
NASA-CR-200028

NASA/WVU Software IV & V Facility
Software Research Laboratory
Technical Report Series

NASA-IVV-95-011
WVU-SRL-95-011

WVU-SCS-TR-95-31
CERC-TR-TM-95-013

Design, Implementation, and Verification of the Reliable
Multicast Protocol

by Todd L. Montgomery

(NASA-CR-200028) DESIGN,
IMPLEMENTATION, AND VERIFICATION OF
THE RELIABLE MULTICAST PROTOCOL
Thesis (West Virginia Univ.)

p

G3/61 0098260

National Aeronautics and Space Administration

West Virginia University

Design, Implementation, and T Aerification of the

Reliable Multicast Protocol

Thesis

Submitted to the Graduate Program in Engineering

West Virginia University

In Partial Fulfillment of the Requirements for

The Degree of Masters of Science

in Electrical Engineering

by

Todd Montgomery

Morgantown

West Virginia

1994 ORIGINAL PAGE IS
OF POOR QUALITY

Acknowledgement s

The author would like to thank his wife, Lisa, for her encouragement,

understanding, and endurance. Without her this would not have been

possible. Also, the author would like to thank his parents, sister, brother-

in-law, and niece for unquestionable support and love.

An immeasurable amount of appreciation and gratitude go to Brian Whet-

ten of USC Berkeley, the co-designer and inspirator of RMP, and to Dr.

John R. Callahan, for his undying belief and support. These two gentleman

have provided enormous expertise, knowledge, and most of all, friendship.

Appreciation and respect are also given to the other members of the Aca-

demic Examining Committee (AEC), Dr. Afzel Noore and Dr. Powsiri

Klinkhachorn. Most of all, Dr. Afzel Noore, has allowed the author free-

dom to examine and work on such an intensely demanding project and

provided nothing but encouragement.

a

In addition, a special group of people need to be acknowledged: Steve

Husty, Brian Cavalier, Jeff Morrison, Yunqing Wu, Wei Sun, Matthew

Fuchs, and Yahya Alsalqan. These individuals have provided support,

encouragement, and knowledge in various ways.

A special note of gratitude goes to Nick Maxemchuk and Jo-Mei Chang

whose work on the Reliable Broadcast Protocol forms the basis for RMP.

Finally, a great deal of appreciation goes to NASA Cooperative Research

Agreement NCCW-0040, NASA Grant NAG 5-2129, and the NASA Head-

quarters Office of Safety and Mission Assurance (OSMA) under which this

research has been supported.

m

Contents

List of Tables be

List of Figures xi

List of Acronyms xii

1 Introduction 1

1.1 Research Objectives 2

2 Background 3

2.1 IP Multicasting 3

2.1.1 Multicast Routing 4

2.1.2 Internet Multicast Backbone 6

2.2 Distributed Application Development 7

2.2.1 Process Groups 8

2.2.2 Event Ordering 9

2.2.3 Reliability, Resiliency, and Fault Tolerance 10

3 Design of the Reliable Multicast Protocol 11

iv

3.1 Primary Features of the Reliable Multicast Protocol 11

3.2 Protocol Model 12

3.2.1 RMP Entities 12

3.2.2 Interaction Model - Post-Ordering Rotating Token 15

3.2.3 Modifications to the Token Ring Protocol 20

3.3 The Data Structures and Algorithms 24

3.3.1 Packet Types 25

3.3.2 Data Structures 26

3.3.3 Data Structure Algorithms 28

3.4 Finite State Machine Representation of RMP 34

3.4.1 Normal Protocol Operation 36

3.4.2 Multi-RFC Extensions 39

3.4.3 Membership Change Extensions 42

3.4.4 Reformation Extension 46

3.5 Flow Control and Congestion Control 53

4 Implementation of the Reliable Multicast Protocol 58

4.1 Major Implementation Decisions 58

4.1.1 Implementing Protocols in the User Level 59

4.1.2 Event-Driven Control 59

4.1.3 Object-Oriented Implementation 60

4.2 The RMP Internal Class Structure 61

4.2.1 Static Objects 63

4.2.2 The Communicator Class 66

4.2.3 Control Classes 66

4.2.4 The RMP Application Programming Interface 68

4.3 Portability and Optimization 70

5 Verification of the Reliable Multicast Protocol 72

5.1 Verification Approaches 72

5.1.1 Symbolic Model Verification 73

5.1.2 Mur<? 74

5.1.3 Prototype Verification System 75

5.2 Case (Scenario) Based Testing 76

6 Performance Results 77

6.1 Theoretical Performance of Model 77

6.2 LAN Performance 78

6.2.1 LAN Aggregate Throughput 79

6.2.2 LAN Single Sender Throughput 80

6.2.3 LAN Packet Latency 81

6.3 WAN Performance 82

7 Conclusions and Future Work 83

7.1 Conclusions 83

7.2 Future Work 84

7.2.1 The Extended Architecture 84

VI

7.2.2 Design Directions 87

7.2.3 Implementation Directions 87

7.2.4 Verification Directions 88

A RMP Packet Formats 92

A.I RMP Fixed Header 92

A.2 RMP Data Header 94

A.3 Control Packets 96

A.3.1 ACK Packet 96

A.3.2 Confirm Token Pass Packet 98

A.3.3 NACK Packet 98

A.3.4 New List Packet 100

A.3.5 List Change Request Packet 106

A.4 Failure Recovery Packets 108

A.4.1 Recovery Start Packet 108

A.4.2 Recovery Vote Packet 110

A.4.3 Recovery ACK New List Packet Ill

A.4.4 Recovery Abort Packet 112

A.5 Non-Member Packets 113

A.5.1 Non-Member Data Packet 113

A.5.2 Non-Member ACK Packet 115

B Complete State Tables 117

vu

Abstract 127

Curriculum Vitae 129

Approval of Examining Committee 131

viu

List of Tables

3.1 QoS Levels 21

3.2 RMP Packet Types 26

3.3 Packet Positive Acknowledgments 27

3.4 Event Descriptions 35

3.5 Normal Operation (Token Site) 37

3.6 Normal Operation (Passing Token) 37

3.7 Normal Operation (Not Token Site) 38

3.8 Normal Operation (Getting Packets) 39

3.9 Multi-RFC Extensions 40

3.10 Membership Change Extensions 44

3.11 Membership Change Additional States 45

3.12 Reformation Extensions 47

3.13 Reformation Extension (Start Recovery) 48

3.14 Reformation Extension (Created New List) 50

3.15 Reformation Extension (Sent Vote) 51

3.16 Reformation Extension (ACK New List) 52

3.17 Reformation Extension (Abort Recovery) 53

ix

4.1 Event Precedence 66

B.I Event Descriptions 118

B.2 Token Site State 119

B.3 Passing Token State 120

B.4 Not Token Site State 121

B.5 Getting Packets State 122

B.6 Not In Ring State 122

B.7 Joining Ring State 122

B.8 Leaving Ring State 123

B.9 Start Recovery State 124

B.10 Created New List State 125

B.ll Sent Vote State 125

B.12 ACK New List State 126

B.13 Abort Recovery State 126

List of Figures

3.1 Rotating Token Example 19

3.2 Modified Rotating Token Example 22

3.3 Update-OrderingQ Algorithm 29

3.4 Attempt-Packet-Delivery Algorithm 31

3.5 Add-ACK Algorithm 32

3.6 Add-New-List Algorithm 32

3.7 Pass-Token Algorithm 33

6.1 LAN Aggregate Throughput 79

6.2 LAN Single Sender Throughput 80

6.3 LAN Packet Latency 81

7.1 RMP Extended Architecture 85

XI

List of Acronyms

ACK Acknowledgment

API Application Programming Interface

ATM Asynchronous Transfer Mode

CSCW Computer Supported Cooperative Work

DVMRP Distance Vector Multicast Routing Protocol

FDDI Fiber Distributed Data Interface

FIFO First-In-First-Out

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IP Internet Protocol [21]

Kbps Kilobit per second

KBps Kilobyte per second

LAN Local Area Network

Mbps Megabit per second

MBps Megabyte per second

MBone Internet Multicast Backbone

XII

MOSPF Multicast Open Shortest Path First

MTU Minimum Transfer Unit

NACK Negative Acknowledgment

OSPF Open Shortest Path First

QoS Quality of Service

RBP Reliable Broadcast Protocol [3]

RIP Routing Information Protocol

RMP Reliable Multicast Protocol

RPC Remote Procedure Call

SMV Symbolic Model Verification

TCP Transmission Control Protocol [22]

TRP Token Ring Protocol [3]

TSP Timestamp abbreviation

TTL Time-To-Live

UDP User Datagram Protocol [20]

WAN Wide Area Network

xm

Chapter 1

Introduction

As memory, storage, reliability, and bandwidth increase, decentralization of data stor-

age increases. This introduces new and complex issues that must be dealt with. Reli-

ability, resiliency, ordering of messages, and fault-tolerance of communications are all

low-level concerns of application developers that are introduced by the decentralization

of computation into distributed systems.

The lack of reliable broadcast, or reliable multicast, primitives has introduced a

host of unnecessarily complex and inefficient schemes for providing application specific

fault-tolerance, reliability, and resiliency. Although addressing the difficult issues,

usually these schemes are not reusable in other applications because the closely knit

connection between the application and its communication mechanisms. In many

cases these are so closely interconnected that one is not distinguishable from the other.

This virtually eliminates interoperability and can seriously effect application evolution.

Distributed application should have a robust transport primitive that provides reliable

delivery, ordering of messages, and fault-tolerance, thus unburdening the application

developer and allowing concentration on the application development itself.

The Reliable Multicast Protocol (RMP) is such a primitive. RMP provides a totally

ordered, reliable, atomic multicast service on top of an unreliable multicast service.

RMP is based on the set of Reliable Broadcast Protocols presented by J. M. Chang

and N. F. Maxemchuk [3]. RMP substantially expands on this by using multicast

technology instead of broadcast technology, including several extensions to provide

extra functionality, and changing the fault recovery model.

Chapter 2 discusses some background concepts and provides a basic introduction

to IP multicast technology. Chapter 3 presents the protocol model, design, and a

representation as a finite state machine. Chapter 4 presents an overview of the first

implementation of the protocol and the issues and lessons learned. Chapter 5 discusses

the verification approaches to the protocol and issues related to protocol verification

in general. Chapter 6 presents some performance results obtained by the first imple-

mentation. Finally, Chapter 7 discusses some conclusions about the protocol design,

implementation, and verification and presents future research that is planned. In ad-

dition, Appendix A and Appendix B present the message formats of the protocol and

the complete state tables.

1.1 Research Objectives

The research objectives of this investigation are:

1. Co-design the Reliable Multicast Protocol.

2. Implement the design of the protocol and experiment with features to provide a

continually evolving and comprehensive protocol design and implementation.

3. Interact heavily with the verification effort in an attempt to maintain a close

model representation of the system and to assist the effort in determining and

using the appropriate tools.

Chapter 2

Background

This chapter presents a background to IP Multicast technology and to other distributed

application development abstractions.

2.1 IP Multicasting

Multicasting is a technique used to pass copies of a single packet to a subset of all

possible destinations. When this subset is the entire set of all possible destinations,

this is called broadcasting. This technique has been supported for several years on

some local area networks. Most notably of which are Ethernet and Fiber Distributed

Data Interface (FDDI) networks. On these, a multicast packet to all of the hosts has

the same overhead as a unicast packet to just one of them.

When the destination subset is less than the entire set of all possible destinations,

some addressing scheme must be used to represent the subset, called the multicast

group. When a host desires to receive multicast traffic destined for a certain multicast

group, the host should, in effect, join the multicast address. This addressing is an In-

ternet standard [4]. An IP multicast address is a Class D address, and is always used

as destination address. The valid range for IP multicast addresses expressed in dotted

decimal notation is 224.0.0.0 to 239.255.255.255. The 224.0.0.0 address is reserved

and can not be used by any multicast group. In addition, address 224.0.0.1 is reserved

for the all hosts group on the directly connected network, and addresses 224.0.0.2 to

224.0.0.255 inclusive are reserved for routing protocols and low-level topology pro-

tocols. This leaves the address set of 224.0.1.0 to 239.255.255.255 open for general

use.

The IP multicast interface is currently supported at the TCP/IP layer of hosts

that have been configured to support IP multicast technology l. This layer provides

an address and a protocol port. The address is specified as an IP multicast address,

and the port is an abstraction that allows multiple destinations within a given host to

be distinguished 2. The underlying transport layer for IP multicast is either the User

Datagram Protocol (UDP) or the raw IP datagram protocol. Both of these protocols

employ "best-effort" on reliability. That is to say that the datagram is not guaranteed

to arrive intact at the destinations, and that no ordering guarantees are given relative

to other datagrams. UDP however does incorporate a checksum to detect damaged

packets. IP datagrams do not incorporate this checksum.

Immediately the need for a reliable, atomic, and fault tolerant protocol should be

apparent. With an unreliable and unordered base transport mechanism forming the

bottom layer, some sort of protocol is needed to provide reliability, atomicity, and

fault-tolerance to those applications that demand it.

2.1.1 Multicast Routing

The IP multicast model can be expanded to encompass extended LANs and internet-

works by modifying the routers that connect the LANs together. Normal IP routers

do not support multicasting. The multicast traffic does not leave the local network via

the IP router unless the router supports IP multicasting. Commercial router hardware

'Current vendors include Sun Microsystems, Silicon Graphics, Digital Equipment Corporation, and
Hewlett-Packard.

2The port designation is usually an integer value of 16 bits.

is quickly upgrading to support IP multicasting. As an ad hoc solution, many network

providers are using "tunneling" to provide routing of multicast traffic. Tunneling is a

scheme that involves encapsulating an IP multicast packet inside a regular IP unicast

packet and sending the packet to another multicast capable router. This is supposed

to be done by a dedicated host on the local network or subnet. However, currently

most multicast routing is being done by hosts that serve other purposes in addition

to performing multicast routing. A multicast router, or mrouter, may have several

tunnels pointing to various other networks or subnets. When a destination mrouter

receives a multicast packet, it will strip the encapsulation information from the packet

and multicast the packet out onto the local network. The destination mrouter may

also forward the packet along its own tunnels, thereby extending the range of the

packet to other networks.

Multicast routers use one of two routing protocols for routing multicast pack-

ets to other mrouters. The first is the Distance Vector Multicast Routing Protocol

(DVMRP). This protocol is the one implemented by the majority of mrouters at this

time. Its operation is detailed in an Internet standard [19]. This protocol maintains

topological information by means of a routing protocol based on the Routing Infor-

mation Protocol (RIP) [7], but enhances the protocol by implementing a multicast

forwarding algorithm.

The second multicast routing protocol, MOSPF, is being used in a commercial

router that supports IP multicasting. MOSPP is the multicast extension to the Open

Shortest Path First (OSPF) routing protocol [17],[18]. This routing protocol does

not need to use tunnels and does not send more than one copy over a link. Other

commercial router providers are in the process of either adopting MOSPF, DVMRP,

or developing their own routing protocols.

Distribution of multicast traffic on an Internet scale must be controlled in some

fashion. Currently two ways exist to control multicast packet distribution. They are:

• "Pruning" of the routing tree to adaptively restrict traffic, or

• Limit multicast packet lifetime.

The pruning approach is currently being tested on a limited scale in some DVMRP

mrouters. In this way only branches of the routing tree that have members that

are part of a multicast address receive the multicast packets for that group. Other

mrouters, except MOSPF, only trim leaves from the routing tree and allow all traf-

fic to be forwarded down branches that have no interested hosts. Thus some other

mechanism is needed to restrict the scope of a multicast. This is done through placing

lifetime restrictions on packets and lifetime thresholds on each of an mrouters tunnels.

The basic premise is that only packets with a Time-To-Live (TTL) greater than 1

should be able to leave the local network or subnet in which they were created. The

mrouter on that local network also decides, based on the TTL of the packet and the

threshold value of its tunnels, whether the packet is forwarded out through any of its

tunnels. Metrics associated with each tunnel decrement the TTL of the packet as it

is transmitted across. Higher TTL packets therefore have a much larger scope than

smaller TTL packets because the TTL can stay larger than most threshold values as

the packet travels among subnets. The Internet Engineering Task Force (IETF) has

imposed these suggested TTL conventions on scope: 3.

TTL Scope TTL Scope
0 Same host 64 Same region
1 Same subnet 128 Same continent

32 Same site 255 Unrestricted

2.1.2 Internet Multicast Backbone

The virtual network of interconnected multicast routers forms the topology of one of

the Internets fastest growing resources, the Internet Multicast Backbone or MBone.

The MBone is currently of global proportions with more than 20 countries supporting

sThe "site" and "region" scopes are flexible.

connections 4.

The MBone allows a single stream of information to be received by a large number

of hosts that are distributed globally. The MBone started as an experiment to broad-

cast live video and audio of the proceedings of the IETF meetings. It has expanded to

include several more broadcasts, including other large conferences, a few talk shows,

and live television and radio feeds.

Bandwidth is a major issue for the MBone community. This is especially true

because the MBone topology is predominantly composed of mrouters that are not

dedicated solely to routing multicast traffic. One video stream consumes about 128

Kbps, and one audio stream consumes about 64 Kbps. With these numbers it has been

assumed that the desired MBone bandwidth limit should be approximately 512 Kbps.

That is approximately four simultaneous video streams or eight simultaneous audio

streams. At any one time this is very seldom exceeded although tighter restrictions

on MBone event scheduling for broadcasting conferences and other events is starting

to occur.

The MBone provides more than audio and video dissemination. Several other ap-

plications exist and are being developed to use the MBone as its internetwork multicast

transport mechanism. Among these are efforts to develop distributed database sys-

tems, fault-tolerant simulators, and Computer Supported Cooperative Work (CSCW)

applications, such as shared tools.

2.2 Distributed Application Development

The widespread availability and use of such protocols as TCP has freed the developers

of applications that use unicasts to communicate from having to implement message

reliability and ordering into their applications. The lifting of lower-level burdens has

4More than 900 multicast routers compose the topology.

allowed developers to think at a more abstract level and to draw out useful concepts

that can used by other developers.

2.2.1 Process Groups

A process group is a set of processes that interact to perform a distributed operation.

The operation need not be symmetrical. The case may be that during the course of

the operation one process bears more of the communication or computation burden

than another process. The development of a distributed application by envisioning

the application as composed of a process group or as a process in a process group is

very useful.

Two process group communication models, or architectures, are frequently used.

These are the publisher-subscriber and client-server models. The publisher-subscriber

model allows processes to join, or subscribe, to a group. Group processes may send to

the group, or publish, messages for the group to receive. This model does not require

the explicit naming of the message destination. This is very useful for applications

that desire to avoid the restriction of having to explicitly name the destination of a

message. This also addresses the problem of naming message destinations in a mobile

distributed application, such as agents.

The client-server model is more traditional. It involves the operation of a server

process that waits for requests from clients. Clients send a message to a server and

usually wait for a reply, which the server sends back. In many cases the naming of the

client and the server must be explicit.

Two other group models that are also useful are Diffusion Groups and Hierarchical

Groups [1]. Diffusion groups are groups that are composed of a single set of senders

in the group and a single set of passive receivers in the group. This style is the most

frequently used style of group for most normal multicast applications. A hierarchical

group consists of multiple component groups. The component group and the inter-

8

connection of them may use other models of communication. This approach is useful

for applications where scalability and/or security are major concerns.

2.2.2 Event Ordering

Within a group correct ordering of messages may or may not be of critical performance.

It is entirely dependent on what distributed operation the group is performing. Most

distributed applications desire at least source ordering of messages. This means that

each message from a source is ordered with other messages from the same source in a

First-In-First-Out (FIFO) style.

Certain group applications desire even stricter ordering of messages. Synchro-

nization concerns and mutual exclusion may need to be addressed as well. When

operations need to be performed on data or objects that have no mutual connection,

then a causal ordering scheme may be sufficient [1], [12]. This scheme allows messages

to be processed in different orders at different processes so long as the operations have

no relationship and the objects operated upon have no relationship. If a relation-

ship does exist between data or operations, then atomic ordering, or total ordering, is

needed. In this scheme all messages are processed in the same order at each process

in the group. This scheme allows the execution model of the system to appear to have

a property called Virtual Synchrony 5 [1].

Virtual Synchrony provides many benefits to a distributed application. It is a

system model that allows the developer to assume a more simplified and systematic

execution. Applications that manage global state information, or that desire mecha-

nisms to transfer state information to other group members, can easily use this model

to implement such devices.

'From Ken Birman - "Intuitively, this means that the user can program as if the system scheduled
one distributed event at a time. [2 6]"

2.2.3 Reliability, Resiliency, and Fault Tolerance

Communication within a group may need to be reliable. Cases where reliable delivery

is not a concern are real-time video and audio transmission. Reliable communication

in these cases is not of much use unless strict real-time guarantees can also be put

on the messages so that the quality and latency desired by the application can be

achieved. Many applications, however, desire that their messages be reliably sent.

Especially when transactions and global state information is concerned, reliability is

very important.

In the case of failures, resiliency may also be desired. Resiliency of messages

attempts to impose that under certain failure assumptions the message will be deliv-

ered. This concept goes hand in hand with fault tolerance. Fault tolerance attempt?

to assure that under certain failure assumptions the system will be able to recover

transparently to the application and proceed. Together these concepts attempt to

provide a system model that is robust in the face of failures and has the ability to

recover from failures transparently and without message loss.

10

Chapter 3

Design of the Reliable Multicast Protocol

This chapter discusses the design of RMP and presents the protocol itself. First the

primary features of RMP are introduced. Second, the general RMP model described.

Next, the data structures and their operations are detailed. Finally, the last section

details a state machine representation of the protocol.

3.1 Primary Features of the Reliable Multicast Protocol

RMP provides a transport mechanism by which the user can design and implement

fully distributed, fault-tolerant applications without the need to deal with the lower

level primitives of communication. In order to do this, RMP provides several features,

both in terms of performance and functionality. These are:

• High throughput for Totally Ordered messages, with low latency

• Virtual Synchrony

• Support of process group models

• Efficient changes to the process group

• Scalability of process groups, and

• Flexibility of choice for resiliency and fault-tolerance levels

Since RMP is aimed at providing a transport level service, performance is a very

high priority. The protocol needs to be efficient and robust. The key point sought

11

by RMP is high throughput for totally ordered messages with low latency. The total

ordering of messages is imparitive to providing virtual synchrony. However, RMP

provides a means to control the ordering of messages on a per message basis.

