
N96- 18081

PARALLEL ADAPTIVE MESH REFINEMENT
WITHIN THE PUMAA3D PROJECT'

Lori Freitag
Argonne National Laboratory

Argonne, IL

Mark Jones
The University of Tennessee

Knoxville, TN

Paul Plassmann
A rgome National Laboratory

Argonne, IL

SUMMARY

To enable the solution of large-scale applications on distributed memory architectures, we are
designing and implementing paralleI algorithms for the fundamental tasks of unstructured mesh
computation. In this paper, we discuss efficient aIgerithms developed for two of these tasks: parallel
adaptive mesh refinement and mesh partitioning. The algorithms are discussed in the context of
two-dimensional finite element solution on triangular meshes, but are suitable for use with a variety
of element types and with h- or y-refinement. Results demonstrating the scalability and efficiency
of the refinement algorithm and the quality of the mesh partitioning are presented for severaE test
problems on the Entel DELTA.

INTRODUCTION

Unstructured meshes have been used successfully in conjunction with finite element tech-
niques to solve problems in a Iarge number of application areas. Unfortunately, many of these
appKcations are unable to take advantage of the power of parallel computing because of a lack of
algorithms and portable software tools for distributed memory architectures. The PUMAASD (Par-
allel Unstructured Mesh Algorithms and Applications) project will address this need by providing
a publicly avaiIable, integrated software package for many important aspects of unstructured mesh
computation. In particurar, we are designing and implementing provably good, parallel algorithms
in the following areas:

0 Mesh generation: construction of meshes that satisfy user-specified properties over complex,
irregular domains;

0 Mesh smoothing: local adjustment of grid point position to improve the overall quality of
the mesh;

'This work wits supported by the Mathematical, Information, and Computatianal Sciences Division subprogram of
the Office of ComputationaI and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

0 Mesh refinement: adaptive refinement and de-refinement of an initial mesh to accurately
model rapidly changing solutions;

0 Domain partitioning: decomposition of the mesh into equally sized, well-separated regions
for distribution on multiple processor architectures; atid

0 Linear system solution: the assembly and solution of the linear systems generated by
general , unstructured mesh problems.

We have made considerable progress i n developing parallel, portable software in each of these areas
and have already released the BlockSolve [5] software tool for solving large sparse linear systems.
In this paper, we concentrate on the algorithms and software developed for the third and fourth
components listed above: adaptive mesh refinement and domain partitioning.

Adaptive mesh refinement techniques are known to be successful in reducing the computa-
tional and storage requirements for solving a number of partial differential equations [7]. Much
research has been done in this area, particularly in the development of sequential algorithms for
refining simplicial meshes in two and three dimensions (see, for example, [l], [8], and [9]). Research
on tlie corresponding parallel algorithms has just begun. We describe here an algorithm that uses
independent sets to efficiently refine elements in parallel. This algorithm is suitable for use in two
and three dimensions, with h- or p-refinement, and with a variety of mesh element types.

Because adaptive mesh .refinement is a dynamic process, it is often necessary to repartition
the mesh after each modification to maintain load balance and good communication characteristics
on parallel computers. We have developed a geometric partitioning algorithm that strives to mini-
mize latency and transmission communication costs while evenly distributing the unknowns to tlie
processors for load balance. Because tlie algorithm is geometric, the partitions are inexpensive to
compute, and tlie algorithm requires only a small fraction of the total solution time. In addition,
we have found that this algorithm is particularly effective for the smoothly varying meshes that
typically arise in the solution of partial differential equations.

The remainder of the paper is organized as follows. We first describe the parallel refinement
and partitioning algorithms. Then we present experimental results obtained on the Intel DELTA
that demonstrate the effectiveness and efficiency of our algorithms for several test cases.

