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SUMMARY 

In recent work we have formulated a new approach to compressible flow simulation, combining 
the advantages of shock-fitting and shock-capturing. Using a cell-centered Roe scheme 
discretization on unstructured meshes, we warp the mesh while marching to steady state, so that 
mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting 
Lagrangian Adaptive Method (SLAM) is, in effect, a reliable shock-capturing algorithm which 
yields shock-fit ted accuracy at convergence. 

INTRODUCTION 

One of the principal difficulties in computing compressible flows is that such flows are generally 
only piecewise smooth. The solutions are smooth, except along a sequence of arcs or surfaces at 
which the solution or its derivatives have jump discontinuities. In the vicinity of these 
discontinuities, difference approximations are problematic. Moreover, errors at shocks can 
contaminate the solution everywhere. 

shock-fit ting. Shock-capturing, in which one applies a well chosen difference scheme throughout the 
flow field, is effective and reliable, but is usually only first order accurate near shocks. Such schemes 
smear shocks over several mesh cells, limiting the accuracy and resolution obtainable. 

The alternative is shock-fitting) in which the shocks are treated as internal boundaries in the 
flow across which one applies the Rankine-Hugoniot jump conditions. Shock-fitting algorithms can 
achieve an arbitrarily high order of accuracy, though properly locating shocks is difficult, especially 
for flows containing complex embedded shocks. 

In recent work we have formulated a new approach to compressible flow simulation, combining 
the advantages of shock-fitting and shock-capturing. The fundamental difficulty in shock-fitting has 
always been that of unambiguously detecting and locating shocks. In simple cases, such as that of a 
strong bow shock, one has enough afiriori knowledge of the shock location that fitting schemes are 
highly successful. However) in more complex situations, shock-fitting becomes difficult and 
unreliable. For this reason, given the simplicity and effectiveness of modern shock-capturing 
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There are two basic approaches to computation of compressible flows, shock-capturing and 
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schemes, the latter have come to dominate computational aerodynamics, despite their limited 
resolution. 

unstructured meshes [l]. Roe’s scheme is a popular and effective method, which has an interesting 
property: at steady state, this scheme imposes the exact Rankine-Hugoniot jump conditions on any 
cell face which is oriented to and lying along a shock or other flow discontinuity. Thus if we warp 
the mesh while marching to steady state, so that shocks and other discontinuities lie along cell 
faces, Roe’s scheme gives virtually exact answers there. This is the basic idea of the Shock-fitting 
Lagrangian Adaptive Method. SLAM is, in effect, a reliable shock-capturing algorithm, which 
incidentally yields shock-fitted solutions at convergence, with the attendant improvement in 
accuracy and resolution. 

The new approach we are exploring begins with a cell-centered Roe discretization, on 

RELATED WORK 

While shock-fitting has existed for decades [2, 3,4], the idea of warping an unstructured grid in a 
shock-capturing code to effectively fit shocks is new. The basic idea of using a conservative 
shock-capturing scheme on unstructured meshes, and warping the mesh to fit shocks during 
iteration to convergence, was independently developed by several groups, including ourselves. 

beyond that the details of these approaches differ, Parpia and Parikh [5] use the waves occuring in 
a six-wave multidimensional Riemann solver to align mesh edges with shocks, without actually 
fitting shocks. The multidimensional Riemann solver, due originally to Roe, is described in 
references IS, 73. Aligning the grid allows them to achieve true “one-point” shocks, free of the 
“splitting error” that occurs when shocks cross the mesh at an oblique angle. The other group, 
Trepanier et al., also used the six-wave multidimensional Riemann solver’to control mesh warping 
[8, 91. HoweTjer, unlike Parpia and Parikh, they also move mesh edges to coincide with shocks, thus 
obtaining shock-fitting accuracy in the final solution. 

Our algorithm is similar to that of Trepanier et al., differing in that we warp the mesh using only 
density gradients, rather than using the waves occuring in a multidimensional Riemann solver. 
Thus unlike these other groups, we do not need a separate discretization to control mesh movement. 
In effect, we are reusing information from the Roe scheme discretization. 

All three of the groups we are aware of used algorithms based on Roe-scheme discretizations, but 

ALGORITHM DESIGN 

The discretization used here is the cell centered Roe scheme. This is an effective and heavily 
used scheme, whose occasional failings are now well understood and easily overcome [lo]. In our 
algorithm we march to steady state using the Roe scheme coupled to a “locally implicit’’ time 
stepping scheme [l]. For the first 30 or 40 iterations, we keep the mesh frozen, allowing initial 
transients to dissipate. After that, we allow the mesh to warp at each time step to fit the 
developing shocks. 
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Figure 1: Attraction of Vertices to Shock 

Our scheme for warping the mesh consists of two separate components: 

1. A shock detector 

2. A vertex attraction force 

The latter is applied only at points detected as shocks. There is no direct consideration of either 
attracting or orienting edges, we simply attract vertices to shocks. In effect, we are making use of 
the following principle: 

When two vertices of a triangle (or three of a tetrahedron) lie on  a 
straight shock, the intervening cell face exactly fits the shock. 