RMP supports the publisher-subscriber and client-server communication models

for the application developer. The client-server model allows RMP to scale to hundreds

of simultaneous users. Scalability is also encouraged by the support of the hierarchical

group model.

Flexibility in communication models, message resiliency, fault tolerance, and or-

dering guarantees allow RMP to provide an open architecture for the application to

use. This allows RMP to be used as a basic cornerstone that forms the foundation for

a whole collection of layered functionality.

3.2 Protocol Model

RMP is based on a model of complex interaction between processes operating on

interconnected hosts. It is important to discuss the basic entities involved in this

interaction, to present the interaction model, and show how the RMP design has

adjusted the model to achieve the desired features.

3.2.1 RMP Entities

RMP is organized around three entities: RMP Processes, Token Rings, and Token

Lists. An RMP Process, or process, is the basic entity of a larger system that uses

RMP to communicate. An RMP Process can be thought of as a member of a process

group that is using RMP to provide its transport mechanism. Multiple processes

may exist on the same host. Under this requirement, it is necessary to uniquely

identify each one. This is accomplished by taking the IP address of the host and

combining that with the protocol port that the process will use for communication.

12

This combination is referred to as the RMP Process ID, and should be unique across

the entire internetwork.

A group of processes, communicating to achieve message ordering, is referred to as

a Token Ring. Each process may be a member of multiple token rings. Alternatively,

processes may not be a member of any token ring and may communicate with a

token ring through the use of a client-server communication model. Processes that

are executing on a host that is not multicast capable may also be part of a token

ring. Each token ring is given a textual string representing its Token Ring Name.

This name is similar to the text strings used for current Internet host and domain

names. Instead of only specifying one domain or one host, token ring names represent

a dynamic collection of processes. The mapping of a token ring name to a set of IP

Multicast address and port values can be handled implicitly by the process. This may

be done by using a random hash function to generate a unique address and port set of

values directly from the text string. Alternatively, this mapping may be handled by

an external multicast address management authority. As a third possibility, a token

ring name need not be directly mappable at all. The IP Multicast address and port

values may be explicitly chosen by the developer.

The list of members of a token ring is called the Token List. Each process in

the list maintains a current version of this list for reference operations for protocol

operation. A token list is always created by one process, called the Originator, which

generates a Token List ID for the list. This Token List ID is composed of two pieces of

information. The first piece is the Originator RMP Process ID, and the second piece

is a unique counter associated with the Originator. This counter may be the current

time in millisecond resolution or some other value unique to the RMP Process and

to the host. The guarantee of the RMP Process ID being unique across the entire

internetwork, and the guarantee that the Originator counter is unique to the host,

precludes the need to maintain unique IP Multicast address and port combinations

13

across multiple token rings. This is the result of the fact that collisions to the same

address and port may be resolved by filtering packets based on Token List IDs. Token

Lists IDs are changed each time a new token list is generated, whether it is the result

of a membership change or a failure. In addition, a Token List ID has a Time-To-Live,

currently 45 minutes. If a site that generated the current Token List ID notices that

the ID is older than this, then the site must generate a new Token List ID. This is to

assure that IDs do not become invalidated because of long inactive times of operation.

Token lists are also referred to as Membership Views because they represent a view

of the current membership of the token ring. RMP extends this view to include other

information about a token ring member. Most notably, a member may hold one or

more Locks. These locks are mutually exclusive. The semantics attached to a lock are

totally dependent on what the application requires the lock to do. Six of these locks

are set aside as Handlers. A handler is a mechanism that allows a message to be sent

to a group and have only one member reply or handle that message. In effect, the

handler marks the message as requiring a reply from only one member of the token

ring.

Processes that are not part of the token ring may send a message to the group,

and optionally be either notified of its delivery to the group or receive a reply from

one of the members. This model of RMP communication, referred to as Multi-RFC,

allows RMP to support a client-server communication model. This allows processes

that desire information from the token ring, but do not want to pay the overhead price

of actually joining the Token Ring, to communicate directly with the ring.

RMP is designed to take advantage of an unreliable multicast service as its base

communication. However, for increased flexibility, it also supports hosts that are

not multicast capable. This concept extends multicasting to include processes that

can only communicate through unicast methods. This is accomplished through two

mechanisms. The first is denoting processes that are not multicast capable in the token

14

list and mandating that such members require unicast transmission of all messages sent

to the ring. The use of RMP Process IDs to identify members makes this trivial. The

second mechanism is the use of a forwarding flag on each message. This allows non-

multicast capable members to send a message to a multicast capable member of the

ring and have that member forward the message to the ring via a multicast.

3.2.2 Interaction Model - Post-Ordering Rotating Token

Traditionally, two schemes are primarily used to provide reliability on top of unreli-

able communications media. The first, Positive Acknowledgment, involves requiring a

receiver to explicitly send a notification that a message was received. This notification

is commonly called an ACK. This scheme does not scale well to multiple destinations

because the number of ACKs sent per data message becomes high, therefore reducing

available bandwidth and hurting performance. This approach also does not provide

any ordering guarantees on the received messages at the receiver. However, the sender

may place sequence numbers on the messages providing the order in which each was

sent.

Negative Acknowledgment schemes place the burden of detection of transmission

loss on the receiver. Each message a sender sends is stamped with a sequence number

to differentiate that message from the ones before it and after it. If the receiver receives

one message with a sequence number higher than the one it was expecting, the receiver

can request a retransmission of the lost message. This request is commonly called a

NACK. Ordering with respect to each sender in this approach is inherent. Using this

approach, there is no way to determine when a receiver has actually received a message.

Therefore the sender must save all messages indefinitely. For some applications this

approach may be optimal. For many other systems, such as distributed databases,

the infinite buffer required is too costly. This approach provides no global ordering

for multiple senders. However, real time information can be placed in each message,

15

specifying the global time each was sent. This involves a clock synchronization step.

RMP is based on a modified version of the family of protocols presented by J.

M. Chang and N. F. Maxemchuk [3], referred to here as TRP, Token Ring Protocol.

TRP makes the general system of many senders and many receivers appear to be a

combination of two simpler systems. To the receivers, the system appears as a system

with one sender by having all the messages serialized by one site. This site is called the

Token Site. The token site sends an ACK, or acknowledgment, containing a special

sequence number, called a timestamp. This ACK is in response to a data message sent

to the group. In this way the system operates as a positive acknowledgment scheme

to the message sender, who knows whether or not his message has been received by at

least one receiver. The system also operates as a negative acknowledgment scheme to

the other receivers, who know if they miss a message because of the imposed timestamp

ordering. Missing messages can then be requested by sending a NACK to the other

receivers or the sender requesting a retransmission of the missing message. In addition,

a message source places a sequence number on a message to order that message with

respect to other messages it has or will send. Sequence numbers and timestamps are

two different entities. Sequence numbers provide ordering of messages with respect to

the same site. Timestamps, however, provide global ordering across all sites.

The infinite buffering of the negative acknowledgment scheme still applies to this

approach. This results in the need for some sharing of the token site responsibility

among members of the token list 1. This sharing is done by rotating the token as

a consequence of generating the ACK for a message. For a receiver to accept the

token, it must have all the timestamped messages. This maintains consistency and

assures that a message that is lost can be recovered. Livelock is avoided by making

the token pass mandatory within a specified time interval. If a site does not see a

1The group of receivers and senders, also called a Token Ring. The similarity between the Token
Rings in TRP and Token Rings in RMP is intentional.

16

message that may be acknowledged within this time period, then the site must pass

the token by sending an ACK that does not acknowledge any message. This special

ACK is called a Null ACK. In order to eliminate the need to keep sending Null ACKs

while no messages are being sent, the token ring may go into quiescence, or inactivity,

after the token has passed around to every member of the token list once with Null

ACKs. The ring becomes active again once a message is sent to it.

Delivery of a message, or committing a message, to the application is possible after

N transfers of the token, where N is the token ring size. This ensures that each

receiver has the message before the application sees it. This is referred to as Totally

Resilient, or safe, delivery. In addition, the message is termed stable when it reaches

this point. If K sites accept the token after the message is timestamped, then K + 1

sites have the message and K + 1 sites would have to fail before the message is lost.

This is the concept of K-Resiliency of messages. A message can be assumed to have

agreed delivery semantics if more than half of the sites have the message. This is also

referred to as Majority Resilient delivery.

Because of the rotating of the token and the ordering of messages after they are

sent, this model is referred to as the Post-Ordering Rotating Token approach. Pre-

Ordering approaches restrict the sending of messages to sites that have the token.

Some protocols which use this approach are [14] and [11]. This approach suffers from

large penalties when used on high latency networks, such as WANs. Also this approach

does not allow asynchronous sending of messages as done in the TRP approach.

A fault-tolerant system must specify the failure assumptions under which recovery

is possible. RMP shares the following TRP failure assumptions:

1. A site failure means the site stops processing. The site does not interject cor-
rupting information into the group.

2. A message failure can be the result of an overfull buffer at either the receiver or
the sender, or it may be the result of a transmission failure. 2

'Given current networks, this is very rare («C 1% of packets)

17

,

3. A failure is detected by the group when communication with the group and a
site fails after R attempts. R must be chosen such that a failure is mistakenly
detected infrequently, but large enough to provide timely notification of actual
failures.

Failures are detected in TRP and in RMP by the use of retransmissions after a

timeout period. A sender keeps retransmitting its message until it receives an ACK

for that message. A token transfer is retransmitted until a positive confirmation is

received that the new token site has accepted the token. This positive confirmation

can be another token pass or it may be a confirmation message sent to the original

site. Lastly, all negative acknowledgments, or NACKs, are retransmitted until the

requested missing packet is received. Therefore each one of these messages require a

form of positive acknowledgment. If that positive acknowledgment is not received in

a given period, the non-responding site is assumed to have failed. The TRP protocol

presented so far covers the the normal operation of the protocol, called Normal Phase

operation. Once a failure is detected, the Reformation Phase of the protocol begins.

The TRP reformation protocol involves three phases by the fault detecting site

and two phases for the other sites, or slaves. The fault detector, called the Reform

Site, first forms a valid new Token List. Next the new list must pass a majority and

a resiliency test 3, the list must be sent to the slaves, and a new token site must be

elected. The last phase involves the authorization of the new token site, the generation

of a new token, and the passing of the new token to the new token site. After this,

normal operation resumes. The formation of a new list is achieved through the use of

a voting scheme with the reform site being the arbitrator.

To illustrate the ordering of messages and the normal operation of the Post-

Ordering Rotating Token approach, examine Figure 3.1. In the figure, three sites

(A,B, and C) are shown. They are connected by a multicast capable communication

sThe majority test tries to ensure no two reformations can concurrently continue, and the resiliency
test assures that no messages from the old list are lost.

18

Event Order

Data(A,1)

ACK((A,1),C,1)
ACK (NULL, A, 2)

Initial Token Site

Data (A, 1) AOC((A,1),C,1)

Imposed Order
Timestamp Event

1 ACK((A,1),C,1)
Data (A, 1)

2 ACK (NULL, A, 2)

ACK (NULL, A, 2)

Figure 3.1: Rotating Token Example

media. Initially site B is the token site. The order of events seen on the network are

shown as Event Order. First a message containing data is sent to the network from site

A. Site A places a sequence number on the message of 1. This is shown as Data(A,l)

in the figure. Site B, being the current token site, notices the message and generates

an ACK, ACK((A,1),C,1). This ACK contains the site and sequence number for the

message it is acknowledging, (A,l), the next token site, C, and a timestamp, 1, to

globally order the message. The imposed ordering of messages is shown as Imposed

Order. Site C is now the token site. No message is sent within a certain period of

time after site C becomes the token site, therefore, site C must pass the token. Site

C does this by generating a Null ACK and sending it, ACK(NULL,A,2). The token

is therefore passed to site A, and the Null ACK is ordered by giving it a timestamp

of 2. Delivery of the site A message will not occur until site B becomes the token site

again.

19

3.2.3 Modifications to the Token Ring Protocol

As has been stated, RMP is a modification of the Token Ring Protocol presented in

Section 3.2.2. RMP modifies TRP by the following additions and changes:

• Allowing multiple messages to be acknowledged per ACK

• Changing message commitment policy to be on a per message basis

• Allowing New Token Lists to be generated without Reformation

— This allows efficient Token List changes

- Allowing other information to become part of the membership view

• Changing the Reformation protocol

- Not allowing members to be added to the list during Reformation

- Allowing minority partitions to continue, if desired

- Allowing atomicity to be violated, but notifying application of it occurring

- Providing adjustable resiliency on a per Token Ring basis

It can be seen that under heavy load, where several sites are simultaneously send-

ing, that messages would tend to queue up before being acknowledged. The solution

to this problem is to allow multiple messages to be acknowledged and ordered per

ACK sent. This has a secondary effect of, under heavy load, lowering the message size

to ACK size ratio. This increases network utilization since a larger majority of data is

being sent through the system while a lower portion of the bandwidth is being taken

up by acknowledgments.

Various types of applications demand different levels of atomicity and resiliency

than the Totally Resilient TRP policy of message delivery. To support these differ-

ing levels, RMP has changed the committing policy of message to be more flexible.

Each message is to be committed based on its own desired Quality of Service (QoS)

. This QoS ranged from Unreliable, where the message is committed upon reception,

to Totally Resilient, where the message delivery has the same semantics as in TRP.

To facilitate this, each message is also given a timestamp within the global ordering.

20

I QoS Level | Description

Unreliable

Reliable

Source Ordered

Totally Ordered

K Resilient

Majority Resilient

Totally Resilient

Delivery is immediate upon reception. Lost messages are
not requested. These messages are not assigned
sequence numbers by the sending site.
Delivery is immediate upon reception. Lost messages are
requested. These messages do receive a sequence number.
Delivery is after all messages from the same source and
with lower sequence numbers have been delivered.
Delivery is after all messages with lower timestamps
have been delivered.
The same as Totally Ordered but with K - 1 passes
of the token required as well.
The same as K Resilient but with K being
equal to (N + l)/2, where N is the siae of the ring.
The same as K Resilient but with K being
equal to N, where N is the size of the ring.

Table 3.1: QoS Levels

This timestamp is implied rather than explicitly assigned, as is done with ACKs. The

timestamp of a message follows from the ACK timestamp in a monotonically increasing

fashion. Therefore if an ACK contains two messages, and the ACK has a timestamp

of 3, then the first message has an implied timestamp of 4, and the second message

has an implied timestamp of 5. The different levels of QoS are shown in Table 3.1.

TRP does not cover the process of reaching normal operation from a totally mem-

berless token ring. No attention is paid to membership changes either. Because effi-

cient membership changes are needed for group communication, RMP has extended

the base model to cover membership view changes. Membership view changes are not

necessarily just additions and deletions from the token list. RMP combines pieces

of information into the token list to effectively implement Locks and Handlers as

mentioned in Subsection 3.2.1. Efficient view changes can be done by noticing that

a membership view is really just a global state change. This change can easily be

achieved by a totally ordered 4 message to the ring. And obviously, the change can be

even more efficient if it were not actually a message, but a token transfer. Therefore

a member could request a change via a specific type of message, referred to as a List

4 Resiliency is not needed because any fault would invalidate the new list anyway.

21

Event Order
Data (A, 1)
Data (C, 1)
ACK((A,1) ,(C,1) ,C,1)
ACK(MDLL,A,4)
LCR(C, Remove, 2)
NL((C ,2) ,B ,5)

Initial Token Site

Data (A, 1)

NL«C,2),B,5) ACK((A,1), (C,1),C,1)

Imposed Order
Timestamp Event

1 ACK((A,1) , (C,1) ,C,1)

2 Data(A,1}
3 Data(C,l>
4 ACK(NULL,A, 4)
5 N1((C,2) ,B, 5)

Data(C,l)
ACK(NUUi,A, 4)
LCR(C, Remove, 2)

Figure 3.2: Modified Rotating Token Example

Change Request or LCR. The current token site serializes all requests and generates a

new token list, referred to as a New List, timestamps the new list, and sends the new

list as a token transfer. Thus an ordering of the change within the global ordering is

achieved and Virtual Synchrony is maintained. Each LCR must have a corresponding

new list that handles just that request. In this way, new lists act as acknowledgments

for LCRs. Multiple changes per new list would violate Virtual Synchrony and nullify

the effect desired by the membership view change.

The Rotating Token example can now be modified to include the ability to ac-

knowledge multiple messages and the ability to change the membership views. The

new example is shown in Figure 3.2. The initial token site is once again site B. Site

A sends a message with sequence number 1 and almost simultaneously site C sends

a message with sequence number 1 as well. Site B sees the site A message just be-

fore the site C message and therefore orders the two messages by sending an ACK,

22

ACK((A,1),(C,1),C,1). The ACK will be placed in the Imposed Order with a times-

tamp of 1. The messages will also be placed in the order with timestamps of 2 and

3. These timestamps are implied because of the order they are placed in within the

ACK. The new token site is C. As in the first example, site C generates a Null ACK

to pass the token to site A. The Null ACK is given a timestamp of 4, ordering it after

both the other messages. Site C decides that it wants to remove itself from the ring.

To perform this operation, site C sends an LCR that contains a sequence number of

2, ordering it with respect to the first message from site C, and requesting site C to

be removed from the ring. Because site A is the current token site, site A generates

a new list, NL((C,2),B,5), that does not contain site C in it and sends the new list to

the ring. As a consequence of generating the new list, the token is passed to site B.

The new list is ordered within the global ordering by being given a timestamp of 5.

The new list that was generated corresponds with the LCR sent from site C with a

sequence number of 2.

Both of the Data messages shown have a corresponding QoS that is not shown.

Suppose that the last delivered timestamp was 0, the last delivered sequence number

from site A was 0, and the last delivered sequence number from site C was 0. Now also

suppose that the QoS of both Data messages is totally ordered. Therefore, once the

ACK for (A,l) and (C,l) are received, those Data messages can both be committed.

And once the new list is received, it also may be directly committed 5. New lists have

an implied QoS of totally ordered.

Reformation in RMP has been almost totally redesigned from TRP. The TRP

Reformation protocol did not take into direct consideration what exactly should be

done upon a failure during the reformation process. For this reason, and to provide a

more flexible and adjustable failure recovery model, a reformation protocol for RMP

was developed.

'Because timestamps 1-4 have already been delivered.

23

The flexible failure recovery model desired by RMP is one that contains the ability

to return to normal operations in the face of specified minimum size partitions. If a

ring required that at least four members be in the ring after a failure, then the ring

should be able to recover if all the members fail except four. The majority test of TRP

ensured that when a partition occurred that a majority of the old sites had to be in the

new list of sites. This is not always desirable or necessary for continued operation and

is therefore not part of RMP. But this test also has a side effect. No two simultaneous

reformations may continue if a majority of the sites are needed for a valid list to be

created. RMP makes up for this by checking at each step of the protocol to detect and

recover from simultaneous reformations. The TRP reformation protocol also allowed

new members to join a ring when it was in reformation. This does not follow Virtual

Synchrony and therefore has been taken out of the RMP reformation protocol.

The resiliency test of the TRP reformation protocol is used to ensure that messages

from the old list are not lost. RMP adopts this test, but also relaxes it so that a new

list may be formed that can have missing messages. This allows the application to

decide if those missing messages were important enough to warrant a shutdown of

the ring. In some cases an application may keep a small buffer of sent messages for

recovery from just this type of situation.

3.3 The Data Structures and Algorithms

The specification of any communications protocol needs to be very clear and concise.

The specification of RMP contains a set of message formats, called packet formats, two

simple data structures, some algorithms that operate on these data structures, and a

finite state machine.

24

3.3.1 Packet Types

RMP is a packet based system. This means that each message sent is a single packet.

Fragmentation and reassembly of large messages into a stream is the task of a higher

level interface 6. The idea of a message and a packet in RMP is, at this level, the

same.

RMP uses many different types of packets to communicate. This is necessary

because of the large amount of state information involved with the protocol. RMP

packet types are split into two different categories. The first category is the actions

associated with the packet type. These are Control Packets, Failure Recovery Packets,

and Non-Member Packets. Data Packets do not fall into any of these actions. The

second category is the state machine extension that the packet addresses and is used in.

These are Normal Operation, Multi-RFC Extension, Membership Change Extension,

and Failure Recovery Extension. The packet types and their corresponding categories

are shown in Table 3.2.

Each RMP packet contains one header split into two parts. The first part is the

same for all RMP packets. This is called the RMP Fixed Header. The RMP Fixed

Header contains the following information:

• A bit marking the packet to be "forwarded" to the group

• The RMP Protocol Version feducial

• The type of RMP packet

• The Token List ID for the packet

Each RMP packet also has an additional part that contains information relevant

to protocol operation. The exact format of each packet is shown in Appendix A on

page 92. For now it is only important to understand the types of RMP packets and

what they are generally used for.

8The maximum packet size is chosen based in order to optimize performance.

25

Packet Type | Algorithm Description

Data Normal Operation | Contains data from one member of the group

Control Packets

ACK

NACK

Confirm
New List
List Change
Request

Normal Operation

Normal Operation

Normal Operation
Membership Change
Membership Change

Orders Data Packets and
Non-Member Data Packets
Requests retransmissions of one or more
packets
Confirms a Token Pass
Contains a Membership View
Requests a change to the current
membership view

Non-Member Packets

Non-Member Data

Non-Member ACK

Multi-RFC

Multi-RFC

Contains data from a process that is
not a member of the group
Response to a Non-Member Data Packet

Failure Recovery Packets

Recovery Start
Recovery Vote
Recovery ACK
New List
Recovery Abort

Reformation
Reformation
Reformation

Reformation

Start Reformation
Members Vote of group properties
Member has received New List

Abort Current Recovery, Start again

Table 3.2: RMP Packet Types

Some RMP packets require a form of positive acknowledgment. Any time an RMP

packet requires a positive acknowledgment, that packet must be periodically retrans-

mitted until the positive acknowledgment condition is met. If after a set number

of retransmissions, X, that condition has not been met, then it is reasonable to as-

sume that a failure has occurred and reformation should be initiated. The packets

that require positive acknowledgment and the conditions for meeting that positive ac-

knowledgment are given in Table 3.3. Control of the timeout period length between

retransmissions is a flow control topic, see Section 3.5. The maximum number of re-

transmissions before initiating reformation should be configurable based on network

properties.

