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SUMMARY 

4 

Adaptive iiiesli refineinelit (AMR) in conjiiunction wi tli higher-order upwind fini te-clifference 
methods lias 11een used effectively on a variety of problenis in two and tliree dimensions. In Qliis 
paper we introclwe ail approach for resolving problems that iiivolve complex georiiet,ries in n7hich 
resolution of boundary geoiiietry is important. Tlie complex geomet.ry is represented by using tlie 
iiiethod of overlapping grids, while local resolut.ion is olitainecl liy refining each component. grid 
wi tli the AMR, algorithm, appropriately generalized for this sit.uation. The CMPGRD algoritlini 
intxoducecl by Cliessliire and Henshaw is used to automatically generake blie overlapping grid 
stmc twe for tlie uiiclerlying 311eSh. 

INTRODUCTION 

Over the past. decade, the Adaptive Mesh Refiiieiiieiit (AMR) algorithm pioneered by Berger 
ancl Oliger [ 1 J lias proven t,o lie a successful, efficient strategy for obtaining high-resolution solutions 
t.0 partial differential equat-ions. Using AMR. cornliinecl with high-order upwind fini t.e-difference 
inet.liocls, one lias the aliilit-y t30 simulatae shock liyclroclynamics problems, including t.liose wit.11 
mult.iple niat.erials, in both 2-D and 3-D [2, 3, 4, S, G] not otherwise pasdile within t.lie limitations 
of present. coniputners. To cla te most of the clevelopmental work doiie on tlie AhIR nietliocl lias 
concentra ted on the perfection of the aclaptive algori Qlini, aiicl not 011 the development. of the 
capability t.0 represent. complex geoiiie try. A notable exception is tlie “Cartesian grid” me t.hod 
int.roctucec1 by Derger and Leveque in [ 71 in wliicli complex geoiiietq is represented by cutt.ing holes 
in an o tlieiwise rec tangular grid, aiicl iising special flux formulas in the resulting odd-shaped grid 
cells at the Bounclary. 

Nore recent. work on t.his iiiet.lioc1 is report.ec1 in [8]. Tlie overlapping grid approach int.roclucec1 
in the present. paper uses a iiiore accurate represenbc t.ioii of liounclary surfaces t.lian t.lie Cartesian 
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grid met.liod, although with corresponclingly more work by the user required in order t.0 construct 
tlie initial grid. A set. of curvilinear component grids is used, tlie union of wliicli completely covers 
the comput.ationa1 region. There are small regions of overlap between t.lie individual component 
grids. Each coiiiponent. grid is logically rectangular with some of the cells possibly “blan1;ed“ oit t. 
aiid unused. 1% tli this approach, a complex structure can be represented by combining many 
separate pieces. each represent.ec1 by its owii curvilinear grid. The poteritial of the overlapping grid 
method was first. demonstrated hy St.arius [O, 101, Iireiss [I 13 and St.eger et. al. [IZj. Successful 
t.liree-dimensional aerodynamic siiiiula tions iiivolviiig configura tioiis as complex as the space sliii t ble 
[13, 141. and witah iiioviiig components [15], validated the usefulness of this tecliiiique as a practical 
eiigiiieeriiig tool. A fidly aut.oiiia tic grid ’overlapping procedure for two- and t.hree-dimeiisional grids 
grids (ChIPGR D) was developed by Chesshire and Heiisliaw which f o r m  tlie basis for the current 
work [lG. 17, 181. The use of overlapping grids to represent. a coiiiplex geoniet.ry was dubbed the 
“Chimera” iiietliocl l ~ y  the late Joe Steger. 

The overlapping grid approacli alloms a great deal of flexibility in tlie placement of t-lie 
coriiporieat grids. Since tlie component grids iiiay overlap, rather tliaii being required t.0 niat.cli 
exactly along a i  interface as {vi tli tlie block-struc turecl grid method [ 191, they are relatively 
unconstrainecl. Tliis addi tioiial freedom allows geiieratioii of smoother component. grids. Tliis is 
ideal for applying liiglier-order tipwind filii te-difference iiie tliods, since they perform best. on grids 
whose transformation to the uiii t, square or cuhe are siiiootli. The filii te-clifference methocl used in 
this paper is introduced in [ZO] and is an unspli t Goclunov nietliod based on tlie iiietliocls 
int.roclucec1 by Colella [21]. 

Since Ch4PGR D produces sets of logically rectangular grids, tlie extension of the AhIR 1iiet.liocl 
to t.liis framework is natmal. The AM R. me tliocl developecl in this paper foIlotvs closely blie 
technique discussed bv Berger and Colella in 131. Each coniponent. grid of the overlapping grid 
structure is refined separatrely by the AMR. algorithi. As in [3], t-lie nested refineiiient grids are 
constrained to have bouiiclaries coiiicicliiig %vi tli tlie underlying “pareiit” component. grid, i.e. none 
of the refinements are allowed t.0 be rotated with respect to that parent grid. The clif’ferences are in 
the txea tment. of the cutout. and overlap regions of the underlying overlal>piiig-gricl. 

