S5-34-

7327
N96- 18076 . \
d
ADAPTIVELY-REFINED OVERLAPPING GRIDS FOR THE
NUMERICAL SOLUTION OF SYSTEMS OF
HYPERBOLIC CONSERVATION LAWS *

Kristi D. Brislawn, David L. Brown, Gedffrey S. Chesshire and Jeffrey S. Saltzman
Los Alamos National Laboratory
Los Alamos, NM

SUMMARY

Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference
methods has been used effectively on a variety of problems in two and three dimensions. In this
paper we introduce an approach for resolving problems that involve complex geometries in which
resolution of boundary geometry is important. The complex geometry is represented by using the
method of overlapping grids, while local resolution is obtained by refining each component grid
with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm
introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid
structure for the underlying mesh. '

INTRODUCTION

Over the past decade, the Adaptive Mesh Refinement (AMR) algorithm pioneered by Berger
and Oliger [1] has proven to be a successful, efficient strategy for obtaining high-resolution solutions
to partial differential equations. Using AMR. combined with high-order upwind finite-difference
methods, one has the ability to simulate shock hydrodynamics problems, including those with
multiple materials, in both 2-D and 3-D [2, 3, 4, 5, 6] not otherwise possible within the limitations
of present computers. To date most of the developmental work done on the AMR method has
concentrated on the perfection of the adaptive algorithm, and not on the development of the
capability to represent complex geometry. A notable exception is the “Cartesian grid” method
introduced by Berger and Leveque in [7] in which complex geometry is represented by cutting holes
in an otherwise rectangular grid, and using special flux formulas in the resulting odd-shaped grid
cells at the boundary. ’

More recent work on this method is reported in [8]. The overlapping grid approach introduced
in the present paper uses a more accurate representation of boundary surfaces than the Cartesian

“This work performed under the auspices of the U.S. Department of Energy by Los Alamos National
Laboratory under Contract W-7405-ENG-36.

95

PAGE __C’.i_ INTENTIONALLY BEARK

grid method, although with correspondingly more work by the user required in order to construct
the initial grid. A set of curvilinear component grids is used, the union of which completely covers
the computational region. There are small regions of overlap between the individual component
grids. Each component grid is logically rectangular with some of the cells possibly “blanked” out
and unused. With this approach, a complex structure can be represented by combining many
separate pieces, each represented by its own curvilinear grid. The potential of the overlapping grid
method was first demonstrated by Starius [9, 10], Kreiss [11] and Steger et. al. [12]. Successful
three-dimensional aerodynamic simulations involving configurations as complex as the space shuttle
[13, 14], and with moving components [15], validated the usefulness of this technique as a practical
engineering tool. A fully automatic grid overlapping procedure for two- and three-dimensional grids
grids (CMPGRD) was developed by Chesshire and Henshaw which forms the basis for the current
work [16, 17, 18]. The use of overlapping grids to represent a complex geometry was dubbed the
“Chimera” method by the late Joe Steger.

The overlapping grid approach allows a great deal of flexibility in the placement of the
component grids. Since the component grids may overlap, rather than being required to match
exactly along an interface as with the block-structured grid method [19], they are relatively
unconstrained. This additional freedom allows generation of smoother component grids. This is
ideal for applying higher-order upwind finite-difference methods, since they perform best on grids
whose transformation to the unit square or cube are smooth. The finite-difference method used in
this paper is introduced in [20] and is an unsplit Godunov method based on the methods
introduced by Colella [21].

Since CMPGRD produces sets of logically rectangular grids, the extension of the AMR method
to this framework is natural. The AMR method developed in this paper follows closely the
technique discussed by Berger and Colella in [3]. Each component grid of the overlapping grid
structure is refined separately by the AMR algorithm. As in [3], the nested refinement grids are
constrained to have boundaries coinciding with the underlying “parent” component grid, i.e. none
of the refinements are allowed to be rotated with respect to that parent grid. The differences are in
the treatment of the cutout and overlap regions of the underlying overlapping-grid.