3.3.2 Data Structures

There are two data structures that are used by the RMP protocol, the DataQ and the

OrderingQ. An individual implementation may have several more data structures, but

26

I Packet Type [Positive Acknowledgment Conditions

Data
ACK

NACK
Confirm
Non-Member Data

Non-Member ACK
New List

List Change Request

Recovery Start
Recovery Vote
Recovery ACK New List
Recovery Abort

Reception of ACK Packet that contains Packet
Reception of ACK, New List, or Confirm Packet with
Timestamp > Timestamp of Packet
Reception of requested Packet(s)
(none)
Reception of Non-Member ACK Packet that contains
Packet
(none)
Reception of ACK, New List, or Confirm Packet with
Timestamp > Timestamp of Packet
Reception of a New List Packet containing response
to request
Creation of a valid New List Packet
Reception of a New List Packet from Reform Site
(none)
(none)

Table 3.3: Packet Positive Acknowledgments

the RMP algorithms and state descriptions use only these two data structures.

When Data Packets, List Change Request Packets, or Non-Member Data Packets

arrive, they are first put into a FIFO for processing later. This FIFO is called the

DataQ. The DataQ has no priority other than the time of arrival and is merely used

as a means to determine in what order packets were received.

When ACK Packets or New List Packets arrive, they are put into another kind of

FIFO. This FIFO is called the OrderingQ. As the name implies, the OrderingQ is the

mechanism which primarily imposes ordering on packets. In addition, the OrderingQ

also provides a means of detecting lost packets. Each member of the OrderingQ,

also called a slot, is one of these four types of packets: Data Packet, Non-Member

Data Packet, ACK Packet, or New List Packet. Each slot of the OrderingQ has an

associated priority which orders the FIFO. The priority of each slot is based on the

packet's timestamp. This timestamp is either explicit, in the case of ACK Packets and

New List Packets, or it is implied, in the case of Data Packets and Non-Member Data

Packets. No two members of the OrderingQ are allowed to have the same timestamp.

In addition to each slot of the OrderingQ having a timestamp for ordering, each

27

slot also has an associated "state" based on the disposition of the associated packet.

That state is one of the following:

Packet Missing: Packet is missing, but NACK has not been sent.

Packet Requested: Packet is missing, and NACK has been sent.

Packet Received: Packet has been received.

Packet Delivered: Packet has been delivered to the application.

The DataQ has no direct associated operations that must be performed on it. But

the OrderingQ has a set of algorithms that are used to change the state of each slot

and to add and remove slots from the structure. These algorithms may change the

elements of the DataQ as a result of their operations on the OrderingQ.

3.3.3 Data Structure Algorithms

RMP uses four algorithms to perform operations on its OrderingQ to add and remove

slots and to change the state of individual slots. Each algorithm is executed based on

the state of the site as presented in Section 3.4. These algorithms are:

• Update-OrderingQ,

• Attempt-Packet-Delivery,

• Add-ACK, and

• Add-New-List

In addition, a fifth algorithm, called Pass-Token, is used to determine which Data

Packets, Non-Member Data Packets, or List Change Requests are handled by the next

token pass.

The Update-OrderingQ algorithm, shown in Figure 3.3, should perform these ac-

tions each time it is invoked:

1. Check for missing timestamps and add slots if needed

2. Send NACKs for missing packets

28

Update-OrderingQO
for each (slot in the OrderingQ (starting with lowest timestamp)) Loop

If (slot tiniest amp not equal to last slot timestamp + 1) then
EnQueue as many empty slots to cover missing timestamps
for each (new slot to be Enqueued) Loop

Send BACK for missing timeatamp
Hark slot state as Packet Requested

End Loop.
End If.
If (slot state is Packet Missing) then

Search DataQ for missing packet
If (packet is found in DataQ) then

Remove packet from DataQ
Place packet in OrderingQ
Hark slot as Packet Received
Attempt-Packet-Delivery(slot)
Update information about packet source

Else
Send HACK for packet
Hark slot as Packet Requested

End If.
Else If (slot state is Packet Requested) then

Search DataQ for missing packet
If (packet is found in DataQ) then

Remove packet from DataQ
Place packet in OrderingQ
Hark slot as Packet Received
Attempt-Packet-Delivery(slot)
Update information about packet source

End If.
Else If (slot state is Packet Received) then

Attempt-Packet-Delivery(slot)
Update information about packet source

Else If (slot state is Packet Delivered) then
Update information about packet source

End If.
End Loop.
while (the number of ACK Packets and lew Lists Packets in OrderingQ

is greater than the number of members of the Token Ring) Loop
DeQueue lowest timestamp and discard packet

End Loop.
End Update-OrderingQ.

Figure 3.3: Update-OrderingQ Algorithm

29

3. Update information about each packet source

• The next Expected sequence number from that source

• The next Delivered sequence number from that source

4. Attempt to deliver any packet which qualifies

The third item is probably one of the more important. Each Token Ring member

must maintain information about each other member of the ring, and some non-

members, for Multi-RFC to function correctly. As part of that information, two

sequence numbers must be kept. The first sequence number is the next Expected

from the member. This number is incremented each time an ACK is received for

one of that member's Data Packets, or a New List Packet is received for one of that

member's List Change Request Packets. It is this sequence number which is checked

to determine if the current Token Site may generate an ACK containing a packet

from that member. This provides a consistent mechanism which assures that ACKs

only contain monotonically increasing sequence numbers from any one source. This

restriction is also maintained for Non-Member Data Packets. The second sequence

number is the next Delivered from that member. This number is incremented when

a packet is delivered to the application from that source. This ensures that only

monotonically increasing sequence numbers are delivered to the application from any

one source.

The Attempt-Packet-Delivery algorithm, shown in Figure 3.4, takes as an argument

the OrderingQ slot to attempt to deliver. If the slot meets the requirements to be

delivered, based on the type of packet and the QoS of the packet if it is a Data

Packet or Non-Member Data Packet, then the packet is eligible to be delivered to the

application. There is one exception and this is for New List Packets which remove

the site from the Token Ring. In order for a site to commit a New List Packet of this

type, the site must also be in the Not Token Site state, see Subsection 3.4.3, as well

as meet the other requirements.

30

Attempt-Packet-Delivery(slot)
If (slot is a Data Packet or Hon-Hember Data Packet) then

If (slot packet has QoS equal to Unordered) then
Commit the packet to the application
Mark slot as Packet Delivered

Else If (slot packet has QoS equal to Source Ordered) then
If (all of the smaller sequence numbers from that

source have been delivered) then
Commit the packet to the application
Hark slot as Packet Delivered

End If.
Else If (slot packet has QoS equal to Totally Ordered) then

If (all of the timestamps smaller than the slots
timestamps have been delivered) then

Commit the packet to the application
Hark slot as Packet Delivered

End If.
Else If (slot packet has QoS equal to K Resilient) then

If (all of the timestamps smaller than the slots
timestamps have been delivered and the token
has passed K number of times) then

Commit the packet to the application
Hark slot as Packet Delivered

End If.
Else If (slot packet has QoS equal to Majority Resilient) then

If (all of the timestamps smaller than the slots
timestamps have been delivered and the token
has passed number of members/2 times) then

Commit the packet to the application
Hark slot as Packet Delivered

End If.
Else If (slot packet has QoS equal to Totally Resilient) then

If (all of the timestamps smaller than the slots
timestamps have been delivered and the packet is
about to be Dequeued from OrderingQ) then

Commit the packet to the application
Hark slot as Packet Delivered

End If.
End If.

Else If (slot is a lea List Packet)
If (all of the timestamps smaller than the slots timestamps have

been delivered) then
Commit the lea List and notify application
Mark slot as Packet Delivered

End If.
Else If (slot is an ACS Packet) then

Hark slot as Packet Delivered
End If.

End Attempt-Packet-Delivery.

Figure 3.4: Attempt-Packet-Delivery Algorithm

31

Add-ACKO
EnQuene a slot into the OrderingQ with the same timestamp as ACK
Mark slot as Packet Received
for each (ACK Identifier in ACK Packet) Loop

EnQnene a slot into the OrderingQ with timestamp of ACK + ACK Id
Nark slot as Packet Missing
Set information in slot to reflect ACK Identifier information

End Loop.
End Add-ACK.

Figure 3.5: Add-ACK Algorithm

Add-Sew-ListO
EnQneue a slot into the Ordering!) sith the same time stamp as lev List
Hark slot as Packet Received
Scan DataQ for List Change Request Packet matching Hew List Packet
If (a List Change Request Packet is found matching lev List Packet) then

Remove List Change Request Packet from DataQ and discard
End If.

End Add-ieo-List.

Figure 3.6: Add-New-List Algorithm

The next two algorithms, Add-ACK and Add-New-List, essentially do the same

thing, but do it on two different packet types. Add-ACK, shown in Figure 3.5, adds

an ACK Packet to the OrderingQ and also adds slots for the Data Packets or Non-

Member Data Packets associated with the ACK. By convention, the additional slots

have timestamps that increase monotonically from the ACK Timestamp. Add-New-

List, shown in Figure 3.6, adds a New List Packet to the OrderingQ and also tries

to match it up with a List Change Request Packet from the DataQ. If it can make

the match, then the List Change Request Packet is removed from the DataQ and

discarded.

A careful observer may notice that duplicate ACK and New List Packets may be

detected by first checking the timestamp and then searching the OrderingQ for that

timestamp. Packets with timestamps less than the last delivered timestamp are most

certainly duplicates, and the same is true of any timestamp which is already in the

32

Pass-TokenO

for each (member of the DataQ) Loop

If (member is a List Change Request Packet and request can

be granted and packet is eligible) then

Generate a Hew List Packet for request

Send lea List Packet

Exit Loop

Else If (member is a Data Packet or a Ion-Member Data Packet
and is eligible to be acknowledged) then

Generate ACS Packet containing as many Data Packets

and Ion-Member Data Packets as are eligible in the

DataQ

Send ACK Packet

Exit Loop
End If.

End Loop.

If (ACK Packet or lev List Packet could not be generated) then
Return to calling routine reporting Token lot Passed

Else
Return to calling routine reporting Token Passed

End If.
E"d Pass-Token.

Figure 3.7: Pass-Token Algorithm

OrderingQ. For Data and List Change Request Packets, the detection of duplicates is

only slightly more complicated. First the sequence number and source of the packet

should be checked and compared with the information known about the source. Any

sequence number less than the next expected sequence number from that source is a

duplicate. Next a search of the DataQ may turn up that the packet is already in the

DataQ. Then finally a scan of the OrderingQ can be done to determine if the packet

has already been processed. Detecting duplicate Non-Member Data Packets is slightly

more complex, see Subsection 3.4.2. This is just one way in which duplicate detection

can be done. It is by no means the most efficient.

The Pass-Token algorithm does not perform any operation on the DataQ or Order-

ingQ, but is nevertheless essential. This algorithm, shown in Figure 3.7, is the mech-

anism which generates an ACK Packet or generates a New List Packet and sends the

packet, therefore passing the token. Pass-Token does not have to generate a packet,

however. As shown in the algorithm, only Data Packets and Non-Member Packets

33

which are eligible to be acknowledged can be acknowledged. Only List Change Re-

quest Packets that are eligible, and can be granted, may generate a New List Packet.

A packet is eligible if its sequence number is the next expected sequence number from

its source. Packets with a QoS of Reliable are always eligible and need not meet the

the sequence number criteria. A request can not be granted only if the actual request

operation is unknown or violates the semantics of the operation (e.g. asking to be

added to the token ring when already a member).

3.4 Finite State Machine Representation of RMP

To facilitate the verification effort and to precisely specify the protocol operation,

RMP has been broken down into a finite state machine representation. This state

representation is meant to apply to each site, or member, of the token ring. So

collectively, all the members of the group make up a global state that is a composition

of all the individual member states.

The state machine is driven by Events. These correspond to packets arriving,

timers expiring, and combinations of conditions being met. The different events and

their corresponding descriptions are shown in Table 3.4. This state machine repre-

sentation can have multiple transitions on one particular event and condition. This

is shown in the tables by Pass Event to Next State. In the state tables presented, it

is assumed that duplicate packets are detected and removed before being acted upon.

The Condition(s) in the table apply after the Action(s) have been performed, but

before actual state transition has taken place.

First the Normal Operation States are presented, then the extensions to this base

model are shown and discussed. The extensions are Multi-RFC, Membership Change,

and Reformation. Each extension builds on the previous model to enhance function-

ality. The entire state tables are presented in Appendix B on page 117. Only small

34

I Event | Description

Data
ACK
NACK
Confirm
Non-Member Data
Non-Member ACK
New List
List Change Request
Recovery Start
Recovery Vote
Recovery ACK
New List
Recovery Abort
Transmission Failure

Token Pass Alarm
Confirm Token
Pass Alarm
Check Non-Members
Alarm
Random Timeout
Alarm
Mandatory Leave
Alarm
Commit New List
Join Request

Reception of a Data Packet
Reception of an ACK Packet
Reception of a NACK Packet
Reception of a Confirm Packet
Reception of a Non-Member Data Packet
Reception of a Non-Member ACK Packet
Reception of a New List Packet
Reception of a List Change Request Packet
Reception of a Recovery Start Packet
Reception of a Recovery Vote Packet
Reception of a Recovery ACK New List Packet

Reception of a Recovery Abort Packet
A Packet requiring positive acknowledgment
has been retransmitted X number of times without
receiving that positive acknowledgment
Expired Timer for mandatory Token Pass
Expired Timer for Confirm notification

Expired Timer for flushing Non Token Ring
Members from Membership List (local change)
Expired Random Timeout Timer

Expired Mandatory leave timer

A New List Packet is committed
Application requests to join a Token Ring

Table 3.4: Event Descriptions

35

portions of these complete tables axe presented here.

3.4.1 Normal Protocol Operation

The normal operation of RMP can be broken down into four states. Each site of the

token ring is in one of these four states at any one time during normal operation.

The states are Token Site, Not Token Site, Getting Packets, and Passing Token. The

sending of Data Packets is entirely asynchronous and does not depend on what the

current state is.

The Token Site state consists of that site being the current token site. The state

is characterized as waiting for the arrival of a packet that can then be acted upon

to transfer the token. Upon a transition into the state, the site must do two things.

First it must set up one of two different timers. If an ACK event has placed the site

into this state, then the site must set up a Confirm Token Pass timer if the token ring
- ,»

is ready to go quiescent. If not then the site must set up a Token Pass timer. The

conditions to determine if the ring is ready to go quiescent is if the last N ACK events

have been Null ACK. This assures that the token is passed N times before the ring

can go quiescent. This will commit all packets, including packets with QoS of Totally

Resilient before the ring goes quiescent.

Secondly, the site must initiate the Pass-Token algorithm. If the algorithm does

pass the token, then the site must enter the Passing Token state and cancel the timer

it just set. If the algorithm does not pass the token, no action is to be taken. The

timer is allowed to run. If an event occurs later that passes the token, the timer must

be canceled. Events and conditions that initiate a transition out of this state and

actions that are done as a consequence of events are shown in Table 3.5.

After sending a packet which transfers the token, the site must enter the Passing

Token state. This state allows the site to wait until it has positive confirmation that

the next token site has actually accepted the token. This confirmation can be achieved

36

I Event | Condition(s) | Next State \ Action(s)
Data

Data

ACK

NACK

Token Pass
Alarm
Confirm Token
Pass Alarm

Token Passed

Token not Passed

Site named Token Site

(none)

(none)

(none)

Passing Token

Token Site

Token Site

Token Site

Passing Token

Token Site

place Packet in DataQ
Pass-Token
place Packet in DataQ
Pass-Token
Unicast Confirm
to Packet source
Send any packets that
were requested and present
Generate Null ACK
Send ACK Packet
Unicast Confirm
to last Token Site

Table 3.5: Normal Operation (Token Site)

| Event | Condition^) | Next State \ Action(a)

Data

ACK

Confirm

NACK

(none)

ACK Timestamp >
Last Token Pass
Timestamp
ACK Timestamp >
Last Token Pass
Timestamp
(none)

Passing Token

Not Token Site

Not Token Site

Passing Token

place Packet in DataQ
Update-OrderingQ
Pass ACK to
Next State

(none)

Send any packets that
were requested and present

Table 3.6: Normal Operation (Passing Token)

in the form of a Confirm event or as another token pass. This positive confirmation

does not cause the site to perform any actions, at least not directly. If the token pass

was an ACK, then the site must pass that ACK into the next state, in this case the

Not Token Site state, where the event will be acted upon.

The events and conditions associated with the Passing Token state are shown in

Table 3.6. Notice the interaction between the Token Site and Passing Token states.

Periodic retransmissions of an ACK from the old token site, now in the Passing Token

state, prompts the new token site to send a Confirm to the old site to notify it that

it indeed does have the token. Once the site transitions out of Passing Token state,

through reception of a positive confirmation of the token transfer, the site enters the

Not Token Site state. The events and conditions associated with this state are shown

37

I Event | Condition^) | Next State Action(i)

Data

ACK

ACK

ACK

NACK

(none)

Site not named
Token Site
Site named Token Site
OrderingQ consistent
Site named Token Site
OrderingQ not consistent
(none)

Not Token Site

Not Token Site

Token Site

Getting Packets

Not Token Site

place Packet in DataQ
Update-OrderingQ
Add-ACK
Update-OrderingQ
Add-ACK
Update-OrderingQ
Add-ACK
Update-OrderingQ
Send any packets that
were requested and present

Table 3.7: Normal Operation (Not Token Site)

in Table 3.7.

The state which most sites spend a lot of time in is the Not Token Site state.

This state is the state where a site is not the token site and is just receiving packets

and processing them. Once the site is named as the next token site, it must process

that token transfer, which is probably an ACK, and check to see if its OrderingQ is

consistent. A consistent OrderingQ means that the site has received all contiguous

timestamps and associated packets up to and including the token transfer that is

making it token site. This includes any packets that are part of the token transfer.

If its OrderingQ is consistent, then the site is eligible to become token site and may

transition directly into that state, performing all the necessary actions. If the site

is missing one or more packets in the OrderingQ, then it must enter a state called

Getting Packets. This state and its events and conditions are shown in Table 3.8.

The Getting Packets state is a state that prospective token sites stay in until they

have made their OrderingQ consistent. Each time a Data Packet or ACK Packet is

received the site must check OrderingQ consistency. When the OrderingQ becomes

consistent, a transition to the Token Site state may be performed, along with subse-

quent actions associated with such a transition.

There is one action that is not depicted in the tables. This action is performed each

time a Data Packet arrives. Before the packet may be placed in the DataQ, its QoS

38

I Event | Condition(s) | Next State \ Actim(s)

Data

Data

ACK

ACK

NACK

OrderingQ consistent

OrdeiingQ not consistent

OrderingQ consistent

OrderingQ not consistent

(none)

Token Site

Getting Packets

Token Site

Getting Packets

Getting Packets

place Packet in DataQ
Update-OideringQ
place Packet in DataQ
Update-OrdeiingQ
Add-ACK
Update-OrderingQ
Add-ACK
Update-OrderingQ
Send any packets that
were requested and present

Table 3.8: Normal Operation (Getting Packets)

is checked. Data Packets with QoS values of Unreliable, Reliable, or Source Ordered

may qualify for delivery immediately. This qualification is the same as that used in

the Attempt-Packet-Delivery algorithm. If a packet meets its qualification for delivery

in this way, it may be delivered as well as put in the DataQ. Data Packets with a QoS

value of Unreliable are not put into the DataQ and are always delivered immediately

upon reception.

The four normal operation states along with the data structures and data structure

algorithms provide the solid foundation that allows the three extensions to be built

upon. It is important to notice that if only one member exists in the group, that the

site need not ever transition out of the Token Site state. This is a trivial case since

the site merely acknowledges that it received its own packet.

3.4.2 Multi-RFC Extensions

The inclusion of the Multi-RFC Extension does not add any states to the represen-

tation. It does, however, add some new events. These events are Non-Member Data,

Non-Member ACK, and Check Non-Members Alarm.

The only thing that is necessary to do to provide Multi-RFC on top of normal

operation is to handle Non-Member Data Packets in the same way that Data Packets

are handled. This is fundamentally what is being done in Table 3.9. Two additional

39

I Event Conditions) | Next State \ Action(a)

Token Site State

Non-Member Data

No n- Mem her Data

Non-Member Data

Sequence Number >
Expected from source
Token Passed
Sequence Number >
Expected from source
Token not Passed
Sequence Number <
Delivered from source

Passing Token

Token Site

Token Site

place Packet in DataQ
Pass-Token

place Packet in DataQ
Pass-Token

Unicast Non-Member
ACK to source

Passing Token State

Non-Member Data (none) Passing Token place Packet in DataQ
Update-OrderingQ

Not Token Site State

Non-Member Data (none) Not Token Site place Packet in DataQ
Update-OrderingQ

Getting Packets State

Non-Member Data

Non-Member Data

OrderingQ consistent

OrderingQ not consistent

Token Site

Getting Packets

place Packet in DataQ
Update-OrderingQ
place Packet in DataQ
Update-OrderingQ

All States

Check Non
Members Alarm

(none) (same state) Remove all
that have "

"Clients"
timed out"

Table 3.9: Multi-RFC Extensions

things need to be added however. The first is how and when to send Non-Member

ACK Packets to the Non-Member Data sending site. And the other is the periodic

flushing of "Clients" from the token list.

Sites that send Non-Member Data Packets to a token ring, usually expect a reply to

their message. That reply can be in the form of an acknowledgment stating that at least

one of the sites has delivered the message to its application, or the site that responds to

the message may send back a reply. In the specifications here, we assume that all Non-

Member Data Packets desire a response and that the acknowledgment comes in the

first form. If a site does send a response to the message it does so in addition to the first

Non-Member ACK Packet. This means that the site in effect will get two responses to

its Non-Member Data message. The first is the notification of delivery. The second is

the actual responding message. These two messages need not be sent from the same

40

token ring member. The site that generates and sends the ACK that orders the Non

Member Data Packet in the OrderingQ is also responsible for sending the Non-Member

ACK Packet to the message source when the message is committed to the application.

