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The formalism developed previously for the calculation of the far-wing line shape function and the
corresponding absorption coefficient using a single-component anisotropic interaction term and the
binary collision and quasistatic approximations is generalized to multicomponent anisotropic
potential functions. Explicit expressions are presented for several common cases, including the
long-range dipole-dipole plus dipole-quadrupole interaction and a linear molecule interacting with
a perturber atom. After determining the multicomponent functional representation for the interaction
between C02 and Ar from previous published data, we calculate the theoretical line shape function
and the corresponding absorption due to the i>3 band of C02 in the frequency region 2400-2580
cm"1 and compare our results with previous calculations carried out using a single-component
anisotropic interaction, and with the results obtained assuming Lorentzian line shapes. The principal
uncertainties in the present results,* possible refinements of the theoretical formalism, and the
applicability to other systems are discussed briefly.

f-

I. INTRODUCTION

During the past decade, substantial progress has been
made on the longstanding problem of the accurate calcula-
tion of the absorption of radiation by the far wings of al-
lowed spectral lines. Since the publication of a quasistatic
theory for the line shape calculated within the binary colli-
sions approximation by Rosenkranz,1'2 several authors have
extended and generalized this formalism. Boulet et a/.3 pub-
lished a line-by-line generalization of the quasistatic theory,
and Ma and Tipping, in a series papers,4'12 have improved or
eliminated many of the restrictions and assumptions that lim-
ited the accuracy and applicability of the original Rosen-
kranz theory. Although the theoretical results for the specific
cases considered (H2O-H2O, H2O-N2, H2O-CO2, and
CO2-Ar) are in substantial agreement with both laboratory
data and atmospheric measurements, some discrepancies re-
main.

All the calculations discussed above have been carried
out using only a single-component anisotropic interaction
that is responsible for the broadening. Because of the sensi-
tivity of the results to changes in the anisotropic interaction,
both the magnitude and the temperature dependence of the
line shapes and the absorption, and also because of the inap-
plicability to represent well the anisotropic potential by a
single-component anisotropic model, we present in the
present paper a generalization of the quasistatic formalism to
the multicomponent anisotropic potential. The new formal-
ism is presented in Sec. II. In Sec. HI, we discuss several
cases, including the long-range dipole-dipole plus dipole-
quadrupole interaction and a linear molecule interacting with
a perturber atom. After obtaining a representation for the
interaction between a CO2 molecule and an Ar atom, we
apply the theory in Sec. IV to the high-frequency wing of the
i»3 band of CO2; we compare the present results for the ab-

sorption coefficient in the 2400-2580 cm ' spectral regions
to those obtained from a similar theory using only a single-
component anisotropic model and to those obtained by as-
suming Lorentzian line shapes. The conclusions concerning
the present work, the principal theoretical uncertainties and
possible refinements of the formalism, and the applicability
to other systems are discussed briefly in Sec. V.

II. GENERAL FORMALISM

A. The absorption coefficient and spectral density

For a low-density gas sample, we divide it into absorber
molecules and the remaining bath molecules and we focus on
one absorber molecule only. Then, with na absorber mol-
ecules per unit volume, the absorption coefficient per unit
volume can be expressed as

-ai)]. (1)

In this expression, F((n) the spectral density is given by

) = - Re Trf " V""(
JO

(2)

where the angular brackets denote the ensemble average over
all (one absorber molecule plus bath) variables. The dipole
operator of an absorber molecule in the Heisenberg represen-
tation fi(

a
H\t) is determined by

In the above expression, H is the total Hamiltonian which
consists of the unperturbed Hamiltonian of the absorber mol-
ecule and the bath, H0

:=Ha + Hb, and the interaction Vbe-
tween them. In the last step of Eq. (3), the Liouville repre-
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sentation in which the total Liouville operator L corresponds
to the absorber molecule, the bath, and the interaction

has been introduced. In terms of the Liouville representation,
the spectral density can be written as

) = -ReTrf
IT JO

(5)

In the above expression, the superscript (H) of the Heisen-
berg representation and the zero-time argument of /t(

a
H}(0)

have been dropped. It is well known that since the isotropic
interaction does not depend on the rotational quantum num-
bers, the Liouville operator associated with it will cancel out
when it acts on the line space. Therefore, the isotropic inter-
action need not be included in L,.

