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Abstract 

A method for generating high quality unstructured triangular grids for high Reynolds 
number Navier-Stokes calculations about complex geometries is described. Careful attention 
is paid in the mesh generation process to resolving efficiently the disparate length scales which 
arise in these flows. First the surface mesh is constructed in a way which ensures that the 
geometry is faithfully represented. The volume mesh generation then proceeds in two phases 
thus allowing the viscous and inviscid regions of the flow to be meshed optimally, A 
solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features 
is also described. The procedure for tracking wakes and refinement criteria appropriate for 
shock detection are described. Although at present it has only been implemented in two 
dimensions, the grid generation process has been designed with the extension to three 
dimensions in mind. An implicit, higher-order, upwind method is also presented for 
computing compressible turbulent flows on these meshes. Two recently developed 
one-equation turbulence models have been implemented to simulate the effects of the fluid 
turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are 
presented which clearly show the improved resolution obtainable. 

1 Introduction 
The desire in the engineering community to  simulate numerically flows about increasingly 

complex geometries has fueled interest in the development of unstructured grid methods. These 
met hods provide great flexibility in dealing with the complex geometries encountered in practice 
and offer a natural framework €or solution-adaptive mesh refinement. As attention has turned to 
solutions of the full Navier-Stokes equations, several methods have been recently developed to  
address the special requirements imposed on the grid generator. At the high Reynolds numbers 
encountered in typical aerodynamic applications, the viscous effects are felt predominantly in the 
very thin boundary layers adjacent t o  solid surfaces and in the wakes. In these regions, the normal 
length scale can be many orders of magnitude smaller than the tangential length scale. For 
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efficiency this requires that the mesh be highly stretched in the viscous regions while local isotropy 
is desired in the mainly inviscid regions of the flow. 

accomplished in two phases. In the first, the boundaries of the domain are discretized to form the 
surface mesh. During this phase, one desires a method which renders a faithful discretization of the 
,geometry by taking into account effects such as curvature and proximity to nearby bodies [I]. In 
the next phase of the process, the volume mesh is generated filling the domain with triangles. A 
number of special techniques have been developed to generate the highly stretched elements which 
are desired in the thin boundary layers and wakes encountered in high Reynolds number flows. 
Some of these methods use portions of a structured or semi-structured mesh in the viscous regions 
which are then matched up with an unstructured mesh in the inviscid regions [2]. Another 
approach is to generate the mesh using prismatic elements [3]. Others are based on modifications 
to the Delaunay triangulation [4, 51 or to the advancing front method [6, 71. 

A variety of algorithms have appeared for solving the compressible Navier-Stokes equations on 
unstructured meshes. They range from implicit solvers employing upwind methods [8, 91 to 
multigrid solvers based on a Galerkin finite element technique [lo]. Progress has also recently been 
made in the development of turbulence models which are well-suited to implementation on 
unstructured meshes [ll, 121. 

Navier-Stokes flows is described. First the viscous regions are meshed using a node lifting 
procedure which is a node-based advancing front method. The inviscid regions are then meshed 
with the traditional face-based advancing front method. A remeshing strategy is also described in 
which the solution on the current mesh is analyzed and regions which are found to be 
under-resolved are flagged for refinement when the new mesh is generated. In particular, shock 
waves and wakes can be well captured in only a few remeshings. An implicit upwind solver is also 
described for computing solutions to the Reynolds-averaged Navier-Stokes equations. 

The generation of an unstructured triangular mesh for a complex geometry is usually 

In this work, a method for generating unstructured meshes suitable for high Reynolds number 

2 Mesh Generation 
The mesh generation process for high Reynolds number Navier-Stokes flows is driven by the 

need to capture efficiently the thin boundary layers and wakes which occur in these flows. In order 
to take advantage of the fact that in these regions normal gradients can be many orders of 
magnitude larger than tangential gradients, the mesh needs to be highly stretched. In addition to 
control over the stretching, control over the element shape is also desirable. In particular, elements 
with very large obtuse angles can lead to accuracy problems and should be avoided [13]. It is here 
that techniques which introduce stretching by means of a mapping [4, 141 can have difficulty. 