This does not entirely capture the desired behavior of Multi-RFC. In Appendix A on

page 113 there are two fields that are part of every Non-Member Data Packet that

must be mentioned. These are the No ACK and. Multiple Copies fields. These fields

are bits marking how that Non-Member Data Packet should behave. The No ACK

field specifically tells the ring members not to send a Non-Member ACK Packet for

that Non-Member Data Packet. The Multiple Copies field specifically notifies the ring

members to ignore duplicate detection for this Non-Member Data Packet. In effect

this allows the packet to be delivered to the application multiple times. The first time

that the packet is seen it will be acknowledged, ordered, and delivered. Subsequent

receptions of the packet are immediately delivered to the application without the need

to order or acknowledge the packet. The application then is responsible for generating

a reply in the form of a Non-Member ACK Packet.

When a site not in the token ring sends a Non-Member Data Packet to the ring,

it is added locally to each members token list. The member is marked as being a

"Non-Token Ring Member" or Non-Member. Thus the token will never be passed to

it. The reason for storing that information at all is to keep an active record of the

sequence-numbered messages sent by the Non-Member site. If a token ring member

is presently in the Token Site state and it receives a Non-Member Data Packet, then

it has to examine the sequence number and source of the packet. If the sequence

number is greater than or equal to what the next Expected sequence number is from

the site, then the member knows that the message is valid and it may be put into the

DataQ for processing. If the sequence number is less than the next Delivered sequence

number from that site, then the member must send a Non-Member ACK Packet to

41

the site notifying it that the message was already delivered 7. Notice that duplicate

detection of Non-Member Data Packets can only be done on messages with sequence

numbers that fall between the next Expected and the next Delivered from the site.

These messages are most certainly duplicates and may be dropped.

In order to keep the token lists of the actual token ring members from growing out

of control over time, periodically the Non-Members must be flushed out of the token

list. This is done through the use of an timer, called Check Non-Members Alarm.

When it expires, the site checks the times of the last known message from each of the

Non-Members in its token list. If any of those times exceed the max allowable timeout

period 8, then the Non-Member is removed from the list.

If a New List is generated while a Non-Member is still active in a sites token list,

then the Non-Member is included in the New List and is marked as a Non-Token Ring

Member. This brings new ring members up to date with past Multi-RFC operation.
. . - — „»

3.4.3 Membership Change Extensions

The Membership Change Extension is meant to provide an efficient means of installing

membership views to the group members. In order to achieve this, the addition of three

new states and several new events are needed. The new states are Not in Ring, Joining

Ring, and Leaving Ring. The new events introduced are List Change Request, New

List, Commit New List, Join Request, Mandatory Leave Alarm, and Transmission

Failure. The Not In Ring state is the initial starting state of all sites. Each site starts

in this state and may never transition out of it if it never desires to join a token ring. It

is this state that Multi-RFC uses for sending Non-Member Data Packets. The Joining

Ring state is the state that is used as a waiting state while the token ring generates

*This assures that if the Non-Member never receives the actual Non-Member ACK from the re-
sponsible site, that the Non-Member will eventually be notified that its message has been delivered.

"Currently this is 2 * IPTTL = 2 * 256 = 512 seconds

42

a New List and prepares to add a new member. The Leaving Ring state is that state

that is used as a waiting state while the ring operates after a member is removed.

The member can not actually be considered out of the ring until it is assured that the

leaving member does not hold any packets that no other member does not have.

As shown in Subsection 3.2.3, New Lists can be installed as new membership views

by a simple token transfer. By adding the List Change Request and New List events

to the four normal operation states, as shown in Table 3.10, the operational model

can be specified. In this way, the List Change Requests act in a way analogous to a

Data Packet and the New List acts similar to an ACK. List Change Requests may be

sent asynchronously just as Data Packets are transmitted.

A site may not directly start up in one of the four normal operation states. It must

transition through the Membership Change additional states shown in Table 3.11.

When an application requests to join a token ring, that site transitions to the Joining

Ring state and sends a List Change Request asking to be added to the ring. If after a

certain number of retransmissions there is no reply, then the site may safely form its

own ring with itself as the only member. However, if the site receives a New List that

also names the site the token site, then the site transitions directly into the Token Site

state. This directly and immediately involves the site in acknowledging packets and

perhaps changing membership views. Notice that the new member does not have a

consistent OrderingQ, in terms of the other sites, but is allowed to go into the Token

Site state. This is because the site really does have a consistent OrderingQ. From the

site's point of view it is consistent because all it knows about, and all it should know

about at this point, is that a New List was sent that added it to the ring. The site

will not need to get any older packets. Thus Virtual Synchrony is maintained.

In the same way, a site may not directly leave the token ring from any of the four

normal operating states. A transition through the Membership Change additional

states is needed. When an application requests that a site be removed from the token

43

I Event' Conditional) | Next State \ Action(s)
Token Site State

List Change
Request
List Change
Request
New List

Token Passed

Token not Passed

Site named Token Site

Passing Token

Token Site

Token Site

place Packet in DataQ
Pass-Token
place Packet in DataQ
Pass-Token
Unicast Confirm
to Packet source

Passing Token State
List Change
Request
New List

(none)

New List Timestamp >
Last Token Pass
Timestamp

Passing Token

Not Token Site

place Packet in DataQ
Update-OrderingQ
Pass New List
to Next State

Not Token Site State
List Change
Request
New List

New List

New List

Commit New List

(none)

Site not named
Token Site
Site named Token Site
OideiingQ consistent
Site named Token Site
OrderingQ not consistent
New List does not
contain site

Not Token Site

Not Token Site

Token Site

Getting Packets

Leaving Ring

place Packet in DataQ
Update-OrderingQ
Add-New-List
Update-OrderingQ
Add-New-List
Update-OrderingQ
Add-New-List
Update-OrderingQ
(none)

Getting Packets State
New List

New List

OrderingQ consistent

OrderingQ not consistent

Token Site

Getting Packets

Add-New-List
Update-OrderingQ
Add-New-List
Update-OrderingQ

Table 3.10: Membership Change Extensions

44

I Event Conditions) | Next State \ Action(s)

Not In Ring State
Join Request (none) Joining Ring Send a List Change Request

to join Token Ring

Joining Ring State
New List

Transmission
Failure

Site is named Token Site

(none)

Token Site

Token Site

Add-New-List
Update-OideiingQ
Commit New List Packet
Form own Token Ring

Leaving Ring State

New List

New List

ACK

ACK

NACK

Mandatory
Leave Alarm

Timestamp > New
List that removed site
+N
Timestamp < New
List that removed site
+N
Timestamp > New
List that removed site
+N
Timestamp < New
List that removed site
+N
(none)

(none)

Not In Ring

Leaving Ring

Not In Ring

Leaving Ring

Leaving Ring

Not In Ring

(none)

(none)

(none)

(none)

Send any packets that
were requested and present
(none)

Table 3.11: Membership Change Additional States

45

ring, it sends a List Change Request asking to be removed. The removed site must

operate normally until it commits a New List that removes it from the ring and the

site is in the Not Token Site state. This may warrant that the site may have to delay

committing the New List until it is in this state. The site then transitions into the

Leaving Ring state. The site stays in this state until it notices that there have been

as many token passes as there are new members in the ring. Then the site knows that

it will not have any packets that the other sites may need. Upon seeing a token pass

that meets this criteria, the site may then transition to the Not In Ring state.

Upon a transition into the Leaving Ring state, the site must set a Mandatory Leave

Alarm. When the alarm expires and the site has not seen a token transfer that meets

the criteria, then the site must go ahead and transition into the Not In Ring state.

This is to ensure that failures do not deadlock a leaving member in the Leaving Ring

state.
—*

3.4.4 Reformation Extension

The RMP Reformation Protocol adds five new states to the specification and also adds

several events, four packet reception events and one alarm event. The goal of the state

representation is to specify a two step process. The first step is the generation and

synchronization of a valid new token list. The second step is the installation of this

new token list at each site. Before the process can begin a failure has to be detected.

The additions to the normal operation states shown in Table 3.12 permit each site

in the ring to transition from normal operation to the reformation states. The fault-

detecting site, called the Reform Site, detects a failure by not receiving a response for a

packet requiring positive acknowledgment after R attempts, shown as a Transmission

Failure event in the tables. The reform site then enters the Start Recovery state and

starts sending Recovery Start Packets.

A Recovery Start Packet contains the reform sites initial "vote" for the new list's

46

Event |. Condition(f) \ Next State \ Action(s)

All Normal Operation States

Transmission
Failure
Recovery Start

(none)

(none)

Start Recovery

Sent Vote

Send Recovery Start
Packet
Unicast Recovery Vote
Packet to Reformation Site

Table 3.12: Reformation Extensions

highest contiguous timestamp and a version number for the new token list. This

timestamp is the highest known delivered timestamp that the reform site knows about

at the time. Due to varying QoS values of messages, this timestamp, called SynchTSP,

must represent a timestamp with a QoS value of Reliable or better. If this timestamp

is part of an ACK, then the SynchTSP is the timestamp of the last packet in the ACK.

This is the desired synchronization point. Multiple failures arid selected site failures

may prevent this point from being reached. When this occurs, it is referred to as an

Atomicity Violation. A list created in the presence of an Atomicity Violation is not

immediately invalid. It is the application's prerogative as to whether the list is kept

or not.

A site that is involved with a reformation, but is not the reform site, is called a

slave. When a slave receives a Recovery Start Packet it must transition out of one of the

four normal operation states and into the Sent Vote state. As part of this transition,

the site must send a Recovery Vote Packet to the reform site. This vote contains the

site's "vote" on the SynchTSP as well as the sites current point of synchronization.

The current synchronization point is determined by the highest timestamp in the site's

OrderingQ that is consistent.

Once the reform site and the slaves have entered the Start Recovery and Sent

Vote states respectively, the reform site follows the events and conditions shown in

Table 3.13. While the reform site is in the Start Recovery state it is attempting to bring

itself up to the current SynchTSP. Any Data, Non-Member Data, ACK, or New Lists

Packets received may advance the SynchTSP or bring the reform site synchronization

47

Event
Data

Non-Member
Data

ACK

ACK

New List

New List

Transmission
Failure
Recovery Vote

Recovery Vote

Recovery Vote

Recovery Vote

Recovery
Abort
Recovery Start

Condition(s)
(none)

(none)

Timestamp < SynchTSP

Timestamp > SynchTSP

Timestamp < SynchTSP

Timestamp > SynchTSP

Packet type was Rec. Start

Version is incorrect

Source in old List
Vote MaxTSP > SynchTSP
Source in old List
Vote MaxTSP < SynchTSP
Source in old List
OrderingQ consistent
Have Vote for each site
Vote MaxTSPs = SynchTSP
(none)

Source is not Reform Site

Next State
Start
Recovery

Start
Recovery

Start
Recovery

Start
Recovery

Start
Recovery

Start
Recovery

Created
New List
Abort
Recovery
Start
Recovery
Start
Recovery
Created
New List

Abort
Recovery
Abort
Recovery

Action(s)

place Packet in DataQ
Update-OrderingQ
Update SynchTSP
place Packet in DataQ
Update-OrderingQ
Update SynchTSP
Add-ACK
Update-OrderingQ
Update SynchTSP
Add-ACK
Update-OrderingQ
Update SynchTSP
to Packet Timestamp
Add-New-List
Update-OrderingQ
Update SynchTSP
Add-New-List
Update-OrderingQ
Update SynchTSP
to Packet Timestamp
Create New List
Send New List
Send Recovery Abort

Update SynchTSP
to Vote MaxTSP
Update Site Vote

Create New List
Send New List

(none)

Send Recovery Abort

Table 3.13: Reformation Extension (Start Recovery)

48

point up to the same value as the SynchTSP. Any change to the SynchTSP as the

result of a new vote from a slave or as a result of the reception of a new packet,

prompts the reform site to restart the periodic retransmission of its Recovery Start

Packet with the new SynchTSP value.

Only two ways exist for the reform site to leave the Start Recovery state. The first

way is the site is able to obtain a Recovery Vote from each member of the old list, have

all the votes synchronized to the SynchTSP, and have an OrderingQ that is consistent

up to the SynchTSP. Under this condition a valid new token list has been formed and

the reform site can then initiate the installation of the new list. The second way to

leave the Start Recovery state is for the reform site to receive a notification that its

Recovery Start Packet has been retransmitted the set number of times as required for

failure detection. The reform site must then form a new list. If this list has enough

members to meet the minimum partition size criteria 9 and the SynchTSP point has

been reached by at least one slave or the reform site, then the new list is valid and

reformation may continue as in the case above. If the minimum partition size criteria

can not be reached, then the new list is invalid. The reform site must install the

new list and then transition into the Not In Ring state. The last possibility is that

the minimum partition size criteria is met, but there are missing packets which are

preventing the list from being synchronized to the SynchTSP. In this case, the list is

assumed valid, but the reform site marks the new list as containing possible atomicity

violations. After reformation is complete, the application is notified of this. The

application may then continue operation, or it may leave the newly reformed ring to

restart again on its own.

The installation of a new list, whether valid or invalid, is accomplished by sending

the New List until either it is retransmitted the set number of times for a failure to be

'Upon joining a token ring, a site specifies its vote foi the minimum partition size for the ring.
The actual minimum partition size is the highest of these votes.

49

[Event Condition(a) | Next State \ Actionfs)

Recovery ACK
New List
Recovery ACK
New List

Recovery ACK
New List

Transmission
Failure
Recovery Abort

Recovery Start

Missing ACKs from
1 or more Sites
Have ACKs from
All Sites
List is valid
Have ACKs from
All Sites
List is invalid
Packet was New List

(none)

Source is not Reform Site

Created
New List
Passing
Token

Not In
Ring

Abort
Recovery
Abort
Recovery
Abort
Recovery

Mark Source as
ACK sent
Add-New-List
Commit New List
Send Null ACK
Add-New-List
Commit New List

Send Recovery Abort

(none)

Send Recovery Abort

Table 3.14: Reformation Extension (Created New List)

detected, or an Recovery ACK New List has been received for each new list member.

In the case of a valid list, the reform site then transitions to Passing Token and sends

a Null ACK, passing the token to one of the members of the new list. The timestamp

used for the Null ACK is equal to the SynchTSP + 1. An invalid Hst -prompts the

reform site to transition to the Not In Ring state and notify the application. The

events and conditions of installing the new list are shown in Table 3.14.

At any time during this stage if the reform site receives a Recovery Vote or a

Recovery Start Packet with the wrong version of the new token list, or if it detects

another reformation occurring, then the reform site must abort the recovery. If the

reform site retransmits the New List the set number of times for a failure to be detected

and does not have a Recovery ACK New List from each member of the list, then it

must abort the recovery.

The slave's point of view, shown in Table 3.15 and Table 3.16 , is much easier.

The slave tries to become synchronized as best it can. If it receives an ACK or New

List that has a higher timestamp than the SynchTSP, then it must notify the reform

site of this. Likewise, at any time if the synchronization point of the site changes,

then the site must notify the reform site. This notification is done by restarting the

50

Event

Recovery Start

New List

New List

New List

Data

Non-Member
Data

ACK

ACK

New List
New List
Transmission
Failure
Recovery Abort

Condition(a)

Source is Reform Site

Source is Reform Site
Timestamp = SynchTSP + 1
Version is correct
Source is Reform Site
Timestamp = SynchTSP + 1
Version is correct
List is invalid
Version is incorrect

(none)

(none)

Timestamp < SynchTSP

Timestamp > SynchTSP

Timestamp < SynchTSP
Timestamp > SynchTSP
Packet was Recovery
Vote
(none)

Next State

Sent Vote

ACK New
List

Not In
Ring

Abort
Recovery
Sent Vote

Sent Vote

Sent Vote

Sent Vote

Sent Vote
Sent Vote
Abort
Recovery
Abort
Recovery

Action(a)

Unicast Recovery Vote
to Reform Site
Unicast Recovery ACK
New List to Reform
Site
Unicast Recovery ACK
New List to Reform
Site

Send Recovery Abort

place Packet in DataQ
Update-OrderingQ
Update Recovery Vote
place Packet in DataQ
Update-OrderingQ
Update Recovery Vote
Add-ACK
Update-OrderingQ
Update Recovery Vote
Add-ACK
Update-OrderingQ
Update Recovery Vote
Update Recovery Vote
Update Recovery Vote
Send Recovery Abort

(none)

Table 3.15: Reformation Extension (Sent Vote)

51

I Event Condition(s) Next State \ Action(s)'

New List

New List

ACK

ACK

ACK

Recovery Abort

Source is Reform Site
Version is correct

Version is incorrect

Source is Reform Site
Site is not named Token Site

Source is Reform Site
Site is named Token Site
OrderingQ consistent

Source is Reform Site
Site is named Token Site
OrderingQ not consistent

(none)

ACK
New List

Abort
Recovery
Not Token
Site

Token Site

Getting
Packets

Abort
Recovery

Unicast Recovery ACK
New List to Reform
Site
Send Recovery Abort

Add-New-List
Commit New List
Add-ACK
Update-OrderingQ
Add-New-List
Commit New List
Add-ACK
Update-OrderingQ
Add-New-List
Commit New List
Add-ACK
Update-OrderingQ
(none)

Table 3.16: Reformation Extension (ACK New List)

retransmissions of the Recovery Vote Packet and changing the values of the packet.

Once a slave receives a New List that contains the correct version and has the site as

a member, then the slave transitions to the ACK New List state and sends a Recovery

ACK New List Packet to the reform site. If a slave receives a New List with the

wrong version, then it must abort the recovery. If the set number of retransmission

for failure detection is reached for the Recovery Vote Packet then the slave must abort

the recovery. If a slave receives a New List that is marked as invalid, then the slave

sends a Recovery ACK New List to the reform site and then transitions to the Not In

Ring state.

Once a slave enters the ACK New List state it retransmits its Recovery ACK New

List only when it receives another New List that matches the New List that put it

into this state. A New List with an incorrect version prompts the slave to abort the

recovery. When the slave receives a Null ACK from the reform site, it is sure that

reform is done and the site can then transition to the appropriate normal operation

state.

52

Event Condition(s) | Next State \ Action(»)~

Random Timeout
Alarm
Recovery Start

Recovery Start

Recovery Vote

New List

Recovery ACK
New List

(none)

Version is correct

Version is incorrect

Version is incorrect

Version is incorrect

Version is incorrect

Start
Recovery
Sent Vote

Abort
Recovery
Abort
Recovery
Abort
Recovery
Abort
Recovery

Send Recovery Start

Unicast Recovery Vote
to Reformation Site
Send Recovery Abort

Send Recovery Abort

Send Recovery Abort

Send Recovery Abort

Table 3.17: Reformation Extension (Abort Recovery)

Whenever a site, reform or slave, receives a Recovery Abort Packet, or decides

to abort the recovery themselves, they must transition into the Abort Recovery state,

shown in Table 3.17. Upon this transition, a random timeout is set. The site that

has this timeout expire first is the new reform site and starts the process over again,

but the version number is increased by one for the list. The other sites follow upon

receiving a new Recovery Start Packet with a subsequent canceling of there respective

random timeout alarms. Any site that receives a Recovery Start, New List, Recovery

Vote, or Recovery ACK New List while in the Abort Recovery state with an incorrect

version must send a Recovery Abort Packet for that version.

3.5 Flow Control and Congestion Control

Because RMP uses a primarily NACK based error detection scheme, there is no direct

feedback path through which receivers can signal losses through low buffer space or

congestion. Reliable multicast protocols also suffer from the fact that throughput for

a multicast group must be divided among the members of the group. This division

is usually very dynamic in nature and therefore does not lend itself well to a priori

determination. These facts have lead the flow and congestion control schemes of RMP

to be made completely orthoganol to the protocol specification. This allows several

53

differing schemes to be used in different environments to produce the best results. As

a default, a modified sliding window scheme based on previous algorithms for TCP

[10] is suggested and described below.

Flow control and congestion control are treated as exactly the same problem in this

modified sliding window scheme. A sliding window flow control scheme is an adaptive

mechanism that attempts to maintain a constant window of packets in transit. Packets

in transit axe packets that have been sent, but have not been acknowledged yet. Ideally

this window corresponds to the current level of available resources. Other predictive

flow control schemes have been proposed and are currently under investigation. These

schemes are more applicable to high latency long fat networks, such as ATM. These

networks require that hundreds of packets be in transit at once, and the consequences

of trying to adaptively size the transmission window when congestion occurs is much

too high.
—*

Some very good work has been done in providing efficient congestion control for

TCP [10]. It is this work that RMP has partially adopted and expanded upon for its

flow and congestion control mechanisms. The main four adopted points of the TCP

work are:

• Round-Trip-Time Variance Estimation

• Slow Start

• Dynamic Window Sizing on Congestion

• Exponential Retransmit Timer Backoff

Round-trip-time (RTT) of a message is the time it requires for a packet to be

sent and a corresponding acknowledgment to arrive at the sender. Round-trip-time

variance estimations provide a means of determining how large timeout periods should

be on retransmissions based on the average measured length of the round-trip-time

and the deviation in the time. It has been observed that when network paths become

54

congested, the variance on packet latency becomes very high compared to it average 10.

It is hoped that by continually estimating the variance and adjusting the average, that

an accurate timeout period can be calculated that will virtually eliminate all spurious

retransmissions. The elimination of spurious retransmissions allows more bandwidth

and processing time to be dedicated to actual useful work, as well as reducing the

probability of a false failure detection. The calculation of the timeout period can be

effectively done using the following formulas:

Err = M - A

A = A + gA(Err)

D = D + gD(\Err\ - D)

rto = A + 4D

The g& and go terms are gain terms. M is the round-trip-time measurement. A

is the round-trip-time average. D is the round-trip-time mean deviation. And rto is

the next timeout period length. Experimentation has shown that 0.0625 and 0.125 are

good values for g& and go, respectively.