THE OVERLAPPING GRID AMR ALGORITHM

The adaptive grid construction and solution procedures on an overlapping grid are
straightforward extensions of the AMR procedures on a single grid. Modifications are made, as
necessary, to accomodate the special requirements of the overlapping grid structure. In order to
describe the grid construction and problem solution methods for overlapping grid AMR, we first
briefly describe the relevant parts of the procedures for the non-overlapping AMR and the
non-adaptive overlapping cases. For simplicity, in both cases we assume that the grid covers a
two-dimensional region.

Solution Procedure Using AMR on a Single Grid

9%

The basic AMR mesh construction and solution procedures are a recursive generalization of the
basic two-level procedure that we will describe here. The reader is referred to [3] for a more
detailed description. At each timestep in the two-level AMR procedure for a single underlying
“base” grid, the grid hierarchy consists of the base grid and patches of properly aligned refinement
grids that have been automatically placed by the AMR algorithm in regions where additional
solution accuracy is required. Properly aligned grids have the property that a grid at some level n
always has its boundary cells aligned with cell edges of the level n — 1 grids. In the general n-level
algorithm, the grids must have the additional property that they are properly nested, which means
that a grid at some level n is always found embedded in some subset of the level n — 1 grids. A
level n grid is not allowed to be all or partially embedded in parts of the grid structure that contain
only grids at lower levels (1,2,...,n —2).

Returning to the two-level case, all refinement grids at the fine level are automatically replaced
with new refinement grids after every m timesteps, where m is a user-specified interval. The
solution data is interpolated onto the new grid hierarchy before the calculation continues. For the
purposes of this discussion, assume that solution values are available in all cells of all grids in the
* current grid hierarchy. The grid refinement regeneration is done automatically by estimating the
error in the calculation at the current timestep on all grids, and then defining new refinement grids
in regions where the error is estimated to be higher than some user-specified tolerance. In practice,
the error estimation is done either by a Richardson-extrapolation procedure that compares
solutions on grids of different overall resolution [3, 4], or by measuring the size of local solution
gradients and refining in regions where the gradients have become unacceptably large relative to the
grid [6]. The latter approach was employed for the computations presented in the present paper.
Using one of these procedures, the error is estimated in each cell on the grid, and cells with
unacceptably high estimated error are “flagged.” Since the grid will not be refined again for m
timesteps on the base grid level, it is necessary to expand the refinement region somewhat before a
refinement grid is constructed. A simple domain-of-dependence argument requires that an
additional row of cells be added around each group of flagged cells for each timestep that the
computation will proceed without re-refinement of the grid. This is referred to as the
“cell-diffusion” step of the AMR grid construction procedure. Once this is done, the flagged cells
are grouped into “boxes”, or rectangular regions using a procedure described in [3]. Refined grids
with a user-specified refinement factor n,..s relative to the base grid are then constructed in each of
the boxes. The solution on the previous adaptive grid hierarchy is then interpolated onto the new
grid hierarchy. In regions where the solution is defined on more than one grid refinement level, the
solution values on the finest grid available are used.

Once the data is available on all of the grids in the new grid hierarchy, the solution procedure
can continue. First the coarse grid solution is advanced by one timestep in all interior cells of the
coarse grid. This includes coarse grid cells that are covered by a refined grid. Boundary conditions
for this step are assumed to be provided as part of the original problem specification. Once the
coarse grid solution has been advanced, the solution on the refinement grid patches can be
advanced. Since the solution method is explicit, the refinement grid solutions are advanced using
the same CFL timestep restriction as on the coarse grid. This means that n,,.s timesteps must be
taken on the fine grids for each single timestep on the coarse grid. Boundary conditions for each of
the refinement patches are obtained again following the principle that the “best” values available
should be taken. At fine grid boundaries where there is a refinement grid at the same refinement

