(B,l)). The initial token site is site B who then acknowledges both



Event Order
Data (A, 1)

Data (B, 1)

ACK«A, 1), (B, 1),A, 1)

HACK (C, 3)

ACK(NDU.,C, 4)

Data(B,l)

Data(A,2) HACK(C, 3)

ACK((A,2),B,5) ACK((A,2),B,5)

Imposed Order
Timestamp Event

1 ACK((A,1) , (B,1) ,A,1)

2 Data(A,1)

3 Data(B,l)

4 ACK<NOLL,C,4)

5 ACK<(A,2 ) ,B ,5 )

0 Data(A,2)

Initial Token Site

Data(B,l)

ACK({A, 1), (B,

Data(B,l)

Data (A, 1)

ACK(NOLL,C, 4)

Data(A, 2)

Figure 1: An example of RMP operation

data packets and passes the token to site A. The Ack((A,l),(B,l),A,l) message contains

a list of source identifiers and sequence numbers for two packets, followed by the next

token site and the timestamp of the acknowledgment.

In this example, we assume that site C missed the data packet Data(B,l). Site C

realizes it has missed a packet after it receives the Ack((A,l),(B,l),A,l) message. It

knows this because the Data(B,l) packet is listed in the Ack message from B. Each

slot in an OrderingQ corresponds to a timestamp whether explicit in the case of Ack

messages or implicit in the case of Data packets. Site C will multicast a Nack message to

request the data packet to fill the one slot in its OrderingQ at timestamp 3. Any other

site in the ring should respond to this Nack with the requested missing packet. In this

example, Site B responds to the Nack by retransmitting the Data(B,l) message. The

sequence number identifies this message uniquely to distinguish it from new messages.

If a period passes during which no data packets are transmitted, a site will time-out and



subsequently send a multicast NULL Ack packet. In our example, Site A sends a NULL

Ack with timestamp 4 after waiting. This NULL Ack passes the token to site C. After

the site B retransmits the packet Data(B,l), site A multicasts another data packet with

sequence number 2 as Data(A,2). Since site C's OrderingQ is consistent, it multicasts

an acknowledgment of the Data(A,2) packet and passes the token to site B. The global

ordering of events is an artifact of the timestamps and may or may not reflect the actual

order of events. This decentralized notion of ordering, called global synchrony, allows

applications to synchronize their activities based on group events instead of a single,

centralized authority.

2 RMP Fault Model

RMP is a modification of a Post-Ordering Rotating Token algorithm originally devel-

oped by Change and Maxemchuk[4]. A pass of the token around the ring provides

ordering notification to all group members. The token itself acts as a combination

of positive and negative acknowledgments to group members for message ordering and

reliable delivery without the overhead of large numbers of unicast acknowledgment mes-

sages. A message is delivered, or stable, if the token is rotated to each of the group

members in turn. Once the token has made a complete circuit, it is guaranteed that

packets acknowledged previous to the start of the circuit have been received by all group

members at that moment.

The actual modifications from the original Chang and Maxemchuk algorithm are

quite extensive [11, 10]. Two of the most significant areas of redefinition and extension

are in the categories of fault recovery and group membership. Originally, the algorithm

only dealt with steady state operation and a very restrictive fault recovery process,

i.e. no attention was played to changing the number of members during operation or of

relaxing the fault recovery process to allow applications with less stringent requirements

to continue operation. RMP expanded this by adding the ability to change a groups



membership dynamically so that members can join and leave a group, integrating this

ability into the protocol operation smoothly, and using the concept of membership views

to adjust the fault recovery process on an individual group basis.

2.1 Membership Views

Applications using RMP will receive asynchronous events from RMP layer that indi-

cate delivery of messages, some exceptional conditions being met, or a change to the

group in some way. A membership view is a snapshot of a group's current membership

information that is passed up to the application. This snapshot is part of the globally

ordered sequence of events that all group members perceive. All group members receive

the same sequence of events, both messages and membership views, regardless of the

underlying event sequence imposed by an unordered and unreliable network. The mem-

bership view concept allows RMP to provide a virtually synchronous execution model

to applications using it. Virtual synchrony was defined by Ken Birman from his work

on the ISIS system[13, 1]. "Intuitively, this means that the user can program as if the

system scheduled one distributed event at a time"[13]. This approach greatly simplifies

distributed application development and provides a convenient service upon which con-

figurable systems can be built. The original Chang and Maxemchuk algorithm fails to

provide virtual synchrony due mainly to its lack of membership changes, however, the

algorithm also violates virtual synchrony by allowing members to be added during the

fault recovery process.