We assume that

e — e ^> e ' . (6)

The limitation of this approximation has been discussed in
previous papers.7'11 Then F(u>) can be expressed as

1 1 f-
=-Imr^

IT 2lTl)-,
d<a'

xTr
<a-u'-L a \<a'-L

where

(7)

(8)

and the summation indices of the trace a and b indicate the
absorber and bath molecular variables, respectively. In the
above expression for F(o>), at least formally, the bath vari-
ables have been isolated. The resolvent operator l / (a i—Li)
is defined only in the representation constructed from its
eigenvectors. Therefore, we have to find the basis in which
Li is diagonal. In general, the anisotropic interaction consists
of several components and each of them has a specific
spherical symmetry and r dependence. This implies that the
diagonalization would have to be carried out for every r, but
this is not feasible in practice. Therefore, in previous
work1"13 an assumption has been made that only one com-
ponent of anisotropic interaction is dominant and all others
can be ignored in the calculations.

In order to overcome this fundamental drawback, a new
method is introduced in the present work in which several
components of the anisotropic interaction can be taken into
account. We assume that the Liouville operator Lt corre-
sponding to the anisotropic interaction can be expressed as
the sum of several terms with different spherical symmetries
and r dependencies

For clarity, only two terms are included explicitly in Lt in
the following expressions, although the inclusion of more
terms is straightforward. In general, L(,0) and L\ l ) represent
the leading and the next leading terms of the anisotropic
interaction, respectively. Consequently, we have

(10)

We denote by |ajflf)Ha>OS|) and G^-G.-Gj) the
eigenvectors and eigenvalues, respectively, of the Liouville
operator G in line space notation constructed from |a) and
Ga, the eigenvectors and eigenvalues of the related matrix
operator G, i.e..

(11)

Similarly, for the Liouville operator F, we have

(12)

where l y H r X ^ I ) and FyS(^Fy-Fs) are the eigenvec-
tors and eigenvalues, respectively, of the Liouville operator F
constructed from \y) and Fy, the eigenvectors and eigenval-
ues of the related matrix operator F.

We make the approximation

(13)

which is valid if the contributions from the commutator
[L\°\L\l)] are small. It is worth mentioning that the cutoff
on the overlap factor introduced later is consistent with this
approximation. Introducing both Laplace transformations of

we have' and e~'Li '

e-"-\'= i rf* f"
: dcj'l dd>" exp[-«'(o»'

2u"i/ J _oo J -oo

1 . 1_
(14)

Then, the spectral density F( en) can be expressed as
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1 / 1 \ 2 f « f-
= -- Im =—: *«'

IT 2'iri J-"> J-

XTr

1

= _j_ /J_W- d ,("
TT 2-jrijJ-,, "j-

X

(15)

Thus, we obtain an expression of F(w) in which the bath
variables have also been isolated analogous to Eq. (7).

B. The matrix elements of the resolvent Liouville
operator (1 /(o>' - LH x 1 /(at" - LJ1')) „

The resolvent operator (l/(a>'-L(
1

0))Xl/(a)"-Z.(
1

I)))ft

in Eq. (15) is an operator acting on the line space of the
absorber molecule a. Therefore, in general, it can be ex-
pressed as

1

a>'-L\0)

(16)

By explicitly writing the summation over the bath molecular
variables, its components can be written as

(17)

We note that the summation over the bath variables in line
space in Eq. (17) includes only the states liyj) because of
the assumption that the bath molecule is not involved in the
transition.

In the present work, the translational motion is not
treated quantum mechanically; rather one uses the quasistatic
approximation. The classical ensemble average over the
translational motion indicated by a subscript r is represented
by an integration over r, the separation between two inter-
acting molecules, with the statistical weight
nb^p[-Vatiso(r)/kT]exp[-V-,so(r)/kT] for a pair of mol-
ecules, where nh is the number density of the bath molecules.
Since the anisotropic potential consists of two terms, each
contributes to the total statistical weight which can be ap-
proximately expressed as a product form

(18)

In line space, the weight factors corresponding to each com-
ponent of the anisotropic interaction can be expressed as op-
erators constructed from their eigenvalues and eigenvectors

a/8

(19)

and

expC-VliL(r)/fcr] = 2 lr^t>exp[-F^2(r)/*r]{r5t|.