97

level n immediately adjacent, values from the adjacent grid are used to provide the boundary
conditions. At fine grid boundaries where the adjacent grid is at a coarser level, boundary values
are obtained by interpolating the coarse-grid solution in space and time. When advancing the
solution of a system of hyperbolic conservation laws with a conservative method, an additional
“conservative update” step is taken in which values in coarse grid cells at the coarse-fine grid
interface are recomputed using fluxes available from the fine grid calculations. Details of this
procedure are found, for example, in [3]. Finally, once fine-level values are available at the new
timestep of the coarse grid, the coarse grid solution values in cells covered by refinement patches are
replaced by transferring or interpolating fine grid values to the coarse grid cells. This assures that
the best possible values are always used in the solution procedure for the succeeding timestep.

Solution Procedure Using Overlapping Grids Without AMR

An overlapping grid in two space dimensions consists of a set of logically rectangular curvilinear
component grids that overlap where they meet and whose union completely covers the
computational domain for a system of partial differential equations. The cells on each component
grid are classified according to their function during the PDE solution procedure. “Interior™ or
“discretization™ cells are cells on a component grid that can be updated using an interior
discretization formula for the PDE. This means that each discretization cell has a buffer zone of
cells around it of sufficient width that the interior discretization formula can be applied. Near
physical boundaries of the domain, “fictitious” or “ghost” cells are added to the component grid
outside the physical boundary. Boundary conditions derived from the physical boundary conditions
for the problem, or using considerations based on numerical analysis, are used to update the
solution values in these cells. In regions of overlap between the component grids, “interpolation”
cells are included in the grid. Solution values in these cells are updated using an interpolation
formula applied to a stencil of cells on an adjacent component grid. As with the ghost cells,
interpolation cells are included in the grid to provide the necessary huffer zone around every
discretization cell so that the interior discretization formula may be applied.

The overlapping grids used in this paper are constructed using the CMPGRD overlapping grid
software developed by Chesshire and Henshaw [17], [22]. Overset grids constructed using this
software have the property that they overlap the minimum amount necessary in order that
essentially centered interpolation formulas can be used to transfer values between adjacent grids
during a PDE solution procedure. CMPGRD automatically generates an overlapping grid along
with all the data necessary for communicating data between the component grids given a set of
user-specified “component” grids, each of which is a logically-rectangular grid in general curvilinear
coordinates. If the original user-specified component grids overlap more than this minimum
required amount, the un-needed cells are marked as “inactive” and are not used in the PDE -
solution procedure. In the computations presented in this paper, CMPGRD was used both as an
interactive package for the coustruction of the initial underlying overlapping grid, and also as part
of the AMR PDE solver, where it is called as a subroutine and used for embedding AMR
refineinent grids within the underlying overlapping grid. For this project, we modified CAIPGRD to
be able to insert refinement grids adaptively during a PDE solution process. The basic principles
and algorithm details for overlapping grid construction are described in more detail in [17] and [22].

98

Because of space considerations, the detailed modifications needed for the overlap algorithm for
adaptive grids will be discussed in an archival paper.

Adaptively-refined Overlapping Grids

We discuss here the procedure for advancing a PDE solution by one coarse-level timestep on an
adaptively-refined overlapping grid. An adaptively-refined overlapping grid structure consists of a
set of underlying curvilinear component grids A, B,C, ... that make up the “base grid” for the
problem, each of which may contain embedded refinement grids.

The embedded refinement grids have the property that they are both properly nested and
properly aligned with their parent component grid just as in the single grid case discussed above in
the section entitled “Solution procedure using AMR on a single grid”. If a region of refinement is

‘needed that extends beyond the boundary of active cells of one of the parent component grids and
into a region covered by the active cells of another parent component grid, each of the parent
component grids is refined separately rather than attempting to construct a single refinement patch
that covers the entire refinement region. This is an important point in our adaptive mesh
procedure, since it greatly simplifies the grid construction algorithm compared to what would be
required if general adaptive refinement grids were allowed. The interior cells of a refinement grid
patch must lie completely within the interior cell region of its parent grid(s) at the next coarser
level. If a refinement patch is created adjacent to an overlap boundary of the parent grid, its
overlap interpolation cells will lie completely within the set of overlap interpolation cells for the
parent grid(s) as well.