THE 0VER.LAPPING GRID AhIR, ALGORITHM 

The adaptive grid cons bruc tioii am1 solution procedures 011 an overlapping grid are 
straiglitforward exteiisioris of the AMR proceclures 011 a siiigle grid. Moclifications are niacle, as 
necessary. to accomoda Be the special rec1uireriient.s of the overlapping grid sbructure. 111 ordw t o  
describe the grid cotistriiction a d  problem solution met.1iods for overlapping grid ANR, we first. 
briefly describe the relevant. parts of tlie proceclures for the noii-o\.erlal,piiig AhIR. and the 
nou-aclaptive overlapping cases. For simplicity, in both cases we assiiiiie t.liab the grid covers a 
two-cliiiieusioiial region. 

Solution Procedure Lkng AiLIR. on a Siiigle Grid 
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Tlie basic AMR iiiesli coiistructioii and solution procedures are a recursive geiieralization of tlie 
basic two-level proceclure that we will describe here. Tlie reader is referred t.o 131 for a more 
detailed description. At. each timestep in the two-level AMR procedure for a single underlying 
“base” gricl, tlie grid liierarcliy consists of the base grid and patches of pruperly aligned refiiieiiieiit 
grids t.liat, liave been automa tically placed by the AMR. algori tliiii in regions wliere addi t.ional 
solut,ioii accuracy is required. Properly aligned grids liave tlie 1)ropert.y that. a grid a t  some level u 
always lias its bounclary cells aligned with cell edges of the level n - 1 grids. In tlie ,general ti-level 
algorithm, tlie grids must. liave the adcli tioiial property taliat t81iey are properly nested, n.liicli iiieaiis 
that a grid at. soiiie level 31 is always fouiicl enibedderl in soiiie subset. of tlie level 71 - 1 grids. A 
level 11 grid is not allowed to be all or partially eiiilieddecl in parts of the grid stmcture that coiitain 
oiilv grids at. lower levels (1 , 2, . . . , 11. - 2). 

Returning to the t8tvo-level case, all refiiieiiieiit grids at. the fine level are automa t.ical1y replaced 
wi tli new refinement. grids after every m. timesteps, wliere n z  is a user-specified interval. Tlie 
solution data is interpolated onto the new grid liierarcliy before tlie calculation continues. For the 
purposes of this discussion, assuriie that solution values are available in all cells of all grids in t.lie 
current. grid liierarcliy. Tlie grid refiiieiiieiit regeiierabioii is rloiie au toiiiatically by estinia t.ing t lie 
error in the calculation at tlie current. timestep on all grids, and tlieii defining new refinenlent. grids 
in regions wliere tlie error is es tinia t a l  to be liiglier tlian soiiie user-specified t*oleraiice. 111 prac take, 
tlie error estiiiiatioii is done either 11y a Ricliarclson-e?ctra~~olat.ion procedure that. compares 
solutiolis on grids of different. overall resolution [3, 41, or by measuring the size of local solution 
graclieiits and refining in regions wliere the graclieiits liave heconie unacceptdily large relative to the 
grid [GI. Tlie latter approach was employed for tlie computations presented in the present. paper. 
Using one of these procedures. the error is estimated in each cell on tlie grid, and cells with 
unacceptably liigli estiniatecl error are “flaggecl.” Since tlie grid will not. be refined agaiii for 171 

times teps on the base grid level, it is iiccessary to expand tAe refiiieriienb region soniewliat. before a 
refinementr grid is consbruct.ed. A siniple donlain-of-clepeiicleiice argument. requires that. an 
aclditioiial row of cells be added around each group of flagged cells for eacli tiniestep bliat. the 
conipu tation will proceed without. re-refinement of the grid. Tliis is referred to as 61ie 
“cell-cliEitsion” step of the Ahsf R grid coiistructioii procedure. Once this is done, the flagged cells 
are grouped into “1)oxes” , or rectangular regions using a procedure clescribecl in [3]. R.efined grids 
with a user-specified refiiieiiieiita factor 7 1  ,.f~ relative t.0 Blie base grid are tlieii constructed in eacli of 
the hoxes. Tlie solution on tlie previous adaptive grid hierarchy is then interpolated onto tlie iiew 
grid liierarcliv. In regions wliere the solution is defined on iiiore tliaii oiie grid refinement. level, the 
solut.ion values 011 the finest. grid available are used. 

