
NASA-CR-200027

NASA/WVU Software IV & V Facility
Software Research Laboratory
Technical Report Series

NASA-IVV-95-010
WVU-SRL-95-010

WVU-SCS-TR-95-30
CERG-TR-RN-95-013

Reliable Multicast Protocol Spepficatioiis Flow Control and' '

by John R. Callahari, Todd t. Montgppieiy, and Brian Whetten

OODD
r

Jlî ~-*-' it ^™™-Jf—<fc -r^*s*c"F- i£

(NASA-CR-200027) RELIABLE
MULTICAST PROTOCOL SPECIFICATIONS
JFLOW CONTROL AND NACK POLICY (West
jVirginia Univ.) 7 p

N96-17790

Unclas

G3/61 0098259

National Aeronautics and Space Administration

West Virginia University

Reliable Multicast Protocol Specifications Todd Montgomery
Flow Control and NACK Policy Brian Whetten

John R. Callahan
5 October 1995

The Reliable Multicast Protocol Specification
Flow Control and NACK Policy

RMP Library Version: 1.3b (1.3 Beta)

This appendix presents the flow and congestion control schemes
recommended for RMP and a NACK policy based on the whiteboard tool.

Flow and Congestion Control

Because RMP uses a primarily NACK based error detection scheme, there
is no direct feedback path through which receivers can signal losses
through low buffer space or congestion. Reliable multicast protocols
also suffer from the fact that throughput for a multicast group must
be divided among the members of the group. This division is usually
very dynamic in nature and therefore does not lend itself well to a
priori determination. These facts have lead the flow and congestion
control schemes of RMP to be made completely orthoganol to the
protocol specification. This allows several differing schemes to be
used in different environments to produce the best results. As a
default, a modified sliding window scheme based on previous
algorithms are suggested and described below.

Flow control and congestion control are treated as exactly the same
problem in this modified sliding window scheme. A sliding window flow
control scheme is an adaptive mechanism that attempts to maintain a
constant window of packets in transit. Packets in transit are packets
that have been sent, but have not been acknowledged yet. Ideally this
window corresponds to the current level of available resources. Other
predictive flow control schemes have been proposed and are currently
under investigation. These schemes are more applicable to high
latency long fat networks, such as ATM. These networks require that
hundreds of packets be in transit at once, and the consequences of
trying.to adaptively size the transmission window when congestion
occurs is much too high.

Some very good work has been done in providing efficient congestion
control for TCP by Van Jacobson. It is this work that RMP has
partially adopted and expanded upon for its flow and congestion
control mechanisms. The main four adopted points of the TCP work are:

o Round-Trip-Time Variance Estimation

Whetten, Montgomery, Callahan RMP 1.3b [Page 1]

Flow Control & NACKs Reliable Multicast Protocol 5 October 1995

o Slow Start
o Dynamic Window Sizing on Congestion
o Exponential Retransmit Timer Backoff

Round-trip-time (RTT) of a message is the time it requires for a
packet to be sent and a corresponding acknowledgment to arrive at the
sender. Round-trip-time variance estimations provide a means of
determining how large timeout periods should be on retransmissions
based on the average measured length of the round-trip-time and the
deviation in the time. It has been observed that when network paths
become congested, the variance on packet latency becomes very high
compared to it average. "If the network is running at 75%
capacity...one would expect the round-trip-time to vary by a factor
of 16". It is hoped that by continually estimating the variance and
adjusting the average, that an accurate timeout period can be
calculated that will virtually eliminate all spurious
retransmissions. The elimination of spurious retransmissions allows
more bandwidth and processing time to be dedicated to actual useful
work, as well as reducing the probability of a false failure
detection. The calculation of the timeout period can be effectively
done using the following formulas:

Err = M - A
A = A + g_A(Err)
D = D + g_D(|Err| - D)
rto = A + 4D

The g_A and g_D terms are gain terms. M is the round-trip-time
measurement. A is the round-trip-time average. D is the round-trip-
time mean deviation. And rto is the next timeout period length.
Experimentation has shown that 0.0625 and 0.125 are good values for
g_A and g_D, respectively.