Ideally, in the anisotropic viscous regions of the flow the elements should be high aspect ratio 
nearly right triangles while in the mainly isotropic inviscid regions the elements should be nearly 
equilateral triangles. In this work, this is accomplished by first meshing the viscous regions with a 
node lifting algorithm and then meshing the remainder of the domain with an advancing front 
algorithm. A smooth transition between the two regions is assured by dividing the viscous mesh 
into two layers: a viscous layer and a transition layer. The user has full control over the thickness, 
the number of points, and the mesh stretching in the viscous layer. The transition layer then serves 
as a buffer .between .the edge of the viscous layer and local isotropy at the edge of the viscous mesh. 
The mesh generation process is detailed in the following sections. 
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2.1 Geometry Description 
The mesh generation procedure begins with a definition of the domain boundaries. In this 

work a very flexible approach has been taken whereby the boundary curves are given as the union 
of parametric splines. The particular parameterization chosen here is that of chord length along 
the spline. Parts of the domain boundary may also be curves describing the locations of wake 
centerlines in the flow. For example, these may be obtained by streamline traces from an initial 

' solution on a coarse mesh. Each spline is C2 on the interior while slope discontinuities are 
permitted at the endpoints. This approach allows for the easy description of very complex 
mult iply-connect ed domains. 

2.2 Surface Mesh Generation 
Once the geometry has been defined, the next step is the construction of the surface mesh. 

This involves the triangulation of the domain boundaries. In 2-D this means the creation of edges 
arid nodes on the boundary curves while in 3-D this would involve the construction of a surface 
triangulation. Initially each boundary curve is divided into a user-specified number of edges of 
nearly equal length by specifying a uniform discretization in parameter space. This serves to 
control the maximum spacing which will be allowed. Next each curve is refined based on a 
curvature criterion. If the angle formed by the two edges incident to an interior node exceeds a 
user-specified tolerance (typically 5"), then these edges and their neighbors are flagged for 
refinement. Flagging neighbors as well as the offending edges expands the region of refinement 
slightly and produces smoother discretizations. Upon examination of all the nodes, each of the 
flagged edges is subdivided into two by placing a new node (on the spline) near the edge midpoint. 
The new distribution of nodes is then smoothed by applying a few sweeps of a Laplacian filter in 
parameter space. The process is then repeated until the angle criterion is satisfied at every interior 
node. The process is guaranteed to converge since the splines are at least C1. 

Next the discretization is refined further based on proximity to nearby bodies. The object here 
is to avoid situations in which the local tangential spacing along the curve is large compared to the 
distance to a nearby body. In general, if such a situation is allowed to persist, the mesh generator 
has no choice but to produce badly shaped elements. In fact, in extreme situations, it may fail 
entirely. Edges which are longer than five times the distance to a nearby body are detected and 
refinement proceeds recursively as described above. A provision is also made for the user to specify 
the maximum tangential spacing which can be tolerated at specific locations on the boundary 
curves. This is useful for clustering points in regions where increased activity is anticipated but is 
not otherwise apparent from the geometry alone (e.g., trailing edges). 

At this point, since each curve has been discretized independently, the tangential spacings on 
either side of a node at which two curves join may differ substantially. This is then remedied by 
refining near the endpoint of the curve with the larger spacing until the tangential spacings are 
comparable. The surface mesh generation concludes with a final smoothing sweep. 

2.3 Volume Mesh Generation 

grid. The purpose of the background grid is to specify the local (isotropic) element size throughout 
the domain. It is constructed by first performing a Delaunay triangulation 115, 161 of the surface 
nodes and then converting this to a (local) MinMax triangulation via edge swapping [17]. The 
spacing value at each node is taken to be the average length of the incident boundary edges. Linear 

The first step in the volume mesh generation procedure is the construction of the background 
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interpolation then provides the spacing function over the whole domain. In most regions of the 
domain this works quite well resulting in linear variation in element size from the (usually) finely 
discretized inner boundaries to the coarsely discretized outer boundary. However, this 
triangulation sometimes produces connections between two widely separated regions of very fine 
discretization. This then tends to produce an overly fine mesh in regions where it is not desired. 
This situation is easily remedied by inserting a small number of additional control points into the 
Delaunay triangulation prior to the edge swapping to break up these unwanted connections. At 
present this is performed by the user upon examination of the background grid, but a procedure to 
automate this is under development. This would allow the background grid to be generated 
automatically from the surface mesh. We believe this is preferable to the traditional approach of 
first requiring the user to provide the background grid from which the surface mesh is then 
generated. This is especially true in 3-D where the specification of a background grid which will 
yield the desired surface resolution can be difficult. 

