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A theory is presented for the modification of the line-shape functions and absorption coefficient due
to the breakdown of the quasistatic approximation. This breakdown arises from the effects of
molecular motion and increases the absorption in the near wings. Numerical calculations for the
high-frequency wing of the i>3 band of CO2 broadened by Ar are reported and it is shown that these ,|
effects are significant near the bandhead. The importance of such corrections in other spectral i
regions and for other systems is discussed briefly. /
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I. INTRODUCTION

The calculation of accurate frequency profiles for mo-
lecular vibration-rotational transitions valid over a range of
different physical parameters (e.g., number density, tempera-
ture, etc.) remains an unsolved problem. Various theories
valid for small frequency displacements from the resonant
line center have been proposed over the years.1 For instance,
the impact theory in which the duration of collisions is as-
sumed to be zero leads to Lorentzian-shaped profiles that
apply quite generally to non-overlapping lines arising in low
density gases.2'3 On the other hand, only relatively recently
have tractable theories been proposed that are valid for large
frequency displacements. Rosenkranz,4'5 starting the basic
formalism given by Fano,6 has developed a far-wing theory
based on the quasistatic and binary collision approximations
and was able to obtain theoretical results for self- and
N2-broadened H2O spectra (the so-called continuum absorp-
tion) which are in substantial agreement with the experimen-
tal data.7 But because of the assumptions made, this theory is
applicable only to the high-frequency wing of the pure rota-
tional band. Rosenkranz's theory has been subsequently ex-
tended and improved by other authors.8"13 Boulet et a/.8 pro-
posed a line-by-line generalization of Rosenkranz's theory,
but because of the extensive computations involved this ap-
proach has been implemented only for atom—molecule
systems.14 Ma and Tipping9"13 in a series of papers have
considered a number of improvements, removed the restric-
tion for the applicability only to high-frequency wings, and
applied their results to the calculation of self- and foreign-
broadened H20 for frequencies up to 10000 cm"1. Their
results are generally in good agreement with both laboratory
and atmospheric data.9"13'15 However, in all the formalisms
mentioned above, the time dependence of the interaction be-
tween an absorber and a perturber is ignored. •

In the present paper we consider corrections to the qua-
sistatic theory implicit in all the theoretical treatments dis-
cussed above.4'5-8"15 In Sec. II, we present the general for-
malism and give results for the effects of molecular motion
(neglected in the quasistatic approximation) on the spectral
density and on the line shapes. This formalism is applied in

Sec. Ill to the case of the v^ band of CO2 broadened by Ar. A
discussion of the numerical results and conclusions of the
present work are presented on Sec. IV.

II. THEORY

A. The basic approximations

In order to take into account the molecular motion for
the wing region, we make some basic approximations be-
sides the binary collision approximation.

(1) The quasistatic approximation. In the quasistatic ap-
proximation, the duration of a collision is assumed to be
infinite and the positions of interacting molecules are fixed in
space during the period of time of interest. One usually treats
the relative motion of the two molecules classically; i.e., the
ensemble average over the relative motion is carried out by
integrating over r, the separation between two interacting
molecules, with a statistical weight for a pair of molecules
p(mi) (r) reiate(j to tne interaction between them. We note that

since the interaction is independent of time, the molecular
motion is totally ignored. This approximation limits the ap-
plicability of the theory to the far-wing regions. In the near-
wing region, although we can still assume the duration of the
collision is very large, we cannot take it as infinite as we did
previously. Therefore, the molecular motion should be taken
into account during the time of interest.