Once tlie data is available on all of the grids in the new grid liierarcliy, the solution procedure 
caii continue. First. the coarse grid solution is advanced by one tailiiest.ep in all interior cells of the 
coarse grid. This iiiclucles coarse grid cells that. are covered by a refined grid. Boundary coiiclit.ions 
for tliis step are assumed to be provided as part of the original probleni specification. Once the 
coarse grid solution lias been advanced, tlie solution 011 tlie refinement. grid patches Cali be 
aclvaiiced. Since the solution method is explicit., the refinement grid solut,ioiis are advanced using 
tlie same CFL t.imestep restriction as on tlic coarse grid. Tliis iiieaiis that. I I , , , , ~  timesteps mnst. be 
taken on tlie fine grids for each siiigle t.imrsbep on the coarse grid. Dounclary coiiclitioiis for each of 
t.he refinement. patches are ob hiiiccl again followiiig the principle t h t .  the %est.” values available 
should be talcen. At. fine grid bounclaries wliere there is a refinement. grid ab the same refinenienb 
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level 71 iiiiiiiediately adjacent, values from the adjacent grid are used to provide the bounclary 
coiicli tions. At. fine grid boundaries where the acljaceiit. grid is at. a coarser level, liounclarv values 
are obtained by interpolating tlie coarse-grid solution in space a d  time. When atlvaiiciiig the 
solution of a system of liyperliolic coriservatioii laws with a conservative method, an aclditioiial 
“conservative update’7 st.ep is talteii in wliicli values in coarse grid cells at. the coarse-fine grid 
interface are recoriiprtted using fluxes availnble froiii tlie fine grid calculations. Details of this 
procedure are found, for example, in [3]. Finally, once fine-level values are available at  tlie new 
timest-ep of the coarse grid, the coarse grid solut.ion values in cells covered by refiiieiiieiit patches are 
replaced by transferring or int.erpolabing fine grid values to tlie coarse grid cells. This assures that. 
the liest, possible values are always used in the solution procedure for tlie succeeding t iniestep. 

Solution Procedure Using Overlapping Grids Without. AMR 

An overlapping grid in two space cliiiieiisioiis corisis t-s of a set. of logically rec tmgular curvilinear 
component grids tlia t. overlay wliere they meet, arid whose uiiioii coiiiplet.ely covers blie 
coiiiputa bioiial doiiiaiii for a syst.em of partial differential equations. The cells on each coniponeiit. 
grid are classified arcorcling to their function cluring t.he PDE solu tiori procedure. “Iiiterior” or 
“discretization” cells are cells on a coxiiponent gri,d that. can lie updatecl using an interior 
discretization foriiiula for the PDE. This iiieaiis that each discretization cell has a Iiuffer zoiie of 
cells around it. of sufficient. wid t.h that, the iiiterior cliscretizatioii foriiiula caii be applied. Near 
physical boundaries of the domain, “fictitiou~’~ or “gIiost“ cells are added t.o the componenta grid 
outside t~he pliysical IiouncIarv. Boundary coritlitioris derived from the physical boundary coricli tioiis 
for t.lie prohleni, or using consideratioiis 1,ascd on iiuiiierical analysis, are used to update t lie 
solution values in t.liese cells. In regions of overlap between the coniponeiit. grids. “interpolat.ion” 
cells are included in tlie grid. Solution values in these cells are uptlated using an interpolation 
foriiiula applied ho a stencil of cells on an adjacent. coniponent. grid. As with the ghost. cells, 
int,erpola tion cells are iiicluded in the grid t.0 provide the necessary buffer zone around every 
discretizat,ioii cell so that. the iiitcrior cl‘iscretizatioii foriiiula may be applied. 

The overlapping grids used in this paper are constructed using tlie CMPGRD overlapping grid 
software deidoped by Cliessliire and Heiisliaw [ 1’71, [22]. Overset grids consbructed using taliis 
soft.ware have the property that they overlap the iiiiiiiiniiiii amount. necessary in order that 
esseiit2ially centered int.erpolat.ioii foriiiulas caii be used to transfer values lietween adjacent. grids 
cluring a PDE solutioii procedure. CAiPGR.D automatically generates ari overlapping grid along 
with all the cla ta necessary for coiiiniiuiicat.iiig data between t,lie coniponent. grids given a set. of 
user-specified “coiiipoiieiit.” grids, each of wliicli is a logically-rect,angular grid in general curvilinear 
coordinates. If the original user-specified coniponeiit grids overlap more tliaii this minimum . 
required aiiiouiit., the tin-needed cells are liiarliecl as “inactive” ant1 are not. used in t.he PDE 
solution procedure. In the coniputa t ions presented in this paper, CMPGR,D was used both as an 
interactive package for the constluct.ion of tlie initial untlerlying overlapping grid, aiid also as part. 
of the AhIR. PDE solver. where it is callcd as a sulxout.ine and used for embeclding AMR 
refineiiient. grids within the uiiclerlying overlapping grid. For bliis project, we iiioclifiecl ChIPGRD to 
be able to insert. refinenlent. grids adaptively cluring a PDE solut.ion process. The basic principles 
and algorithm details for overlapping grid coiistmction are descrilied in riiore detail in [ 1 i] and [22]. 
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Because of space considerations, the detailed iiiodificatioiis needed for the overlap algori t h i  for 
adaptive grids will lie discussed in an arcliival paper. 

Aclalit,ively- refined Overlapping Grids 

We discuss liere the procedure for aclvaiiciiig a PDE soltit-ion by one coarse-level t.iniest.ep 011 an 
aclalitivelv-refined overlapping grid. An adap tively-refined overlapping grid s t-ructure corisis ts of a 
set of underlying curvilinear conipoiient grids A, B, C,  ... tliat riialie up the %ase grid“ for the 
problem? each of wliicli may contaiii emheclded refinement grids. 