A preliminary step toward the generation of the viscous mesh is the computation of an average 
surface normal for each boundary node. The surface normals at the nodes are computed by looping 
over the edges and scattering the contribution due to the edge to each of its two nodes. In order to 
handle wake cuts, the edges (and nodes) on the wake cut are first duplicated and added to the list 
of edges but with opposite orientation. This in effect creates a two-sided surface which can then be 
treated in the standard way. The surface normals are then smoothed with several passes of a 
Laplacian filter. This smoothing tends to produce better meshes in regions near surface slope 
discontinuities. At the very end of the mesh generation procedure a clean-up utility is called which 
removes the duplicate edges and nodes by fusing them with their parents. 

With each surface node is associated a local viscous layer thickness, JVl. When constructing the 
initial mesh, this is computed by assuming Blasius boundary layer growth (at the given Reynolds 
number) along the surface of each body starting from a user-specified stagnation point location. 
Also along any wake curves a similar scaling analysis is used to prescribe an appropriate wake 
thickness as a function of position. When incorporated within an adaptive remeshing process, the 
viscous layer thickness can be determined from the existing solution. In particular, since 
turbulence models are frequently sensitive to the initial y+ spacing of the first node off the wall, 
this information can be easily incorporated. Three additional global parameters are asked of the 
user: nvz, the number of points in the viscous layer, rvz, the stretching ratio in the viscous layer, 
and rtl, the stretching ratio in the transition layer. Since the stretching ratio is the ratio of the 
heights of the cells at successive levels, these form a geometric series whose sum is the local viscous 
layer thickness 

From this the initial height, 61, can then be determined. The heights of cells at successive levels are 
then given by 

(2) 

Typical ranges for values of the parameters are nvl = 10 - 20, r,z = 1.3 - 1.7, and rtZ = 1.4 - 1.8. 
A node lifting process is then used to generate the viscous mesh. This is an advancing front 

method where the advancement is node-based rather than face-based. The front is initialized to 
consist of the boundary nodes and edges. These nodes are designated as being at level 0. 
Advancement begins by selecting a node on the front and marching it out along the local surface 
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surfacenormal 

/ 
surface normal I wake cut 

Figure 1: Node lifting example near the trailing edge of an airfoil showing a wake cut. 

normal a distance 6,. In the process, two cells, three edges (two of which form faces on the front), 
and one node (now at level 1) are created while two faces and one node formally on the front are 
deleted (see Figure 1). Once all nodes at the current level have been advanced, the process 
continues with nodes on the next level. Advancement terminates at a node if 

0 a cell of less than unit aspect ratio would be produced, or 

0 6, exceeds the local background grid spacing, or 

0 a node forming the base of a new triangle is at a lower level than the node being lifted and 
the angle between the base and the normal exceeds a threshold (taken to be 120°), or 

0 an intersection would occur with another edge on the front. 

The viscous mesh about the slat for a Reynolds number of 9 million is shown in Figure 2. Note 
how the transition mesh provides a smooth transition from the highly stretched cells in the 
boundary layer and wake to local isotropy at the edge of the viscous mesh. 

Figure 2: Viscous mesh about a leading-edge slat with a wake. 

With the viscous mesh complete, the remainder of the domain is meshed with a traditional 
face-based advancing front method [14]. This method builds the mesh one element at a time by 
advancing the boundary of the domain inward. Briefly, the procedure is 
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0 initialize the front 

0 while(there are faces on the front) do 

- select a face on the front to be the base of the new element 

- obtain the local spacing value fro& the background grid 

- determine the location of a new ‘ideal’ point 

- find the nearby nodes and faces on the front 

- decide whether to connect with an existing node on the front or introduce the ‘ideal’ 

- form the new element by updating the data structures 

point 

0 smooth the mesh with a Laplacian filter. 

Efficient implementation of this procedure requires the use of dynamic data structures. 
Typically the front is advanced from its shortest face to help prevent larger cells from overlapping 
smaller ones. A priority queue of faces which allows efficient insertion and deletion is implemented 
using a heap. An alternating digital tree E181 is used to locate nearby nodes on the front. Nearby 
faces on the front are then found using node to face pointers. With these data structures the mesh 
can be generated in O(N log N )  time while incurring minimal storage overhead. Typical volume 
mesh generation times are about 35 seconds for a 30,000 node mesh on a 24 MIPS 
DECstation 5000/200. 

