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PROGRESSIVE WAVE EXPANSIONS AND OPEN
BOUNDARY PROBLEMS

T HAGSTROM® AND S 1 HARIHARAN?

Abstract. In this paper we construct progressive wave expansions and asymptotic
boundary conditions for wave-hke equations in extenor domains, including applhications
to electromagnetics, compressible flows and aero-acoustics The development of the con-
ditions will be discussed 1n two parts The first part will include denvations of asymptotic
conditions based on the well-known progressive wave expansions for the two-dimensional
wave equations A key feature in the denvations 1s that the resulting family of bound-
ary conditions 1nvolve a single denvative in the direction normal to the open boundary
These conditions are easy to implement and an application 1n electromagnetics wall be
presented The second part of the paper will discuss the theory for hyperbohc systems
in two dimensions Here, the focus will be to obtain the expansions in a general way and
to use them to derive a class of boundary conditions that involve only time denvatives
or time and tangential denvatives Maxwell‘s equations and the compressible Euler
equations are used as examples Simulations with the hneanzed Euler equations are
presented to validate the theory

Key words. Progressive wave expansions, boundary conditions, Maxwell’s Equa-
tions, Euler Equations, Numencal Simulations

AMS(MOS) subject classifications. 65M99, 35B40

1. Introduction. Exterior problems are commonly posed for wave-
like equations, and their numencal solution leads to the problem of open
boundary conditions. We discuss both isotropic and nonisotropic cases as
they arise in electromagnetics and fluud dynamics. These equations in-
clude first order hyperbolic systems such as Maxwell’s equations, the Euler
equations of compressible flows, or the linearized Euler equations, as well
as second order reduced forms as appropriate Many work studies of this
problem have appeared in the recent literature and we won’t try to hst them
all There are fundamentally two different, though related, approaches that
have usually been taken One is the use of high frequency asymptotics such
as the geometrical optics approxamation. The other is based on the far field
structure of the solution. (For a third approach based on the direct ap-
proximation of the exact condition, see [5].) Progressive wave expansions
were used as a tool to construct far field boundary conditions as early as
the time of Sommerfeld In the modern computational point of view, they
were put in use for the first time by Kriegsmann and Morawetz [8] Since
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PROGRESSIVE WAVE EXPANSIONS 2

then there have been many variations to this approach. For example, ex-
tensions to anisotropic propagation were first attempted by Bayliss and
Turkel [2], and a generalization to the case of anisotropic wave equations in
two and three dimensions was proved by the authors [7] Issues include the
construction of the expansion for general systems, their use to construct
stable boundary conditions of minimum order, and, finally, their practi-
cal implementation. Higher order conditions no matter which approach is
used, are typically more complicated than the partial differential equation
one starts with In particular, they tend to have higher order derivatives in
the direction of the propagation. To avoid this problem, often the partial
differential equation itself is used. Such a procedure is not known 1n general
for problems governed by first order hyperbolic systems. Here we provide a
systematic way of dealing with this issue using progressive wave expansions.
Our attention focuses on first order systems, namely, Maxwell’s equations
and the hinearized Euler equations To motivate the central ideas, we first
consider the second order wave equation with the emphasis on progressive
wave solutions.

2. Second order wave equation. As mentioned above, the goal
here is to treat the problem of boundary conditions without having higher
order normal denvatives. To illustrate the underlying procedure, let us
consider the problem governed by the wave equation 1n two dimensions.
We wish to construct the progressive wave solutions to this equation and
exploit their structure to prescibe asymptotic boundary conditions. The
equation written in cylindrical coordinates takes the form

1
(2.1) Ut = Upr + Fur + TZU0e
We look for solutions that are periodic in the angular direction as follows
(2.2) u(r,0,t) = Z vn(7,t)an(6)
n=0
where a,(0) = An cosné + B, sinnd. Substituting (2.2) in (2.1), we obtain

1 n?
(2‘3) Un,tt = Un,rr + ;vn,r - T—Z’Un

Following Friedlander [4], we construct solutions of (2.3) in the form

0.9 )= 3 )
7=0

Substitution of (2.4) in (2 3) results in the following recurrence relations

(+3)°-n’

(2'5) ?—:—1 (t - T) =- 2(] + 1)

E-r)
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The goal 1s to examine the effect of the recurrence relations on constructions
of asymptotic boundary conditions. First, we observe that substitution of
(2.4) in (2.2) yrelds the following formal representation of the solution