Our current shock detector uses density gradients at the vertices, computed, for example, by 
Green's theorem path integrals. Let g," denote the density gradient at vertex v and time step n. For 
all neighboring vertices, a of v, define a weight 

where . denotes the normal inner product. Then we take the weighted average of gradient norms, 
with 
respect to these weights: 

Cneighbors w: I Is," I I c," = 
Cneighbors wt 

We flag points at which the density gradient exceeds this average of gradients at surrounding 
points. In particular, we threshold the quantity 

where E > 0 is needed to avoid division by zero in smooth regions. With both numerator and 
denominator proportional to the density gradient (neglecting epsilon), this detector is equally 
effective at detecting weak and strong shocks. 

forces to each shocked vertex. The force at vertex TI in our scheme is of the form: 
Once we have flagged the vertices along the shock, we attract vertices to the shock, by applying 

9," s; - 
Il9vnII 

That is, a scalar multiple, of the unit vector in the direction of the density gradient. The scale 
factor st: 

S: = h," (pz-z) 6; 
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with: 

h: ......... local mesh size 

p, ......... angle-weighted vertex average 

pv ......... local ambient density 

n 

-n 

6: ......... magnitude of local density range 

We take h: to be the minimum length of edges incident on v, while p: is the angle-weighted vertex 
average, as before. 

both depend on the range of density in a small surrounding region. Define 
the “local maximum density” p’;”,, as the maximum density in cells touching vertices neighboring v. 
Thus P’;” ,~ is the maximum density in the 20 or so surrounding cells. Similarly, define the “local 
minimum density” pg,v as the minimum density in these surrounding cells. Then the local density 
range is: 

Quantities 6: and 

n 
6: = P?,v - P0,v 

Similarly, the local “ambient density” is 

Note that this is an average of density extremes, as opposed to a direct average of densities. 
The motivation behind all of this is the following. A vertex along a shock is correctly located 

when the density value there is midway the high and low density in a surrounding region. Thus we 
want to satisfy the equation 

at vertices along shocks. The scale factor s: approximates the amount of the correction needed to 
satisfy this equation. Since we adjust the grid at every iteration, the precise scale factor used is 
unimportant; in effect it is just a relaxation parameter. 

P1 = IC 

MESH CONTROL 

In our scheme, vertices are rapidly attracted to shocks. However, without constraints on mesh 
movement, one rapidly produces undesirably thin cells, or negative cell areas. To avoid this two 
things are needed: 

1. mesh control forces, partially counteracting the forces attracting shocks to vertices. 

2. mesh movement step-size control. 

We are currently using two forces, one proportional to the change in cell area, another based on 
angles at vertices. The latter, which applies torques on edges, prevents angles from approaching 
either 0 or 180 degrees. As angles approach either 0 or 180 degrees, the torques it produces become 
infinite. Thus if the ODE governing mesh movement is properly integrated, degenerate triangles 
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cannot occur. By contrast, using “springs” on edges is not effective, since they cannot prevent 
angles from approaching 0 or 180 degrees. 

is to compute a maximum step at each vertex, designed to prevent degenerate triangles. For every 
triangular cell R let h m ; , ( T )  be the minimum of the three altitudes. Then for each vertex define 

There are a number of ways to control the step-size in the mesh movement scheme. Our approach 

min hmin (R)  
neighborzng triangles 

hmin (v) = 

If no vertex v moves further than ihmin(v), degenerate triangles cannot occur. 
Note that controlling step-size alone suffices to prevent degenerate triangles, 

may be quite poor. The combination of these mesh control forces and step-size 
maintaining mesh quality, while still allowing effective fitting of shocks. 

but grid quality 
control suffices to 

GENERALIZED VAN ALBADA LIMITER 

The first order scheme just described works well, but provides inadequate resolution in smooth 
regions. Second or third order accuracy can be achieved with a MUSCL-style scheme [Ill, in which 
one reconstructs a polynomial in every cell via an appropriate “limiter.” One way of doing this is to 
adapt the stencils, following the EN0 approach. However EN0 is complex and expensive on 
unstructured meshes [12]. 