The emhedded refinement grids liave tlie property that. they are both properly nested and 
properly aligned with their parent componentq grid just as in tlie single grid case cliscussed above in 
the section entitled “Solut8ioii procedure usiiig AMR on a single grid”. If a region of refiiieiiieiit- is 
needed that. extends beyond the boundary of active cells of one of tlie parent. component grids aiid 
into a region covered by the active cells of another parent. component grid, each of tlie parent. 
component grids is refiriecl separatrely rat.lier than atteinptiiig t,o construct a single refirleilielit, patcli 
that covers t.lie entire refiiieiiieiit region. This is an iniportant point in our adaptive iiiesli 
proceclure, since it. greatly simplifies t,lie grid construction algorithm compared to what, would lie 
required if general adapt3ive refinement. grids were allowed. The interior cells of a refinenlent. grid 
patch inust lie conipletely witJiin tlie interior cell region of its parent. grid(s) a t  the next coarser 
level. If a refiiieinent patch is created adjacent. to an overlap bounclary of the parenb grid, its 
overlap interpolation cells will lie coinpletely wi t,liiii the set of overlap interpolation cells for t lie 
parent. grid(s) as well. 

Tlie overlap interpolation rules for overlap regions 011 an aclal>tively-refiiied overlapping grid 
specifv t,liat. i ~ ~ l i i e s  are iiiterpolat,ecl from acl-jaceiit componentv grids preferentially from grids at. the 
saiiie level. followed in preference by grids at the iiexb coarsest level. The implicit. assunilition liere 
is tliat. cell size aiicl aspect. ratio of gricls at. tlie saiiie refiiieriieiit level on adjacent. component grids 
is roughly t$lie saiiic. Tlius it. is iiiost. appropriate to interpolate values from adjaceiib grids at. tlie 
same refiiieiiieiit level iiiiless sucli a grid is not. available, in  which case the best possible values 
slioulcl lie used. The proper-iiesting assuniptioii implies tliab in the latter case, tlie values will coiiie 
froin coarser refinement. levels on the acl.jacent. grid. While it could occur that tlie adjacent. 
component grid would liave values available at finer levels, interpolation from the finer level 
acl.jacent grids is not necessary since the values would lie approximately equally tlegradecl 11y 
interpolating directly from t.he fine grids as they wotilcl lie by first. t.ransferring values to the 
adjacent coarse grid and then interpolating. 

We iioii’ cliscuss the procedure for constructing the new refinementn grid patches in the t.wo-leve1 
refinement. case where tlie atlap hive grid liierarcliy consists of tAe Base overlapping grid t.oget1ier 
with refinement. grid patclies oiie level filler than the base grid. The solut.ion data is assumed to be 
available in all cells on all grids in tlic adaptive overlapping grid liierarcliy at. the beginning of the 
coarse-grid tiiiiestep. As in t lie single-grid case. all the refinement. grids a t  the fine level are 
replaced at. user-specified tiiiiestep int.ervals using the adaptive procedure. Tlie proceclure for 
coiis truc ting the new refinemelit, grid pa tclies is easeiit*ially tlie saiiie as for the one-grid case. An 
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lnterpolatlon Region Grid B2 
/ 

’ Interpolation Region Grid B 

Figure 1: The interpolation cells for refinement grid B2 lie within the interpolation region for grid 
B. Interior cells for grid B2 may not lie inside the interpolation region for the coarser grid. 

error estimation procedure is used on each parent grid in all interior cells, and cells of high 
estimated error are flagged. The set of flagged cells is then “diffused” as in the single-grid case. A 
difference in the overlapping grid case, however, is that we do not permit interpolation cells on the 
coarse grid to be flagged by either the error estimation or diffusion procedure. This is disallowed to 
simplify the AMR solution procedure on an overlapping grid. If the diffusion procedure indicates 
that an interpolation cell should be flagged, the “interpolee” cells [23] on the adjacent, grid are 
flagged instead (If a cell on grid A interpolates from cells on grid B, tohe interpolee cells for an 
interpolateion cell on grid A are defined to be those cells on grid L? that are included in the 
interpolat*ion stencil used for determining the solution value in the interpolation cell on grid A). 
This procedure of flagging interpolee cells is a logical extension to the overlapping grid case of the 
basic domain-of-dependence argument for the cell-diffusion process. It, also provides for the 
expansion of a refinement region across overlap boundaries during the course of a. time-dependent 
PDE solution, which otherwise would not take place. Figures 2-4 illustrate the procedure with the 
curved grid representing grid A and the rectilinear grid represents grid B. 

The solution on an adaptively-refined overlapping grid is updated as follows. Values are first 
transferred from the old adaptively-refined grid hierarchy. For interior discretization cells, this 
involves either copying values from grids at the same level with the same parent grid, or 
transferring values from grids at the next coarser level on the same parent grid. Values in 
interpolation cells are transferred in a different way. These values must either be copied from an old 
grid at. the same level with the same parent component grid or they must he interpolat,ed from data 
on an adjacent component grid according to the int,erpolation rules given above. It. is important 
never to transfer coarse grid interpolation values to fine interpolation cells since a degradation of 
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Figure 2: The cell on the curved grid shaded dark dark gray is flagged m a high error cell and will 
be refined. 