(20)

Therefore, the ensemble-averaged component of the resol-
vent operator {l/(co'-L(,0))x l/(a/'-L(,l)))fttr can be ap-
proximately written as

<'iy'V'-L(
1

0)X
W"-L(

1
1VfrJ

I';:t)

r2exp[-Viso(r)/*r]

(a -

where

(21)

(22)
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(a — L
iir8((u-L), (23)

In the above expression, the factors <a/3t|-ySt)(3<a|-yX<5|;3»
describe the overlap between the eigenvectors of the Liou- ^m —
ville operator G and the eigenvectors of the Liouville opera- '~*°
tor F. If G and F commutate, they have common eigenvec-
tors and <a/3t|r(5t)=<W

To obtain an expression for lm.(ij\\(\l(tD' - L(|0)) where P indicates the Cauchy principal value of the integral
X l/(o>" — I>il>))»Ji|y'it), we use the well-known formal and 8 is a Dirac function with a Liouville operator as its
identity argument, and find

b,r

=-4^2 E E (oviX'VDk/
ij/2 "ft yS

1

X ''-(?(0

'2/2

*r;*2~'| —
ai

X r = — r u \ R 2
l

amsojar-'
.

kT

. }, (24)

where R2' Cw"/Fr<5) is the positive solution of the equation (i)" — FydR2(r) = Q and flf'O'/G,^) is the positive solution of
the equation a)' -GapRl(r) = Q, respectively. In the above expression, u(r) and v(r) are denned by

,2

(25)

and

i . exp[ - Viso(r)/*r], (26)

where R'(r) = dR(r)/dr and 0(r) is the unit step function defined as follows:

6(r) = l, if r>0,

6(r) = 0, if r<0.

C. The individual line shape functions

To simplify the notation, we omit the subscript 1 of i, and j j indicating the absorber molecule. With Eqs. (15) and (24),
the spectral density can be rewritten as

''y't)(''|p(0Vai;')

2 </ -2 2 2 «^«Dl
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X P in nIFyS)\ \FrS\ 1 2 UJJeXPl aniso[ar> 2 \FyS}\ / j

af
exp -

af3,
*7 XP

(27)

By carrying out the integrations in Eq. (27) (see the Appen-
dix), we obtain

f(»)=-2 2 01^10-2 2 2 {(y'Xiyl)!^)

= - 2 2 2 2 2 (<«l»-2><'V.|y>c-«-177 ,7 {«} /2 a^ r«

P(aVm|'5)- (28)

In the last expression for F(<a), the summation indices / and
j exclude their magnetic quantum numbers since the latter
are included in the summation over the magnetic quantum
numbers indicated by {m}. If we introduce the individual
line shape function Xtj(<a~ wy) defined by

222
I2 aft yS

X < i

where the reduced matrix elements /ty is defined by

then the spectral density takes a more familiar form

FM=- 2 p^j

(30)

(31)

We can also introduce the symmetric individual line
shape functions which correspond to the replacement
°fla0-,s(u~a>ij) by their symmetric partners iapyS(a>- Wy)
(see the Appendix) in the expression for Xtj(<a~ wy)«

222
I2 aft yS

(32)

To satisfy the detailed balance requirement,14 the spectral
density must take the following form:

F(o>) = - 2

X

with

(33)

(34)

Consequently, in terms of £y(co), the total absorption coef-
(29) ficient a(<a) is given by

X ^y(«- Wy)

where 5ly is the usual line strength.15

(35)

D. The band-averaged line shape function

For practical calculation, we introduce the intensity weighted band-averaged line shape function defined by

2 P.HI2

y

2 2 («l
ar^ fS

. / ^^

/ y ''
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1

8735

aft yS

(36)

where rc is determined by

or approximately by

_ _,j <a I I _,/ a>

(37)

(38)

of
In general, for a specified pair of a and ft, the value
r,. and the weighting factor exp{- V^r,.)

-[(Ga+G0)/?i(rc)-KFy+F5)£r(rc)]/2&r} depends
on r and S. However, in practice, due to the overlap factor
<a/3T|rST>, the summations over y and 5 can be limited to
those pairs which significantly overlap with a and fi only. It
turns out that the most overlapping pair of y and S is that
whose eigenvalues F and Fs are the closest
Fas(a|F|a) and F

y s are the closest to
{^\F\/3), respectively. In fact, we

can express Fa and Fp as

aft

2
<V

(41)

More suitably, we can also introduce the positive and
negative frequency resonance-average line shape functions
^+(<o) and X-(<a) as we did previously.7 We define the inten-
sity weighted positive frequency resonance-average line
shape function by

x+M= 2 x,y(<*)p.-KI2 / 2 P.K'iMml;)!2, (42)
0»;;>0 / ij

(39a) and the intensity weighted negative frequency resonance-
average line shape function by

and *-(»)- 2 (43)