Our approach is, instead, to use a multidimensional generalization of the Van Albada limiter 
[13]. This limiter is simple, reliable, and has the attractive property of not clipping extrema. Thus 
it can, in principle, achieve perfectly sharp approximations of N-waves on very coarse meshes. 

The goal in a MUSCL scheme is to replace the constant value in each cell by a linearly varying 
distribution 

where (Sq); is an approximation to the gradient. The Van Albada limiter takes this gradient as a 
nonlinear average of the gradients computed by forward and backward differencing: 

a n ( d  = a;” + (71 - 7 1 i ) ( w ;  

(SdP = ave (4;”+1 - a;“, a;” - qn i-1 ) 7 

using the averaging function 

(b2 + c2) a + (a2 +e2)  b 
u2 + b2 + 2 c2 

ave ( a ,  b)  = ’ 
where epsilon is a small positive constant designed to provide smooth transitions. This kind of 
averaging was used in [13] for all quantities except density, which was handled slightly differently to 
avoid negative overshoots in strong astrophysical flows. 

The Van Albada limiter generalizes easily to unstructured meshes. To see this, rewrite the above 
formulas as 

with: 
(&a): = wa (@+I -a?) + wb (q?-a?-l), 

(b2 + e’) 
a2 + b2 + 2 c2’ 

wa = 

(a2 + c2) wb = 
a2 + b2 + 2 c2 
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Now in a similar way, for triangular mesh cells, assume one has gradients g:, g r ,  g," at the vertices 
of a triangle, obtained, as usual, by Green's theorem path integrals. Then one can compute the cell 
centered gradient as 

for suitable weights wa, Wb, w,. Constraining these weights by 

n gn = wa 9," + wbgr + wc 

w,, wb, wc E [o, 11. 
yields second order consistency of the overall scheme, assuming the nodal gradients are first order 
accurate. We also want to preserve the Van Albada property of not clipping extrema. The 
particular choice we used was 

( b  c + c2) w, = 
a b  + b c  + c a + 3 $ '  

(e  a + E2) wb = 
a b  + b c  + c a + 3 e 2 '  

( a  b + e2) w, = 
a b  + b c  + c a + 3  c2' 

with a = llga112, b = \lg~,11~, c = ~ ~ g c ~ ~ 2 .  Other choices work about as well. In particular, one can 
chose 

a = I lgal l ,  = Ilgbll, = Ilgcll, 

in closer analogy with the original Van Albada scheme. We prefer the stronger switching that 
occurs in using the squares. 

gradients use information entirely from one side of the jump, thus achieving second-order 
consistency while avoiding spurious oscillations. Thus one can think of this as an inexpensive 
approach to ENO, avoiding the use of complex adaptive stencils and to some extent the 
convergence difficulties they create. 

This generalized Van Albada limiter has the property that near strong jumps the reconstructed 

EXPERIMENTAL RESULTS 

Results obtained with SLAM, while preliminary, seem quite promising. We have, in general, no 
trouble with strong shocks, including attached and detached bow shocks, fish tail shocks, and 
standing shocks on transonic airfoils. Similar techniques can be used to resolve slip lines and 
contacts [9], though we have not yet studied this. 

Figure 3 shows the same mesh after modification by SLAM to align mesh edges with shocks. 
Figure 4 shows the density field on this 8,000 point adapted mesh. The shocks are sharp all the way 
to the far-field boundary, and the limiter is also producing an accurate solution in the smooth 
region between shocks. 

Figure 2 shows an un-adapted mesh of 8,000 points around a 10% circular arc airfoil, while 
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One can judge the solution more accurately by taking cross sections. Figures [6-7] show density 
contours on cross sections one and four chords from the axis, computed using the the 8,000 point 
mesh in Figure 3. As can be seen, the sonic-boom profile is well captured, even four chords from 
the axis. These solutions are mesh-converged to graphical accuracy in the smooth regions. 
However, there is a slight anticipation of the bow shock, due to small errors in the shock location. 
This is caused by several numerical effects, which create second-order errors in the shock location. 

For this simple problem, one can obtain qualitatively reasonable solutions via SLAM, using as 
few than 1,000 mesh points. However, accuracy is lacking until the smooth regions are resolved. By 
contrast, Figures 18-91 show the solution on the un-adapted 8,000 point mesh of Figure 2, one and 
four chords from the axis. With the Lagrangian mesh adaptivity turned off, the sonic boom profiles 
are now badly distorted. Figures [lo-111 show the same solution on a 32,000 point mesh. The 
solution is still quite smeared, even though this is a second order accurate scheme, and we made a 
real effort to locate mesh in regions where the sonic boom was expected. 