The overlap interpolation rules for overlap regions on an adaptively-refined overlapping grid
specify that values are interpolated from adjacent component grids preferentially from grids at the
same level, followed in preference by grids at the next coarsest level. The implicit assumption here
is that cell size and aspect ratio of grids at. the same refinement level on adjacent component grids
is roughly the same. Thus it is most appropriate to interpolate values from-adjacent grids at the
same refinement level unless such a grid is not available, in which case the best possible values
should be used. The proper-nesting assumption implies that in the latter case, the values will come
from coarser refinement levels on the adjacent grid. While it could occur that the adjacent
component grid would have values available at finer levels, interpolation from the finer level
adjacent grids is not necessary since the values would be approximately equally degraded hy
interpolating directly from the fine grids as they would be by first transferring values to the
adjacent coarse grid and then interpolating.

We now discuss the procedure for constructing the new refinement grid patches in the two-level
refinement case where the adaptive grid hierarchy consists of the base overlapping grid together
with refinement grid patches one level finer than the base grid. The solution data is assumed to be
available in all cells on all grids in the adaptive overlapping grid hierarchy at the beginning of the
coarse-grid timestep. As in the single-grid case, all the refinement grids at the fine level are
replaced at user-specified timestep intervals using the adaptive procedure. The procedure for
constructing the new refinement grid patches is essentially the same as for the one-grid case. An

99

Interpolation Region Grid B*

ol

Interpolation Region Grid B

Figure 1: The interpolation cells for refinement grid B? lie within the interpolation region for grid
B. Interior cells for grid B? may not lie inside the interpolation region for the coarser grid.

error estimation procedure is used on each parent grid in all interior cells, and cells of high
estimated error are flagged. The set of flagged cells is then “diffused” as in the single-grid case. A
difference in the overlapping grid case, however, is that we do not permit interpolation cells on the
coarse grid to be flagged by either the error estimation or diffusion procedure. This is disallowed to
simplify the AMR solution procedure on an overlapping grid. If the diffusion procedure indicates
that an interpolation cell should be flagged, the “interpolee” cells [23] on the adjacent grid are
flagged instead (If a cell on grid A interpolates from cells on grid B, the interpolee cells for an
interpolation cell on grid A are defined to be those cells on grid B that are included in the
interpolation stencil used for determining the solution value in the interpolation cell on grid A).
This procedure of flagging interpolee cells is a logical extension to the overlapping grid case of the
basic domain-of-dependence argument for the cell-diffusion process. It also provides for the
expansion of a refinement region across overlap boundaries during the course of a time-dependent
PDE solution, which otherwise would not take place. Figures 24 illustrate the procedure with the
curved grid representing grid A and the rectilinear grid represents grid B.

The solution on an adaptively-refined overlapping grid is updated as follows. Values are first
transferred from the old adaptively-refined grid hierarchy. For interior discretization cells, this
involves either copying values from grids at the same level with the same parent grid, or
transferring values from grids at the next coarser level on the same parent grid. Values in
interpolation cells are transferred in a different way. These values must either be copied from an old
grid at the same level with the same parent component grid or they must be interpolated from data
on an adjacent component grid according to the interpolation rules given above. It is important
never to transfer coarse grid interpolation values to fine interpolation cells since a degradation of

100

Figure 2: The cell on the curved grid shaded dark dark gray is flagged as a high error cell and will

be refined.

Figure 3: A single “diffusion” step of flagging surrounding cells is done. Note that interpolation cells
(lighter gray) are touched by the diffusion. These cells are only tagged for the purpose of flagging

the underlying “interpolee” cells and will not be refined.