(2.6) u(r,0,1) = E w®3 f’,(f+z

3=0

Manipulations of this series, particularly increasing the order of the decay
rate for boundary conditions, have been proposed by many authors (e.g.
Bayhss and Turkel [1]). In fact, a different form of (2 6) has been used for
these constructions, which will not be discussed here. We define a “basic
boundary operator” from (2.6) as follows:

8 4 1
(2.7 B_E+5+2—1‘

It is immediately venified from (2 6) that

(2.8) Z (9)2 J f

n=0 =1

Direct approximation of (2 8) is the radiation condition Bu = 0, a pop-
ular condition 1n the literature noted by many researchers (e g. Baylss
and Turkel [1], Engquist and Majda [3}). Asymptotic accuracy of such
a condition 1s 0(r~5/2), which is evident from (2.8). Higher order condi-
tions in general require higher order normal derivatives or denvatives in
the dominant direction of propagation This may not be a desirable fea-
ture numerically, particularly for nonlinear generalizations. Here we obtain
higher order conditions that involve Bu, u, ugg, and their time derivatives
on the artificial boundary. We begin with the construction of higher order
conditions by differentiating (2 8). Thus yields:

(2.9) %Bu:—z ,.(o)z’fJ (t ")

n=0 =0

Noting that the inner summation may be written in the form

i G+ frat-1)
=0 ri+d

and using the recurrence relation (2 5) yelds:

RO SR Bt

n=0 =0
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A simple mampulation of the nght hand side yields:

i} 1 1 &u 20 +1)
(210) b—tBu— éﬁu - 2?% == Z ( )Z J+§- fJ
The highlight here 1s the observation
t—
(2.11) u”_-Zna,,o)Zf’(
n=0 =0

Note that the asymptotic a.ccura.c_,y of the candidate boundary condition
(2 10) is increased further to 0(r~%) Let

_ 0 u )
(2.12) Bl'u, = Et—Bu - 8? - T2

Then (2 10) becomes

(2.13) Biu= lz an(6) E CRDALIVN

riti
n=0 7=0

This form again suggests the use of the recurrence relations (2 5) by differ-
entiating the equation with respect to time Doing so, we obtain

(214) Blu 2 2 9)2 (G+2)[(+3)?-n% .

1=0 T’+%
which 1s equivalent to
d 1 1 G +3)?-n? .
(2.18)5 Bru+ gz u+ o 3‘uao == n_oan(O); I

We note that —n? translates into the second tangential derivative
Defining

d 1
(216) Bau = 53111.-*- 8 FU 'u,gg

1t 15 clear that equation (2.15) yields a one asymptotic order higher bound-
ary condition (to O(r~%)). Moreover, noting

(2.17) Bau = —— Z (9)2 G+ Dl +3)" - ] i

riti

n_o 1=0

and applying the tume derivative again, the process becomes clear and 1t
yields

o2p. 2 13
2T 1280 T 16r% 0T &r

(218) Bsu.= 5

1
710608 = 0( )
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Remark 1: As far as numerical implementation of these conditions are
concerned, one may consider a sequence of operations to update u at the
current time:

1
(219) Ut U+ U =2
(2.20) z4 — = =3t + 1 —Ugs =V
1
(2.21) + 8?11, + W'uoa =w

25 13 1

(2.22) we — W'It - mj’u 9 — 8r 1

S—susese =0

The above sequence of equations (which provides a boundary condition
asymptotically accurate to O(r~*%)) as a system of first order equations to
march in time. (At the time this article was written one of the students
of the second author has implemented such a procedure and obtained the
indicated asymptotic improvement. The details will appear elsewhere).
Remark 2: The procedure above coincides with the high frequency ap-
proximations of the exact condition in the radially symmetric case In the
Laplace transform domain, the exact operator has the form (see [6])

1srKp(s7)

(2.23) Bou=- - Kol(sr)

Where Ko(z) 1s the modified Bessel function of order 0. Moreover we find
as sT — 00

1 1 1

1
(224) B,u= ;(sr +35- 8( Y

+0((s7)™%)

The Laplace transform of the derived operators coincides with the large sr
approximations of the exact boundary operator B, We can, then, interpret
the expansions both as a long-range and as a high-frequency approximation.