We assume the duration of collision, r, is very large.
Therefore, during the time of interest (f~l/Aw, which is
small), the displacements of molecules are small and the in-
teraction between them changes only slightly. We are thus
able to write the interaction as two components: a main com-
ponent V independent of time and a small correction term
V,(r) that is dependent on time. Consequently, the total
Hamiltonian of two interacting molecules similarly consists
of two parts, a main part independent of time and a small
time-dependent correction term

l( t ) ; (1)

here the subscripts a and b refer to the absorber and per-
turber, respectively.
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(2) The closest region approximation. The interaction be-
tween two molecules depends on their separation. In general,
during the whole collision process, the closer the distance
between two interacting molecules becomes, the stronger the
anisotropic interaction. As is well known, the anisotropic in-
teraction is mainly responsible for collision broadening
which is related to the coupling between the interaction and
the transition of the absorber molecule during the collision
process. Therefore, the strongest coupling effect takes place
when two interacting molecules are near the separation of
closest approach (we choose that time as f=0). In compari-
son with other parts of the collision trajectory, the contribu-
tion of this coupling comes mainly from the closest region,
and we can assume that it can be ignored elsewhere.

(3) The classical ensemble average approximation. We
do not treat the relative translational motion of two interact-
ing molecules quantum mechanically, rather we consider
their motion as a classical trajectory. In this case, the en-
semble average over the relative motion is an ensemble av-
erage over all classical trajectories. However, based on the
closest region approximation, the coupling effects from the
whole trajectory arise mainly from separations around the
closest point r0. We introduce a parameter rj to estimate the
fraction of the trajectory consistent with the closest region
approximation that contributes significantly. With a straight
line trajectory approximation, one is able to carry out this
ensemble average. Based on the approximations discussed
above, we can develop a formalism to take into account the
effects of the molecular motion on the line wing shapes.

B. General formalism

The correlation function of the dipole moment is defined
by

(2)

where p, is the normalized Boltzmann factor of the initial
state i. In the above expression, /t[H\t) is the dipole opera-
tor of the absorber molecule in the Heisenberg representation
which satisfies the equation

d
It (3)

where the square brackets indicate commutating operator. In
the present case, the Hamiltonian H(t) explicitly depends on
time and we are unable to simply express /^(O as
e''"(0'/*At(«)(o)<?-|'//<'>'/* as we did previously. However, we
are able to solve Eq. (3) using a perturbational method as
follows. For simplicity, we will omit the subscript a of
/4W)(0 indicating the absorber molecule and the superscript
(//) indicating the Heisenberg representation. We introduce a
time displacement operator U(t) and assume that

(4)

(5)

With Eqs. (3) and (4), we obtain

d
di
— U(t) = iH(t)U(t)lh.

From Eq. (1) and the perturbational method, we obtain

f'
+ i ^(t'WJ°

where

(6)

(7)

In the above expression, we have introduced the Liouville
operator L defined by

L = (HI*-lH*)lh.

Then, we have

(8)

where

It is obvious that

(9)

(10)

(ID

The correlation function can be written as

(12)

and its Fourier transform, the spectral density F(o>), as

(13)

The zero-order term of the spectral density, F0(w), is defined
by

1

(14)
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where for simplifying the notation, we have omitted the sub-
script and the zero-time argument of the dipole moment op-
erator /i<)(0). The first-order term of the spectral density can
be expressed as (see Appendix A)

e-Tr P M - I >
( f t ] \•H vftorfi'.J
[Jo J)

dt.

= - Ref e''-'Tr|/»-e"l't'V,(0
1T Jo [

(15)

where V t(t) is a Liouville operator corresponding to V\(t).
It is well known9"13 that since the isotropic interaction

does not depend on the rotational quantum numbers, the
Liouville operator associated with it will cancel out when it
acts on the line space. Therefore, the isotropic interaction
need not be included in the Liouville operator L nor in its
time-dependent correction part V^(t).

C. The Interaction at the closest region

In the present paper, we assume that the anisotropic in-
teraction takes a product form