101

Figure 4: The cells are on the rectilinear grid are flagged (shaded an intermediate gray) because they
are used for interpolation data by the flagged interpolation points on the curvilinear grid.

the computed solution can result.

Away from interpolation boundaries, the solution advance procedure is identical to the
single-grid AMR procedure. The only difference in the solution advance procedure for interpolation
cells is that no conservative update procedure is used. This is largely due to the fact that we feel
that satisfactorily efficient methods for conservative update of overlap boundary values on general

overlapping grids have not been developed. Some research has been done in this area, however, cf.
[23, 24].

SOME IMPLEMENTATION DETAILS

AMR codes have greater code complexity than single or even block structured logically
rectangular grid methods. The primary reason for the programming complexity is the demands
made on the programming environment for dynamic allocation and deallocation of data structures.
Even communication hetween grids at the same or different levels is nontrivial. To handle the
programming complexity, we have begun to move to a programming language more capable in the
manipulation of complex data structures. We use C++ [25] to handle the dynamic memory
management of the data structures and FORTRAN for the numerical parts of the algorithm such as
the integration. This is the first step in moving towards a C++ based programming environment
that not only abstracts out the data structures but hides details of a parallel implementation as
well.

C++

102

C++ is a superset (with some very minor exceptions) of the programming language C. For
those who appreciate C, the postfix operator " ++” is used to increment by one the variable it
follows. Therefore C++- is literally an addon to C. C++ adds new capabilities that bring it into the
realm of what is called Object Oriented Progranuning (OQP). OOP is a technique, discipline or
style of writing programs. Here algorithms are organized around data structures called objects that
both hold data and supply the functions needed to manipulate the data in safe ways. Encapsulation
is often used to describe this process. The goal of OOP is to generate reusable program modules
with few side effects. The idea seems a good and simple concept from a cominon sense viewpoint
but the implementation of flexible and reusable object libraries requires a great deal of forethought
and design. Practice shows us that several design iterations are often required to "get it right™.

The primary way C is augmented to become a language that supports OOP is through the
introduction of the data structure called a class. A class, in its most simple form, is a structure
which in turn is much like a common block in FORTRAN. However, classes are used to instantiate
objects by associating member functions with the class. Member functions are simply functions that
operate on the data within the class/structure. Once classes are introduced C++ can handle two
‘bhasic OOP programming paradigms. The first is called inheritance and the second polymorphism.

Inheritance is a mechanism of reuse of objects. New objects can be created from currently
available objects by inheritance. The inheriting objects will have all the properties of the inherited
objects plus whatever is added (data or more member functions). Inheritance facilitates a rich
structure of objects through multiple inheritance (inheriting an inherited class which may in turn
inherit other classes) yet allows the developer to encapsulate data at all levels. However, no
programming paradigm will prevent people from writing sloppy code.

Inheritance is further enhanced by Polymorphism. Polymorphism literally means many shapes.
In C++ the same function name or even operators such as ”+4", "*”, ... can be used for many
purposes. A simple example is to consider the type double, a double precision number. Doubles can
be added, subtracted, multiplied, along with a host of arithmetic operations. A simple example of
polymorphism is to define a new class that would represent complex numbers as a pair of real
numbers. Many of the same arithmetic operators that are used to manipulate doubles can be
"overloaded” to manipulate complex numbers as well. The array class library we will describe
below is another example of polymorphism.

Data Structures

The implementation of the adaptive overlapping code heavily uses classes to manipulate and
manage user data. In addition, inheritance is also incorporated to make the code much more
ammenable to modification and/or reuse. Polymorphism is used very little at this point. However,
our current direction is to use a C++ array class called A++/P++ [26] with syntax similar to F90
to develop newer versions of this and other overlapping grid codes. Here polymorphism will come
into play as we are overloading the arithmetic operations found in C or C++ to manipulate
multidimensional arrays.