On the 8,000 point mesh, at four chords from the axis, Figure 9, the bow and tail shocks are 
separated by about 15 mesh widths. Thus significant smearing is inevitable. This smearing is not 
as severe on the 32,000 point mesh, which has four times the mesh density throughout the flow 
field, but the answer there is still much poorer than the SLAM solutions on the 8,000 point mesh. 
In particular, comparing Figures 11 and 7, notice that the extrema are substantially blurred on the 
32,000 point un-adapted mesh. The combination of Lagrangian adaptivity and our generalized Van 
Albada limiter is particularly effective at getting the extrema right. 

Figure 5 shows a more complicated example, flow over an airfoil with a perfectly sharp nose. 
Since the interior angle at the nose of this airfoil is zero, there is no shock there. Instead, a lambda 
shock forms in the free stream, some distance away, where the acoustic waves coalesce. Figures 12 
show the density cross section just off the body (0.1 chords from the axis). The smooth profile at 
the nose in Figure 12 rapidly steepens into a shock. By 0.4 chords, shown in Figure 13, the eventual 
N-wave solution is beginning to form. 

adaptive scheme has no effect on the underlying conservative discretization. Thus examples like 
this, with coalescing waves, intersecting shocks, and so on, present no difficulty, at least in principal. 

We are in the process of comparing the SLAM algorithm with standard mesh-enrichment 
schemes. SLAM achieves shock-fitted accuracy without addition of mesh points, while enrichment 
strategies substantially increase the number of mesh points, and still produce diffused shocks. Thus 
SLAM should, in general, require about one tenth as many mesh points as mesh-enrichment 
schemes in 2D, and should be relatively even better in 3D. The results of such a comparison will be 
reported in a sequel. 

The point of this second example is that, unlike most shock-fitting schemes, the Lagrangian 

CONCLUSIONS 

Lagrangian adaptive grid methods, like SLAM, have great potential for resolving shocks and 
other flow discontinuities. Unlike mesh-enrichment strategies, which put much finer mesh along 
shocks, fitting strategies can resolve discontinuities without increasing the number of mesh cells. 
This advantage is especially important in three dimensions, where the cost of tiling shocks with fine 
mesh is great. This improved resolution is achieved at little cost, and without loss of robustness, 
since we retain a Roe scheme-based shock capturing scheme. Thus even if the fitting scheme fails, 
we still have a robust and effective shock-capturing algorithm. 
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We have demonstrated the efficacy of SLAM in 2D, and are beginning work on an analogous 3D 
code. The latter is intended to be applied to the problem of predicting the sonic boom profiles of 
supersonic aircraft. Current CFD codes cannot adequately resolve the complex shock waves 
emanating from a supersonic vehicle, since one cannot afford a sufficiently fine grid extending 
several body-lengths from the aircraft. Fitting schemes, like SLAM, will be able to do much better, 

. and should be able to reproduce the complex shock patterns observed in wind-tunnel experiments. 
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Figure 2. Initial Mesh for Circular Arc Airfoil Figure 3. Adapted Mesh for Circular Arc Airfoil 

Figure 4. Flow Field, Circular Arc Airfoil, 
Mach 1.4. 8000-point Adapted Mesh 

Figure 5. Flow Field, Pointed-nose Airfoil 
Mach 1.8, 9000-point Adapted Mesh 
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Figure 6. Density One Chord from Axis, 
Circular Arc Airfoil, Mach 1.4, 

8000-point Adapted Mesh 
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Figure 8. Density One Chord from Axis, 
Circular Arc Airfoil, Mach 1.4, 
8000-point Un-adapted Mesh 
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Figure 7. Density Four Chords from Axis, 
Circular Arc Airfoil, Mach 1.4, 

8000-point Adapted Mesh 

1.2 I I I I 

1.16 - 
1.1 

1.06 - 
1 -  

- 

P 

0.95 - 
0.9 - 

0.85 1 
0.3 0.4 0.6 0.8 1 

z position 
0 

Figure 9. Density Four Chords from Axis, 
Circular Arc Airfoil, Mach 1.4, 
8000-point Un-adapted Mesh 
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Figure 10. Density One Chord from Axis, 
Circular Arc Airfoil, Mach 1.4, 
32000-point Un-adapted Mesh 

Figure 11. Density Four Chords from Axis, 
Circular Arc Airfoil, Mach 1.4, 
32000-point Un-adapted Mesh 
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Figure 12. Density 0.1 Chords from Axis, 
Pointed-nose Airfoil, Mach 1.8, 

9000-point Adapted Mesh 

Figure 13. Density 0.4 Chords from Axis, 
Pointed-nose Airfoil, Mach 1.8, 

9000-point Adapted Mesh 
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