Reynolds number of 9 million is shown in Figure 3. In this example, the locations of the wakes off 
the leading-edge slat and the main element have been determined by streamline traces from a 
coarse grid solution. Both wakes have been tracked to slightly downstream of the airfoil at which 
point the wake grids end. 

The complete mesh consisting of about 31,300 nodes for a Douglas three-element airfoil at a 

3 Adaptive Remeshing 
One of the advantages of using an unstructured mesh approach is that it provides a natural 

framework for the incorporation of solution-adaptive mesh refinement. In this process, the mesh is 
refined locally based on an estimate of the solution error. Since numerical errors tend to be largest 
in regions where the solution is changing most rapidly, these are generally good candidates for 
refinement. Conversely, in regions showing little activity, the mesh can often be coarsened with 
little degradation in solution accuracy. By concentrating mesh points where they are most needed, 
high quality solutions can be obtained at reasonable computational cost. An unstructured 
approach facilitates this process because its data structure can easily support local refinement and 
coarsening of the mesh. 

the current mesh, a new mesh is generated which is better suited to capturing the flow features. At 
the heart of this procedure is the construction of the background grid which will specify the desired 
spacing throughout the domain. Once this has been established, the new surface mesh can be 
generated by traversing each spline and discretizing it into line segments whose lengths are given 
by the background grid. Note that the surface mesh must be derived from the background grid 

In this work, an adaptive remeshing procedure has been adopted. Guided by the solution on 
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Figure 3: Complete mesh about a Douglas airfoil. 

otherwise an inconsistency in the spacing will occur at the domain boundaries. The generation of 
the volume mesh may then proceed via the node lifting/advancing front algorithm described 
earlier. The current solution is interpolated onto the new mesh as the initial condition for the flow 
solver. The solution on the new mesh is then computed and the process repeated if the desired 
resolution has not been obtained. 

By defining appropriate spacing values at the vertices, the current mesh can serve as the 
background grid. By analyzing the current solution, regions requiring more (or less) resolution are 
identified. For this purpose, a variety of refinement criteria which detect specific flow features can 
be used. Next the current mesh spacing is determined by assigning to each mesh vertex a value 
which reflects the average local element size. This spacing value is then modified in accordance 
with the selected refinement criteria to produce the background grid. For example, in regions 
requiring more resolution the spacing value would be reduced to reflect the fact that smaller 
elements are needed. The adaptive remeshing procedure can be summarized as: 

while(so1ution quality is less than desired) do 

- construct the spacing function at the vertices of the current mesh 

- compute the refinement parameters 

- create the background grid by modifying the spacing function in accordance with the 

- generate the new surface mesh using the background grid 

- generate the new volume mesh using the background grid 

- interpolate the current solution onto the new mesh 

- compute the solution on the new mesh. 

refinement parameters 
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For inviscid flows a spacing function on the current mesh can be constructed by assigning to 
each of its vertices the average length of the incident edges. This spacing function can then be 
smoothed by averaging the value at a vertex with the values at its first-order neighbors. Next the 
parameters on which the refinement is to based are computed at the mesh vertices. For inviscid 
flow, two parameters which liave been found to  work well are related to the local divergence and 
curl of the velocity field by 

7-1,; = ldiv ut h: 

72,j = IICUrl u I I  h: 
t 3) 

(4) 
where hi is the local spacing value at vertex i and p (taken here to be 1.5) determines how strongly 
the element size influences the refinement. The divergence criterion measures the local 
compressibility of the flow and is effective in locating shock waves while the curl criterion measures 
the local rotationality of the flow and performs well in locating slip layers. The standard deviations 
from zero of the refinement parameters are then calculated from 

where N is the number of nodes in the mesh. 
Refinement can then be effected by decreasing the spacing value wherever 7-kI;/ak is large. 

Conversely, the mesh can be coarsened by increasing the spacing value wherever 7 - k , ; / ~ k  is small. In 
general, the desired spacing value can be written 

where gk is a non-increasing function which is 1 for intermediate values of T ~ , ; / c T ~  and is bounded 
away from very large and very small values as 7-kIi /ak + 0 and 00 respectively. These bounds are 
necessary in order to prevent the spacing function, and hence the mesh, from changing too 
abruptly from one meshing to the next. Typically, gk can be taken to be a simple piecewise linear 
function bounded so that 1/4 5 gk 5 2. .Obviously different choices of refinement parameter lead to 
different values of the desired spacing. It is usually best to take the modified spacing value, h:, to 
be the smallest of these values 

hi = min k hLIi. (7) 

This ensures that all the selected flow features are detected and resolved by the adaption. Linear 
interpolation on the triangles is then used to define the modified spacing distribution over the 
entire domain. 