A change in the membership view is an event that returns the new membership view

and notifies the application as to the type of event that took place. Some of the more

interesting and useful membership view change types are:

• A member has been added to group (or formed own group)

• A member has been removed from group

• A member received a lock 1

1 RMP provides 256 mutually exclusive locks for members to use.



• A member was denied a lock

• A member released a lock

• A member changed the Minimum Size Requirement (MSR) (see Section 3.3)

• Some other member change occurred (add, remove, lock change, etc.)

• A fault was detected and recovery is complete

• Group scoping was changed (i.e., a change in the IP Multicast Time-To-Live (TTL)
field)2

When a membership change occurs, an application is notified that a group change

has occurred, what kind of operation occurred (join or leave), and the status of the

group after the change. The change can be categorized into three classes. First, a

change may be a local change that affects only the notified member. Local changes are

the results of requests such as asking to join a group, asking to be removed from a group,

or requesting a change to a lock. Remote changes are changes that affect other sites.

These include local changes to other group members, but to an individual application

the changes appear to be remote. Finally, global changes affect more than one member

of a group. These are changes such as change of group scoping, notification of fault

recovery completion and the result of the recovery process.

RMP delivers a membership change event to the application upon the completion

of the fault recovery process. This process, called reformation, may be successful or

unsuccessful depending on extent of site failures, partitions, or leave events. At the end

of the reformation process, the result of the reformation is delivered as an event to the

remaining group members. Thus an application can examine the membership view and

the result of the fault recovery process in order to decide what actions it must take to

remain operational. In addition to notification of a fault, RMP allows the application

to specify message resiliency on a per message basis as well as allowing each member to

have a "vote" on the minimum size of a group to be allowed to proceed after a failure.

2RMP uses the IP Multicast scoping mechanism of Time-To-Live (TTL) for controlling the propagation of RMP
multicast traffic to group sites on a Wide-Area Network such as the Internet.



2.2 RMP Failure Assumptions

Key to any fault recovery and detection system is defining under what circumstances

and assumptions the system is assumed to operate. The result of any fault recovery

operation can be: (1) a success, (2) an atomicity violation, or (3) a failure. An atomicity

violation occurs when the fault recovery process can not attain a common sequence of

events between members of a group. In practice this situation is very rarely encountered,

but it is possible. Atomicity violations can occur because causally related events may

become misordered due to buffering or Internetworking constraints. RMP makes three

assumptions pertaining to failures. These are:

• A site failure means the site stops processing. The site does not interject corrupting
information into a group.

• A message failure can be the result of an overly full buffer at either the receiver or
the sender, or it may be the result of a transmission failure. (< 1% of packets on
current local and wide-area networks)

• A failure is detected by a group when communication with the group and a site
fails after R attempts. R must be chosen such that a failure is mistakenly detected
infrequently, but large enough to provide timely notification of actual failures.

Additionally, RMP addresses the first assumption by supporting cryptographic au-

thentication. This does not completely remove the assumption, but it provides a mech-

anism whereby corruptive sites can be filtered if they can be detected. This method also

provides protection from unknown sites that may try to corrupt RMP operation. How-

ever, this approach is only as secure as the means by which the members can retrieve

the authentication keys and the trustworthiness of the other mechanisms involved.

2.3 Fault Detection

As mentioned above under the failure assumptions, RMP performs failure detection

using a series of retransmissions of messages. If a certain amount of retransmissions are

attempted without a reply being seen, then the fault recovery process is initiated.

A duality between flow control and fault detection exists that is important to men-

8



tion. RMP's flow control mechanism uses a slight modification of an adaptive flow

control scheme [6]. This scheme dictates retransmissions rates and timeouts between

retransmissions to avoid saturating the network during congestion. The adjustment in

retransmission periods has a direct bearing on fault detection in RMP. This aspect of

RMP operation is continually undergoing experimentation and analysis, however pre-

liminary experiments have shown that an R value set to 10 (for 10 retransmission at-

tempts), and capping the maximum retransmission period to 2 seconds provides timely

notification on a LAN 3. In WAN environments, the R value must be set higher (to

well over 30 or more). Changes to the maximum retransmission period for WAN groups

have shown that 2 seconds 4 works best as long as the maximum packet sizes are also

kept small in order to reduce, or eliminate, fragmentation. Higher amounts of fragmen-

tation increase the likelihood of a packet being dropped due to a segment being lost.