The slow start algorithm is used to increase the window size from its
initial size of one packet to the maximum window size that does not
cause congestion. The window size is measured in Minimum Transfer
Units, or MTUs. 1 MTU represents a set number of bytes of data in
transit. The value of 1 MTU is configurable based on network
properties. The slow start algorithm starts by initializing the
allowable maximum window size to be 1 MTU. Each time an ACK is
received for a packet the window size is incremented 1 MTU. It may
not be obvious, but this increases the window size exponentially. The
window size will increase from 1 to W on a latency L network path in
Lw start actually increases the window size fairly rapidly. Once a
sign of congestion occurs, then the window must be reduced. After
this first reduction, slow start is not used. But a congestion
avoidance scheme is used. This scheme increases the window in a more
linear fashion to hopefully avoid congestion. This is done by

Whetten, Montgomery, Callahan RMP 1.3b [Page 2]

Flow Control & NACKs Reliable Multicast Protocol 5 October 1995

incrementing the window size by I/(Window Size) each time an ACK
arrives for a packet. A window size of W will therefore only generate
at most W ACKs, and an increase of 1/W will increase the window by 1
in one round-trip-time. This increases the window size linearly. In
this way, resource limits are probed, but not overrun too quickly.

Under the observations that most lost packets are the result of
congestion and not errors and that retransmissions must signal lost
packets, then any retransmissions, or expired timers for
retransmissions, signal congestion. Congestion must decrease the
maximum window size. RMP decreases its window size by 50 each time
congestion is encountered. After this decrease the window increases
using the linear increase presented above.

Each time a timer expires and a retransmission is needed, the
exponential retransmit timer backoff scheme doubles the timer. Once
an ACK is received for the packet, however, the value is set to the
rto value as calculated. This scheme is applied to all packets that
require positive acknowledgments. The timer value must be clamped at
a certain maximum value, however, currently 2 seconds. This scheme
attempts to ensure that false alarms occur very rarely and that
alarms signalling retransmission themselves should not cause even
more congestion.

Flow control is addressed by allowing NACKs to also signal dropped
packets. Sites that are overrun by senders will drop one or more
packets, and will have to send NACKs for those packets. A default
NACK control policy is to multicast the NACK to the entire group.
Thus the sender will see that its packet was dropped and can reduce
its window size exactly the same way it would in congestion control,
by 50%. Care must be taken not to perform this decrease multiple
times for the same packet, however.

NACK Policy

RMP uses a modified SRM Request/Repair policy (as is used in the wb
tool) . The goals of any RMP NACK policy should be: (1) reduce the
number of NACKs sent to the group to the bare minimum required for
any random group topology, (2) the delay between request and repair
should be as low as possible, and (3) reduce the number of repairs
(responses) to the bare minimum required to repair the inconsistent
group members across a random group topology. The SRM Request/Repair
policy strives towards these goals.

The basic mechanisms are these: when detecting loss, schedule a NACK
Requet timer for a random time in the future, when the timer expires,
send a NACK for that timestamp. When receiving the repair, stop
retransmission of the NACK. While waiting for the NACK Request Timer

Whetten, Montgomery, Callahan RMP 1.3b [Page 3]

Flow Control & NACKs Reliable Multicast Protocol 5 October 1995

to expire, any received NACK for the same timestamp should result in
the NACK Request timer being exponentially backed off. When receiving
a NACK for a timestamp that the site has, then a NACK Repair timer is
scheduled for a random time in the future. When the timer expires,
send a repair for the timestamp in the NACK. While waiting for the
timer to expire, if a dulicate comes in for that timestamp, then
cancel the NACK Repair timer. After receiving a duplicate for a
timestamp, or receiving a repair for a timestamp, then ignore any
NACKs for that timestamp for a slight period of time. The ranges over
which the random times are chosen are incredibly important. For a
detailed discussion and analysis, see the SRM paper. Random timer
ranges can be based on the round-trip-time of Data packets as kept by
flow control.