A few modifications are necessary when applying this remeshing procedure to a viscous flow. 
The spacing value from the current mesh must be constructed so that it is indicative of the local 
inviscid mesh scale. For example, in the highly stretched cells in the boundary layers and wakes of 
a high Reynolds number flow it is the local tangential mesh scale which the spacing value should 
reflect and not the very small normal mesh scale. The reason for this is that near a body or a wake 
centerline the purpose of the background grid is to specify the local tangential length scale; the 
local normal length scale is specified explicitly by &I. An approach that has been found to work 
well is to take the spacing to be the average median side length of the triangles incident to the 
vertex. In the highly stretched cells in the boundary layers and wakes, this results in an appropriate 
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'streamwise' length scale. In nearly isotropic portions of the mesh, this reverts to a measure of the 
local average side length. While this has performed quite well, other choices are clearly possible. 

Due to the highly anisotropic nature of the flow in the boundary layers and wakes, the 
refinement criteria must also be modified. In these regions, the refinement criteria should only 
detect the need for local tangential refinement (e.g., along the surface in the case of 
shock-boundary layer interaction); the proper normal length scale is accounted for through the 
specification of the local viscous layer thickness. A parameter which has been found to work well in 
detecting shocks in these situations is 

hq pmaxi - Pmin,i 

Pmax,i 
73,i = 

where pmin,i and pmaz,i are the minimum and maximum values respectively of the pressure at the 
vertex and its first-order neighbors and q (taken here to be 0.5) controls the degree to which the 
local element size influences the refinement. 

Other flow features of interest can be captured by similar means. For example, the large 
vortices which occur in the separated flow behind the slat and in the flap well of the three-element 
airfoil (and aft of the flap at high angles of attack) are regions where refinement would be 
beneficial. Since one distinguishing characteristic of these vortices is that they are regions of 
isotropic rotational flow, one might try using the curl criterion. However, although the curl is 
relatively large in these areas (on the order of S O ) ,  it is much larger in the boundary layer (where it 
can exceed 100,000). As it stands, refinement based on the curl would tend to flag the entire airfoil 
surface for refinement while leaving the regions of vortical flow undetected. This can be rectified by 
replacing hi in the curl refinement criterion with a measure of the smallest local length scale. This 
effectively removes the highly stretched cells in the boundary layers and wakes from the 
computation of the refinement criterion. 

4 Solution Algorithm 
The Reynolds-averaged Navier-Stokes equations are discretized in space using a finite volume 

scheme in which the unknowns are associated with the mesh vertices and the median dual mesh is 
used to define the control volumes. The convective fluxes are evaluated using Roe's flux-difference 
splitting [19]. Higher-order accuracy is achieved by using a piecewise linear reconstruction within 
each control volume. A least-squares procedure is used to compute the solution gradients. This 
procedure is exact whenever the solution varies linearly over the support of the reconstruction. On 
the highly stretched meshes employed in Navier-Stokes computations, the least-squares procedure 
is preferable to a Green-Gauss path integration since it appears to be better conditioned. For flows 
involving discontinuities, it is necessary to limit the reconstructed gradient so that new extrema are 
not created. Experience has shown that it is sufficient to satisfy this condition at the.Gauss points 
of the flux quadrature (ie., the edge midpoints). For this purpose the limiter proposed by Barth 
and Jespersen is used [20]. The viscous terms are evaluated using a Galerkin finite element 
approximation with piecewise linear elements. On a uniform subdivided quadrilateral mesh this 
would result in central differencing the viscous terms. 

A fully implicit scheme based on a backward Euler linearization of the equations is used to 
march to the steady state. The backward Euler method is 

AU 
At 
- = R(un+') (9) 
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where AU = u"+l - U" and R(u) is an operator representing the spatial discretization. The right 
hand side is then linearized about un resulting in 

(-& - 2) AU = R(u"). 

This produces a large sparse system of linear equations which needs to be solved at each time step. 
Since the support of the higher-order scheme is quite large, consisting of the node and its first- and 
second-order neighbors, typically only the first-order scheme is linearized. This also circumvents 
the difficulty of linearizing the inherently highly nonlinear limiting procedure. Also due to the 
complexity of linearizing Roe's flux, generally this is only done approximately. Notice that these 
approximations do not affect the accuracy at steady state; only the (pseudo) time history is 
altered. The no-slip and isothermal wall boundary conditions are made implicit by altering 
appropriate rows in the matrix. 