(16)

where r(t), 6(t), and <p(t) are the spherical coordinate com-
ponents of r(f). We note that for simplifying the notation, the
orientations of the two interacting molecules have not been
explicitly indicated in the above expression. Since the vector
r(f) is time dependent, the anisotropic interaction explicitly
depends on time. However, based on the closest region and
the quasistatic approximations, we are only interest in the
behavior of this interaction around the closest point r0 and
for time t<r. We choose r0 as the k axis of a space-fixed
frame (i, j, and k) and r(r) is on the plane with <p=0. We can
expand Valtiso(r,S) around f=0 as

de

dr

dO d
- - V3niso(r0,0)

d2 d2r d

drdB ~di* Tr

d2r <? lde\ 2

'd7[dr+\'d7l

d2e d
+ -r-r — (17)

where in the last step of deriving Eq. (17) we have used the
fact that (dr/dt)=0 at the closest point. Since the set of
trajectories has rotational symmetry with respect to the axis
k, we expect that the contribution from the second term will
be zero and we will simply omit this term in Eq. (17). Con-
sequently, we are able to express Vaniso(r,0) as two parts: a
dominant part V'aniso(r0,0) which is independent of the time
and a small correction part which is proportional to t2. It is
worth mentioning that the correction term is an even function
of time. Thus, we rewrite V^t) as

(18)

where

^=2

d2r d
dt o('po.O)

d2e

Based on classical dynamics, we have

dt

r I d0 \ 2 d
T =mr\ -H --T-

\ d t

(19)

(20)

dr rfd
^7^7 rfrj (21)

where m is the reduced mass of the two interacting mol-
ecules. Then, we obtain

d2r

'dt1
Ide

"M*

1 </

wi <fr
i ̂
m <?r

1 d 1 d

In the last step of deriving Eq. (22), conservation of the
energy

~2 (23)

has been taken into account. In the above expression, i>x is
an initial relative velocity when the separation between two
interacting molecules is infinity. Since {mr^dOldt)2^®, the
range of.r0 which can be approached is limited. This fact will
be used later. From Eq. (21) we obtain
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dt:
1 d

nrZJo

Using Eqs. (22) and (24), V{ can be expressed as

2mrn

d_
TT

In the above expressions we explicitly denote the summation
indices of the trace, a or b, for the absorber or bath molecu-
lar variables, respectively.

Now we focus on the correction term F^ui). With Eqs.
(A4), (A5) and (18), we have

PA*

i lde\2

— \ —
2 \ d t j (25)

where O2Vt*d2V/d82 and (OV)2*>(dV{d8)2. We note that
the first term of Eq. (25) depends on the velocity vx while
the last term is related to a torque.16 For simplifying the components,
notation, we will omit the subscript of r0 in the following L=L +L

— Re Tr f L .t2el{>>-L°>'V'. 7 p/*\dt,
•f Jo [ (tt-L J

(28)

where the time-independent Liouville operator L consists of

discussion.

D. The effect of the molecular motion on the
expression of F,(«)

In a previous paper,10 we have derived an expression for
F0(ta) in which, at least formally, the bath variables have
been isolated

(29)

i i r-
w) = -ImT—: d<a'

•TT 2mJ- a •t-u'-L.

corresponding to the unperturbed Hamiltonian of the ab-
sorber and bath molecule and the time-independent interac-
tion, Vmiso(r0,0), respectively. We assume that

e-,i/=se-/i0<e-'V( (30)

where the limitation of this approximation has been dis-
cussed in a previous paper.10 Based on it, we can rewrite the
resolvent operator [l/(a>—L)] in Eq. (28) as

where

(26)

(27)

o)-L Jo

I f - 1 1
= -__- d<a' —-,—^X ;—-27nj-oo (t> —LI (a—iii —ic

Then FI(O>) can be expressed as

(31)

2mJ_

du' TH A*

o

d21 If- \ d2 f°° .,
= -Rer-r do>' Tr Ut • -r-j g«(

IT 27riJ_oo [^ <fw 2 Jo

-— - _ _
i» -Li u)-ta-L0

I 1.
V.

ta— L
yr'

= -- Imr-^| d<a"TT\f i - - - —-j
IT 2tn)-o, (aj-Z,0)J

1 w'-l

1 1

M (O—M'—LO

1

PM

p/t (32)

In order to separate the summations over the absorber vari-
ables and the bath variables, we first explicitly write the sum-
mation indices of the trace in Eq. (32)

a.ft

Then we can carry out the summation over the bath variables
of the trace using the fact that there is no contribution from
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the Liouville operator L(6) whenever it acts directly on ft.
Therefore, the trace in Eq. (32) can be written as

where

(33)

(34)

Thus we obtain an expression of F^ui) in which the bath
variables have also been isolated just as in the expression of

2 1 f-
) = -- Imr-^

TT 2lTlJ-
' Tr

X VI
«'-!,

(35)

In comparing Eq. (35) with Eq. (26), we find that the mo-
lecular motion introduces complexities in the trace over per-
turber variables in the calculation of the spectral density.