We also note that the Fourier transform of the operator B,u coincides
with the second order operator proposed by Kriegsmann et al. [9] in con-
junction with on surface radiation conditions. As an example we consider
the computation of the surface current calculation in electromagnetic scat-
tering. Let I' be the boundary of a perfect conductor Then the magmtude
of the total current is given by the formula (see [9])

o
(2 25) J= |%%(u, + Usne)|r
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where u, is the scattered field, and %, 1s the known incident field For
perfect conductors 4y, = —t,n, on the boundary of the scatterer I' The
principle of the on surface boundary procedure consists of bringing the far
field boundary exactly on the interface of the scatterer The advantage 1s
rather clear. Since the total current is a functional of the normal derivative
of the scattered field and the radiation boundary operators on the surface
directly express the normal derivatives in terms of the incident field We
note that in the formula for the surface current & is the wave number which
arose from the Fourier transform of the wave equation We list the Fourier
transform of the operators derived 1n our theory They are:

Condition 1

1
(2 26) —zku+u,.+$u—0,

Condition 2.

1 1 1
(227) —th(=thu+ur + o-u) = o5 + U,
Condition 3.
1 1 1 1 1
2(_ — —_ - U U - w =
(2.28)-2k)*(—2ku + u, + 2Tu) zlfc(&_2 + 57 06) 83 53 U08

The first two operators are used m [9], and the third one 1s, so far as we
know, new A plane wave incident upon a umt cylinder i1s considered for
the calculation of J and results are shown in Figures 2.1 (k = 5) and 2 2
(k = 2) respectively. The incident field has the speafic form 4, = gtkreost

Remark 3.: For anisotropic equations, such as convective wave equation,
an analogous procedure may be derived. The use of the resulting conditions
are more pertinent to systems of equations such as the hneanzed Euler
equation This is discussed 1n section 4.
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3. First order hyperbolic systems - Isotropic case. Here our
focus is to extend the ideas to systems of first order equations The pro-
gressive wave expansions may be carried out directly in the time domain
as we did for the second order wave equations or in the Laplace trans-
form domain. In this section we present the construction using the Laplace
transform. The direct approach is illustrated in Section 4.

Maxwell’s equations offer an interesting example of an 1sotropic sys-
tem Here we confine our attention to Transverse Magnetic (TM) fields for
simplicity. The full field equations are:

(31) dweE = dwpH = 0,
OE
. lH = e—
(3.2) cur 5
6H
(33) c'u,rl E = - E
We shall consider TM fields as follows:
(34) E = E(z,y,t) k
(3 5) H = Hl(may’t) i+ Hz(Z,yat) J-

Equation (3.4) indicates that the electric field propagates in the direction
perpendicular to the z — y plane and 1s transverse to the magnetic field
Under these assumptions, equations (3.2) and (3.3) become

oH, oH, _ 0B

and
OE., OE, _ O0H,, OH,,
(3.7) R T "( 3t ‘+71)

respectively Rearranging equations (3 6) and (3 7), we obtain the following
system

o _i[om _om

ot €| Oz Oy
oH, __10E
ot u Oy
0H,
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Thuis can be put 1n the conventional form:

(3.8) w=Au+Bu,

)

where

O Oa=

and where u = (E, H;, H2)T Converting to polar coordinates we obtain.

E 0 —Llsing Llcosd E
9 H, —lgng 0 ‘0 9 H,
ot 1# or
H, m cos@ 0 0 H,
0 —lcos6 —-1lsmg 3 E
(3.9) + -2 cosé 0 0 % H,
—‘1—‘sin0 0 0 H,

We take the Laplace transform of (3.9). With the change of vanable 7 = rs
we have

(3.10) H |=(R&+165)| &
A, a,

where

q =

and

We seek an expansion of solutions of (3 10) 1n the form

E e—9(0)

(3.11) B |=——> (a+ib+-- )

- 7
H,
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We note that this form is similar to Friedlander’s form that apples to
the second order wave equation 1n the Laplace transform domain Also, we
have introduced a decay rate constant a which turns out in two dimensions
to equal 1, as expected Substituting (3.11) mto (3.10) yields to leading
order:

(312) A=I+gR+4©
and
(313) Aa=0

For this requirement to be true, clearly 1t must follow that-

1 —L(gsmb+g'cosf) 1(gcosd— g'sinb)
0 = det(A) = det —,1-;(9 s 6 + g’ cos6) 1 0
+(gcosd — ¢'sin ) 0 1

=(1- i((gsmO + ¢’ c0s8)? + (gcosf — ¢’ s1n6)?))