Currently, RMP can adjust the R value based solely on the group scoping value (i.e.,

the IP multicasting packet TTL value). Thus it is easy to determine what R value to

use based on whether the RMP group stretches over multiple LANs or is based on a

single LAN. Other adaptive schemes could also be used to dynamically configure the

R value based on previous attempts and other flow control variables. However, this

approach must be carefully examined so that the R value does not grow too large to

make fault detection times too large 5.

2.4 Selection of Resiliency and Fault Tolerance Levels

An RMP application may choose message ordering and resiliency semantics on a per

message basis. These semantics are defined as RMP Quality of Service (QoS) values that

range from unreliable and unordered to totally ordered and totally resilient. RMP QoS

310 attempts at 2 seconds per attempt implies a maximum detection time of 20 seconds

4 30 attempts at 2 seconds per attempt implies a maximum detection time of 60 seconds

5 As some would say happens in TCP.



is organized into a hierarchy that begins with varying levels of ordering and progresses

into resiliency. Message resiliency is based on assurances that RMP places on how

many group members have received a given message using properties of the protocol

operation. In order to meet any resiliency guarantees, the message must also meet total

ordering guarantees. Thus all resilient messages are, by definition, totally ordered. A"

resiliency assures that K members of a group receive the message. The value of A" may

range from 1 to the size of a group, N. Majority resiliency is the special case where

A" = [N/2\ + 1, and total resiliency corresponds to the case where A' = N.

In RMP's execution model, message delivery and message resiliency are separate

causally related events. Message delivery is based on ordering alone, while resiliency

is based on the number of token passes after total ordering is met. This separation

of delivery semantics from resiliency notification allows applications to design efficient

transaction and persistent object systems. In addition, RMP allows the application to

request notification when a message has become stable. This notification is another

event that the application may use to help facilitate its operational correctness with

respect to group consistency.

When a new member is added to an RMP group, the member, in effect, casts a

vote for the minimum size it requires to be maintained after a failure. The actual

minimum size of a group is the maximum of the votes from all members. This Minimum

Size Requirement (MSR) determines the fault tolerance level used by RMP during a

reformation. A member may change this vote at any time during normal operation.

Such a change is a change to the membership view and the application is notified of

this change. The levels of fault tolerance closely reflect the levels of message resiliency

discussed above. It is highly desirable for an application to use message resiliency and

a specific fault tolerance level to its advantage to provide assurances it may need, i.e.

majority resiliency combined with majority fault tolerance assures that if a fault is

recoverable, then someone in the group has the message if its resiliency was met. The

10



selectable levels of fault tolerance are:

• K Fault Tolerance - Up to N - K members may fail, N is the group size.

• Majority Fault Tolerance - Up to [N/2\ - 1 members may fail. Defining how this
majority is calculated may be done in one of two ways 6:

- Optimistic - [./V/2J + 1, where N is defined as the number of members currently
in the group.

— Pessimistic - [./V/2J +1, where N is defined as the number of current members
plus members who have left since the last stability point.

• No Fault Tolerance - No members may fail.

If the desired fault tolerance level is not met after a reformation, then the reformation

is classified as a failure and the application is notified. At this point, the application

must then decide how to re-form or re-join the group and continue operation. A common

scheme for doing this is to use a logging facility to synchronize group members to a

specific point that they all agree upon, re-form or re-join the group, and-theo-continue

operation.

3 Fault Recovery Process

The original Chang and Maxemchuk algorithm [4] presents a very high-level and re-

stricted reformation process that is not very applicable in many domains. RMP expands

on this by relaxing some requirements, specifying the algorithm using state tables [2, 3],

and accounting for other RMP features, such as Multi-RFC, security/authentication,

and dynamic membership changes. RMP does not allow members to be added through

reformation. This was allowed in the original algorithm, however it violates virtual

synchrony.

The fault recovery process must terminate and be free of livelock. This property

is absolutely critical for continuous operation especially when changes occur during the

reformation process itself. At each stage of the reformation process, secondary point
6 Currently, RMP uses the optimistic method, however, a formed proof is still underway to determine if this is

correct or not.

11



failures must be detected. In the state model this is done by using the normal fault

detection methods on the fault recovery messages and/or providing a timeout so that

the state is eventually changed. During the fault recovery process, the members of the

group attempt to come to a common synchronization point that indicates the ordering

that the fault will take in the global ordering of events. This point must be after all

events that have already been ordered by all members. This ordering allows faults to

actually be seen as just other events that occur and can be taken into account by the

application.