E. The resolvent operator (V\[M(<a' - L^)])b and its
trajectory average

The resolvent operator [ll(ot-L^] is defined only in the
representation constructed from its eigenvectors. Therefore,
we have to find the basis in which L l is diagonal. The Liou-
ville operator L l corresponding to the time-independent part

10s

--R(r)G. (36)

We denote by \a) and Ga, the eigenvectors and eigenvalues,
respectively, of the matrix operator Ganiso; that is

s-t I \ s~i I V ('\1\

or, equivalently, for the Liouville operator G in line space
notation

j

b.uaj.

:2 2 2 (('i;'i
i'l/2 "ft "'ft'

2 2
C°°

>
J rm

(38)

Then, the matrix elements of the Liouville resolvent operator
in the representation constructed from its eigenvectors can be
written as

(39)

Based on the knowledge about the resolvent operator
[l/(o>— LJ] obtained above, we now discuss the resolvent
operator

V1

' ' -

in Eq. (35). It is an operator acting on the line space of the
absorber molecule a. Therefore, in general, it can be ex-
pressed as

(40)

By explicitly writing the summation over the bath molecular
variables, its components can be written as

1

(41)

We note that the summation over the bath variables in line
space in Eq. (41) includes only the states \i2i\) because of
the assumption that the bath molecule is not involved in the
transition.

Based on our classical ensemble average approximation,
the ensemble average over the classical trajectories (indi-
cated by a subscript traj.) is replaced by a weighted integral
over r times the parameter 77. Therefore, the trajectory-
averaged component of the resolvent operator (V([!/(&>'
- Ii)])6itnij. can be written as

a

(42)

where the factor
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1/2

is a statistical weight17 and nb is the number density of the
bath molecules. We note that in Eq. (42) the lower limit of
the integration is not zero but rather the turning point rmin

which comes from conservation of energy and consequen-
tially depends on vm, the relative velocity of two interacting

molecules at infinity. Since both the operator V[ and rmin

depend on the velocity va, when we carry out the trajectory
average, we have also to take into account velocity averag-
ing, assuming a Maxwellian distribution function. However,
for simplifying the calculations, the average over UM will not
be treated exactly, but approximately. We simply replace v,,
by a properly chosen value va in the corresponding expres-
sions. Using Eqs. (25) and (39), the matrix elements
(a&lV'ill/iu' - L^a'p'*) in Eq. (42) can be ex-
pressed as follows:

1
2mr2

(43)

where G*p = (Ga + Gp). It turns out that the contributions to .1
F,M from the last two terms of Eq. (43) approximately (<*P*\V{ (i),_L

cancel. In fact, if we replace ^d0/dt)2 by (kT/mr2) and
then perform a trace operation, they can be approximated by

where

(47)

However, in the present calculation we are interested in the
imaginary part Im<ar/flf|V'[l/(«"-I1)]|a'0't> only. With
the well-known formal identity

1

(44)

and ((OV)2) is the mean squared torque defined by

(45)

where ( )n indicates the average over all orientation of two
interacting molecules. As is well known classically

(46)

and, therefore, the contributions from these two terms cancel
out. Based on the argument given above, we need only to
focus on the first term of Eq. (43) and we obtain

-iTr8[<a-R(r)Gafl], (48)
w-R(r)Ga(i

where P indicates the Cauchy principal value of the integral
and S is a Dirac delta function, it can be expressed as

d
~d~r

(49)

Finally, using Eqs. (42) and (49) we can write (see Appendix
B for the details)

b.mj.
(50)

where

1
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2 {(/i/I
'1J2

1/2

Sign
dr

Xr 1 —

. (51)

F. The modification of the line shapes

Using Eq. (B7), the correction term of the spectral den-
sity, FI(O>), can be rewritten as

/7
1(w)u

2 1 f»
= -- Imr-^ dw'

ir 2iriJ_oo

XTr A*
fr.traj.

i-w'-I.