Figure 3: A single “diffusion” step of flagging surrounding cells is done. Note that interpolation cells 
(1ight.er gray) are touched by the cIiffusion. These cells are only tagged for the purpose of flagging 
the underlying “int-erpolee” cells and will not be refined. 
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Figure 4: The cells are on the rectilinear grid are flagged (shaded an intermediate gray) because they 
are used for interpolation data by the flagged interpolation points on the curvilinear grid. 

the computed solution can result. 

Away from interpolation boundaries, the solution advance procedure is identical to the 
single-grid AMR procedure. The only difference in the solution advance procedure for int-erpolation 
cells is that no conservative update procedure is usecl.. This is largely due t80 the fact t,hat, we feel 
that satisfactorily efficient methods for conservative update of overlap boundary values on general 
overlapping gricls have not been developed. Some research has been done in this area, however, cf. 
[23, 241. 

SOME IMPLEMENTATION DETAILS 

AMR codes have greater code complexity than single or even block structured logically 
rectangular grid methods. The primary reason for the programming complexity is the demands 
made on the programming environment for dynamic allocation and deallocation of data structures. 
Even communication between grids at the same or different levels is nontrivial. To handle the 
programming complexity, we have begun to move to a programming language more capable in the 
manipulation of complex data structures. We use C++ [25] to handle the dynamic memory 
management. of the data structures and FORTRAN for t.he numerical parts of the algorithm such as 
the integration. This is the first step in moving towards a C++ based programming environment 
that not only abstracts out t-he dat.a structures but hides details of a parallel implementation as 
well. 

C++ 
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C++ is a superset (with some very minor exceptions) of tlie programming language C. For 
those who appreciat$e C, tlie postfix operator l1 ++” is usecl to increment. liy one tlie variable it 
follows. Therefore C++ is literally an addoii to C. C++ adds new capabilities that. liring it. into the 
realm of what. is called Object. Orieiit.ed Prograniiiiing (OOP). OOP is a tecliiiique, cliscipline or 
style of writing progranis. Here algorithms are organized around cla t,a structures called objects that 
both hold c1at.a and supply t.lie functions needed to nianipulate tlie data in safe ways. Eiicapsulatioii 
is often used to describe this process. Tlie goal of OOP is bo ge1ierat.e reusable program modules 
with few side eff’ec t.s. The idea seems a good aiicl siniple concept from a coiiiiiioii sense viewpoint. 
hut. the impleiiieiit.at,ioii of flexible and reusable objects libraries requires a great deal of forethought. 
aiid design. Practice shows 11s that. several design iterabioiis are often required to “get. it. right”. 

The primary way C is augnicnted to beconie a language that supports OOP is though tlie 
iiitrocluction of tlie data structure called a class. A class, in its most simple form, is a st.ruct.ure 
wliich in turn is much like a coiiiiiioii block in FORTRAN. However, classes are used to iiistaiiCiate 
o1iject.s by associating nieniher functions wi tli the class. Member functions are simply functions that. 
operate on the data wit.1iiii the class/strwcture. Once classes are iutxocluced C++ caii hanclle txo 
basic OOP programming paradignis. The first is called inheritance and tlie secoiicl i.’oly?raori.’ltis7la. 

Iiiheri tance is a iiiecliaiiisiii of reuse of objects. New objects can be created from currently 
available o1iject.s liy iiilieri tance. Tlie iiilieri ting objects will liave all the properties of the inherited 
ohjects plus wlia tever is adclecl (dat a or iiiore iiienilm functions). Inlieri t.ance facilitates a rich 
st-ructure of ol1,ject.s tlirougli iiiultiple irilierihaiice (inheriting an iiilieri ted class which may in turn 
inherit o tdier classes) yet. allows the developer to encapsulate clata at. all levels. However, no 
prograiniiiiiig paracligiii will prevent people from wri tiiig sloppy code. 

Iiiheri tmice is further eiiliaiicecl by Polyiiiorpliism. Polyiiiorpliisiii literally riiearis many sliapes. 
111 C++ the saxlie funct.ion iiaiiie or even operahors such as ” +” , ” *” , ... caii lie usecl for many 
purposes. A simple example is to consider the tsyype double, a double precision nuniber. Doubles can 
lie added. sul)bract.ecl. iiiult.iplied, along with a host. of arithietic operations. A siniple example of 
polymorpliism is tfo clefiiie a new class that. would represent. complex numbers as a pair of real 
iiunibers. Many of the saiiie ari t.limet.ic operators tliat are usecl to nianipulate cloubles can lie 
”overloacled” to iiiaiiipulat*e coiiililex nuiiibers as well. Tlie array class library we will describe 
below is anot.lier exaniple of polyaiorpliisni. 