To implement the SRM policy in RMP requires that the NACK policy be
integrated into the OrderingQ abstraction of RMP. Each slot in the
OrderingQ must have an associated disposition of any pending NACK
request or repair for that slot. The five NACK dispositions are: (0)
slot has no pending NACK Request or NACK Repair timers, (1) slot has
pending NACK Request timer, (2) slot has pending NACK Repair timer,
(3) slot has expired NACK Request timer and is now sending a NACK for
timestamp of slot, and (4) slot has expired NACK Repair timer and is
ignoring all NACKs for slot.

RMP is an event driven system, so the NACK policy also must be event
driven. In this vein, the NACK policy is defined in terms of how the
NACK disposition of a slot changes in response to different events.

Event: Detect missing slot in OrderingQ

Action: Set slot state to Packet Requested. Set slot NACK disposition
to 1. Schedule NACK Request timer.

Event: Receive NACK

Action: If slot NACK disposition is 0, then set slot NACK disposition
to 2, schedule NACK Repair timer. If slot NACK disposition is I, then
exponentially back off NACK Request timer for slot. If slot NACK
disposition is 2 or 4, then do nothing.

Event: Receive duplicate for slot

Action: If slot NACK disposition is 2, then remove pending NACK
Repair timer for slot, set slot NACK disposition to 4. Schedule
Ignore NACK timer for slot. If slot NACK disposition is not 2, then
do nothing.

Event: Receive repair for requested slot

Whetten, Montgomery, Callahan RMP 1.3b [Page 4]

Flow Control & NACKs Reliable Multicast Protocol 5 October 1995

Action: If slot NACK disposition is 1, then remove pending NACK
Request timer, set slot NACK disposition to 4, schedule Ignore NACK
timer. If slot NACK disposition is 3, stop retransmit cycle on NACK,
set slot NACK disposition to 4, schedule Ignore NACK timer. In both
cases, set slot state to Packet Received.

Event: Expired NACK Request timer

Action: start retransmit cycle for NACK, set slot NACK disposition to
3.

Event: Expired NACK Repair timer

Action: retransmit packet for slot, set slot NACK disposition to 4,
schedule Ignore NACK timer.

Event: Expired Ignore NACK timer

Action: set slot NACK disposition to 0.

Event: DeQueuing slot from OrderingQ

Action:
slot NACK disposition = 0:
slot NACK disposition = 1:
slot NACK disposition = 2:
slot NACK disposition = 3:

no action
error (slot not repaired)
remove NACK Repair timer
error (slot not repaired)

slot NACK disposition = 4: remove Ignore NACK timer

Ignore NACK timers and pending NACK Repair timers can be ignored when
the OrderingQ slot is deQueued because the site is certain that the
requesting site has already been repaired if the slot is to be
deQueued. This form of message stability notification allows some of
the cases where a NACK was prematurely sent to be caught and treated
accordingly.

Some future examinations include exmaining what adaptive constant
schemes provide RMP with good delay on NACK Request and Repair
timers. Another possibility is adjusting timer values based on what
kind of packet a slot "probably" contains. A common case for this
NACK policy is that a missing ACK is actually the only missing packet
and that the corresponding Data or Non-Member Data (NMD) packets for
it are in the DataQ. In this case, the OrderingQ is actually missing
all the ACK and Data/NMD slots, but only requires the ACK to fill all
the slots. By taking a guess at the slots probable contents and
adjusting the timer constants accordingly, an ACK could be requested
before the NACK Request timer(s) for the Data/NMD packets expires,
thus causing them to be removed and not serviced.

Whetten, Montgomery, Callahan RMP 1.3b [Page 5]

Flow Control & NACKs Reliable Multicast Protocol 5 October 1995

Authors' Addresses:

Todd Montgomery
West Virginia University
Morgantown, WV
Email: tmont@cerc.wvu.edu

Brian Whetten
University of California Berkeley
Berkeley, CA
Email: whetten@tenet.cs.berkeley.edu

John R. Callahan
West Virginia University
Morgantown, WV
Email: callahan@cerc.wvu.edu

Whetten, Montgomery, Callahan RMP 1.3b [Page 6]

304367-8348 Q FAX 304 367-8211 Q 100 University Drive Q Fairmont WV 26554
Equal Opportunity/Affirmative Action Institution