There are a lot of individual %,-„-, functions involved in
Eq. (52). However, in practical calculations we can introduce
intensity-weighted averaged functions to replace them. The
intensity weighted averaged function ?J(ai) is defined by

0' •;

i-

XSign

X(Vi,

1/nJ2

-1rfr

1/2

(53)

In analogy to our previous work on band-average line shape
functions,10"12 we can define the symmetric function

(55)

The explicit form of the ?/J(ID) function is given by

aft m

f,\ 11/2

1 —

/ d\X 2 + r —

I drl

Sign

(56)

In terms of this function, the spectral density can be rewritten
as

=1/*,•;!2- (57)

In the present formalism, the absorption coefficients
a(d>) consist of two parts: the main part Oo(w) related to
F0(u>) and a correction part or^w) related to F](a»). The main
part of absorption coefficient o<)(aj) obtained in the previous
papers,10"12 is given by

a°(w) = 3^c a"t" tanh(ftw/2*r)[Fo(w)+F0(-w)]

= n 2 S--
IT

(58)

where

2

where ra^(cu) are the positive solutions of the equation
u-R(r)Ga0=0 which are larger than rmin. In terms of
^(w), Eq. (52) can approximately be expressed as

dR(r}ldr

X(a|p«»V«Vj^>
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where ra^ai) are the positive solutions of the equation
u-R(r)Gap=Q. In Eq. (58), the line strength S1; is defined
by the usual expression10"12

(60)

On the other hand, using the results derived above the cor-
rection term can be written in the form

47T2

<ash(ti<a/2kT)

(61)

In comparing the expressions for or^to) and Oo(a>), we find
that they are similar except for the additional power of
(ui-uijj) and ((a+Ujj) in Eq. (61). This is consistent with the
expectation that the correction contribution should decrease
faster than the leading term as the frequency displacements
increases.

III. NUMERICAL RESULTS FOR THE Ar-BROADENEO
v3 BAND OF C02

As an example, we consider the effect of molecular mo-
tion on the wing of the Ar-broadened i>3 band of CO2 for the
temperature T=296 K. In this case, the bath molecule is
simply an Ar atom and its internal quantum states need not
be considered. In order to simplify the calculations, we
model the isotropic potential between C02 and Ar by the
Lennard-Jones model

(62)

The expression of the anisotropic potential, Eq. (16) is the
product of the functions

12

11,1-I ~A,|-

and

9),

(63)

(64)

where 0 is the angle between r and the C02 molecular axis,
and R2 and A2 are adjustable parameters. We first adopt the
same values used by Boissoles et a/.14 with cr=3.91 A, elk
= 153 K, /?2=1.09 and A2=0.266. For the frequency range
of interest in the present calculations, 2400-2580 cm"1, we
consider the contributions from the v3 band of C02 only and
exclude any contributions from other bands. From the HIT-
RAN data base,18 there are 109 lines listed for this band and
the maximum value of the rotational quantum numbers
among them is 108. Although all of them are included in the

calculations, the diagonization of the anisotropic interaction
matrix whose size depends on how many states are included
in the complete set remains tractable.

The formula used by Boissoles e/ai14 to calculate the
band-averaged line shape function of v3 band of CO2 is simi-
lar to Eq. (59). However, they introduced an energetically
corrected function in their formalism. This correction corre-
sponds to rewriting the spectral density in a more symmetric
form19

) = - Re f e'M Tr
IT JQ

(65)

Consequently, the expression of the band-averaged line
shape function £(&>) is given by

aft m

R(r)
dR(r)/dr

Pilfijl

-V-ao(r)/kT

(66)