3.1 Two-Phase Commit

The RMP fault recovery process is a Two-Phase Commit procedure. The member of

a group that first detects a fault is called the Reform Site for that reformation. The

reform site is responsible for coordinating and moderating the reformation process. The

other members of the group are then classified as Slave Sites. Slave sites are passive and

reactive participants in the reformation process. The two phases are described below.

In Phase 1, the Reform Site multicasts notification of failure to the group while

the Slave Sites unicast their responses to the Reform Site. These responses indicate a

synchronization point and desire to participate in the reformation process. The Reform

Site then determines the membership view for the reformation. This will consist of a

subset of the set of sites previously in the group before the fault was detected, i.e. if

5 is the set of sites before the fault, then 5' C 5, where 5' is the set of sites after the

fault. The sites not in 5' are sites that are considered to be dropped. The Reform

Site then determines the synchronization point common to all members of the group.

If this point is not reachable then an atomicity violation has occurred. If the MSR for

the group is met and an atomicity violation did not occur, then the membership view

is defined to be valid, otherwise, the view is assumed to be invalid. Thus an atomicity

violation indicates an invalid view regardless of meeting MSR or not.

12



In Phase 2, the new membership view is installed at the surviving sites. The Re-

form Site multicasts the membership view and the Slave Sites unicast their response to

acknowledge reception of the membership view. The Reform Site receives confirmation

from all reformation participants of reception of membership view. If the new mem-

bership view is valid, then all the sites return to normal operation once reception of all

confirmations is received and notify application of fault and successful fault recovery. If

the membership view is invalid, then all sites return to the RMP "idle" state and notify

the application of the fault and that fault recovery failed.'. If the membership view is

valid and confirmation from one or more members does not arrive within a retransmis-

sion cycle of the membership view, then the reform site assumes a secondary failure,

aborts the current reformation, and the process begins again.

The process is optimized so that when a failure is detected erroneously, RMP does

not spend vast amounts of time processing needless information. This optimization is

performed by short-circuiting some steps if all sites are heard from. Even more drastic

levels of optimization could be performed if the fault cause could be isolated. However,

this is very difficult to perform generically with RMP.

3.2 Aborting a Reformation

In some cases it is necessary to abort the current reformation process and begin again.

This is performed in cases where multiple reformations are detected, or a secondary

failure is detected. Multiple reformations can be detected by the Reform or Slave

sites when fault notification is originated by members other than the Reform Site.

Secondary failures of the Reform Site can be detected by the slave sites through the use

of retransmission cycles for the responses they unicast to the Reform Site. Secondary

failures of slave sites can be detected through retransmission cycles used in installing

the membership view by the Reform Site.

7In effect, this will disband the RMP group.

13



When a Reform or Slave Site sees a condition that suggests that reformation should

be aborted, that site then enters an Abort Reformation state and notifies the group to

abort the current reformation. At any time during reformation, if a site sees this type

of notification, then it must also enter the Abort Reformation state.

Members that enter the abort reformation process set a random timeout so that

deadlock in the process is avoided. The first site to have this timeout expire, then

becomes the new reformations reform site and starts the reformation process. While

in the abort reformation process, if a site detects a new reformation beginning, it then

participates as a slave site 8.

3.3 Return to Normal Operation

Returning to normal operation is of high importance to any fault tolerant system. RMP

allows operation to continue in all cases, but the application must examine the result of

the reformation to assess the correct behavior. This may mean reforming a group and

rejoining its members (in the case of atomicity violations and failed reformations), or

continued processing (in the case of successful reformations).

Because RMP allows the application to specify a desired MSR, cases can arise where

network partitions can cause multiple groups to partition away and continue operation.

Once this occurs, RMP operation does not allow the new sub-groups to rejoin if the

network is repaired. This is achieved through the same mechanisms that RMP uses

to allow multiple groups to exist on a given multicast address. Each packet contains

an identifier that explicitly identifies that packet to belong to a specific group. This

identifier is called a Token Ring ID, or TRID. A TRID is a triple guaranteed to be

unique in space (IP address and UDP port) and time (12 hour epoch timer). The

TRID is changed on a regular basis, i.e. every 45 minutes, and is also changed for every
8Several details here are elided for brevity, including using version numbers for membership views to determine

viability of reformations. The full details are given in [11, 14, 15]

14



attempted reformation. Thus two reformations that occur on a partitioned network

can be filtered based solely on TRIDs. Allowing partitions to come back together

can more easily be done at a higher level than RMP. However, some work with other

reliable broadcast/multicast protocols have produced interesting methods of rejoining

partitions [7, 9]. Other methods of filtering have also been suggested [8]. It is our belief

that applications can benefit from these works to expand RMP's fault recovery process

to include successful recovery from atomicity violations and the rejoining of partitions.