The slow start algorithm is used to increase the window size from its initial size

of one packet to the maximum window size that does not cause congestion. The

window size is measured in Minimum Transfer Units, or MTUs. 1 MTU represents

a set number of bytes of data in transit. The value of 1 MTU is configurable based

on network properties. The slow start algorithm starts by initializing the allowable

maximum window size to be 1 MTU. Each time an ACK is received for a packet the

window size is incremented 1 MTU. It may not be obvious, but this increases the

window size exponentially. The window size will increase from 1 to W on a latency

L network path in L\og2 W time. Thus slow start actually increases the window size

10"If the network is running at 75% capacity...one would expect the round-trip-time to vary by a
factor of 16 [10]."

55

fairly rapidly. Once a sign of congestion occurs, then the window must be reduced.

After this first reduction, slow start is not used. But a congestion avoidance scheme

is used. This scheme increases the window in a more linear fashion to hopefully avoid

congestion. This is done by incrementing the window size by l/(Window Size) each

time an ACK arrives for a packet. A window size of W will therefore only generate at

most W ACKs, and an increase of i/W will increase the window by 1 in one round-

trip-time. This increases the window size linearly. In this way, resource limits are

probed, but not overrun too quickly.

Under the observations that most lost packets are the result of congestion and not

errors and that retransmissions must signal lost packets, then any retransmissions, or

expired timers for retransmissions, signal congestion. Congestion must decrease the

maximum window size. RMP decreases its window size by 50% each time congestion

is encountered. After this decrease the window increases using the linear increase

presented above.

Each time a timer expires and a retransmission is needed, the exponential retrans-

mit timer backoff scheme doubles the timer. Once an ACK is received for the packet,

however, the value is set to the rto value as calculated. This scheme is applied to

all packets that require positive acknowledgments. The timer value must be clamped

at a certain maximum value, however n. This scheme attempts to ensure that false

alarms occur very rarely and that alarms signalling retransmission themselves should

not cause even more congestion.

Flow control is addressed by allowing NACKs to also signal dropped packets. Sites

that are overrun by senders will drop one or more packets, and will have to send NACKs

for those packets. The NACK control policy is to multicast the NACK to the entire

group. Thus the sender will see that its packet was dropped and can reduce its window

size exactly the same way it would in congestion control, by 50%. Care must be taken

11 currently 2 seconds

56

not to perform this decrease multiple times for the same packet, however.

57

Chapter 4

Implementation of the Reliable Multicast

Protocol

The first implementation of RMP has occurred concurrently with its design and ver-

ification. This not only allowed the constraints of the implementation to have more

impact on the design, but the implementation in several instances has allowed the

design to test theories and to attempt to provide truly what application developers

desired. Implementation of a complex protocol such as RMP for the first time is not

a trivial task. Many lessons have been learned. It is important to describe the first

RMP implementation and to discuss some of these lessons.

4.1 Major Implementation Decisions

Implementing a complex construct, such as RMP, demands careful consideration of

numerous factors. The three main factors involved in determining how best RMP

should be implemented were:

• At what abstraction layer should RMP operate in?

• What kind of control paradigm should RMP use internally?

• How best to allow RMP to be easily extendable and to function as a testbed for
new ideas for its continued evolution?

58

4.1.1 Implementing Protocols in the User Level

Traditional protocols have been implemented as monolithic entities in the operating

system kernel or in a single trusted user-level server. The reasons for this have pri-

marily been concerns over security and performance. Recently other important issues,

such as ease of code maintenance, debugging, customization, and the need to have

concurrent, multiple operating protocols, have prompted many to implement proto-

cols in the more manageable user level [16],[9], [13]. Typically these implementations

have taken the form of user-level libraries of protocols which can be linked into the

application. It has been shown that traditional protocols can be implemented in user

space and suffer no major degradation in performance [16]. On multiprocessors, it has

been shown that implementation in the user level has actually increased performance.

With these facts in mind, it was quite easily agreed upon that the initial RMP

implementation should be done at the user level and not in the kernel or as a single

user-level server. This choice does not preclude other implementations of RMP from

being implemented in the kernel or as a server process.

4.1.2 Event-Driven Control

Because RMP was to be implemented in the user-level as a library for use in ap-

plications, a control paradigm had to be chosen to reflect the diverse ways in which

developers implement their own distributed applications. The paradigm chosen was an

event-driven approach. RMP relies on events occurring and states being transitioned

to and out of on specific event conditions, thus the event-driven approach for the im-

plementation seemed very close and natural. It is also believed that the verification

effort will benefit greatly from this once the emphasis shifts from design verification

to actual implementation verification.

This approach has lead RMP to be able to provide two different control paradigms

to the application using it. The first is the event-driven approach, where the applica-

59

tion constructs a control loop and passes control to RMP which takes care of protocol

operation. This scheme is more useful for types of processes which wait for something

to occur, or for applications which desire to have very explicit control over when RMP

gets to perform its handling of internal events. The second approach is the implicit

control approach, or the interrupt driven scheme. The application does not have to

explicitly give RMP control, RMP can interrupt the application, handle its events,

and then return control back to the application implicitly. This approach is useful

for applications which don't want to give control to RMP in an explicit fashion, but

would rather have RMP handle its events in the "background".

Performance concerns were a large factor in choosing an event-driven control

paradigm. Receiving and ordering one message is equivalent to two events (one for

the message to be received and one for the ACK to be received). In order to achieve

a throughput of 300 messages/second, a total of 600 events/second needed to be at-

tainable. 600 events/second leaves just 1.67 msec, per event for processing. This

processing time must also include time spent in the operating system kernel per-

forming network operations. Given modern operating systems and architectures this

seemed viable and achievable. The RMP library also had to support multiple simul-

taneous token rings operating through the same application interface, so the need to

classify events corresponding to token rings played a large part in deciding that an

event-driven approach was worthwhile.

4.1.3 Object-Oriented Implementation

With flexibility and ease of adaptation to an evolving design being so important to the

RMP implementation, it should not be surprising that an object-oriented language,

more specifically C++ [6], was chosen to implement RMP. An object-oriented language

has allowed the critical platform/operating system dependent parts of the code to be

separated from the actual internal data structure easily. In fact, in changing RMP to

60

use another network interface library only one object would need to be changed. The

current RMP implementation has been developed using C++ on several platforms x.

This modularization technique has already proven to be beneficial to debugging, see

Section 5.2.

4.2 The RMP Internal Class Structure

The RMP class structure is very flat. Almost no inheritance has been used to provide

polymorphism. This is because of the event processing requirements presented in

Subsection 4.1.2. True run-time polymorphism is presently very expensive in terms of

performance. This is especially true if the methods and objects using it are frequently

being invoked 2. To avoid this performance penalty, the use of virtual methods has

been avoided. The general structure and modules for the implementation were broken

down into four basic categories.

• Static Objects

• Communication

• Control

• Application Programming Interface (API)

Because the implementation needed to support timer retransmits and other alarms,

a global alarm mechanism was needed. To efficiently handle memory, several global

pools of pre-allocated buffer space needed to be used. An event driven approach de-

mands that the queue of pending events to be serviced be global to the implementation.

These constructs are all implemented as global, or static, data in the implementation.

This is usually not a desirable practice because any application using RMP would

1RMP was originally developed on Sun Microsystems SPARCstations undei the SunOS 5.3 and
SunOS 4.1.3 opeiating systems. RMP has also been updated to lun on Silicon Graphics workstations
under Irix 5.2 and Irix 4.0.5 operating systems. Other operating system and platform support is soon
to follow.

2 Some preliminary tests showed that it could triple running time of even a simple program.

61

have to contend with the memory space being taken up even when RMP was not

really using it to its full potential.

Almost all RMP I/O operations 3 are concentrated into one module called the

Communicator. It is this module that is used to actual perform low level network

system calls to send or to receive a packet. The DataQ and OrderingQ data structures

along with one other queuing structures make up the control module. These structures

are responsible for the protocol operation, maintaining the information about members

of the token ring, and queuing messages for flow control. Each process using the

implementation must maintain a copy of these structures that are specific to each

token ring that it belongs to. For interaction with the application developer, a whole

set of objects have been designed for use. These objects compose the RMP Application

Programming Interface (API). Also a C interface to this API has been designed and

implemented to allow C developers to use RMP as well.

Primitives

Several different base objects needed to be constructed for the RMP implementation.

Although basic in functionality, these objects had to be very efficient and reliable.

The processing of one event would at least entail a system call to the operating system

to retrieve the message from the network 4 and several operations on internal data

structures. This lead to the conclusion that the basic data structures themselves

needed to be efficient.

The base objects needed were:

• Double Linked List Element

• Normal FIFO (Queue)

• Priority FIFO (Queue)

"An exception is the API operations that set up specific control loop operation.
4 Usually about 0.5 msec.

62

• Unordered List

• Pool 5

Optimizing these base objects was not very difficult. But in an effort to provide

a generic set of these primitives, C++ templates [6] were originally used to construct

the objects. These template objects were later discarded as inefficient and costly in

terms of executable program size. These two observations, coupled with the fact that

templates, though being part of the ANSI C++ Standard, are not implemented by all

C++ compilers, led to the eventual implementation of these primitives as base objects

that could then be used to provide the basis for specific derived components of the

needed data structures.

4.2.1 Static Objects

The global, or static, objects that the RMP implementation must maintain are the

mechanism to handle the various alarms and retransmit timers, the various pools of

pre-allocated buffers, and the event queuing object.

Alarm Class

The first RMP implementation has been implemented under 4.3BSD and System VR4

UNIX systems. In order to implement retransmit timers and alarms, the software

signal facilities 6 had to be used. This imparts the only non-control sequence restriction

that the implementation imposes on the developer. The program using RMP must

use RMP to set any alarms or timers it may need. It should not set up its own signal

trap for the alarms. This would cause unknown behavior for protocol operation.

BA Pool, in this case, is actually a set of pie-allocated objects, stored for later use. The need for
this is evident in the fact that the time to allocate an 8K region of memory for use as a buffer can be
on the order of 0.25 msec.

"The signal that is trapped is SIGALRM, the alarm clock signal.

63

The object that controls the alarms is called the Alarms class. It contains an

ordered queue, Ordered FIFO, of pending alarms ordered by the time when each

expires. Each member of the queue holds information as to its corresponding token

ring, its original expiration timer value, its time until expiration, and the type of

alarm. All retransmit timers are grouped under one type of alarm. When an alarm

expires, the alarm is placed on the queue of pending events where it will eventually be

serviced.

Queue Structure Pools

For efficiency reasons, all the queuing structures primitives needed to use pre-allocated

memory to store unused buffers. The pool sizes are initialized to reasonable values

upon start up and are then used as needed. If for some reason the pool becomes

empty and a new buffer is needed, it is allocated from system memory. Therefore under

normal operating conditions, buffers are reused for the queuing structure elements, and

if load becomes too heavy the system allocates more memory to handle the desired

load. The whole reason for this is that the time to allocate memory can be quite

high depending on the size of memory desired and the condition and fragmentation

of memory at the moment. The buffer space for all of one type of pre-allocated

element is stored together and the pool itself for that object is static in nature. This

is necessary for efficient garbage collection and reclamation of multiple objects spread

across multiple token rings.

PacketPool Class

As is done for queuing structure elements, the buffer space for packets is also pre-

allocated and pooled for use as is needed. Packet buffers have their fixed header set

to default values when the packet is placed back in the pool. This is to ensure that

the vital information in that header is either valid because it is filled in or it is invalid

64

because the default values were still left after it was pulled from the pool for use.

EventQ Class

This RMP implementation is an event driven scheme. Events can be one of two things,

either expired alarms or incoming packets. Outgoing packets and requests from the

application are handled asynchronously to the event driven machine. This has allowed

the state machine representation to transition directly into the implementation with

very minimal modification.

The object responsible for ordering various events between various token rings,

event types, and arrival times is the EventQ class. This object contains an ordered

queue, Ordered FIFO, of pending events to be serviced. Each event contains infor-

mation about that event relating to the event type, the token ring corresponding to

the event, and an associated packet for the event. The need to make the queue global

is for efficiency. Another approach would be to make several EventQs, one for each

token ring. This would require some other mechanism to service each EventQ in some

sort of order, and impose unnecessary delays in event servicing between token rings.

Events are placed on the EventQ from one of two sources. Expired alarm events are

placed on the queue by the Alarms class, and incoming packets are placed on by the

Communicator class. Each alarm type and packet type have their own corresponding

event type. The EventQ orders the servicing of each of these events based on event

types. Each type is given a certain priority and the queue is ordered first by priority

then in FIFO order. The precedence of events based on type are shown in Table 4.1.

The lower priority events are given more priority than higher priority events. The

goals are to reduce as much as possible any race conditions that may arise, such as

receiving an ACK for a packet before servicing the retransmit timer associated with

it, and to optimize the events/sec, throughput of the system via modifying the event

priorities.

65

I Priority | Event Type | Priority \ Event Type

-1
0
1
2
3
4
5
6
7
8
9

Transmission Failure
Recovery Abort
Recovery Start
Recovery Vote
Recovery ACK New List
Data
Non Member Data
List Change Request
New List
ACK
Confirm

10
11
12
13
14
15
16

^ IT
18
19
20

NACK
Non Member ACK
Retransmit Alarm
Confirm Token Pass Alarm
Token Pass Alarm
Internal Reserved
Internal Reserved
Check Non Members
Mandatory Leave Alarm
Random Timeout Alarm
Internal Reserved

Table 4.1: Event Precedence

4.2.2 The Communicator Class

Most of the interaction with the system network I/O is concentrated into this module.

By modularizing this functionality into a single object, RMP can be ported to various

architectures easier and it can be tested easier. The portability issue is obvious, but

the testing issue may not be. By making the Communicator object the_ connection

between the network and the rest of RMP, a test scaffolding may be connected to the

Communicator instead. In this way the state machine correspondence can be analyzed

along with a set of test scenarios to determine the correct operation. The use of this

test scaffolding is briefly discussed in Subsection 5.2.

4.2.3 Control Classes

A set of objects make up the control structure of the RMP implementation. Because

operation of the protocol centralizes itself around an abstraction called a token ring,

it is easily seen that the implementation should centralize operation around a token

ring object. A DataQ and an OrderingQ must be part of each token ring along with

a structure to hold member information and a queuing structure to hold packets for

flow control.

66

ToBeSentQ Class

Flow control must sometimes queue packets for transmission because the current trans-

mission rate is slower than the rate at which the application is trying to send. When

this occurs the ToBeSentQ object queues the packets in FIFO order to be transmitted

as flow control allows.

TokenRinglnfo Class

It is necessary for the implementation to cache information about each member in

the token ring. At the very least, the next expected and next delivered sequence

numbers from each site must be maintained to determine when a packet is eligible to

be delivered to the application and to maintain protocol operation. In addition, a list

of currently active Token List IDs must be maintained. When a New List is committed

it also changes the current Token List ID. The old Token List ID may be used by other

members of the token ring because they have not seen the New List or they have not

yet committed it. To allow for this case, the old Token List ID must be kept and

packets containing it must be considered valid until it is certain that everyone in the

token ring has the New List. This is accomplished once the token has rotated once

around the ring after the New List was sent. Because the ring can be arbitrary in size

and because there may be up to as many New Lists in the OrderingQ as there are

members in the ring, there may be up to as many Token List IDs floating around as

there are members in the token ring at any one time.

Another piece of information kept is the collection of reformation information that

the reform site must maintain during different stages and steps of reformation. This

information is composed of data about each site participating in the reformation. The

sites synchronization point, the sites maximum timestamp, the sites minimum size

requirement vote, and information about the site acknowledging the New List are all

pieces of information that must be kept current during the reformation process.

67

TokenRing Class

The central object to this implementation is the TokenRing. This object holds a

DataQ, an OrderingQ, a TokenRinglnfo object, and a ToBeSentQ object. The Token-

Ring object also has a corresponding Communicator object that it uses to communicate

with the network I/O system. A TokenRing services all events that are destined for it.

That is to say, each event causes a specific token ring to handle that event. There is no

concept of an event that may have multiple token ring destinations. Each TokenRing

has an associated state that it must maintain. This state behavior follows the state

machine denned in Chapter 3.

4.2.4 The RMP Application Programming Interface

The TokenRing object handles the protocol operation aspects of the implementation,

and the RMP Application Programming Interface (API) handles the application inter-

face aspects of the implementation. Full documentation of the RMP API is available.

Only a brief description is given in this document.

RMP Class

The actual RMP object is a global (static) object that acts as a shell to hold a collection

of other API objects. The RMP object also provides a simplified interface to the

internal objects of the implementation, such as the Alarms object and the pre-allocated

pools. Other RMP operations such as sending Multi-RPC messages and requesting to

join token rings are done through this object.

RMPGroup Class

A TokenRing object always has a corresponding Communicator object that it uses as

its interface to the network. The collection of both of these objects together actually

demonstrates what an RMP Process Group really is when seen from a sites perspective.

68

The application should view the RMPGroup object as the actual RMP group that it

is a member of. Thus when the application desires to send a message to a group,

the object used is the corresponding RMPGroup. The same thing also is done for

requesting and releasing handlers and locks.

RMPEvent Class

When the RMP internals decide to commit a packet to the application, the internals

generate an RMPEvent object that is given to the application. This object contains

the packet associated with the event and allows the application to read the information

contained in the packet. The kinds of notifications and packets that the application

may receive as RMPEvents are:

• Message reception

• Notification of receiving or releasing a Handler or Lock

• Notification of rejection of Handler or Lock requested action

• Notification of joining or leaving a group

• Notification of membership view changes

• Notification of atomicity violations and successful reformations

Most notification types of RMPEvents also return a token list so that the ap-

plication can determine and account for any change of the membership view of the

group internally to its own operation. This provides very powerful mechanisms that

applications can use for process group management at execution time.

RMPMessage Class

In an ongoing effort to be as efficient as possible, the RMPMessage object was created.

This object contains a pre-allocated packet that can be filled in by the application

directly. Once filled in the packet could then be sent and another RMPMessage re-

quested. In this way the overhead of copying the applications message to the RMP

fiQ

internals can be avoided. For some applications this may decrease the latency of some

messages, as well as, providing the application with a convenient garbage collection

mechanism.

4.3 Portability and Optimization

For an protocol implementation to succeed it must not only be usable and functional, it

must also be widely usable on a variety of system and efficient. Therefore portability

and optimization become very important and pressing issues very early on in the

development of a protocol implementation.

Portability is a very well understood problem. It is a problem that will continue to

be explored and researched as systems become even more diverse and complex. The

first RMP implementation has been designed to meet this problem head on and to

keep it in mind during all aspects of development. The first area to help reduce the

complexity of porting the implementation to a new platform or system has been the

enclosure of network specific interfaces into a single object. This has already proven

useful in introducing support of RMP on some 4.3BSD and System VR4 systems. The

second area is separating the system and platform specific system calls into a set of C

macros. This allows easy changes to a set of macros instead of changing core pieces of

code to support a new system. Within a few months the RMP implementation should

be supported on the most widely used multicast supported systems as well as a few

non multicast supported systems. Future implementations of well known systems such

as Microsoft Chicago are planning to support IP multicast technology. This paves the

way for the implementation to support these systems as well.

Protocol implementation optimization is a very heavy area of activity. A large body

of work has been done in the area of optimizing such heavily used protocols as TCP

and UDP. The key points that one can learn from these efforts are minimize operating

70

system kernel involvement and maximize usefulness of each instruction. Even in the

implementations early phases attention has being paid to how to optimize each and

every piece of operation. Enough can not be said of the advantages of profiling the

source code. Trouble spots are quickly drawn to attention and can be enhanced. As

this implementation is being done in the user level, time spent in operations at the

kernel level, such as sending and receiving network messages, is very costly. These

operations need to be done only when needed and done efficiently. One thing that

helps to accomplish this is the exploitation of functional overlap. This practice is

also done in the protocol design itself. An example is providing the varying QoS

levels. Each level builds upon one another and can be accomplished by using the

semantics of the previous levels to perform the operation in an efficient manor. Another

example is the support of Multi-RFC operation. Non-Member packets are treated

exactly as regular Data packets, thus negating the need to specifically engineer another

mechanism into the protocol to provide the concept. The first RMP implementation is

far from being optimal at this time. It will be an ongoing task to eliminate the bad ideas

and experiment with the new to hopefully provide an ever improving implementation.

71

Chapter 5

Verification of the Reliable Multicast Protocol

This chapter discusses the verification aspects of RMPs development and continued

evolution. While the design and implementation of RMP have progressed concurrently,

so has the verification effort of RMP progressed as well. The purpose of the verification

effort is not to certify the protocol, but rather to debug the algorithms and to provide

feedback to the design and implementation activities.

5.1 Verification Approaches

Because of the limitations of testing and simulation tools for debugging distributed

applications, the verification effort has focused on formal modeling of the protocol

[24]. It is believed that the verification effort will also be able to help in clarification of

problems as the protocol implementation is used and "bugs" are discovered by users.

Most problems of this nature are the result of concurrency or synchronization aspects

that may impact the protocol design.

Upon starting the verification effort a great deal of attention has been paid to

examining and finding an appropriate and powerful set of tools for modeling RMP.

The criteria for choosing the tools has been:

Incremental: The approach should allow the construction of the model to progress
from small, well understood pieces to larger, more complex constructs.

72

Automated/Semi-Automated: Tool support should be available if the approach
is sufficiently complex.

Ease of Understanding: The approach should be "mainstream" in the formal meth-
ods community.

Handles Concurrency: The approach should be able to account for concurrent op-
eration of multiple systems and the state explosion involved therein. This may
be through either a direct or an implied mechanism.

Handles Nondeterminism: The approach should be able to handle situation where
one of a multiple combinations of events can occur. This may be through a direct
or implied mechanism.

Background: The technique should have a long history of real world substantive
examples and should have a large experience base.

The incremental approach can be satisfied by many techniques. The concurrency

and nondeterminism issues, however, can not be. It is very difficult to model these

properties except implicitly. Some techniques were found that can handle these issues

sufficiently.

It is important to keep in mind that verification of the source code is not and should

not be the prime target of the verification effort. Maintaining fidelity between the

verification model, the implementation, and the design, and examining and questioning

the theory and model of the protocol are the main advantages to formal verification.

5.1.1 Symbolic Model Verification

One of the first approaches examined was the Symbolic Model Verification (SMV)

system [5]. SMV is a technique for checking finite state systems, from completely

synchronous to completely asynchronous, against the system specification expressed

in a temporal logic Combinational Tree Logic (CTL). SMV allows for nondeterminism

and concurrency. SMV directly attempts to model this by specifying state transitions

explicitly.