1
3.14 =1-—(g*+(g')?
(3.14) S+ ))
The roots of equation (3.14) are:
g = x/eu, \Jépcos(6 + ¢),

¢ arbitrary. For waves propagating to infinity in all directions we choose
g = /€ as the allowoable root With this value of g, the matrix A becomes

1 - \/g sin @ \/g cos@
A= | —/ssin? 1 0
\/—ﬁ_ cosd 0 1
whose right nullvector 1s
1

a= \/ESino a1(0)

—\/E cos@
with left nullvector

17 = (1,\/Esin0,—\/zcos0)
€ €
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The next order terms in the asymptotic expansion yield the following rela-
tion:

(3 15) Ab = —aRa+ eg—;,

and a is determined by-

17e%
(3.16) = T Ra’

1e., by requring (1,Ab) =0
Noting the following calculations:

1

7
Ra = a,(0) —-};sme ,
1
4 cos®
1 0

7] (7] £ £
6—; - F‘;l —\/\/:ES:I;:O ta {%COSO ’

0 1
da 8a1 1 vep
9% =% ( s ) +( 0 )

u sin @

-2 da -1
Tp, 4 T2 _ —1
1 Ra_a1(0)(‘/€_p‘), 1 an a;(ﬁ)(wm),
it follows that
a=1
2

Choose

0
b=1}| b |,
bs

and use the last two equations to obtain

1 . 1 60,1
b = (ﬂ sin #)a, — ;(:08030_’
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by = (—icosO)al 1 smoaﬂ

o0
Substituting a and b 1n (3.11) we obtain

. e TVEe 0E e VP §g,
E=—g—a, >=—g7——7
o0 7+ 00

Multiplying through by s and taking the inverse transform finally yields

OH; _ € 0 smé cosf 3
(317) w—(\/gs1n06t+ S~ o )

O0H; _ cos0 s 8
(318) 5 = —(\/——COSO = —+ p= 60)E

As only one boundary condition is required, we convert these into a
single condition Multiplying (3.17) sin @ and subtracting (3.18) multiphed
by cos8, we obtain our final form-

OH oH OH, e 0F 1
. - 00—, |—— = —
(3.19) 5 S n 6 57 CO8 T
This construction is easily extended to higher order, though we have
not devised a unified approach to the implementation of the higher order
conditons.

4. The linearized Euler equations - An anisotropic example.
The construction of asymptotic boundary conditions for the linearized and
nonhnear compressible Euler equations is also of interest, particularly for
applications 1n aeroacoustics. In this section, we construct the expansions
in the time domain directly. Again, the system takes the form:

(4.1) wu=Au+Bu,

where A and B are constant matrices In cyhndrical coordinates we have

1
(4.2) w=Ru + ;T ug,
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where
(4.3) R =Acos0+ Bsin#,
(4.4) T =—Asm6b+ Bcosé

A far field asymptotic expansion may be constructed in the following form
for the solution vector u:

falt=rg(0))
(4.5) ,§ —1

where the scalar function g(#) and the vectors a,(8) are to be determined
The function fy is analogous to the radiation function discussed 1n [4] The
other functions are recursively determined by substitution of the expansion

into equation (4.2). The O(2) terms yield:
(4.6) Cag =0,

where C = I+ g(#)R + ¢’(6)T For ap to be nontrivial one must have
det(C) = 0, yielding an ’eikonal function’ g(#). The next order correction
yields
@.7) foCay = —f! 1Rag + T2

‘ v T T a0
This 1mposes a necessary restriction that fo = f{ In general, 1t follows
fa-1 = fl,mn > 1. At this pomnt, we turn to the isentropic, lineanzed,
compressible, Euler equations to i1llustrate the actual calculations involved
in solving these algebraic problems For a uniform base flow in the z
direction they are-

v
(4.8) (6t+M6 )p+gu a—o
a 2]
(49 (§+Ma_z)"+%=0’
(4 10) (g + M+ Z =0

Conversion of this system to cyhndrical coordinates (4 8)-(4.10) takes the

form (4 2) where
pr
u=| u |,
v
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Mcosf® cos@ sin @
R= cos Mcost 0 ,

sin @ 0 M cosf

—Msmn@ —siné cos8
T= —smf —-Msmé 0
cosé@ 0 —Msing
Calculation of g(8) for these equations yield.

1
Vl—Mzsin20+Mc050’

(4.11) 9(8) =

and the matrix C has the form
1-MQ -Q -R
C= -Q 1-MQ 0 ,
-R 0 1-MQ
where

Q =gcosb - ¢g'sind,

R=gsmnb+g cosb

Solutions of (4.6) are given by

1 1
ag = ho(6) ( 'ITZULQ ) =ho(9)(rz ),
—MQ T3

and the solutions of (4 7) are given by:

1 0 0
(4.12) a; = hi(0) ( T2 ) + ho(8) ( b2 ) + hy(6) ( c2 )
3 bs c3

Here ho(8) and hy(8) are arbitrary functions of 6 and the coefficients b, and
¢, are given by

ln..