(39b)

respectively. Since they are the average values of Fy and Fs
over y and S with the overlapping weights |{or|y)|2 and
K<5|/3)|2, they are more likely close to the most heavily
weighted values. The more overlapping of (a$\y8*), the
closer is the average values and the most heavily weighted
values. Then as an approximation we can replace Fy and Fs

by Fa and Fp, and replace (af?\ytf) by 8aydpS. These re-
placements can also be made for the case of
GRi(r)>FR2(r) since the usual perturbation method is ap-
plicable. In these cases, the corresponding value of rc de-
noted by fc,

7T-II}. " (40)
'aft

and the weighting factors are independent of y and S. Then
the expression for £(o>) can be simplified by omitting the
summations over y and 8, i.e.,

Their explicit expressions are easily obtained by comparing
with the expression for ^(w), but are not presented here.
With the two average line shape functions, the absorption
coefficient can be written as

a(a)) = na 2 Sij

(44)

If one does not distinguish between these two different func-
tions, then in terms of the band-average line shape function
#(w), the absorption coefficient a(<a) is given by

1

(45)
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III. SOME EXAMPLES
'"ft

(48)As a first example, we consider a system in which the
leading anisotropic interaction is the dipoler-dipole interac-
tion and the next leading term is the dipole-quadrupole in- It is obvious that r0 is the lowest-order approximation for rc.
teraction. This implies that

1 1
K,(r) = -r and R2(r)=-r . (46)1 rj r

With the assumption G( l/r3)»-F( 1/r4), it is easy to find the
approximate values for rc in Eq. (38)

Then Eq. (A 12) can be expressed as

4ir2 1 2 / 1 ^4 /3

3 Gl
,1/3

where

1
l +3

1 \4/3

Jaftl

.1/3 (47)
l + (Fr+ Fs)lr*}l2kT}. (49)

Accordingly, we find the symmetric band-averaged line
shape function

47T2

aft

aft

4/3

4/3

P.K-I2

(50)

where F is the matrix operator and

[F,p(&)p(aVm] = Fp(ft)p(a Vm - P(* V" VmF-

In the last expression of Eq. (50), a simplified form is given by using average values. The lowest-order approximation to
takes a form corresponding to the one component case of the anisotropic interaction (the leading dipole-dipole term) consid-
ered previously7

41T2

i

"ft

(51)

As a second example, we consider a case in which the two components of the anisotropic interaction have the same r
dependence, i.e., R [(r) = R2(r) = R(r). Then Eq. (A12) can be expressed as

where

Then,

(Ga/3+FyS)R'(rc)

R'(rc)
(52)

(53)
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R(rc)

8727

Q(re) R'(rc)

R'(fc)

(54)

where

fe-J?-' (55)

These expressions are consistent with those obtained directly
from one component formalism.

Finally, we consider a system consisting of a linear ab-
sorber molecule and a perturber atom. The isotropic potential
is assumed to be a Lennard- Jones model

(56)

where e and cr are the usual parameters. In general, the an-
isotropic potential can be expressed as

-S ''/(cos 0)V,(r)
i

(57)

where #is the angle between the absorber-perturber axis and
the linear molecular axis, and Pt(cos ff) is the associated
Legendre polynomial. For a highly anisotropic system, sev-
eral components Pt(cos ff) have to be included in the expan-
sion of Eq. (57). As an example, we consider the CO2-Ar
system where only even / occur because of the symmetry of
CO2. Therefore, the anisotropic interaction takes the form

(58)+ P6(cos 6)V6(r)+

For convenience, we model Vt(r) by

2
(59)

where 5; and At are the parameters. Then the potential en-
ergy surface of the system is simply determined by e, cr, Bt ,
and A;.

Taking the absorber-perturber axis along the z direction
of a space-fixed frame, the orientation of CO2 with respect to
the space-fixed frame is represented by & and <p, and the
anisotropic potential is independent of (p. Writing
P,(cos 0)=[(4ir)/(2l+ 1)] Ylo(d,<p), it is easy to diagonize
the components P[(cos ff) in the rotational basis \lm) since
all the matrices of the components P/(cos 6) take exactly the
same block form, and each of these subblocks is labeled by
the magnetic quantum number m. Then, in the subspace la-
beled by m, one can use the notation \am), \ym), |fm),...

H^,... to represent the eigenvectors and the
the components P2(cos ff), P4(cos 8),

(60)

and Ga, Fy,
eigenvalues of
P6(cos ff), etc.,

P2(cos d) \ t

P4(cos

P6(cos

For simplifying the notation, the label m will not be written
explicitly in further expressions. Including the three compo-
nents given above, one is able to derive an expression for

) — oj,-) similar to Eq. (A12), viz.