SMV has been used very effectively in hardware verification. However, modeling

RMP in SMV proved to be very difficult. The first problem was that SMV needed

73

very verbose specifications to capture concurrency and nondeterminism. To capture

these properties, the SMV model became very disconnected from the RMP protocol

specification. This was not intentional but necessary to be able to tackle the problem

using SMV. The second problem was that, although SMV showed remarkable success

in modeling gross state behavior of RMP, it has yet to show success in modeling the

data structures. The reason for this is that to model state transitions on elements of

aggregate structures, explicit and verbose specifications need to be done. This seemed

to prolong the running time of the tool to an unacceptable level 1.

5.1.2 Mure?

An approach similar to SMV that has been examined is the approach taken by the tool

called Mur<p [8]. Muryi uses a high-level description language to describe finite-state

asynchronous concurrent systems. Mury does not suffer from the verbose specifications

needed for SMV because it has many high-level language constructs, such as user-

defined data types, procedures, and parameterized descriptions. Mury> descriptions

consist of a set of transition rules that may contain procedures, global variables, data

types, etc. The verification comes into play by the use of specifying invariants that

should hold true for all individual states.

These specifications are evaluated and used to generate C++ code that can be run

to test the invariants and the specifications. Assertions and deadlock testing can also

be done. Mur^J does its testing by enumerating all possible state combinations and

checking for violations and errors. This allows Muiip to handle nondeterminism very

well.

Because Mury> uses a combinational approach instead of a CTL approach it has

much better running time than SMV. But Mury> does not attempt to test every possible

path of execution, only portions of that path. This seems to be good enough for

'One execution was aborted after a 14 day running time.

74

evaluating the RMP state machine representation.

5.1.3 Prototype Verification System

Another quite different approach is the Prototype Verification System (PVS) [25].

PVS is an assisted proofing tool. It is not totally automatic. In fact, it is very

mechanized and almost all the work of the specification and proof is left to the user.

PVS does support very good modeling of abstract data types, and concurrency and

nondeterminism can be modeled by the characterization of groups of states instead of

expressing state transitions explicitly.

The developers of PVS have also developed several useful theories for use in PVS

proofs that seem to directly apply to proofs for RMP properties. The first is the idea

of a sequence. The second is the idea of behaviors. Behaviors are non-decreasing,

non-zeno sequences. Another useful property is the since operator and its supporting

lemmas. This operator allows properties such as safety and utility on RMP, the data

structures, and supporting elements to be addressed. Time bounds also may be placed

on specific properties.

The learning curve of PVS is very steep. The proof of even simple things can be

quite involved and time consuming for beginners to the system. However, PVS has

been used on some very intensive applications to great benefit.

Another approach that is being combined with PVS for the RMP verification effort

is modal functions called modal primitive recursive (mpr) functions [27]. It has already

been shown that the normal operation of TRP can be verified using this method [28].

This approach uses functions, sets, and relations to show that properties hold. The

combination of these two approaches, PVS and mpr, seems to hold a lot of promise in

verification of complex protocols like RMP.

75

5.2 Case (Scenario) Based Testing

An area of system exploration that is frequently glazed over too often is the importance

and benefit of real world functional testing. This testing has been done in RMP. The

RMP implementation was constructed from the ground up and tested at each step

of the way by an ever expanding set of tests. After the event driven subsystem was

developed and completed, an interactive debugging tool was developed to replace the

Communicator object to provide an interactive or script based tester called the RMP

debugger.

The RMP debugger allows the developer to test all aspects and characteristics

of the internal state machine by creating packets and/or alarms and placing them

in the state machine and examining the changes that are initiated as tie machine

executes in a controlled fashion. In this way, cases, or scenarios, can be created to test

specific state behaviors or combinations of events. This has proved to b.e. invaluable

in developing and finding implementation specific problems that would have not been

caught at such an early stage if such a tool were not available.

76

Chapter 6

Performance Results

This chapter presents the performance achieved by the first RMP implementation.

Theoretical performance is discussed in the first section. The second section presents

performance observed on a 10 Mbps Ethernet. The last section briefly discusses per-

formance issues as have been observed on a portion of the Internet MBone.

6.1 Theoretical Performance of Model

Performance is a key issue in the development of a communications protocol. The

performance a protocol eventually achieves is bounded by the design of the protocol.

RMP is designed such that the delivery time for a totally resilient message is O(N),

where N is the size of the token ring. The delivery time for an unreliable message to

be delivered to any one group member is 0(1). The delivery time for a reliable and

totally ordered message to any one group member is also O(l). Message stability, the

time it takes for a message to be delivered to every member of the group, is O(N).

Under normal situations with low error rates and normal to high traffic, TRP

requires very close to two multicasts per message. As the traffic level decreases, this

value increases to two multicasts and a unicast to confirm the token transfer. As the

error rate increases, the number of packets sent increases, but it is always lower than

that required with a normal positive acknowledgment scheme for groups of three or

77

more sites including the sender [3]. RMP expands on this by providing that under

heavy traffic, the number of multicasts per message starts to drop. This improves

throughput performance. TRP delivers packets to the application only after N token

transfers after the message is received. RMP improves packet latency in this case by

allowing varying QoS levels to vary this latency on a per packet basis.

Under the worst case, the network utilization of RMP in terms of data and space

used by headers is for a two multicast per message case. The header of every RMP

message is at least 24 octets. This is the RMP Fixed Header. In addition to this

header, each additional type of RMP packet has an additional header. The header for

a Data Packet is 24 more octets. And the header for an ACK Packet is 32 octets. In

addition, an ACK may have one or more 24 octets worth of information. Under the

worst case, where one Data Packet and one ACK Packet are needed, the total space

needed for headers is therefore 128 octets. For an Ethernet, which fragments packets

beyond 1512 octets in size, an additional 14 octets are used, so for a 1512 octet size

message, the network utilization is (1526 - RMP Headers - 14)/1526 = 90.7%. For a

typical lOMbps Ethernet, RMP would have a theoretical maximum throughput of 1130

KB/sec. or 0.907 Mbps. This seems to be quite acceptable for the class of applications

that RMP is designed to support.

6.2 LAN Performance

Actual performance of the protocol implementation is sometimes difficult to obtain

accurately. The most difficult obstacle is finding a period of time to perform testing

when the network is at its most restful state. This is especially true of testing a

protocol that is designed to perform at the level of RMP.

All tests were run on several Sun Microsystems SPARCstation 5's running SunOS

5.3 operating system on a lOMbps Ethernet. The network was operating under light

78

Aggregate Thoughput (LAN)

7000

6000

T
hr

ou
gh

pu
t

(K
B

/s
ec

)

M

o
>

^

e
n

o

o

o

o

1000

n

RMP
Ethernet Max

-

-

—

i f i

-

-

-

1:2 2:2 1:4 2:4 4:4 1:8 2:8 4:8
Number of Senders : Number of Destinations

Figure 6.1: LAN Aggregate Throughput

8:8

load before and after the tests. Each test constituted of ten trials and the average

of the ten trials is shown. Throughput measurements were taken by timing transfer

of 5 megabytes of data and does not include packet headers. No fair comparison

with other reliable multicast protocols can be made using these tests as performance

numbers from other protocols have been collected on varying types of platforms and

operating systems. However, no other reliable multicast protocol has been able to

show as high throughput performance as RMP.

6.2.1 LAN Aggregate Throughput

Aggregate throughput is the throughput the application sees. It is computed by taking

the amount of data sent from all of the senders and multiplying it by the number of

destinations. A sender is also a destination. Figure 6.1 shows aggregate throughput

79

Single Sender Throughput (LAN)

•5- 500 •

4 5
Number of Destinations (N)

Figure 6.2: LAN Single Sender Throughput

for RMP with a variety of configurations. The QoS of each packet was Totally Ordered.

This is the case that most applications use totally ordered multicasting for, and it

is actually the worst case for the throughput of the protocol because of the load on

the senders. It is not possible for a non-multicast or non-broadcast scheme to break

the Ethernet throughput boundary shown in Figure 6.1.

6.2.2 LAN Single Sender Throughput

Single sender throughput is shown in Figure 6.2. This is the aggregate throughput

divided by the number of destinations. The sender is not counted as a destination

in these tests. The non-multicast or non-broadcast maximum throughput is shown.

This drops off as a factor of 1/N. This limitation is a fundamental limitation of the

network. As can be seen, RMP stays roughly constant as the number of destinations

80

r
£
3

10
Packet Latency (LAN)

QoS: Totally Ordered
QoS: Source Ordered

4 5 6 7
Number of Members (N)

Figure 6.3: LAN Packet Latency

increases. The QoS of packets does not directly impact throughput. In these tests

throughput was measured using packets of Totally Ordered QoS. Similar tests have

shown the same throughput for QoS ranges from Source Ordered to Totally Resilient.

The latency of packets, however, is very much effected by the packets QoS.

6.2.3 LAN Packet Latency

The latency of different QoS packets as the number of token ring members varies is

shown in Figure 6.3. Packet latency was measured by timing the transmission of 10,000

minimum length messages 1. Flow control was disabled and a stop-and-wait scheme

was used to make sure that only one packet from all the members was in transit at any

one time. In this scheme, latency is equal to the reciprical of the number of messages

Fixed Header + RMP Data Header = 48 octets

81

per second.

RMP performance can be seen to stay very constant as the number of destinations

increases. Protocols that do not take advantage of multicast or broadcast scale linearly

as a function of the number of destinations. Notice the difference that differing QoS

levels introduce.

6.3 WAN Performance

It is very difficult to come up with respectable numbers for WAN performance given the

state of the current MBone. The majority of mrouters are not designed to be routers

and usually do not reside on routing dedicated machines. Therefore all multicast

traffic the router sees must be reflected back unto the network and unicast through

the mrouting tunnels. It is obvious that throughput for RMP on the MBone will be

restricted by the slowest mrouter in the topology section being used. Therefore 90% or

slightly more of the MBone available bandwidth would be the maximum seen. Tests

have been run to verify this theory and they concur on numbers of destinations of up to

eight. Packet latency however is a very real issue on long haul networks. Independent

tests have been run to examine MBone latency when RMP was used as the ordering

mechanism. It has been observed that on two interconnected Ethernets the latency

for a QoS Totally Ordered packet maintains steady values of approximately 9.5 msec,

as long as the load is kept symmetrical. For asymmetric loads, where one Ethernet

contains more than half of the sites in the group, the latency was seen to vary from less

than 7.0 msec, to over 10.0 msec. The variance is most likely due to link congestion

and bursting traffic.

82

Chapter 7

Conclusions and Future Work

This chapter draws some conclusions about RMPs design, implementation, and verifi-

cation. It presents the planned extensions to RMP, the RMP Extended Architecture,

and outlines some future research for RMP.

7.1 Conclusions

Presented in this document are the Reliable Multicast Protocol, the design aspects

of the protocol, the implementation notes for the protocol implementation, and the

protocol verification approaches. To summarize:

• Total ordering of messages can be achieved efficiently by distributing ordering
responsibilities among group members.

• Resiliency and fault-tolerance levels can be chosen by the application. The cost
associated with such flexibility is very reasonable.

• Functionality of a protocol does not need to be completely orthoganol, or inde-
pendent. Significant advantages can be attained by basing additional function-
ality upon solid basic primitives.

• Concurrent protocol design, implementation, and verification can be done with
great benefits.

- Concurrent design and implementation allows implementation restrictions
to be made clearer and handled earlier than normal software life-cycle mod-
els.

83

o-x

— Concurrent verification during design and implementation allows a close fi-
delity between model, specification, and implementation to be maintained.
This has a direct impact on noticing problems early and developing reason-
able alternatives.

• Monolithic implementations of network protocols in operating system kernels
impose undue load on the operating system and jeopardize protocol evolution.
Alternatives, such as user-level implementations, are increasingly becoming very
usable and preferable.

• Flow and congestion control of multicast protocols deserves and requires serious
research, especially in the WAN environment.

7.2 Future Work

Acceptance of RMPs basic operating concepts and functionality is occurring very

rapidly. Suggestions on usability, improvements, and extensions are being proposed.

The first implementation is in the process of forming the foundation for numerous

government sponsored projects, among them are a distributed battlefield simulation

project and several distributed database projects.

RMPs design, development, and verification activities are planned to be ongoing

long term activities. The design, implementation, and verification aspects presented in

this document are just the start to an ever growing and hopefully prosperous project.

To continue to be excepted and used, RMP must surely evolve and improve. In order

to evolve, RMP must clearly define its boundaries and limitations. In doing so, other

questions have been raised. The RMP Extended Architecture attempts to answer some

of those questions. Every aspect of RMP (design, implementation, and verification)

has definite directions that are being pursued.

7.2.1 The Extended Architecture

RMP has been designed to provide a base layer of functionality which can then be

built upon to provide a larger array of features. RMP as presented in this document

84

Application

RFC
Blocking RFC
Interface

-*• Library Link

-"• TCP/IP Connection

Software Buses
Queuing of messages for inactive clients
Automatic starting of inactive apps.
Language independent interface
Multiple!ing one to many processes

Streams
TCP-Like
Interface

Replicated Object Layer
Object Type Registration
Replication of objects at multiple sites
Distributed Atomic Transactions
Update of objects to new and failed sites

Messaging Layer
Domain (2nd. Level Grouping) Filtering
Multiple Client Filtering
Fragmentation and Reassembly of Large Messages
Associating messages with replies
Combining small packets together to maiimize message flow

Membership Service
Membership of Token Rings
Optional Implicit naming
Mutually Eidusive Locks
Removal of Faulty Sites

RMP
Packet Based
Multicast Groups, optional Unicast Members
Variable Ordering, Reliability, and Atomicity
Multi-RFC
Flow and Congestion Control

Figure 7.1: RMP Extended Architecture

is just this base layer. However, it is important to mention how RMP has been

designed and how it is envisioned to interoperate with other functional layers. The

architecture which has been developed to hold RMP is shown in Figure 7.1. This is

the RMP Extended Architecture. It is extended in the sense that at this time only

RMP itself has been implemented. Plans are already underway for implementation of

the Streams, RFC, and the Replicated Object Layer. Work has already begun on the

Messaging Layer. Work has also been initiated on constructing a Multicast Address

Management service that RMP can use.

The RMP layer provides all the functionality and services presented in this doc-

ument, except membership view changes. The Membership Service layer interfaces

with the RMP layer to provide efficient membership view changes, add additional in-

85

formation to the membership views (Handlers and Locks), an optional implicit naming

convention to map token ring names to IP multicast address, port, TTL tuples, and

detection and removal of faulty sites. All of these features are currently supported by

the Membership View Extension except for the detection and removal of faulty sites.

The Messaging Layer provides several very important features. The first is a

second level group filtering mechanism. This can be thought of as adding protocol port

numbers to token rings. The second feature is adding client filtering mechanisms. RMP

applications that are constructed to be server applications for Software Buses require

filtering mechanisms to determine to what client a message is to be delivered to and to

determine those packets that it is not interested in. To provide a streams interface, a

fragmentation and reassembly service must be constructed. This mechanism fragments

large messages into smaller packets that may then be sent via RMP. The receivers

of the packets then must reassemble the whole message before delivering it to the

application. This mechanism is essential for providing the Streams and RPC interfaces.

As an efficiency mechanism, the Messaging Layer also needs to combine multiple small

messages into a single packet for RMP to use, thereby maximizing throughput. The

Messaging Layer also associates messages with replies. This is needed so that the

application need not examine each message to determine if it contains a Handler that

it must service or is a reply to a message that it sent with a specified Handler.

One of the most desired and powerful layers is the Replicated Object Layer. This

layer provides a pool of replicated objects that are kept stable across RMP applications

by an internal cache consistency mechanism. Object typing is done at this level purely

by size. At higher levels more functionality can be combined to provide stronger object

typing, such as the typing used by the CORBA specification [15]. Replicated objects

must transparently by kept up-to-date at all sites. New and/or failed sites must be

updated with current object states. This provides what is called stable storage. More

complicated updates and synchronization can be done through distributed atomic

86

transactions. These are performed by totally ordered messages and therefore are very

efficient. Objects at this level are very rudimentary. This allows them to correspond

to any piece of information that may mutate over time.

The Software Bus layer provides a common, language independent interface to the

RMP transport system. Some Software Buses that are planned to be expanded to in-

corporate RMP are Polylith [23] and the MultiBus [2]. By providing remote execution

facilities, queuing of messages for inactive applications, and increasing multiplexing

ability the RMP Software Bus layer will provide a very efficient and powerful rapid

prototyping environment.

7.2.2 Design Directions

The protocol design is still evolving. Although the base algorithms are very solid, other

aspects such as the policy regarding efficient use of NACKs to optimize lost packet

recovery and the policy for replying to NACKs to be efficient and avoid "NACK

Explosions" on WAN environment are still under investigation. Efficient flow control

methods are a serious area of research in networking. Adding the complexity of high

latency, high bandwidth networks, such as ATM, and the general lack of experience

with multicast group flow control adds even more questions. This is probably the most

likely area of heavy research in the near future. The reformation algorithms themselves

may need to be expanded and changed to fit new networking models. The ability to

place Real-Time guarantees on RMP given realistic failure and loss assumptions is a

very serious issue as well. The protocol design will continue to be very active for an

extended period of time.

7.2.3 Implementation Directions

The RMP implementation also holds a large amount of unanswered questions. The

implementation at this stage in design and development is fairly efficient, but imposes

87

a large amount of overhead to processes that use it. Direct reduction of this overhead

is desirable. One avenue that is under consideration to accomplish this is, to use

dynamic libraries of some UNIX operating systems. This concept also brings up some

questions about how to efficiently handle multiple sites per Internet host.

The implementation also must handle code maintenance, change requests from

users, and discrepancy reports from users. In this respect the support of RMP is

perhaps made slightly more complicated because errors and "bugs" are more difficult

to reproduce and eliminate on distributed systems than in traditional systems.

7.2.4 Verification Directions

Verification of RMP will also be a long term activity. As long as the design of RMP

evolves and the RMP implementation changes, the verification effort will have to

respond and provide feedback to help the designers and developers. In the short

term, the tools presented in Chapter 5 are being used to develop models of the RMP

system. In particular the PVS and Murip tools are being heavily investigated and

used. It will also be the verification efforts responsibility to maintain a high fidelity

between the implementation and the design model. This is critical to ensuring RMPs

acceptance. The use of network analysis tools are also being investigated for possible

use in examining the RMP model. It is hoped that this analysis will prove to be very

valuable in trimming the protocol for performance and efficiency as well as providing

serious incites into potential problems in the future.

88

Bibliography

fl] K. Birman. The Process Group Approach to Reliable Dsitributed Computing.
Communications of the ACM, 36(12):37-53, December 1993.

[2] J. CaJlahan and T. Montgomery. A Decentralized Software Bus based on IP
Multicasting. In Third Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pages 65-69. CERC, April 1994.

[3] J. M. Chang and N. F. Maxemchuk. Reliable Broadcast Protocols. ACM Trans-
actions on Computer Ssystems, 2(3):251-273, August 1984.

[4] S. Deering. Host Extensiosn for IP Multicasting. Technical Report RFC-1112,
IETF, August 1989.

[5] J. Burch E. Clarke K. McMillan D. Dill and L. Hwang. Symbolic Model Checking
220 States and beyond. In 5th Annual Symposium on Logic in Computer Science,
pages 428-439. IEEE Computer Society, June 1990.

[6] M. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley Publishing Company, 1st. edition, 1990.

[7] C. Hedrick. Routing Information Protocol. Technical Report RFC-1058, IETF,
June 1988.

[8] D. Dill A. Drexler A. Hu and C. Yang. Protocol Verification as a Hardware
Design Aid. In IEEE International Conference on Computer Design: VLSI in
Computers and Processors, pages 522-525. IEEE Computer Society, 1992.

[9] P. Jain N. Hutchinson and S. Chanson. A Framework for the Non-Monolithic
Implementation of Protocols in the x-kernel. In Proceedings of USENIX High
Speed Networking, pages 13-30, August 1994.

[10] Van Jacobson. Congestion Avoidance and Control. In SIGCOMM Proceedings,
pages 314-328. ACM, 1988.

[11] Y. Amir D. Dolev S. Kramer and D. Malki. Transis: A Communication Sub-
system for High Availability. Technical Report CS9113, Hebrew University of
Jerusalem, November 1991.

[12] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558-565, July 1978.

89

[13] C. Maeda and B. Bershad. Protocol Service Decomposition for High-Performance
Networking. In Proceedings of 14th ACM Symposium on Operating Systems Prin-
ciples. ACM, December 1993.

[14] D. Agarwal P. Melliar-Smith and L. Moser. Totem: A Protocol for Messaging
Ordering in a Wide-Area Network. In First ISMM International Conference on
Computer Communications and Networks, pages 1-5, June 1992.

[15] OMG Mnagement Group. The Common Object Request Broker: Architecture
and Specification. Technical Report OMG Document Number 91.12.1, OMG,
1991.

[16] C. A. Thekkath T. D. Nguyen E. Moy and E. D. Lazowska. Implementing Net-
work Protocols at User Level. In SIGCOMM Proceedings, pages 64-73. ACM,
September 1993.

[17] J. Moy. Multicast Extensions to OSPF. Technical Report RFC-1584, IETF,
March 1994.

[18] J. Moy. OSPF Version 2. Technical Report RFC-1583, IETF, March 1994.

[19] D. Waitzman C. Partridge and S. Deering. Distance Vector Multicast Routing
Protocol. Technical Report RFC-1075, IETF, November 1988.

[20] J.B. Postel. User Datagram Protocol. Technical Report RFC-768,IETF, August
1980.

[21] J.B. Postel. Internet Protocol. Technical Report RFC-791, IETF, September
1981.

[22] J.B. Postel. Transmission Control Protocol. Technical Report RFC-793, IETF,
September 1981.

[23] J. Purtillo. Polylith: An Environment to Support Management of Tool Interfaces.
In ACM SIGPLAN Symposium on Language Issues in Programming Environe-
ments, pages 12-18. ACM, June 1985.