103

The design of the adaptive overlapping code splits the overall algorithm into two sets of pieces.
The first set is a collection of objects and functions that implement an “abstract” adaptive
overlapping code. The second piece is supplied by a code developer who wants to make his or her
own adaptive overlapping mesh code. Within the first collection are objects that describe the
logical lavout of the overlapping grids. These objects don’t perform any approximation of the
solution of PDEs but can be modified so that they do. Here inheritance is used. The abstract
objects are inherited by developer defined objects that contain the necessary data to perform useful
computations. Other objects within the abstract set develop a skeleton set of functions that give a
roadmap that can be used by code developers to modify or rebuild a new algorithm. These
functions are called virtual. When objects are inherited, the inherited object functions that are
labeled virtual can be replaced by the inheriting object. This defines a clean interface between the
developer and the abstract code. The developer has the flexibility to design the right functions for
his or her needs and the abstract interface does not have to be changed.

The primary data structure within the abstract code is a list of objects that represent
individual grids. All logical information about a component grid or any refinement is stored in what
is called a Patch class. Logical information includes logical coordinates of a grid, interpolation
information and boundary condition information. A patchNode is derived fromn a Patch so that it
can be put in a linked list class called a patchList. This linked list contains only patches at the
same refinement level on a single overlapping grid component. A levNode is derived from patchList
to be added to a list of refinement levels on a single grid. This list class is called a levList. In
addition, there are pointers within a levNode to point to list of patches on other components at the
same level. Finally a class called compNode is derived from levList to be contained in a list of
refinements at all levels on all components called a compList.

Although complex, implementation of this list structure is greatly simplified by using C++
inheritance. ‘This allows the developer to concentrate on numerical algorithms rather than the data
management aspects. Figure 5 illustrates the complete hierarchy.

The actual grid generation is performed by calling as a subroutine the CNIPGRD mesh
generation code [17} modified to generate'mesh refinements as discussed in the previous section.
Finally, many smaller objects and functions are used to help in regridding and managing refinements
within components. These objects came from a very useful and reusable C++ library from the
Center for Computational Sciences at Lawrence Livermore National Laboratory called BoxLib [27].

NUMERICAL RESULTS

The computational examples presented in this paper are two-dimensional simulations of
compressible fluid flow as described by a numerical approximation to the compressible Euler
equations. The code runs both two- and three dimensional problems but three-dimensional results
will be described in a separate journal article hecause of space limitations. In general curvlinear

coordinates, these are given by
ng

u+ Jey 0cF(u) = 0. f (1)
=1

104

Grid Data Structure Hierarchy

patchNode

[—l_’;tch ‘ T) (to other patches in the same component and level)

patchList

— %y patchNode —“_:Z patchNode > patchNode —>»
<

A— -) (to other levNodes at same level

l on different components)
" levNode
_____ [patchList > (to other levNodes on the same
fomm o component at other levels)

levList

levNode _? levNode [72| levNode —>»
< < ~

compNode

T { levListj ‘“’“") (to other components)

compList

e e ot [2] omate [2| cometoe |7

Figure 5: The list elements from the top are incorporated into more complex data structures further
down.

105

Here
pU*
upU® + ff.p
Ft(u) =:| vpU'+ fzp ,0=1,2,3, (2)
wpU* + &p
UYpE + p)

ng

= Zfﬁ. ui
i=1

are the contravariant velocities, and Jg := (letlgﬂ is the determinant of the coordinate
transformation from Cartesian coordinates x := (x!, 2%, 2%) to curvilinear coordinates

€= (&4, €2,6%). The dependent varibles are the density p, the three components of velocity
u',i=1,2,3, and the energy E. The pressure, p is related to the other variables through the
equation of state for an ideal gas: p = (y — 1)(pE — % pYi(u')?). The finite difference method used
for the computations is hased on the conservative cell-centered upwind-centered Godunov method
in [20]. It has been modified to use a linearized approximate Riemann solver described in
unpublished work by Colella, Glaz and Ferguson. (The original method in[20] used a
computationally more expensive approximate flux function based on [28].)