4 Conclusions and Future Work

RMP provides a mechanism for continuous, reliable, fault-tolerant, and atomic delivery

of messages in a multicast media even in the event of site failure, network partitions and

normal join-leave events. In addition, RMP provides an event-based API that presents

the application with a powerful and intuitive distributed programming model. This

model allows the application to make educated decisions about dynamic group recon-

figurations of the application. RMP's fault recovery mechanisms allow the application

to tailor itself to any desired level of fault tolerance and message resiliency without

mandating that the application explicitly perform these functions itself.

Several important issues remain to be investigated including the possibility of con-

tinued operation using the group after an atomicity violation, abstractions for defining

semantics of a "majority" (pessimistically or optimistically) for an application, and ef-

fective flow control that is orthogonal (or at least alternatively complementary) to fault

detection. Isolation of faults in order to optimize the fault recovery process seems to

hold promise, but RMP's operation model allows special cases to exist where this issue

becomes very difficult to tackle effectively.

References

[1] K. Birman. The Process Group Approach to Reliable Dsitributed Computing.

15



Communications of the ACM, 36(12):37-53, December 1993.

[2] J.R. Callahan and T. Montgomery. Verification and Validation of a Reliable Multi-
cast Protocol. In Proceedings of the 2nd Safety Through Quality Conference, pages
83-96,1995.

[3] J.R. Callahan and T. Montgomery. Approaches to Verification and Validation of
a Reliable Multicast Protocol. In Proceedings of the International Symposium on
Software Testing and Analysis, 1996. (to appear).

[4] J. M. Chang and N. F. Maxemchuk. Reliable Broadcast Protocols. ACM Trans-
actions on Computer Ssystems, 2(3):251-273, August 1984.

[5] S. Deering. Host Extensiosn for IP Multicasting. Technical Report RFC-1112,
IETF, August 1989.

[6] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM Proceedings, pages
314-328. ACM, 1988.

[7] Y. Amir D. Dolev S. Kramer and D. Malki. Transis: A Communication Sub-system
for High Availability. Technical Report CS9113, Hebrew University of Jerusalem,
November 1991.

[8] S. Floyd V. Jacobson C. Liu S. McCanne and L. Zhang. A Reliable Multicast
Framework for Light-Weight Sessions and Application Level Framing. In SIG-
COMM Proceedings, pages 342-356. ACM, August 1995.

[9] D. Agarwal P. Melliar-Smith and L. Moser. Totem: A Protocol for Messaging
Ordering in a Wide-Area Network. In First ISMM International Conference on
Computer Communications and Networks, pages 1-5, June 1992.

[10] B. Whetten T. Montgomery and S. Kaplan. A High Performance Totally Ordered
Multicast Protocol. In Theory and Practice in Distributed Systems, number 938 in
LCNS. Spring Verlag, 1994.

[11] T. Montgomery. Design, Implementation, and Verification of the Reliable Multicast
Protocol. Master's thesis, West Virginia University, December 1994.

[12] D. Waitzman C. Partridge and S. Deering. Distance Vector Multicast Routing
Protocol. Technical Report RFC-1075, IETF, November 1988.

[13] K. Birman A. Schiper and P. Stephenson. Lightweight Causal and Atomic Group
Multicast. ACM Transactions on Computer Systems, 9(3):272-314, August 1991.

[14] T. Montgomery B. Whetten and J.R. Callahan. The Reliable Multicast Pro-
tocol Specification: Protocol Operation. Technical Report NASA-IVV-95-003,
NASA/WVU Software IV&V Facility, 1995.

[15] T. Montgomery B. Whetten and J.R. Callahan. The Reliable Multicast Proto-
col Specification: Protocol Packet Formats. Technical Report NASA-IVV-95-004,
NASA/WVU Software IV&V Facility, 1995.

16



304367-8348 Q FAX 304 367-8211 Q 100 University Drive Q Fairmont WV 26554
Equal Opportunity/Affirmative Action Institution