Xexp{-Vijo(re)/*r-[(Gtt+G/|)V2(rf

where rc is determined by

.)V6(rc)]/2kT}, (61)

(62)

Then, one can write the symmetric band-averaged line shape function as

J. Cnem. Phys., Vol. 100, No. 12, 15 June 1994
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FIG. 1. The total potential energy surface (in units of Kelvin) for CO2-Ar [Eq. (70)] given by Boissoles et aL (Ref. 13). The distances are in atomic units and
the angles are in degrees.

6(rc)
"0

/? «W>
' >J

(63)

In the above expression, (af£\ytf) and (y$\£r?) are the overlap factors. As we mentioned previously, for a specified pair of
a and ft, the summations over the pair of y and 8 and over the pair of f and 77 can be limited to those which are most heavily
overlapped with the pair of a and ft only. In the case of V2(r)%> V6(r) and V4(r)> V6(r), one can simply set f=a and 77=/3
and replace rc which depends on a, ft, y, S, £, and 77 by their approximated values fc determined by

,V6(rc), . (64)

where

8)\0). (65)

This implies that fc is independent of f and 77. Consequently, the symmetric band-averaged line shape function can be
approximated by

J. Chem. Phys., Vol. 100, No. 12, 15 June 1994
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(66)

Furthennore, if V2(r)$>V4(r)> V6(r), one can set y=a and <?=/3 further and replace rc by the approximate values re

determined by the following equation:

(67)

where

Faf=(a\P4(cat ff)\a)-(0\P4(cM ff)\ft). (68)

Then, fc is independent of 7, 5, £ and 7. Consequently, the symmetric band-averaged line shape function can be simplified to

20

330 3D

320

310

300 60

2flO /

Z70

zeo 100

230 130

220 HO

210

FIG. 2. The anisotropic part of the potential energy surface (in units of Kelvin) for CO2-Ar [Eq. (70)] given by Boissoles et al. (Ref. 13). The distances are
in atomic units and the angles are in degrees.

J. Chem. Phys., Vol. 100, No. 12, 15 June 1994



8730 Q. Ma and R. H. Tipping: Far-wing line shape theory
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t.CE-02
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I.OE-Ot
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l.OE-CB

l.QE-07

I.OE-OI

(.OE«OD l.OE-01 l.tE-<E

FREQUENCY COT1 >

l.aE-03

RG. 3. The band-averaged line shape function (in units of cm"1 atm"') as
a function of frequency <o (in units of cm"1) for lines in the Ar-brbadened i*j
band of CO2 calculated for 7"= 296 K using the potential surface shown in
Fig. 1.

3 < 3 8 7 8 3 10 11 12 13 M

O.OE-00

FIG. 5. The function V0(r) (solid line) vs r obtained by fitting a Lennard-
Jones model to the data of Parker and co-workers (Ref. 17) (denoted by +).
All quantities are in atomic units.

l.OE-02

(fj I.OE-O3
o

t

I
S t-CE-04

I.OE-O5

I.QE-O7

FREQUENCY (CM"1)

FIG. 4. A comparison between the calculated absorption coefficient (in units
of cm2 molecule"1 aim"1) for r=296 K in the 2400-2580 cm"1 spectral
region of CO2-Ar with experimental data. The solid line is the theoretical
values calculated by Boissoles et al. (Ref. 13) using the potential energy
surface given by Eq. (70); the dashed curve is the results obtained assuming
Lorentzian line shapes: and the experimental results (Ref. 13) are denoted
by +.

t-OE-Otpr

-i.OE-CM

FIG. 6. The same as Fig. 5 for the function V,(r).
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1

8731

rl

(69)

IV. APPLICATION TO THE i>3 BAND OF CO2
BROADENED BY Ar

We consider the v3 band of CO2 broadened by Ar in
which both the experimental measurement of the absorption
coefficient and some knowledge of the interaction potential
between C02 and Ar are available at the present time. The
wing of the Ar-broadened v3 band of CO2 for T= 296 K has
been studied by Boissoles et a/.'3 recently using an effective
"one-component" potential determined empirically from the
spectral moments of the infrared vibration-rotation bands.
The form of the potential used in their calculations is

'2

(70)

where the parameters are eYfc=153 K, cr=3.91 A,
fi2=1.09, andA2 = 0.266.