Similarly, we follow the same energetically corrected
procedure to calculate #*(w). As we mentioned previously, in
the present calculations we do not treat the velocity average
exactly. Since the Maxwellian distribution function has a
sharp maximum at umax = y2kT/m, we choose 000=umax in
the trajectory average calculations. With respect to the rum-
ing points rmin, we assume that they are determined by the
isotropic potential only and that the effect from the aniso-
tropic potential is averaged out. In the present calculation,
we simply use the equation, \rnvl,- Viso(rinin)=0 to deter-
mine the turning point rmin. Of course, more sophisticated
methods could be used to deal with the velocity averaging
and the determination of the turning points, however, we do
not discuss them in the present paper. Thus the formula used
for the numerical calculations for ?^(u) is

02 k T V V-8-nr^nf t77 — 2L, 2,
m a

V (r)
"

l /2

dr
G,

(67)

As mentioned previously, the value of the parameter 77 intro-
duced to make the classical trajectory average approximation
consistent with the closest region approximation is unknown.
Using a classical model (see Appendix C), we estimate
77=0.3 which we use in the present calculations.
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I.CE-OO =

I.OE-O3

l.CE-06 r

2OQ asoo
FREQUENCY (CM'1) FREQUENCY (CM"1)

FIG. 1. The band-averaged line shape function xM in units of cm ' atm'1

(solid curve) and the correction to the band-averaged line shape function,
t£(ta)l(a with 77=0.3 (dotted curve), as functions of frequency CD (in units of
cm"1) calculated for T=296 K.

The calculated band averaged line shape function £(w)
and the calculated correction of the band averaged line shape
function %(<a) are shown in Fig. 1. In this figure we present
?6(u!)/a> instead of ?<t(w) since not only 2&(w)/o> has the
same dimension as x(u>), but also the comparison between
them makes more sense. The frequency at which ?^(<a)/ot
becomes comparable to £(o>) depends on the short-range an-
isotropic potential and on the value of the parameter 77; in the
present case, this occurs around 45 cm"1. For smaller fre-
quencies, '?6(<ii)l<i) exceeds x(u>) implying that the quasistatic
approximation breaks down and the effects of molecular mo-
tion must be taken into account. As shown in the Fig. 1,
?J(<a)/w falls off faster than ^(w) as the frequency increases
and becomes negligible beyond 80 cm"1 which validates the
quasistatic approximation for this frequency region.

The calculated contributions of absorption coefficients
from the main part F0(cu) which corresponds to Boissoles
et a/.'s results14 are shown in Fig. 2. The total absorption
coefficients are also shown in Fig. 2 together with the results
obtained using a Lorentzian line shape and the experimental
results.14 In order to investigate how sensitive these results
are to the choice of the potential parameters, we have re-
peated the calculations varying the parameters cr, elk, R2,
and A 2 in Eqs. (62) and (63). As expected the results depend
sensitively on a but less so on elk: small changes in the
relative weighting of the long- and short-range parts A2 and
R2 can affect the magnitude. We obtained the agreement with
the experimental data shown in Fig. 3 using the values:
o-=3.2 A, e/A: = 100 K, R2=l.22, and A2=0.35. Finally, we
note that the comparisons discussed above are based on cal-
culations made with a simplified one-component anisotropic

FIG. 2. The absorption coefficient a(u>) (in units of cm2 molecule'1 atm ')
vs the frequency at (in units of cm"1) calculated for 7"=296 K. The curve •••
is the contribution from the band-averaged line shape function and — is the
total. Also shown are the results calculated using a Lorentzian line shape
denoted by — and the experimental data denoted by +, respectively.

I.CE-02

g l.OE-CM

(JJ I.OE-05

I.OE-O5 =

I.OE-O7'
2350 2«30 2500

FREQUENCY (CM"1)

FIG 3 Comparison between the present theoretical results calcuUled using
the modified potential parameters and the expenmenul dto.
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potential. Before accurate quantitative comparisons can be
made, a more realistic multicomponent potential must be
used.