-

_ (cos@ + Mrzcos0)/2+ Mrysiné

bz T-MQ

sinf + Mr3cos + Mr; s1n
_(sm0+ M 0)/2+ Mrisin 8

b3 l—MQ ’
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sinf + Mrysmé
g = —m
2 1— MQ ’

—~cosf + Mrzsinf
1-MQ )

C3 =

Collection of these results in the asymptotic expansions yields (to O(r~5/2)):
hofo , ki

(4.13) = 1‘1/2 T_3/2—7

hof1

7372

hofl

(4.14) u=Top+ — —372C

=0+ =5

ho h
(4.15) v = T3p+ 3/f21 b3 -|- g}le C3

Differentiating u and v with respect to ¢ and using the result fo = f]
to O(r=5/%), we have

_ r ofo
(4 16) ug =T2pt + ;bz + 3
(417) Yy =T3p: + —"‘3 + g/ff c3

Finally, noting the term involving by can be ehminated from the last two
equations, we have

(418) api+Butyv="1s,
where

Q= TaC3 — T3C2,

= —C3,
Y = Cs,

6 =bscz — baca

The higher order conditions are obtained in a ssmilar manner In fact, one
can show that the next order condition is of the form

(4.19) (ap+Bu+yv)= %6+ r%e,
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which is accurate to O(r~7/2). Note that these conditions do not involve
any spatial derivatives As such they are 1deal for rectangular domains
where typtcally one has to pay special attention to the corners, particularly
when high order numerical schemes are used These conditions correspond
to the primary acoustic boundary condition. In addition, one must impose
at inflow boundaries, a vorticity condition For nomisentropic flows,
addition to the vorticaity, entropy must also be specified at inflow At
inflow the y momentum equation and zero vorticity condition yield an
exact relation

(4 20) ve+ (p+ Mu), =0.

5. A Model Problem. In this section we begin with the linearized
Euler equations with mean velocity convection. The scaled form of these
equations are i1dentical to the one that we used to derive the conditions,
except they contain forcing terms that characterize a dniving source They
are.

a a ou O

(51) (§+Ma_z)p+—6;+5§=0’
8 o

(52) (& + Ma)u-}- % = gl(z’ y’t)’
o 0

(5'3) (§+M'a_z)v+ % =gz(:l:,y,t),

where g1 and g2 model a Gaussian momentum source, which both oscillates
sinusoidally and decays algebraically in time. Typical examples include,
a quadrupole sound distribution. Here g; and g; are the gradient of a
potential ¢ Such a function is given by

¢ = A(t)e~"F cos(26)

where tanf = L=, R = /(z - 20)? + (¥ — %0)?, (Z0,%0) is the location
of the source, a 1s a positive constant, and A(t) is the amplitude and a
function of £. (In the numerical experiments A = sin 27t/(1 + t2) )

In a sample computation which was computed for a time length of
100 periods (22415 time steps), the solution obtained with the second or-
der conditions was compared with the exact solution, a solution obtained
by setting incoming characteristic variables to zero, and one obtained us-
ing the first order condition. The exact solution was computed 1n a large
domain in which, within the time of computations, the waves could not
reflect off the artificial boundares and return to the small domain The
maximum error in pressure calculations observed for the charactenstic con-
ditions was 10.3%, for the first order asymptotic condition 1t was 3.3%, and
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for the second order condition the error was 1.3%; indicating the expected
iumprovement. In Figures 5.1 and 5.2, the exact solution for the pressure
1s gven after 5 periods and 10 periods of time respectively. Subsequent
pairs of figures (5 3-5.4, 5 5-5 6 and 5 7-5.8) indicate the solution at these
times for the characteristic boundary condition, the first order asymptotic
condition, and the second order asymptotic conditions respectively At 10
periods the errors are visible in the first two cases and their orders of the
magnitude indeed are as indicated above. Clearly the higher order condi-
tion improved the results
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Fig. 5.1. Ezact Solution at 5 periods of time

FiG. 5.2. Ezact Solution at 10 periods of time

18
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F1c. 5.3. Solution with characteristics based boundary condition t = § periods

F1G6. 5.4. Solution with characteristics based boundary condition t = 10 periods

19
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FiG. 5.5." Solution with first asymptotic boundary condition t = 5 periods

F1G. 5.6. Solution with first asymptotic boundary condition t = 10 periods
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F16. 5.7, Solution with second asymptotic boundary condition t = 5 periods

F16. 5.8. Solution with second asymptotic boundary condition t = 10 periods

21
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