We note that the formula used by Boissoles et al.l3 to
calculate the band-averaged line shape function is similar to
our formula obtained previously corresponding to the one-
component anisotropic potential case. However, they have

V(r.0-4« -

introduced an energetically corrected function in their for-
malism. As we discuss elsewhere,16 this correction corre-
sponds to rewriting the spectral density in a more symmetric
from

) = Re Tr fJO
(71)

Similarly, we follow the same energetically corrected proce-
dure in the present calculations, but we do not reproduce the
expressions here since they are easily obtained from the ex-
pressions given above. For the frequency of interest here
2400-2580 cm"1, we consider the contributions from the v3

band of CO2 only and exclude any contributions from other
bands. From the HITRAN data base,15 there are 109 line listed
in this band and all of them are included in the calculations.
In Figs. 1 and 2, we present the total potential energy surface
and the anisotropic potential energy surface of the CO2-Ar
system, respectively, given by Eq. (70). In Fig. 3, the theo-
retically calculated band-averaged line shape function for
7=296 K based on the potential used by Boissoles et al. is
shown. In Fig. 4, the comparison between the calculated ab-
sorption coefficient and the experimental data for 7=296 K

t.OE-Ot

O.OE-CO

84 = 0 . 70

A. - 0. 13

i i i i_ I I I I I I

10 II 12 13 11

1.06-0 gr

l.OE-OI

B, = 0 . 1 9

A. - 0 .03

I I I I I

FIG. 7. The same as Fig. 5 for the function Vt(r).
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380

330
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310 50

300 60

290 70

280

270

2EO

110

120

130

110

210 150

ISO
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RG. 9. The total potential energy surface (in units of Kelvin) for COj-Ar obtained by fitting a Lennard-Jones model to the data of Parker and co-workers
(Ref. 17). The distances are in atomic units and the angles are in degrees.

is presented. The results obtained from a Lorentzian line
shape are also given in the figure.

For the potential energy surface of the C02-Ar system,
there are some theoretical calculations done by Parker
et al.l7 In their calculations, the short range potential consists
of two terms—VHF(r, 6) to take into account the Coulomb,
kinetic, and exchange contributions to the interaction energy
and VCOR(r, d) to take into account the correlation contribu-
tion. The values of VHf(r,&) and KCOR(r,^) obtained are
tabled as the functions of distance and angle (see Tables III
and IV of Ref. 17). By fitting these results with an expansion
of the Legendre polynomials at each r.

COR

V,HF(r)P,(cos 9),

Vf°R(rWcos 8),
(72)

the values of V"F(r) and vf OR(r) at this r are obtained and
listed in Tables VII and VIII respectively, of Ref. 17. They
have further modified the values of vf°R(r) obtained to take
into account the proper van der Waals behavior at large dis-
tances. However, since the far-wing line shapes are mainly
determined by the short range behavior of the interaction

potential, we will not follow their next step and only use the
values given in these tables in our calculation.

For simplifying our calculation, analytical expressions
for V/

HF(r) and VfOR(r) instead of the tabulated values are
necessary. In addition, for later convenience, we prefer to
have them take the form of the generalized Lennard-Jones
model mentioned previously. It turns out that one is able to
fit some coefficients pretty well and to fit others only reason-
ably well by adjusting the parameters of the Lennard-Jones
model. We note that there are some uncertainties in the pa-
rameters obtained due to the difficulty of the fitting. In the
present calculation, we consider the terms up to 1 = 6 only
since the magnitudes of the higher terms are much smaller
than the lower terms. In Figs. 5-8, we plot the results of
fitting for Va(r), V2(r), V4(r), and V6(r). The potential pa-
rameters obtained are e/k = 62.0 K, 0-=4.44 A, B 2=IA4,
A2 = 0.73,fi4 = 0.70,A4 = 0.l3, B6 = 0.19, andA6 = 0.03.
In Figs. 9 and 10, the total potential energy surface and the
anisotropic potential energy surface corresponding to the po-
tential parameters given above are presented. Based on this
potential, we first calculate the energetically corrected band-
averaged line shape function for 7=296 K from Eq. (69) in
which the summations over the pair of y and S and the pair
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FIG. 10. The anisotropic part of the energy surface (in units of Kelvin) for C02-Ar obtained by fitting a Lennard-Jones model to the data of Parker and
co-workers (Ref. 17). The distances are in atomic units and the angles are in degrees.