IV. DISCUSSION AND CONCLUSIONS

As a result of the present work, several conclusions can
be drawn. First, the effects of molecular motion significantly
affect the quasistatic line shape for displacements Ao> less
than 50 cm"1 from the line centers. As noted above for
smaller displacements, the correction term can exceed the
quasistatic contributions; however, in this region
l/Tc<Ao>=l/Twhere rc and rare time between collision and
the duration, respectively, both the quasistatic and the impact
theories break down. As a result, the corrections for molecu-
lar motion will be more important nearer the band origin or
in the microwindows between the lines20 than in the win-
dows between vibration-rotational bands. Second, the cor-
rection depend on the interaction potential, and because the
motion is greater for higher temperatures or for lighter mol-
ecules, one would expect larger corrections in these cases.
Conversely, by varying the parameters in the potential in
order to obtain agreement between theory and experiment,
one can infer these parameters. However, we note that one of
the drawbacks of the present quasistatic formalism is that
only a simplified form of the anisotropic potential having one
spherical harmonic can be incorporated. Further work to in-
clude more general potentials is needed before realistic
potential-energy parameters can be accurately determined.

Finally, although the present work is a first attempt to con-
sider the molecular motion a number of simplifying assump-
tions have been introduced in the calculations; nevertheless
to take into account of the correction of the quasistatic for-
malism due to molecular motion is necessary in the near-
wing region and this becomes a tractable problem especially
for some simple interacting systems.

Some refinements of the approximations can be incorpo-
rated in the formalism. For example, one can improve the
trajectory average and avoid the introduction of the param-
eter 77. Because a main uncertainty in the present calculation
is related to the interaction potential, there are two chal-
lenges facing us. One is to find a more reliable but still
tractable potential models to represent the interaction. The
other is to find a theoretical method to calculate the resolvent
operator corresponding to more realistic anisotropic poten-
tials which consists of more than one spherical harmonic
component. Further work is needed in this direction.
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APPENDIX A

The first-order term of the spectral density is

2irJ-= i - \JQ

In the step of deriving Eq. (Al), we have used the fact that

J o I I U o

since V](;) is an even function as mentioned in the text. Then,

.-i.- - r •KV!('')'">~'"'"'
The integration of Eq. (A2) can expressed as follows:

- i e i L t v ( ( t ' ) d t ' , . (Al)

dt = - I m e " " ' T r
O

dt. (A2)

["dt ei»'\l'vt
l(t')dt',e-iL'pfJi =f"J fV1(r')dr',e''

Jo [Jo Jo [Jo o o

•<«-!),' d(, p

>'(«-L»' dt' Pp\
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u>~I

-«f*e"
Jo

(A3)

where V\(f) is a Liouville operator corresponding to V^t). With Eq. (A3), we rewrite the first-order term as

^(aO-i Re f V' TrL -*-"%(/) -^-P/zU.
IT Jo I <a—L }

(A4)

To further simplify the calculations, we introduce another approximation in Eq. (A4). As discussed in the text, the pan of
V^f). i.e., the term of it1(d2rldt2)[dR(r)ldr]Ga^so, which contributes to F-^io) only, commutes with the time-independent
interaction V; therefore, e~'L'Vl(t) =» e~'t°'V1(r). With this fact and keeping in mind that we expect the effects due to the
molecular motion to be significant only in near wings, we will approximate the Liouville operator e~'Lt by its main part
e~iL°' in Eq. (A4). Then we obtain the simple formula

) = iRe fV"Tr L -
if Jo [ <it~

dt. (A5)

APPENDIX B

With Eqs. (42) and (49), the trajectory averaged component of the resolvent operator (V[[l/(<u' — £[)])(, can be
expressed

ft.traj.

X I -
mv~

f"
r<a

dr

l-
\rnvl

1/2

(Bi)
where ^; are the degeneracy factors due to nuclear spin, £y are the energies associated with the state [/}, and Qb is the partition
function for the bath molecules. By carrying out the integration with the help of the S function, we obtain

fr.traj.

X

Xr

1 —
1/2

Sign
dr

-i®^-'). (B2)

where r^w') are the positive solutions of the equation w'-/?(r)Ga/J=0 which are larger than rmin. In the above expression.