In order to try to reduce memory requirements, a Gauss-Seidel relaxation scheme has been 
implemented to solve the linear system. This has the advantage of requiring no additional storage 
beyond that of the matrix itself and is completely vectorizable by using a coloring scheme. In fact, 
if one is willing to recalculate the matrix each subiteration, the matrix need not be stored at all. 
However, since the calculation of the matrix is expensive, the required CPU time would increase 
substantially. Usually 20 subiterations are performed each time step with a CFL number of 300. 
Typical performance is about 280 MFLOPS on one processor of a Cray Y-MP C90 leading to 
solution times of about 10-15 minutes for a medium-sized (40,000 node) mesh. The implicit code 
with the Gauss-Seidel solver currently requires about 300 words of memory per node. This could 
be reduced further by more frugal memory management. 

To simulate the effects of fluid turbulence at high Reynolds numbers, the Baldwin-Barth [ll] 
and Spalart-Allmaras [12] turbulence models have been implemented. These are both one-equation 
transport models which solve for a working variable related to the eddy viscosity throughout the 
domain. The turbulence model equation is integrated in time using an implicit method similar to 
that of the mean flow equations. In order to facilitate the incorporation of different turbulence 
models, the mean flow equations and turbulence model equation are decoupled in the time 
integration. 

5 Results 
The results after one remeshing for a computation at M,  = 0.20, CY = 16", and Re = 9 x lo6 

about the Douglas three-element airfoil are shown in Figure 4. For this calculation the 
Spalart-Allmaras turbulence model has been used. The wake emanating from the slat is well 
captured and in fact remains distinct from the boundary layer on the main element over almost all 
of its length. Although not shown, on the initial mesh (which did not employ wake grids) the 
boundary layer which develops on the slat merely ends at its trailing edge without any hint of the 
wake which naturally exists downstream. This is a good example of why a remeshing approach to 
solution adaption is favored here for these types of flows. If one were to attempt an adaption 
strategy based on h-refinement for this case, it is likely that many iterations would be required as 
the wake refinement i s  gradually propagated downstream from the trailing edge of the slat. Also 
mesh adaption strategies based on local enrichment have difficulty producing the well-shaped, 
highly stretched elements desired for the efficient capture of viscous features. A remeshing strategy, 
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M, = 0.20.01 = 16'. Re = 9 x lo6 

Figure 4: Iso-Mach number contours ( A M  = 0.01) for flow about a Douglas airfoil. 

on the other hand, offers the possibility of capturing efficiently many of the flow features in very 
few iterations. 

Re = 6.5 x lo6 about the RAE 2822 airfoil. The Baldwin-Barth turbulence model has been used in 
the computation. The wake centerline has been determined by a streamline trace from the coarse 
grid solution. The shock-boundary layer interaction region has been well resolved by the two levels 
of solution adaption based on the local relative pressure change. The calculation predicts slight 
separation at the base of the shock in agreement with what others have seen for this case with the 
Baldwin-Barth turbulence model. The surface pressure distribution also shows good agreement 
with experimental data. 

Figure 5 show the results after two remeshings for flow at M, = 0.73, a! = 2.80°, and 

6 Conclusions 
A method for generating high quality unstructured triangular grids for high Reynolds number 

Navier-Stokes calculations about complex geometries has been described. Careful attention has 
been paid to resolving efficiently the disparate length scales which arise in these problems. By 
dividing the mesh generation task into two phases, both the viscous and inviscid regions of the flow 
can be meshed optimally. A solution-adaptive remeshing strategy which allows the mesh to adapt 
itself to solution features such as wakes and shock waves has also been described. Although at 
present it has only been implemented in two dimensions, the grid generation process has been 
designed to be readily extendible to three dimensions. An implicit, higher-order, upwind method 
has also been presented for computing compressible turbulent flows on these meshes. Two recently 
developed one-equation turbulence models have been implemented to simulate the effects of the 
fluid turbulence. High Reynolds number flows about single- and multi-element airfoils have been 
presented which clearly demonstrate the improved resolution provided by the solution-adaptive 
remes hing . 
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15337 nodes 

Figure 5: Mesh and Iso-Mach number contours (AM = 0.02) about a RAE 2822 after two remeshings. 
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