of f and 7j have been averaged out and only the summation
over the pair of a and f3 is performed. Then we repeat the
same calculation with Eq. (66), in which only the summation
over the pair of f and rj has been averaged out and the
summation over the pair of y and <5is performed correspond-
ing to those pairs with an overlapping restriction, i.e., a cut-
off. This cutoff is necessary to be introduced in calculations.
It represents a measure of how wide the averaged angular
distribution of the CO2 wave functions with the same mag-
netic quantum number m spreads. However, in the present
study, we do not discuss it further and simply choose
|(a|y)|2ss0.01 and |<<5|/S>|2&0.01. Since the eigenvectors of
Pjicos 8) more or less likely overlap with the eigenvectors
of P4(cos 0), for a specified |or), the summation over y with
the restriction |{a|y>|2^0.01 includes at least 94% of the
states \y). We present the line shape functions obtained in

- Fig. 11 and the corresponding absorption coefficients in Fig.
12. For comparison, the results obtained with the "one-
component" model of Boissoles et al.l3 are also presented in
Fig. 12.

It is well known that the profile of the line shape func-
tion is determined by the interaction potential surface. How-

ever, the behavior of the far wing of the line shape function
is mainly governed by the short range interaction. More spe-
cifically, first of all, the anisotropic potential energy surface
determines beyond what kind of positions labeled by r and 0
for the CO2-Ar system are able to contribute to the values of
shape function at a specified w. Second, the total potential
energy surface determines how much will contribute to it
from these locations. For example, in order to estimate the
relative magnitude of the shape function around o>=200
cm"1 in comparison with that around 50 cm"', one first has
to locate the areas in the anisotropic energy surface in which
the absolute values of anisotropic energy are at least equal to
or larger than the corresponding 01 values. Then, in a graph
of the total energy surface, one has to find out whether there
are significant probabilities to locate a pair of CO2 and Ar at
these areas. Therefore, it is not the total potential energy
surface alone, but the relationship between the total and the
anisotropic interaction energy surface to determine the pro-
file of the far-wing line shape. These conclusions are easily
understood since the first one comes from a basic require-
ment of the energy conservation and the second one is re-
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FIG. 11. A comparison between the line shape functions (in units of cm" FIG. 12. A comparison between the calculated absorption coefficient (in
atm"1) for T=296 K obtained with the multicomponent anisotropic model units of cm2 molecule"1 atm"') for T=296 K in the 2400-2580 cm"
given by Eqs. (66) (solid line) and (69) (dotted line), respectively.

lated to a statistically probability to find a pair of C02 and Ar
at a specified location.

V. DISCUSSION AND CONCLUSIONS

As can been seen clearly from Figs. 3, 11, and 12 that
there are substantial differences between the single-
component and the multicomponent results for both the line
shape and the absorption coefficient. The differences be-
tween the results obtained from the two different multicom-
ponent formulations are small. The present theory can repro-
duce accurately the experimental data for the absorption of
the high-frequency wing of the v3 band of C02 broadened by
Ar. Because this spectral region lies beyond the bandhead,
most of the absorption arises from the far wings of lines.
Therefore, in the present calculations, we have not included
either the near-wing corrections" resulting from the non-
commutation of the Liouville operator describing the unper-
turbed system and that describing the interaction [cf. Eq.
(6)], or corrections arising from molecular motion.12 Of
course, for the accurate calculation of the near wing of the
lines or absorption resulting from this region (e.g., near the
bandhead or closer to the band center), these refinements
should be included.

In the present work, we have introduced a cutoff for the
overlap factors and arbitrarily chose the values 0.01 for all
the subblocks labeled by m. In fact, the cutoff depends on m
since the cutoff is related to the averaged angular distribution
functions of the CO2 wave functions with the same magnetic
quantum numbers. On the other hand, we have fit the tabular
data for the CO2-Ar interaction to a Lennard-Jones model to
facilitate the calculations. However, this model lacks the

spectral region of CO2-Ar with experimental data. The solid line is the
results obtained using Eq. (66), the dotted line is the results obtained using
Eq. (69), and the dashed line is the results of Boissoles et at. (Ref. 13).

flexibility to present the r dependence well especially for the
low-order (e.g., / = 0 and 2) components. Thus, there is some
uncertainty introduced by this procedure as well as in the
original data, and these uncertainties affect the magnitude of
the absorption. In fact, the absorption is very sensitive to the
details of the interaction potential.