D a h  St,ruct.ures 

The inii)leiiient.at,ioii of t.he ac1apt.it.e overlapping code heavily uses classes to manipulate aiicl 
manage user data. In acldi t.ioii, iiilieri t m c e  is also incorporated to iiiake the code much more 
ammenable to nioclificatioii and/or reuse. Polyniorpliisrii is used very little at this point.. However. 
our current. clirectioii is to use a C++ array class called A++/P++ [2G] with syntax similar to F90 
to develop newer versions of this and other overlapping grid codes. Here polymorpliisni will coiiie 
iiito play as we are overloading the ariblimetic operations four1 in C or C++ to manipulate 
iiiul t.icliiiieiisioiia1 arravs. 
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Tlie design of t.lie aclaptive overIapping code splits the overall algorithm into two sets of pieces. 
Tlie first. set. is a co1lect.ioa of objects and functions that implenient an ”abstract” actaptitre 
overlapping code. The second piece is supplied by a code cleveloper who maiibs to make his or her 
own adaptive overlapping iiiesh code. Wi bliiii the first collec tioii are objects that. describe the 
logical lavout. of the overlapping grids. These ob jects don’t. perform ariy approximation of the 
solution of PDEs but call be iiioclifircl so khat they do. .Here inheritmice is used. Tlie alistract 
o1iject.s are iiilierit.et1 by developer tlefiiierl objecbs that coiitaiii the necessary da t.a to perform useful 
computations. Other o1iject.s wi bliiii the abstract set develop a skelebon set, of fwictions that. give a 
roacliiiap t,liat. caii be used by code clewlopers to rnodify or rebuilcl a iiew algoritlim. These 
functions are called virtual. M’lieii o1iject.s are iiilieri tecl, the inheri tecl object. functions that. are 
labeled virtual car1 be replaced by the inherit.iiig object. Tliis clefiiies a clean interface betxeen t.Be 
developer and t.he ahstaract. code. The developer lias the flexibility to design the riglit functions for 
his or lier iieecls axid tlie ahst.rack iiiterface does not. have to be cliangecl. 

The primary data structwe wit.liin the alistmct. code is a list of ohjects that. represent, 
individual grids. All logical iriforina tion about a component grid or any refirieiiierih is stored in wlia t. 
is called a Patch class. Logical informat-ioii includes logical coorcliiiates of a grid, interpolation 
iiiforiiiatioii and bounclary coiicli tioii iiiforiiiation. A pntchNode is derived from a Patch so tlia t. it 
can be put. in a liiilred list class called a patchlist. This linked list coxitairis only patches at the 
same refinement level 011 a single overlapping grid component.. A levNode is derived from patchlist. 
t.o be added to a list of refinement. levels on a single grid This list. class is called a levlist. In 
aclditioii, there are point.ers within a levNode to point to list of patches 011 other component,s at. the 
same leveI. Finally a class called compNude is derived from levList to be contained in a list. of 
 refinement.^ at. all levels on all components called a complist. 

Although coinplex, iiiiplenient.at.ioi1 of this list stmcture is greatsly siniplified liy using C++ 
iiilieri tmce. “This allows the developer to colicelitrate on numerical aIgoritlinis rather Qliaii the cla t a 
management. aspects. Figure 5 illustrat.es tlie coniplete hierarchy. 

Tlie actual grid geiieratioii is perforiiiecl by calIiiig as a subroutine the CAIPGRD iiiesli 
geiieratioii code [ 171 iiioclifierl to geiierate”mes1i refinements as discussed in the previous section. 
Finally, iiiaiiv siiialler objects and functions are used to help in regriclclirig and managing refinements 
within conipoxients. These objecbs came from a ver.y useful aiicl reusable C++ library from the 
Center for Computational Sciences at Lawrence Liveriiiore Nat.iona1 Lalioratory called BoxLib [Z]. 

NUh IERJCAL R.ESULTS 

Tlie computational exaiiiples present.erl in this paper are two dimensional siiiirila t.ioiis of 
compressible fluid flow as clescribetl by a iiuiiierical approxiniat.ioii to the compressible Euler 
equations. The code ritiis both t.wo - and thee  diniensional problems hi t .  three- cliiiiensional results 
will be descrilied iii a se1iarat.e jotiriinl article because of space liiiii t.at.ions. In general curdincar 
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Grid Data Structure Hierarchy 

- 
patchNode 

- . ] --* (to other patches in the same component and level) Patch 1 -- 
- ._. - . 