[24] J. Rushby. Formal Methods and the Certification of Critical Systems. Technical
Report CSL-93-7, SRI, December 1993.

[25] S. Owre J. Rushby and N. Shankar. PVS: A Prototype Verification System. In
llth International Conference on Automated Deduction (CADE), pages 748-752,
1992.

[26] K. Birman A. Schiper and P. Stephenson. Lightweight Causal and Atomic Group
Multicast. A CM Transactions on Computer Systems, 9(3):272-314, August 1991.

[27] V. Yodaiken. A Modal Arithmetic for Reasoning About Multi-Level Systems of
Finite State Machines. PhD thesis, University of Massachusetts (Amherst), 1990.

90

[28] V. Yodaiken and K. Ramamritham. Verification of a Reliable Net Protocol. In
Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 193-215,
January 1992.

91

Appendix A

RMP Packet Formats

This appendix contains the packet formats for the RMP packet types discussed in

Chapter 3. Each field of the packet is shown and briefly discussed. The packet formats

assume a 32 bit IP Addressing scheme.

A.I RMP Fixed Header

The RMP Fixed Header is included at the beginning of all RMP packets. It is the

secondary means that packets bound for different token rings are filtered 1, Following

the fixed header is one of the additional headers shown below.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-•»—+— »—+-+-+-+-•»— t— +-+-+-+-+-+-+-+-+-+-+-+—»— +-+-+-+-+-+-+—•—+-+
|F| VER | LEN I TYPE I TOKEN RING ID (Originator Port) I

I TOKEN RING ID (Originator Address) |
+-+-+-4- +-+-+-+-+-+-+—»—-•—+-+-+-+—•— +-+-+-•»—+-+-+-+—»—»•-+-+-+-+-+
I TOKEN RING ID (Counter) |

I OPTIONS
+-+-+-+-+-+-+-+-+-+-+-+-+-+-

DATA OR CONTROL INFORMATION

I PADDING

The first being the multicast address and pott of the token ring

92

F(FWD): Specifies whether the packets should be multicast to the token ring IP

Multicast address and port or not. This field is used to unicast a packet from a non-

multicast capable member to a multicast capable member that may forward the packet

to the token ring.

VER: Specifies the version of the protocol. The current version is 1. Any packet

received with an invalid version should be rejected.

LEN: Specifies the length of the options field in four byte words.

TYPE: Specifies the type of RMP packet. The valid types are:

Value Packet Type
0
1
2
3
4
5
6

Reserved
Data
ACK
Confirm Token Pass
NACK
New List

Value Packet Type
7 Recovery Start
8 Recovery Vote
9 Recovery ACK New List
10 Recovery Abort
11 Non Member Data
12 Non Member ACK

List Change Request 13-15 Reserved

TOKEN RING ID: Specifies the current Token List ID of the token ring.

OPTIONS: No options defined at this time. This field may be used for further

enhancements for debugging purposes, error codes, or checksum

93

A.2 RMP Data Header

The Data Packet type holds data sent from one member of the token ring. Following

the fixed header is an additional header, the RMP Data Header. The format for this

additional header is shown below. Following the data header is the actual message

data.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

IHNDLRI QOS

I

I SEQUENCE NUMBER
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

MESSAGE SOURCE (IP Address)

|

I MESSAGE SOURCE (UDP Port) | LENGTH
+ - + -+-+-+-+-+-+-+-+- + - + - + -+-+- + -+-+—*-+-+—!—+-+-+-+-+-+-••—+ -H

I DATA

HNDLR(Handler): The handler lock number, if any, for the data packet. The

valid values are:
Handler Value Required Handler

0 None
1-6 The process, if any, that holds the handler with the

same number
7 The process, if any, that holds the highest priority

handler. 1 is the highest priority and 6 is the lowest.

QOS: Specifies the desired QoS of the data packet. The semantics of the delivery of

the packet are discussed on page 21. The valid values for the QoS field are:

QoS Value QoS Desired
0 Reserved
1 Unreliable
2 Unordered
3 Source Ordered
4 Causally Ordered (Optional)
5 Totally Ordered

6-29 K Resilient, K set to (QoS - 5)
30 Majority Resilient
31 Totally Resilient

94

SEQUENCE NUMBER: Each Data packet source stamps each Data packet it

sends, except Data packets with QoS of Unreliable, with a sequence number. Each

source also keeps a sequence number counter for each token ring it may be a member

of. The sequence number counter starts at 0 when the source sends its List Change

Request packet to join the list. The first Data packet the source sends has a sequence

number of 1. Therefore each Data packet, except Unreliable ones, has a monotonically

increasing sequence number from 1. Because sequence numbers are 24 bit in length,

they have a valid range of 0 to 224 — 1. And because this range is finite, all arithmetic

and comparison with these numbers must be modulo 224. RMP requires that no more

than 223 packets can be created over a period equal to the maximum lifetime for a

datagram packet in the network. This condition holds true when IP is used as the

datagram service.

MESSAGE SOURCE: Specifies the RMP Process ID of the message' source.

LENGTH: Specifies the size of the data field in octets.

DATA: The data to be delivered.

95

A. 3 Control Packets

Control Packets are packets that contain information vital to RMP normal operation

and maintenance of membership views. The packet types that are classified as Con-

trol Packets are ACK Packets, Confirm Packets, NACK Packets, New List Packets,

and List Change Request Packets. Any retransmissions of these packet types due to

a NACK for that packet do not require modification of the packet header to show

the current state. The original packet in its entirety is retransmitted. The control

information for each packet follows directly after the fixed header for the packet.

A.3.1 ACK Packet

ACK Packets transfer the token to a new token site and impose ordering on one or

more Data Packets and/or Non-Member Data Packets.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-• f-+-+-+-+-+-+-+-+— f-+-+-+— f-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I CURRENT TOKEN HOLDER (IP Address) |
+-+-+-+-+—••-+-+-+-+-+-+-+— »•-+-+-+— •—+--»—+-+-+-+-+-+-+-+-+-+-+-+-+
I CURRENT TOKEN HOLDER (UDP Port) | TIMESTAMP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-•«— +-•»•-+-+-+-+-+-+-+-+-+-+-+-+-+
I NEXT TOKEN HOLDER (IP Address) |
+-+-+-+-+-•»— »•-+—••-+-+-+-+-+-+—»—+-+-+—•— +-+-+-+-+-+-+-+-+-+-+-+-+
I NEXT TOKEN HOLDER (UDP Port) I RESERVED I NUM PACKETS I
+-+-+-+-+-+-+-+-+-+-+-+-+— ••-+-+—»•-+-+-+-+-+-+-+-+-+-+— »•-+-+-+-+-+

Timestamped Packet Identifiers: 1 per NUM PACKETS value
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+—»— +-+-+-+-+-+-+-•»—+-+-+-+-+-+

IHNDLRI QOS | SEQUENCE NUMBER I

I MESSAGE SOURCE (IP Address) I
+ - + -•»•- + — I— +-+-+— ••-+-+-+-+-+— f-+—»— +-+-+-+- + -+-+-+-+-+-+-+-4— +-+-+

I MESSAGE SOURCE (UDP Port) I LENGTH I

96

CURRENT TOKEN HOLDER: Specifies the RMP Process ID of the member

sending the ACK packet.

TIMESTAMP: Specifies the timestamp of the ACK packet. Timestamps have a

range of 0 to 216 - 1 and therefore all arithmetic and comparisons on them must be

modulo 216.

NEXT TOKEN HOLDER: Specifies the RMP Process ID for the member that

will become the next token site.

RESERVED: Unused field, zeroed when sent, and ignored when received.

NUM PACKETS: Specifies how many Data packets and Non Member Data pack-

ets are timestamped and acknowledged by this ACK packet.

Timestamped Packet Identifiers: There are NUM PACKETS sets of these

identifiers that follow after the ACK header. Each identifier contains the same infor-

mation as the Data packet of Non-Member Data packet it timestamps. The implied

timestamps of the Data and Non member Data packets follow monotonically from the

ACK timestamp field and are in the order shown in the ACK packet.

97

A.3.2 Confirm Token Pass Packet

The Confirm Token Pass Packet provides a positive acknowledgment for a token site

passing the token.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+—»•—!•-+—••- + -+-+-+-•»—••-+-+-+- + -+-+-+—I—+-+-+-+-+-+-+-+-+--I.-+

I NEW TOKEN HOLDER (IP Address) |

I NEW TOKEN HOLDER (UDP Port) I TIMESTAMP |
+-+-+-••—+-+-+-+-+-+-+-+-•«—+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-.4.-+

NEW TOKEN HOLDER: Specifies the RMP Process ID of the member that

accepts the token and is sending the Confirm Token Pass packet.

TIMESTAMP: Specifies the timestamp of the ACK packet or New List packet

that passed the token to the member.

A.3.3 NACK Packet

The NACK Packet is used to request retransmission of lost packets.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

I REQUESTER (IP Address) |
+-+-+-+-+-+-+-+-+—t~»—+"i—+-+-+-+-+-+-+-+-+-+-+-+-+—i—+-+-+-+-+-+
I REQUESTER (UDP Port) |CONGESTION CODE| NUM PACKETS |

I TIMESTAMP I
+-•»•-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

REQUESTER: Specifies the RMP Process ID for the member requesting the miss-

ing packets.

CONGESTION CODE: Specifies the reason for the NACK. The valid values are:

98

Value Semantic
0 Reserved
1 Buffer Overrun
2 Probable network congestion

3-255 Reserved

NUM PACKETS: Specifies the number of packets requested.

TIMESTAMP: Specifies timestamp of the first missing packet requested.

99

A.3.4 New List Packet

New List Packets contain a new membership view for the group and passes the token.

The format of the packet is shown below.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+--»— i— +-+-+-+-+-+-+-+-+-+-+-+-•«—+-+-+-+-+-+-+-+-+—•—+-+—»—+
I CURRENT TOKEN HOLDER (IP Address) |
+-+
I CURRENT TOKEN HOLDER (UDP Port) I TIMESTAMP |
+-+-+- + -+-+-+-+- + -+- + - + -+-+-+-+-+-+- + -+-+-+— «•- + -•!— +-+-+—»•-+-+-+-+

I NEXT TOKEN HOLDER (IP Address) |
+-+-+—•—+-+-+—»—+-+-+-+-+-+-+-+—»—+-+-+-+-+-+-+-+-+-+—»—+-+-+-+-+

I NEXT TOKEN HOLDER (UDP Port) I NEW TOKEN RING ID (Orig Port) I
+-•("+-•»—+-+-+-+-••— +-+— »•-+-+

I NEW TOKEN RING ID (Originator Address) |
+-+

I NEW TOKEN RING ID (Counter) I
+-+—•—(—+-+-+-+

I MIN SIZE | SEQUENCE NUMBER |
+-- 1— +-+-+-+-+-+

I MESSAGE SOURCE (IP Address) |

I MESSAGE SOURCE (UDP Port) | TOKEN RING VERSION |
+-+-+-+-+-+-•»— +-+-+-+-+-+-+-+-+-+-+--I— +-+-+-+-+-+-+-+-+— I— +-+-+-+

I . IP MULTICAST ADDRESS |
+-+

I RESERVED | IP MULT TTL | IP MULTICAST UDP PORT |
+-+

IMIHNDLRIOP TYPE | NUMBER OF ENTRIES | NUMBER OF EXTRA LOCKS I
+-• »•- +-+

I TOKEN RING NAME

Token List Entries: 1 per NUMBER OF ENTRIES value
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-•*•-+-+-+-+-+-+-+-+-+-+-+-+-+

|M|T| HANDLERS I SEQUENCE NUMBER I

MEMBER ID (IP Address) I
+-+-+-••— +-+-+-+-+-+-+-+-+-+-+-+-•»— +-+-+-+-+-+-+-+—»•-+-+-+

MEMBER ID (UDP Port) I RESERVED I MIN SIZE REQ |

100

Extra Locks: 1 per NUMBER OF EXTRA LOCKS value
+-+—f—•—»•—•—+-+-+--•—••-+-+—i—+-+-+-+-+-+—1~+-+-

LOCK NUMBER IRESERVDI LOCK HOLDER

CURRENT TOKEN HOLDER: Specifies the RMP Process ID of the member

sending the New List packet and passing the token.

TIMESTAMP: Specifies the timestamp of the New List packet.

NEXT TOKEN HOLDER: Specifies the RMP Process ID of the member that

the token is being passed to.

NEW TOKEN RING ID: Specifies the new Token List ID for the token ring.

This ID will be used as the TOKEN RING ID for each packet following this New List

packet. The NEW TOKEN RING ID has a Originator IP Address and Originator

Port that is equal to the RMP Process ID of the member that generates the New

List packet, the CURRENT TOKEN HOLDER. The Counter is the value of the old

TOKEN RING ID Counter +1. This Counter has a range of 0 to 232 - 1. Thus all

arithmetic and comparison operations on these values must be done modulo 232.

NUMBER OF ENTRIES: Specifies the number of Token List members, or en-

tries.

NUMBER OF EXTRA LOCKS: Specifies the number of locks being held by

members of the group. This does not count handler locks.

MESSAGE SOURCE: Specifies the RMP Process ID for the source of the List

Change Request packet that this New List packet corresponds to.

101

SEQUENCE NUMBER: Specifies the sequence number of the List Change Re-

quest packet that this New List packet corresponds to.

TOKEN LIST VERSION: Specifies the version of the new token list.

IP MULTICAST ADDRESS: Specifies the IP Multicast address used by the

token ring. This is used to notify members who join through a unicast List Change

Request packet sent to a well known member of the token ring what the IP Multicast

address of the ring is.

IP MULT TTL: Specifies the IP Multicast TTL value for the token ring.

IP MULTICAST UDP PORT: Specifies the IP Multicast UDP Port used by the

token ring.

M(Multicast Capable): Specifies if the member that sent the List Change Request

packet corresponding to the New List packet is multicast capable or not.

HNDLR(Handlers): Specifies the handler value that the List Change Request

packet corresponding the the New List packet was to be performed on. This field

is only used in operation types 3-6.

OP TYPE: Specifies the type of operation that was performed on the token list.

This field, in effect, details why the New List packet was generated. It also may report

errors. The valid operation types are:

102

Value Operation Type Description
0 Reserved
1 Requesting Member added to Token List
2 Requesting Member removed from Token List
3 Requesting Member received a Handler Lock
4 Requesting Member released a Handler Lock
5 Requesting Member was denied a Handler Lock
6 Requesting Member attempted to release a Handler Lock

it did not hold
7 Reformation occurred and was successful
8 Reformation occurred with possible atomicity violations
9 Failed Reformation due to partition criteria violations

(An Invalid List was created)
10 Time-To-Live of Token List ID Expired

11-15 Reserved

MIN SIZE: Specifies the minimum size of the token ring after a failure. This is the

minimum partition criteria. This field is always the maximum of the individual MIN

SIZE REQ fields of the token list entries. The valid values for this field are:

Value Minimum Partition Size
0 Reserved

1-253 Equal to value
254 The majority of sites in the old list.

Exactly half the number is not sufficient
255 All sites in the old list

TOKEN RING NAME: Specifies the null-terminated ASCII name for this token

ring. This name must end on a word boundary, which may necessitate that 1-3 extra

octets of padding be included after the trailing zero of the name. These octets must

be set to zero.

Token List Entries: Each entry contains information on each member of the token

list. There are NUMBER OF ENTRIES of these entries. When this list is committed

to an application, the RMP Process examines the list and caches these values for later

use in generating ACKs, examining sequence numbers, etc. When the process sees an

entry corresponding to itself, it then marks the entry following it as the site it will

103

pass the token to when necessary. If the process is the last entry in the list, then the

process marks the first entry in the list as the member it will pass the token to.

M(Multicast Capable): Specifies whether the member is multicast capable or not.

Each member of the token list that is not multicast capable requires that each other

member in the list unicast each packet that it sends to the list to these members as

well as sending the packet to the IP Multicast group. Non-Members of the token ring

have this field set to zero.

T(Token Ring Member): Specifies whether the RMP Process is a member of the

token ring or not. Non-Members periodically get flushed from the list. The inclusion

of Non-Members into the token list is used io bring new token list members up to date

with respect to recent Multi-RFC activities.

HANDLERS: Specifies the Handler mask for the member. Each bit position rep-

resents a handler lock value. Non-Members of the token ring have this field set to

zero.

SEQUENCE NUMBER: Specifies the next sequence number from the RMP Pro-

cess that is to be delivered. This is used for Non-Members as well.

MEMBER ID: Specifies the RMP Process ID for the token list entry. This is used

for Non-Members as well.

RESERVED: Unused, zeroed when sent, and ignored when received.

MIN SIZE REQ: Specifies the members vote for the minimum partition size that

is allowed to form after a failure. Non-Members set the field to zero.

104

Extra Locks: The token ring has 4095 locks that members may request and release.

Each one is assured to be mutually exclusive, only one member may be in possession of

it at one time. The first six locks (1-6) are handler locks. Locks 7-4095 are extra locks.

These locks have semantics that are totally dependent on what the application desires

to use them for. Each lock that is being used is represented by a LOCK NUMBER,

LOCK HOLDER tuple in the New List Packet.

LOCK NUMBER: Specifies the lock number. Valid range is 7-4095.

RESERVD: Unused, zeroed when sent, and ignored when received.

LOCK HOLDER: Specifies the index in the token list of the member that holds

the lock. The first member in the list is denoted 1.

105

A. 3. 5 List Change Request Packet

Changes to the membership view are requested by a List Change Request Packet. The

format for the packet is shown below.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

I IP MULTICAST ADDRESS |
•»•-+-+— »•-+-+-+- + - + -+-+-+— I— +-•!—+-+-+-+-+-+-+—»— +-+-+-+-+-+-+-•»•-+-+

I RESERVED I IP MULT TTL | IP MULTICAST UDP PORT |
+-+

IMIHNDLRIOP TYPE I SEQUENCE NUMBER |
+-+-+-+-+-+-+-+-+-+-+-+-•»—»•-+-+-+-+-+-+—»•-+-+—»•-+-+-+-+-+— *-+-+-+

I MESSAGE SOURCE (IP Address) |
+-+-+-+-+-•»— +-+-+-+-•»•-+-+-••— »--+—•—+-+-+-+-+—»•—»—+—*—+-+-+-+-+-+-+

I MESSAGE SOURCE (UDP Port) | NAME LENGTH | MIN SIZE |
+-+

I TOKEN RING NAME
+-+-+-4-+

IP MULTICAST ADDRESS: Specifies the IP Multicast address used by the

token ring.

IP MULT TTL: Specifies the IP Multicast TTL used by the token ring.

IP MULTICAST UDP PORT: Specifies the IP Multicast UDP Port used by the

token ring.

M(Multicast Capable): Specifies whether the process in the List Change Request

is multicast capable or not.

HNDLR(Handler): Specifies the handler value associated with the List Change

Request packet. This is used only for OP TYPE of values 3-4.

106

OP TYPE(Operation Type): Specifies the operation type desired by the List

Change Request packet. The valid values for this field are:

Value Operation Type Description
0 Reserved
1 Add Member to Token List
2 Remove Member from Token List
3 Request Handler Lock
4 Release Handler Lock
5 Time-To-Live of Token List ID Expired (Null OP)

6-15 Reserved

MESSAGE SOURCE: Specifies the RMP Process ID for the process sending the

List Change Request packet.

SEQUENCE NUMBER: Specifies the sequence number of the List Change Re-

quest packet.

NAME LENGTH: Specifies the length of the TOKEN RING NAME field. This

is done exactly as it is done in New List packets.

MIN SIZE: The RMP process' vote for the minimum partition size of the token

ring.

TOKEN RING NAME: Specifies the null-terminated ASCII name for the token

ring. It is handled exactly as is done in New List packets.

107

A. 4 Failure Recovery Packets

Failure Recovery Packets contain information relevant to the Reformation Extension

of RMP operation. Each Failure Recovery packet type contains a fixed header. The

Token List ID for the fixed header is the last known Token List ID before the failure was

detected. This ID does not change until the New List is committed after reformation

has finished.

A. 4.1 Recovery Start Packet

The Recovery Start Packet is sent by the failure detecting site to the members of the

token ring.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+ -+-+- + - + -+-+- + -+-+- + - + - + -+-+-+-+—H- + - + -+-+-+— I— +-+- + -+-+-+-+-+- +

I VERSION I NEW TOKEN RING ID (Orig Port) I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-•1— +-+-+-+-+-+-+-+-+-• »•-+—••-+
I NEW TOKEN RING ID (Originator Address) I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-4-+-+-+— •—+-+-+-+-+-+-+-+-+

I NEW TOKEN RING ID (Counter) I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+— ••-+-+-+-+-+-+-+-+-+-+— i— +-+
I REFORM SITE (IP Address) |
+-+-+-+-+-+-+-+-+-•(— +-+—I— +

I REFORM SITE (UDP Port) I MAX TIMESTAMP |

VERSION: Specifies the token ring version of this current reformation. The valid

range of VERSION is 0 to 216 — 1. And all arithmetic operations and comparisons

must be modulo 216.

NEW TOKEN RING ID: Specifies the Token List ID if the reformation succeeds.

REFORM SITE: Specifies the RMP Process ID for the site that is initiating and

controlling the reformation, the reform site.

108

MAX TIMESTAMP: Specifies the SynchTSP, from Section 3.4.4, for the refor-

mation.

109

A. 4. 2 Recovery Vote Packet

Upon receiving a Recovery Start Packet from a member of the token ring, the other

sites in the token ring send Recovery Vote Packets to the reform site.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

|

VERSION | NEW TOKEN RING ID (Orig Port) I
+-+
NEW TOKEN RING ID (Originator Address) |

I NEW TOKEN RING ID (Counter) |
+-+-+-+-+-+-• i— +-+
I MAX TIMESTAMP | SYNCHONIZED TIMESTAMP |

VERSION: Specifies the token ring version of the current reformation. This has

the same semantics of the Recovery Vote packet field.

TOKEN RING ID: Specifies the Token List ID for the ring if the reformation

succeeds.

MAX TIMESTAMP: Specifies the SynchTSP, from Section 3.4.4, for the current

reformation. If the process sending the Recovery Vote packet has a higher timestamped

packet than the Recover Start packet field, then the process sends this new value.