With the improvement in the theory detailed in the
present paper, one is now able to relate the absorption in the
far-wing region of pure rotational or vibration-rotational
bands directly to the interaction potential. Although for sim-
plicity in the present paper we considered a linear molecule
perturbed by an atom, the basic theory is also applicable to
more complicated problems, e.g., molecule-molecule sys-
tems. We are in the process of making such calculations, and
after the results are compared with experimental data, we
will be in a better position to assess the overall accuracy of
the theory. Nevertheless, we feel that the present theory pro-
vides a consistent framework for the calculation of the far
wings of spectral lines within the binary collision approxi-
mation. Together with improved impact models valid near
the centers of lines, we can now calculate accurately the line
shape for both small and large frequency displacements from
the line centers. However, there is still considerable uncer-
tainty for intermediate displacements that must be resolved
before one can attain the goal of computing accurate line
shapes over their complete extent.
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APPENDIX

In order to carry out the integrations denoted by

.-.,•>-(—)T" \2iri/ J-
dot" P—r V'/Fy

'r».
kT

Xexp - (Al)

we have to keep in mind that both the integral variables at' and a" have small imaginary parts icr'(ar'>Q) and icr"(<r''>Q)
which have not been expressed explicitly in the formalism and that a' and of will go to 0* after the integrations are completed.
Also we have to keep in mind that the frequency at has a small imaginary part ie (e>0) too and that finally e will go to O"1" after
all of the calculations are completed. Now we begin to calculate the first term in Eq. (27), i.e.,

1 \ 2 f» f-
-— da'I
2i r i / J_ . J-o

da"
1

-XP
1
- (<»"IFyS)}

x
IF751

' aniso (A2)

We carry out the integration over w' first and construct a closed curve C which consists of three parts: (1) a straight line along
axis icr' from -°o + ia' to Gaj}R{[R^(<a"IFyS)}- S+io-' and from Ca^/?1[^

1(co"/Fy5)] + 5+/<7' to oo + io-'; (2) Cs, a
half-circle with the point GapR\[R^l(<i)"IFrS)] + ia' as its center and with a radius S on the upper plane; (3) CK, a half-circle
with the point icr' as its center and with an infinity radius on the upper plane. Then we have

1 f- 1 1

_J_ f 1

2ri Jc *" w-«'-w"-«y

_ J _ f i i

i
= 2

With Eq. (A3), Eq. (A2) can be written as

_LJ^ Avf c i * o>

In order to carry out the second integration over a/', we introduce a new integration variable y=y(<i>") defined by

or alternatively given by the pair of equations

We have

dy_

da>"
1.

(A3)

(A4)

(A5)

(A6)

(A7)

With Eqs. (A5) and (A7), Eq. (A4) can be rewritten as
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f r i ^ t r i H r \ \ i ~\r ° ° i l l Jw"(y)| I F , <a (yn / \
-I dy _-__„ /?j' -^ exp -vJor;J?7' -^ / kT\ij .oo y-ai+o>ij\F r S \ [ [ FrS JJ [ [ \ Fy5 / / J

1 f°°
4iri.

1

where rc is determined by

(A8)

•)• (A9)
We note that rc will be the same if the value of (o>- o>y) is changed by a sign and both of the indices a and ft and the indices
y and 5 are interchanged simultaneously.

Similarly, we can calculate the second term in Eq. (27), i.e.,

/ 1 W°° f- „ 1 1 f ,/ «M] f f _,/ «M / )
r—: dia'\ dta ; -, T——r w / J , ' —— exp - V^s,, ay.^i 7^~ / *r

\2ir j /J-o, J-. w-w -o> -w;y. |Ga^| [ \Gaftj\ [ [ \Ga/}j / }

XT' (A10)

However, by comparing Eqs. (A2) and (A 10), one is able to find out that one integrand becomes another integrand simply by
interchanging between one set of symbols a/ eo" a ft y S F G R l R2 and another set of symbols at" <a' y S a ft G F R2 R i ,
simultaneously. In addition, we note that the final result of the first part integration given in Eqs. (A8) and (A9) is independent
of interchanging between one set of symbols a P y 8 F G Rl R2 and another set of symbols y 8 a ft G F R2 R\. Therefore,
one concludes that the contributions from these two parts of integration are the same and is able to find

(All)

For later convenience, we can introduce symmetric functions

1

~(aij) defined by

- Viso(rc)/kT-l(Ca+ G,)J?,(re) + (Fr+ Fs)R2(rc)]l2kT}.

It is worth mentioning that these functions have a symmetric property

(A12)

(A13)

Based on the knowledge about rc given previously, one is able to derive this property easily.
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