( to other IevNodes at same level 
-. -* on different components) 

1 ----iixoae1 ---q [iz~q I-* (to other IevNodes on the same 
8 component at other levels) 

IevList I 

__ . .. .._.I_ ___-._ I compList 

Figure 5: The list. e1ement.s from blie top are incorpora t.ecl into iiiore conilAex c1at.a s bruc tures further 
ClOWll . 
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Here 

i= 1 

are the contravariant velocities, and Jt := [let( 
t.raiisforniat.ion froni Cart.esiaii coordiiiat.es x := ( X I ,  x2, 2) tqo curvilinear coordinates 

:= ([I, E 2 ,  ['3). Tlie dependent. varililes are tdie density p, tJie tliree coniponents of ve1ocit.y 
t i i ,  1: = 1.2 ,3 ,  and the eiiergy E.  The pressure, 11 is relat.ec1 t.0 the other variables through the 
equation of state for an ideal gas: 11 = (y - l ) ( p E  - ipCi(ui)2). The finite difference method used 
for the compa t-a tions is lmed  on the coiiservative cell-cent$erecl up'~inrl-centere(Iicl-ceiit.ere(1 Gocluiiov iiiet.lioc1 
in [ZO]. It. lias been modified t.0 use a linearized ap1iroximat.e Rieinaiiii solver described in 
unpublisliecl work l y  Colella, Glaz and Fergusori. (Tlie original iiiethod in[20] used a 
comput.at.ioiiall!I iiiore expensive approxiinatae flux funct.ion liased 011 [28j.) 

I is t.lie cleberiiiinaiit. of the coordinate 

Several test problems were outlined, in advance, by the conference organizers to stiniulate 
cliscussion at. t.he worlrsliop. IIre cliose to compu t.e the double wedge geoiiietqr wliere an oiicoiiiiiig 
Mach 2.1G shock hits a wedge at. an angle of 20 degrees followed by a wedge at  an angle of 50 
degrees three horizontal uiii ts la t,er. Quiescent, presliock values are uiii t-y in  tdie pressure and 
clensit,v. Tlie rat-io of the specific heats (y) is 1.4. Because the geomet.ry was simple enough. two 
coiiiputattioiis were preformecl. The first, coinputation used a single grid t.liat. was cleforriied to fit. the 
doukle wedge geonietry. The second coiiiput.ation uses two component. grids -- the first. grid being a 
Cartesian gfid and the second grid coliform to the wedge bounclary cut.t.ing away the cart.esian grid. 

Figures G and 7 show the grids aiid t1eiisit.y for times near 2.5 tiiie ui1it.s. The solutions are very 
nearlv the saiiie iii structure. However, single grid computation ran iii t-wice the nwnber of cycles 
that. the two grid coniputation did. This' is priiiiarily caused 1iy the thes tSep  in the single grid case 
lieiiig unnecessarily CFL limit.ec1 in tlie upper riglit liaiicl corrier of t.lie comput.at.ioii. The two grid 
case lias uniform cell sizes t.lirougliou t. t.lie comput.at.iona1 region. Another issue lirouglit out. by 
these coiiiput.at.ioiis is conservation. Tlie two grid computation is not coiiservative yet still ilia tclies 
tlie single conservative grid case. This reflects our experience that. if care is talceii in iiiakiiig sure 
that. cells sizes don't. vary greatly from coiiipoiieiitn to component. then iioiicoiiserva tive iiiterpolation 
is sufficient for coniput~atioiial purposes. 

Tlie last. sub.jec o discuss is overall performance of the adaptive algori t h i .  At this point. the 
t.ime spent in tlie integrator is less t.lian 50% of blie entire rmi time. This is priniarily due t.0 t.1i.e 
current iiiiplenieiit.at,ioii of the composite grid geiierabioii package. This package liandles each point. 
on each grid separately iristeat1 of processing a list of points in a vectoriztcl iiiaiiIier. lye are 
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Figure 6: The adaptive grids for a single base grid (top) and two base grid (bottom) computation 
near time 2.5. 
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Figure 7: The density contours for a single base grid (t.op) and tswo base grid (bottom) computation 
near time 2.5. 
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curreutly rewri Biiig the mesli generation package so that i t  can achieve vector pei-foriiiance. 

* 

R.eferences 

[l] hl. ,J. Berger and J .  Oliger. Adaptive mesh refiiieineiit8 for liypherkolic partial clifferentkd 
equations. J .  Comp. Phys. , 53:561-%8, March 1984. 

[Z] M. J .  Berger and A. ,Janieson. Autoiiiatic adaptive grid refinement for the Eider equations. 
A IA A ,JOt /n i ( t l ,  23:4:5G 1-568 , 1985. 

[3] M. .J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. ,I. 
C077111. PhyS. , 82: G4-84 , 1989. 

[4] .J. Bell, M. Berger, J. Saltznian, and M. Welcome. Three dimensional aclaptive iiiesli 
refinement. for hyperbolic coiiservatioii laws. SIAM J.  Sci. Coniput., 15:127-138. 1994. 

[5]  E. G. Puclietb aiicl J. S. Saltzman. A 3D adaptive inesli refinement. algoritJirii for iiiult.iiiiat.eria1 
gas dynamics. Pliysica D, 60:84-93, 1092. 

[GI h4. J .  Berger and ,J. Saltzman. AMR on the Ch4-2. Applied Ntune~ical Mnthenintics, 
14~239-253, 1004. 

[ 71 M. .J. Berger and R. Leveque. Cart,esiaii iiieslies and adaptive iiiesli refinement, for liyperbolic 
part.ia1 clifferential equations. In B. Engquist and B. Chsbafsson, editors, Third Intertrcttionnl 
Conference on Hyperbolic Proble.rris, pages G7-73. Cliartwell-Brat to, 1991. 