'1/2

ftoW

..-.'i

(B3)
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With Eqs. (35) and (B2), the correction term of the spectral density, F^ut), can be rewritten as

-~2 2

=4 2 2 OMO (^Z^jl %,,•',•'(<*- «Vy')P."<<

Using the reduced matrix elements,
1/2

\>u-mu f (2J+1)

and reduced functions, &j^",;.,(«u), defined by
1/2
2 2 2 2 2 co-/ /i, my jn(- m^.

(B4)

(B5)

(B6)

we complete the summation over the magnetic quantum
numbers and obtain

(a»-a>,-/y»)p,-./*,-,/'> (B7)

where the summation indices exclude their magnetic quan-
tum numbers. For simplicity, since we will use these reduced
forms instead of the original ones in the results that follow,
we will omit the superscript redu.

APPENDIX C

In general for a specified relative velocity at infinity, vx,
the trajectory is determined by the impact parameter b and
the interaction potential V(r), and the relative position of
molecules along the trajectory s(t) is a function of time
whose zero has been chosen in the present work as the time
of closest approach. In order to calculate averages of the
functions of interest over all trajectories, one has to average
over b and s(t). However, the functions of interest are usu-
ally expressed in terms of the intermolecular separation r
and, therefore, the dynamic variables b and s(t) are not ap-
propriate and have to be transformed to spherical coordi-
nates. Assuming that the trajectory is mainly determined by
the isotropic potential, we have

1/2dr

~dt mv'
(Cl)

For a specified r the maximum impact parameter is given by

U/2

(C2)
mvl '

With the straight line trajectory approximation, the integral

of a function F(r) over all trajectories can be expressed as

1=2 J bdb t F(r)Va,dt,
Jo J-«

f" fW'>f 2V- (r) b2 ]~m

= 4ir F(r)dr\ 1 ^ r\ b db,
Jrmia Jo [ mvt, r J

^CJ'-^r]"2^" <C3)

where rmin is given by

- v (r • ) = 0. (C4)

However, based on the closest region approximation the
™ribution to the integral / comes mainly from the region
near the tumin8 Point of Rectories and, in fact, the function
F^ has been exPressed in terms of an expansion around
this Point' For consistency, this implies that a cutoff has to be
enf°rced on *e integration along trajectories. One method to
intr°duce *e cutoff is to replace 0, the lower limit of the
integration over b in Eq. (C3), by bmitt(r) and to assume that

^ . (/•) = £> (r)cos 6n, (C5)

where 00 is a parameter. Then, one is able to recast Eq. (C3)

F(r)dr
-1/2

mv

b db,

(C6)

where the parameter rj finally used in the text is defined by

r *«•« m
?7=sin 00= 1--^- . (C7)
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In order to estimate the parameter 77, we consider a
straight line trajectory with the closest distance denoted by
ro( = fe). in the present case, the function F(r) of interest is
V( = ^2r/</t2)((?/(?r)7Miso(r). If we assume that around the
distance of closest approach the repulsive part of the aniso-
tropic potential dominates, then F(r)«r~16 and its magni-
tude drops to 1/2 the maximum value for 5=0.3r0. With this
assumption, the interaction takes place along the trajectory
between -0.3r0<,s< + 0.3r0. It corresponds to bmin=r0

and bmix=[l + (s2/ro)]ll2r0. Therefore, one is able to esti-
mate the parameter 77= ($/&„,„)=0.3 which we use hi the
calculations. In Eq. (C6) and consequently in Eq. (67) the
parameter rj is simply a scale parameter and it is easy to
calculate results which correspond to different values of 77.
For example, the correction contribution is comparable to the
leading contribution at about 27 cm"1 for 77=0.! while this
occurs at 45 cm"1 for 77=0.3. Although there is considerable
uncertainty in the potential for small separations and arbi-
trariness in the cutoff discussed above and thus in the value
of 77, we note that the general conclusion that molecular mo-
tion is important for the near wings of the lines but can be
ignored in the far-wing region does not depend on the value
of 77 assumed.
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