Several test problems were outlined, in advance, by the conference organizers to stimulate
discussion at the workshop. We chose to compute the double wedge geometry where an oncoming
Mach 2.16 shock hits a wedge at an angle of 20 degrees followed by a wedge at an angle of 50
degrees three horizontal units later. Quiescent preshock values are unity in the pressure and
density. The ratio of the specific heats () is 1.4. Because the geometry was simple enough, two
computations were preformed. The first computation used a single grid that was deformed to fit the
double wedge geometry. The second computation uses two component grids -— the first grid being a
cartesian gfid and the second grid conforms to the wedge boundary cutting away the cartesian grid.

Figures 6 and 7 show the grids and density for times near 2.5 time units. The solutions are very
nearly the same in structure. However, single grid computation ran in twice the number of cycles
that the two grid computation did. This is primarily caused by the timestep in the single grid case
being unnecessarily CFL limited in the upper right hand corner of the computation. The two grid
case has uniform cell sizes throughout the computational region. Another issue brought out by
these computations is conservation. The two grid computation is not conservative vet still matches
the single conservative grid case. This reflects our experience that if care is taken in making sure
that cells sizes don't vary greatly from component to component then nonconservative interpolation
is sufficient for computational purposes.

The last subject to discuss is overall performance of the adaptive algorithm. At this point the
time spent in the integrator is less than 50% of the entire run time. This is primarily due to the
current implementation of the composite grid generation package. This package handles each point
on each grid separately instead of processing a list of points in a vectorized manner. We are

106

Y
10} L o —

4.00E+00

N
L
1

3.00E+00

ARE B

2.00E+00

1.00E+00

0.00E+00 CCECTIHN I I | | t | X
0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00

Y
5.00E+00

T

PRI

4.00E+00

3.00E+00

2.00E+00

1.00E+00

—- EEREE | | | x 1 j X
0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00

0.00

Figure 6: The adaptive grids for a single base grid (top) and two base grid (bottom) computation
near time 2.5.

107

Y
5.00E+00

4.00E+00 [~

3.00E+00 |-

2.00E4+00 -~

1.00E+00 |-

0.00E+00 - ' ' ! ' | X
0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00

Y
5.00E+00

4.00E+00

3.00E+00 |~

2.00E+00 |~

1.00E+00

X
0.00E+00 | j
0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00

Figure 7: The density contours for a single base grid (top) and two base grid (bottom) computation
near time 2.3.

108

currently rewriting the mesh generation package so that it can achieve vector performance.

References

[1] M. J. Berger and J. Oliger. Adaptive mesh refinement for hypberbolic partial differential
equations. J. Comp. Phys., 53:561-568, March 1984.

[2] M. J. Berger and A. Jameson. Automatic adaptive grid refinement for the Euler equations.
AIAA Journal, 23:4:561-568, 1985.

[3] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J.
Comp. Phys., 82:64-84, 1989.

[4] J. Bell, M. Berger, J. Saltzman, and M. Welcome. Three dimensional adaptive mesh
refinement for hyperbolic conservation laws. SIAM J. Sci. Comput., 15:127-138. 1994.

[5] E. G. Puckett and J. S. Saltzman. A 3D adaptive mesh refinement algorithm for multimaterial
gas dynamics. Physica D, 60:84-93, 1992.

[6] M. J. Berger and J. Saltzman. AMR on the CM-2. Applied Numerical Mathematics,
14:239-253, 1994.

[7] M. J. Berger and R. Leveque. Cartesian meshes and adaptive mesh refinement for hyperbolic
partial differential equations. In B. Engquist and B. Gustafsson, editors, Third International
Conference on Hyperbolic Problems, pages 67-73. Chartwell-Bratt, 1991.