[8] R.. B. Peiiiher, J .  B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome. Adaptive 
Cartesian grid iiietliocls for representiiig geoiiietry in inviscid compressible flow. In Proceedin.gs 
of the Eleventh AIAA Coiriputational Fluid Dynn.rrzics Conference. pages 530-539. AIAA. .June 
1003. 

[9] G. St.arius. Coniposi te riiesli diflereiice iiiebhocls for elliptic boiuiiclary value problems. Nwn. 
Math., 28, 1977. 

[ 101 G. Starius. On composite iiiesli difference methods for hyperbolic differential equations. 
Nzarier. Math., 35241 .255, 1980. 

[I 11 B. Iireiss. Construcbioii of a curvilinear grid. SIAM J .  Sci. Stat. Conipzit., 4:2TO-2T9, 1983. 

[12] J .  A. Beiieli, .J. L. Steger, and F. C. Doiigliert,y. A flexible grid emliedding technique wibh 
applicabion bo the Eider equations. AIAA p p e r  8,71944, 1983. 

[13] ,J. A. Beneli, P. G. Buning, and J .  L. Steger. A 3-D Cliiiiiera grid embeclding t.ec1iniclue. In 
Proceedings of the 7th AIA A Coiril)zstatio.rinl Fluid Dy7i.a7uics Conferetsce, Cincinnati, pages 
322-331. AIAA, 1985. 

109 



[14] P. G. Buiiiiig, I. T. Cliiu, S. Obayaslii, Y.  M. Rizk, and J. L. Steger. Numerical siriiulatioii of 

[ 151 F. C. Doug1iert.y and ,J-H I<uaii. Transonic stsore separation using a t.liree-dimensiona1 Cliiiiiera 

. [ 161 G, S. Chesshire. Cornposite Grid Construction and Applications. PliD thesis, California 

the integrated space shuttle vehicle in ascent. AIAA paper 88-4359-CP, AIAA, 1988. 

grid scheme. AIAA paper 89-0637, AIAA, 1989. 

Institute of Technology, 19%. 

[ 171 G. Chesshire and W. D. Hensliaw. Composit.e overlapping meshes for tlie solutiori of partial 
differential equations. J .  Conip. Pliys., 90( l):l-G4, 1990. 

[18] D.L. Browii, G. Chesshire, W.D. Hensliaw, and H.O. Icreiss. On com1iosit.e overlapping grids. 
In Proceedings of the Seventh Iiiteinntionnl Conference on Finite Element Methods in Flow 
Proble~r~s, 1989. 

[19] J. F. Thompson. A composite grid generation code for general 3D regions - the Eagle code. 
A I A A  J., 2G:271, 1988. 

[20] D. L. Brown. An unspli t. Goduiiov method for sys tem of conservation laws on curvilinear 
overlapping grids. Mnthl. Conipt.  h fode~~ing ,  20( 10):29-48, 1994. 

[21 J P. Colella. Rlulticlimensioiial upwind metliocls for liyperbolic coiiserva tion laws, ,I. Conqi. 
Phys., 87:171-200, 1990. 

[22] D. L. Brown, G. Chesshire, and W. D. Hensliaw. Getting started with CMPGRD, intxoductory 
user's guide and reference manual. LANL uncladsified report. LA-UR-90-3'729. Los Alariios 
National Laborat.ory, 1990. 

[23] G. Cliessliire and W. D. Hensliaw. A sclieiiie for conservative interpolation 011 overlapping 
grids. SIAM J .  Sci. Compi~t., 15(4):819-845, July 1994. 

[24] h'f. ,J. Berger. 011 conservation a t  grid interfaces. SIAM J .  of Numer. A'IzcI~. ,  243967-984, 198'7. 

[25] Bjariie S t-roustrup. The C++ Progrnmmhg Lnngiiage. Adclison Wesley, second edition, 1992. 

[ZG] R,. Parsons aiid D. Quinlan. Run-time recognition of task parallelism within the p++ parallel 
arrav class lilirarv. Tecliiiical R.eports LA-UR-93-3833, Los Alariios Na tiorial Laborat.ory, 
Octoher 1993. proceedings of the IEEE Conference on Scalable Parallel Libraries at. Mississippi 
State University, Oct. G-8, 1993. 

[27] hi. Welconie, VI. Crutclifielcl, C. R,eiicllenian, *J. Bell, L. Howell, V. Beckner, arid D. Sinikins. 
L3ozLib User's Guide a7zd i k f ( c 7 1 2 ~ d .  Lawrence Liveriiiore National Laboratory, Lawrence 
Livermore National Laboratory, Livermore, CA 94550, versiori 0.02 beta edition, Sept.eiiiber 
1994. A Library for Managing Rectangular Doniaiiis. 

[28] *J. Bell, P. Colella, and ,J. Trangeiistein. Higher order Goclunov methods for general systenis of 
hyperbolic coiiservateioiis l a w .  ,I. camp f'hys., 82:362--397, 1989. 

110 