SYNCHRONIZED TIMESTAMP: Specifies up to what timestamp the process

sending the Recovery Vote packet is synchronized up to.

110

A.4.3 Recovery ACK New List Packet

The Recovery ACK New List Packet is sent to the reform site to signify that the

sending site received a New List Packet.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-•»•-+-+-•••-+
I VERSION | MEW TOKEN RING ID (Orig Port) I
+-+-+-+-+-+-+-+- + -+- + - + -+-•»— +-+-+-+-+- + -+-•»•-+-+— •— + -+—!•-+-+- + -+- +

I NEW TOKEN RING ID (Originator Address) |
+-+-••— +-+-+-+-+-+-+-••—+-+-+-+-+-+-+-+-+-+-+-+-+
I NEW TOKEN RING ID (Counter)
+-+-+— ••-+-+-+— »•-+-+-+— »•-+-+— i— +-+-+-+—«—+— «•-+-+
I MAX TIMESTAMP I

VERSION: Specifies the token ring version for the current reformation. This has

the same semantics as the Recovery Start packet field.

NEW TOKEN RING ID: Specifies the Token List ID for the ring if the current

reformation succeeds.

MAX TIMESTAMP: Specifies the SynchTSP, from Section 3.4.4, for the current

reformation. This value must be one less than the timestamp of the New List packet

that this Recovery ACK New List packet is in response to.

Ill

A. 4.4 Recovery Abort Packet

Upon detection of a failure during reformation, a Recovery Abort Packet is sent to

signify that the current reformation is to be aborted and a new reformation initiated.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-•»•-+-+-+-+-+—•—+- + —»— !—+—»—+-+-+-+-+—•— + - + -+— t— +-+-+-+-+-+_+-+

I VERSION I NEW TOKEN RING ID (Orig Port) I

I NEW TOKEN RING ID (Originator Address) |
+-+-+-+-+-+-+-+-•»•-+-+-+-+-+-+-+-+— *—+—)—+-+-+—•— +-+-+-+-+-+-+-+-+

I NEW TOKEN RING ID (Counter) |
+—••-+-+-+-+-+-+-+-+— ••-+-+-+— ••-+-+-+-+-+— f-+-+-+-+-+-+-+-+-+— f-+— f

I MAX TIMESTAMP I

VERSION: Specifies the token ring version for the current reformation. This has

the same semantics as the Recovery Start packet field.

NEW TOKEN RING ID: Specifies the Token List ID of the failed reformation.

MAX TIMESTAMP: Specifies the SynchTSP, from Section 3.4.4, for the failed

reformation.

112

A. 5 Non-Member Packets

Non Member Packets are sent from a Non-Member of the token ring to the token ring

to be ordered and optionally replied to by a member of the ring. Each Non- Member

Packet contains a fixed header. The Token Ring ID for the fixed header is set to zero

unless the Non-Member happens to know the current Token Ring ID.

A. 5.1 Non-Member Data Packet

The Non-Member Data Packet is analogous to the Data Packet but is used exclusively

by Non-Members of the token ring.

1 2 3
0 1 2 3 4 5 6 7 * 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+—••-+-+-+-+— •—+-•(•— I— +-+-+-+

IHNDLRI qos I SEQUENCE NUMBER |

MESSAGE SOURCE (IP Address) |

I MESSAGE SOURCE (UDP Port) |N|M| RESERVED I NAME LENGTH |
+-+-+-+-+-+-+-+-+-+-+-•»— +-+-+-+-+-+-+-•»•-+-+-+-+-+— i— f- +-+-+-+-+-+
I RESERVED | DATA LENGTH |

I TOKEN RING NAME
+-+-+-+-+-+— t— +-+-+-••— +-+-+-+-+-+-+-+-+-+-•»— +-•»—•—+-+-+—(•-+-••—+-+
I DATA
+-4-+-+-+-+-+-+

HNDLR(Handler): Specifies the handler value, if any, for the Non Member Data

packet. This has the same semantics as the Data packet HNDLR field.

QOS: Specifies the desired QoS for the Non Member Data packet. This has the

same semantics as the Data packet QoS of the same value.

SEQUENCE NUMBER: Specifies the sequence number of the Non Member Data

packet. This has the same semantics as the Data packet sequence numbers.

113

MESSAGE SOURCE: Specifies the RMP Process ID for the process sending the

Non Member Data packet.

N(No ACK): Specifies whether a Non Member ACK should be sent for Non Mem-

ber Data packet or not.

M(Multiple Copies): Specifies whether multiple copies of the Non Member Data

packet should be delivered to the members of the token ring or not.

RESERVED: Unused, zeroed when sent, and ignored when received.

NAME LENGTH: Specifies the length of the TOKEN RING NAME field. This

has the same semantics as the New List packet field.

DATA LENGTH: Specifies the size of the data field in octets.

TOKEN RING NAME: Specifies the null-terminated ASCII name for the token

ring. This has the same semantics as the New List packet field.

DATA: The data to be delivered.

114

A.5.2 Non-Member ACK Packet

Non-Member ACK Packets are sent from a member of the token ring to the Non-

Member as a means of notification that a corresponding set of Non-Member Data

Packets have been received and ordered. Optionally, the sender may attach reply

information at the end of the Non-Member ACK Packet.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

I HANDLER (IP Address) I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--I— +—••-+-+-+-+-+-+— ••-+-+-+— *-+-+-+-+
I HANDLER (UDP Port) I RESERVED I NUM PACKETS I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-•»•-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I REPLY LENGTH |
+-+-+-+-•»•-+— f-+-+-+-+-+-+-+-+-+-+

Packet Identifiers:
+-+-+—•—+-+-+-+-+-+-+-+-+—»—+-+-+-+-+-+-+-+-+-+-+-+-+-+— ••-+-+-+-+
IHNDLRI QOS I SEQUENCE NUMBER — I
+-

I MESSAGE SOURCE (IP Address)
+-

I MESSAGE SOURCE (UDP Port) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Reply :
+-+-+-+-••— +-+

I REPLY
— f

HANDLER: Specifies the RMP Process ID for the member of the token ring that

generated the Non Member ACK packet.

NUM PACKETS: Specifies how many Non Member Data packets this Non Mem-

ber ACK packet provides acknowledgments for.

REPLY LENGTH: Specifies the length of the REPLY field in octets.

115

Packet Identifiers: Each packet identifier represents a Non Member Data packet

that is acknowledged by this Non Member ACK packet. The fields of the packet

identifier correspond with the Non Member Data packet fields.

REPLY: The data of the reply. (Optional).

116

Appendix B

Complete State Tables

This appendix contains the complete state tables for RMP Normal Operation, Multi-

RFC Extensions, Membership Change Extensions, and Reformation Extensions. First

the event types are presented in Table B.I. Each RMP operation state, normal and

extended, is presented individually and its events shown. The Reformation Extension

states are duplicated here for consistency.

117

Event Description

Data
ACK
NACK
Confirm
Non-Member Data
Non-Member ACK
New List
List Change Request
Recovery Start
Recovery Vote
Recovery ACK
New List
Recovery Abort
Transmission Failure

Token Pass Alarm
Confirm Token
Pass Alarm
Check Non-Members
Alarm
Random Timeout
Alarm
Mandatory Leave
Alarm
Commit New List
Join Request

Reception of a Data Packet
Reception of an ACK Packet
Reception of a NACK Packet
Reception of a Confirm Packet
Reception of a Non-Member Data Packet
Reception of a Non-Member ACK Packet
Reception of a New List Packet
Reception of a List Change Request Packet
Reception of a Recovery Start Packet
Reception of a Recovery Vote Packet
Reception of a Recovery ACK New List Packet

Reception of a Recovery Abort Packet
A Packet requiring positive acknowledgement
has been retransmitted X number of times without
receiving that positive acknowledgement
Expired Timer for mandatory Token Pass
Expired Timer for Confirm notification

Expired Timer for flushing Non Token Ring
Mmebers from Membership List (local change)
Expired Random Timeout Timer

Expired Mandatory leave timer

A New List Packet is committed
Application requests to join a Token Ring

Table B.I: Event Descriptions

118

Event

Data

Data

Non-Member
Data

Non-Member
Data

Non-Member
Data
List Change
Request
List Change
Request
ACK

New List

NACK

Transmission
Failure
Recovery Start

Token Pass
Alarm
Confirm Token
Pass Alarm
Check Non
Members Alarm

Conditions(s)

Token Passed

Token not Passed

Sequence Number >
Expected from source
Token Passed
Sequence Number >
Expected from source
Token not Passed
Sequence Number <
Delivered from source
Token Passed

Token not Passed

Site named Token Site

Site named Token Site

(none)

(none)

(none)

(none)

(none)

(none)

Next State

Passing Token

Token Site

Passing Token

Token Site

Token Site

Passing Token

Token Site

Token Site

Token Site

Token Site

Start Recovery

Sent Vote

Passing Token

Token Site

Token Site)

Action(s)

place Packet in DataQ
Pass-Token
place Packet in DataQ
Pass-Token
place Packet in DataQ
Pass-Token

place Packet in DataQ
Pass-Token

Unicast Non-Member
ACK to source
place Packet in DataQ
Pass-Token
place Packet in DataQ
Pass-Token
Unicast Confirm
to Packet source
Unicast Confirm
to Packet source
Send any packets that
were requested and present
Send Recovery Start
Packet
Unicast Recovery Vote
Packet to Reformation Site
Generate Null ACK
Send ACK Packet
Unicast Confirm
to last Token Site
Remove all "Clients"
that have "timed out"

Table B.2: Token Site State

119

I Event Conditions(s) | Next State Action(s)

Data

Non-Member
Data
List Change
Request
ACK

New List

Confirm

NACK

Transmission
Failure
Recoveiy Stait

Check Non
Members Alarm

(none)

(none)

(none)

ACK Timestamp >
Last Token Pass
Timestamp
New List Timestamp >
Last Token Pass
Timestamp
Timestamp >
Last Token Pass
Timestamp
(none)

(none)

(none)

(none)

Passing Token

Passing Token

Passing Token

Not Token Site

Not Token Site

Not Token Site

Passing Token

Start Recovery

Sent Vote

Passing Token

place Packet in DataQ
Update-OrderingQ
place Packet in DataQ
Update-OrderingQ
place Packet in DataQ
Update-OrderingQ
Pass ACK to
Next State

Pass New List
to Next State

(none)

Send any packets that
were requested and present
Send Recovery Start
Packet
Unicast Recovery Vote
Packet to Reformation Site
Remove all "Clients"
that have "timed out"

Table B.3: Passing Token State

120

Event

Data

Non-Member
Data
List Change
Request
New List

New List

New List

ACK

ACK

ACK

NACK

Transmission
Failure
Recovery Start

Check Non
Members Alarm
Commit New
List

Conditions(s)

(none)

(none)

(none)

Site not named
Token Site
Site named Token Site
OrderingQ consistent
Site named Token Site
OrderingQ not consistent
Site not named
Token Site
Site named Token Site
OrderingQ consistent
Site named Token Site
OrderingQ not consistent
(none)

(none)

(none)

(none)

New List does not
contain site

Next State

Not Token Site

Not Token Site

Not Token Site

Not Token Site

Token Site

Getting
Packets
Not Token Site

Token Site

Getting
Packets
Not Token Site

Start Recovery

Sent Vote

Not Token Site

Leaving Ring

Action(a)

place Packet in DataQ
Update-OrderingQ
place Packet in DataQ
Update-OrderingQ
place Packet in DataQ
Update-OrderingQ
Add-New-List
Update-OrderingQ
Add-New-List
Update-OrderingQ
Add-New-List
Update-OrderingQ
Add-ACK
Update-OrderingQ
Add-ACK
Update-OrderingQ
Add-ACK
Update-OrderingQ
Send any packets that
were requested and present
Send Recovery Start
Packet
Unicast Recovery Vote
Packet to Reformation Site
Remove all "Clients"
that have "timed out"
(none)

Table B.4: Not Token Site State

121

Event

Data

Data

Non-Member
Data
Non-Member
Data
New List

New List

ACK

ACK

NACK

Transmission
Failure
Recovery Start

Check Non
Members Alarm

Conditiom(s) \ Next State

OrderingQ consistent

OrderingQ not consistent

OrderingQ consistent

OrderingQ not consistent

OrderingQ consistent

OrderingQ not consistent

OrderingQ consistent

OrderingQ not consistent

(none)

(none)

(none)

(none)

Token Site

Getting Packets

Token Site

Getting Packets

Token Site

Getting Packets

Token Site

Getting Packets

Getting Packets

Start Recovery

Sent Vote

Getting Packets

Action(s)

place Packet in DataQ
Update-OrderingQ
place Packet in DataQ
Update-OrderingQ
place Packet in DataQ
Update-OrderingQ
place Packet in DataQ
Update-OrderingQ
Add-New-List
Update-OrderingQ
Add-New-List
Update-OrderingQ
Add-ACK
Update-OrderingQ
Add-ACK
Update-OrderingQ
Send any packets that
were requested and present
Send Recovery Start
Packet
Unicast Recovery Vote
Packet to Reformation Site
Remove all "Clients"
that have "timed out"

Table B.5: Getting Packets State

Event

Join Request

Non-Member ACK

Non-Member ACK

Condition3(s)

(none)

ACK does not
hold a reply
ACK does hold
reply

Next State
Joining Ring

Not In Ring

Not In Ring

Action(a)

Send a List Change Request
to join Token Ring
(none)

Delivery reply to
application

Table B.6: Not In Ring State

Event

New List

Transmission
Failure

Conditiona(s)

Site is named Token Site

(none)

Next State

Token Site

Token Site

Action(a)

Add-New-List
Update-OrderingQ
Commit New List Packet
Form own Token Ring

Table B.7: Joining Ring State

122

Event Conditions(s) | Next State \ Action(s)

New List

New List

ACK

ACK

NACK

Mandatory
Leave Alarm

Timestamp > New
List that removed site
+N
Timestamp < New
List that removed site
+N
Timestamp > New
List that removed site
+N
Timestamp < New
List that removed site
+N
(none)

(none)

Not In Ring

Leaving Ring

Not In Ring

Leaving Ring

Leaving Ring

Not In Ring

(none)

(none)

(none)

(none)

Send any packets that
were requested and present
(none)

Table B.8: Leaving Rang State

123

Event

Data

Non-Member
Data

ACK

ACK

New List

New List

Transmission
Failure
Recovery Vote

Recovery Vote

Recovery Vote

Recovery Vote

Recovery
Abort
Recovery Start

Condition(s)

(none)

(none)

Timestamp < SynchTSP

Timestamp > SynchTSP

Timestamp < SynchTSP

Timestamp > SynchTSP

Packet type was Rec. Start

Veriosn is incorrect

Source in old List
Vote MaxTSP > SynchTSP
Source in old List
Vote MaxTSP < SynchTSP
Source in old List
OrderingQ consistent
Have Vote for each site
Vote MaxTSPs = SynchTSP
(none)

Source is not Reform Site

Next State

Start
Recovery

Start
Recovery

Start
Recovery

Start
Recovery

Start
Recovery

Start
Recovery

Created
New List
Abort
Recovery
Start
Recovery
Start
Recovery
Created
New List

Abort
Recovery
Abort
Recovery

Action(s)

place Packet in DataQ
Update-OrderingQ
Update SynchTSP
place Packet in DataQ
Update-OrderingQ
Update SynchTSP
Add-ACK
Update-OrderingQ
Update SynchTSP
Add-ACK
Update-OrderingQ
Update SynchTSP
to Packet Timestamp
Add-New-List
Update-OrderingQ
Update SynchTSP
Add-New-List
Update-OrderingQ
Update SynchTSP
to Packet Timestamp
Create New List
Send New List
Send Recovery Abort

Update SynchTSP
to Vote MaxTSP
Update Site Vote

Create New List
Send New List

(none)

Send Recovery Abort

Table B.9: Start Recovery State

124

Event

Recovery ACK
New List
Recovery ACK
New List

Recovery ACK
New List

Transmission
Failure
Recovery Abort

Recovery Start

Condition(s)

Missing ACKs from
1 or more Sites
Have ACKs from
All Sites
List is valid
Have ACKs from
All Sites
List is invalid
Packet was New List

(none)

Source is not Reform Site

Next State

Created
New List
Passing
Token

Not In
Ring

Abort
Recovery
Abort
Recovery
Abort
Recovery

Action(i)

Mark Source as
ACK sent
Add-New-List
Commit New List
Send Null ACK
Add-New-List
Commit New List

Send Recovery Abort

(none)

Send Recovery Abort

Table B.10: Created New List State

| Event

Recovery Start

New List

New List

New List

Data

Non-Member
Data

ACK

ACK

New List
New List
Transmission
Failure
Recovery Abort

Condition(s)

Source is Reform Site

Source is Reform Site
Timestamp = SynchTSP + 1
Version is correct
Source is Reform Site
Timestamp = SynchTSP + 1
Version is correct
List is invalid
Verison is incorrect

(none)

(none)

Timestamp < SynchTSP

Timestamp > SynchTSP

Timestamp < SynchTSP
Timestamp > SynchTSP
Packet was Recovery
Vote
(none)

Next State

Sent Vote

ACK New
List

Not In
Ring

Abort
Recovery
Sent Vote

Sent Vote

Sent Vote

Sent Vote

Sent Vote
Sent Vote
Abort
Recovery
Abort
Recovery

Action(s)

Unicast Recovery Vote
to Reform Site
Unicast Recovery ACK
New List to Reform
Site
Unicast Recovery ACK
New List to Reform
Site

Send Recovery Abort'

place Packet in DataQ
Update-OrderingQ
Update Recovery Vote
place Packet in DataQ
Update-OrderingQ
Update Recovery Vote
Add-ACK
Update-OrderingQ
Update Recovery Vote
Add-ACK
Update-OrderingQ
Update Recovery Vote
Update Recovery Vote
Update Recovery Vote
Send Recovery Abort

(none)

Table B.ll: Sent Vote State

125

Event Conditionfs) | Next State \ Action(s)

New List

New List

ACK

ACK

ACK

Recovery Abort

Source is Reform Site
Version is correct

Version is incorrect

Source is Reform Site
Site is not named Token Site

Source is Reform Site
Site is named Token Site
OrderingQ consistent

Source is Reform Site
Site is named Token Site
OrderingQ not consistent

(none)

ACK
New List

Abort
Recovery
Not Token
Site

Token Site

Getting
Packets

Abort
Recovery

Unicast Recovery ACK
New List to Reform
Site
Send Recovery Abort

Add-New-List
Commit New List
Add-ACK
Update-OrderingQ
Add-New-List
Commit New List
Add-ACK
Update-OrderingQ
Add-New-List
Commit New List
Add-ACK
Update-OrderingQ
(none)

Table B.12: ACK New List State

Event
Random Timeout
Alarm
Recovery Start

Recovery Start

Recovery Vote

New List

Recovery ACK
New List

Condition(s)

(none)

Version is correct

Version is incorrect

Version is incorrect

Version is incorrect

Version is incorrect

Next State

Start
Recovery
Sent Vote

Abort
Recovery
Abort
Recovery
Abort
Recovery
Abort
Recovery

Action(s)

Send Recovery Start

Unicast Recovery Vote
to Reformation Site
Send Recovery Abort

Send Recovery Abort

Send Recovery Abort

Send Recovery Abort

Table B.13: Abort Recovery State

126

Abstract

This document describes the Reliable Multicast Protocol (RMP) design, first imple-

mentation, and formal verification. RMP provides a totally ordered, reliable, atomic

multicast service on top of an unreliable multicast datagram service. RMP is fully

and symmetrically distributed so that no site bears an undue portion of the commu-

nications load. RMP provides a wide range of guarantees, from unreliable delivery to

totally ordered delivery, to K-resilient, majority resilient, and totally resilient atomic

delivery. These guarantees are selectable on a per message basis. RMP provides many

communication options, including virtual synchrony, a publisher/subscriber model of

message delivery, a client/server model of delivery, mutually exclusive handlers for

messages, and mutually exclusive locks.

It has been commonly believed that total ordering of messages can only be achieved

at great performance expense. RMP discounts this. The first implementation of RMP

has been shown to provide high throughput performance on Local Area Networks

(LAN). For two or more destinations a single LAN, RMP provides higher throughput

than any other protocol that does not use multicast or broadcast technology.

The design, implementation, and verification activities of RMP have occurred con-

currently. This has allowed the verification to maintain a high fidelity between design

model, implementation model, and the verification model. The restrictions of imple-

mentation have influenced the design earlier than in normal sequential approaches.

The protocol as a whole has matured smoother by the inclusion of several different

127

perspectives into the product development.

128

Curriculum Vitae

Todd Montgomery was born on in In June

of 1988, he graduated from Hampshire High School, Hampshire County, West Virginia.

Todd received a Bachelors of Science in Electrical Engineering and a Bachelors of

Scienece in Computer Engineering from West Virginia University in December of 1992.

During his undergraduate studies, he was employed at the West Virginia University

Student Union, the MountainLair, as an audio/visual technician and at the Concurrent

Engineering Research Center as a Bulletin Board System administrator.

After graduation he entered the graduate program at West Virginia University in

the Spring of 1993, where he studied software engineering, integrated circuit testing,

advanced logic design, and programming technigues. In May of 1993, he accepted a

research assistant position with NASA Grant NAG 5-2129 at West Virginia University.

During this employment, he developed and honed skills related to software engineering

and the software life-cycle, as well as, developing skills related to verification and val-

idation of systems. In May of 1994, Todd accepted a position as a research assistant

with NASA Cooperative Research Agreement NCCW-0040 at West Virginia Univer-

sity, where he continued to research software engineering, verification and validation

technigues, and network protocols.

Mr. Montgomery's major career interests include: software engineering, verifica-

tion and validation technigues, network protocols, and distributed application develop-

ment. Upon completion of his Masters of Science in Electrical Engineering, the author

129

entered the graduate program at West Virginia University as a Ph.D. candidate for

the Computer Science Department.

130

Approval of Examining Committee

Date

John R. Callahan, Ph.D.

Powsiri Klinkhachorn, Ph.D.

Afzel Noore, Ph.D., Chair

131

304367-8348 Q FAX 304 367-8211 Q .100 University Drive Q Fairmont WV 26554
. • • Equal Opportunity/Affirmative Action Institution^