[8] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome. Adaptive
Cartesian grid methods for representing geometry in inviscid compressible flow. In Proceedings
of the Eleventh AIAA Computational Fluid Dynamics Conference, pages 530-539. AIAA, June
1993.

[9] G. Starius. Composite mesh difference methods for elliptic boundary value problems. Num.
Math., 28, 1977.

[10] G. Starius. On composite mesh difference methods for hyperbolic differential equations.
Numer. Math., 35:241-255, 1980.

[11] B. Kreiss. Construction of a curvilinear grid. SIAM J. Sci. Stat. Comput., 4:270-279, 1983.

[12] J. A. Benek, J. L. Steger, and F. C. Dougherty. A flexible grid embedding technique with
application to the Euler equations. AIAA paper 831944, 1983.

[13] J. A. Benek, P. G. Buning, and J. L. Steger. A 3-D Chimera grid embedding technique. In
Proceedings of the 7th AIAA Computational Fluid Dynamics Conference, Cincinnati, pages
322-331. AIAA, 1985. ‘

109

[14] P. G. Buning, I. T. Chiu, S. Obayashi, Y. M. Rizk, and J. L. Steger. Numerical simulation of
the integrated space shuttle vehicle in ascent. AIAA paper 88-4359-CP, AIAA, 1988.

[15] F. C. Dougherty and J-H Kuan. Transonic store separation using a three-dimensional Chimera
grid scheme. AIAA paper 89-0637, AIAA, 1989.

[16] G. S. Chesshire. Composite Grid Construction and Applications. PhD thesis, California
Institute of Technology, 1986.

[17] G. Chesshire and W. D. Henshaw. Composite overlapping meshes for the solution of partial
differential equations. J. Comp. Phys., 90(1):1-64, 1990.

[18] D.L. Brown, G. Chesshire, W.D. Henshaw, and H.O. Kreiss. On composite overlapping grids.
In Proceedings of the Seventh International Conference on Finite Element Methods in Flow
Problems, 1989.

[19] J. F. Thompson. A composite grid generation code for general 3D regions - the Eagle code.
AIAA J., 26:271, 1988.

[20] D. L. Brown. An unsplit Godunov method for systems of conservation laws on curvilinear
overlapping grids. Mathl. Comput. Modelling, 20(10):29-48, 1994.

[21] P. Colella. Multidimensional upwind methods for iyperbolic conservation laws. J. Comp.
Phys., 87:171-200, 1990.

[22] D. L. Brown, G. Chesshire, and W. D. Henshaw. Getting started with CMPGRD, introductory
user’s guide and reference manual. LANL unclassified report LA-UR-90-3729, Los Alamos
National Laboratory, 1990.

[23] G. Chesshire and W. D. Henshaw. A scheme for conservative interpolation on overlapping
grids. SIAM J. Sci. Comput., 15(4):819-845, July 1994.

[24] M. J. Berger. On conservation at grid interfaces. SIAM J. of Numer. Anal., 24:967-984, 1987.
[25] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, second edition, 1992.

[26] R. Parsons and D. Quinlan. Run-time recognition of task parallelism within the p++ parallel
array class library. Technical Report LA-UR-93-3856, Los Alamos National Laboratory,
October 1993. proceedings of the IEEE Conference on Scalable Parallel Libraries at Mississippi
State University, Oct. 6-8, 1993.

[27] M. Welcome, W. Crutchfield, C. Rendleman, J. Bell, L. Howell, V. Beckner, and D. Simkins.
BozLib User’s Guide and Manual. Lawrence Livermore National Laboratory, Lawrence
Livermore National Laboratory, Livermore, CA 94550, version 0.02 beta edition, September
1994. A Library for Managing Rectangular Domains.

[28] J. Bell, P. Colella, and J. Trangenstein. Higher order Godunov methods for general systems of
hyperbolic conservations laws. J. Comp. Phys., 82:362--397, 1989.

110