PARALLEL ADAPTIVE MESH REFINEMENT

One of the most attractive features of unstructured, simplicial meshes is tlie ease with which
they may be adaptively refined to capture rapidly changing solutions in the numerical modeling
of partial differential equations. One popular refinement technique is mesh enrichment, in which
grid points are added or deleted from the mesh to increase or decrease accuracy in the numerical
solution. Typically, one begins with a n initial mesh and selectively adds grid points to regions in
that mesh according to local error estimates. In this way, grid points are concentrated in areas
where a high resolution is necessary to reduce error and placed more sparsely in other areas of tlie
domain. In addition to appropriate placement of grid points, the mesh must meet several criteria if
it is to be used in conjunction with the finite element discretization technique. Let To be an initial

164

triangulation conforming to some geometric domain and T k be the triangulation corresponding to
the k-th refinement iteration. Then for k: = 0, 1,2, ..., T k must be conforming, T k must be graded or
smooth, and the angles in T k must be bounded away from 0 and 7r.

Several techniques for adaptive refinement on simplicial meshes meet the requirements given
above to produce valid finite element meshes (see [7] for an overview). The technique that we focus
on in this paper is Rivara’s two-dimensional bisection algorithm [9]. In this algorithm, a triangle
marked for refinement is ided by connecting the midpoint of the longest side to the opposite
vertex. This process creates a nonconforming point in a neighboring triangle. The refinement is
then propagated until all nonconforming points are removed from the mesh (see Figure 1 for an
ilIustration). Rivara has shown that this propagation will terminate in a finite number of iterations,
L p . In addition, the algorithm guarantees that the angles of T k are bounded away from 0 and 7r if
the angles in To are. In particular, 0kLitl 2 [lo].

Figure 1: Propagation within the bisection algorithm

To implement Rivara’s bisection algorithm on medium grain parallel architectures such as
the Intel DELTA, we partition the vertices of the initial mesh and distribute them across the
processors. For example, in Figure 2 partition boundaries are indicated by dashed lines. The
processor assigned the center partition is responsible for the storage and computation relating to
the vertices and triangles indicated by the black dots and shaded regions, respectively. In addition,
this processor stores the nearest neighbor information in the finite element mesh, indicated by the
clear clots and clear triaiigles i n the figure.

Figure 2: Partitioning of vertices and triangles across processors

One critical aspect of adaptive mesh refinement on distributed memory computers is the man-
agement of synchronization points so that global mesh information is correct. There are two ways in
which this information can be incorrect: (1) two different processors can create vertices in the same
location so that the global vertex list is not unique, and (2) outdated element neighbor information
can be used if neighboring processors are not notified of refined elements on processor boundaries.
To ensure that data is not corrupted in this manner, we select a near-maximal subset of triangles
that can be refined simultaneously on different processors. These subsets are known as independent
sets and are defined i n the context of the dual graph of the mesh. The dual graph is defined to
be D = (T, F) , where T is the set of triangles in the mesh and F is the set of edges that connect

165

two triangles if they share a common edge. We say that a triangle, t;, is in the independent set, I,
if for every neighboring triangle t j E D: t j is not marked for refinement, t j is owned by the same
processor as t;, and p (t j) < p(t i) , where p (t) is a random number assigned to the triangle at its
creation. We note that finding I requires no communication, since each processor stores the triangle
neighbor information.

Using independent sets, we now describe an algorithm that avoids the synchronization prob-
lems mentioned above and has a provably good runtime (for a complete description of this algorithm
see [4]).

l = O
Based on local error estimates, let Q o be the
set of triangles initially marked for refinement
While Qr # 0 do

Choose Zl E D from Q,
Simultaneously refine the triangles in Il
Distribute updated element information
1 = 1 + 1
Q r is the set of new nonconforming triangles
Q r = QI U (91-1 - 11-1)

Endwliile

The only communication required in this algorithm is the distribution of updated element informa-
tion to the processors and the global reduction required to check whether Q r is empty. Notice that
the parallel refinement algorithin is not restricted to Rivara’s bisection algorithm. Independent sets
may be used successfully with a number of different refinement techniques including techniques for
p-refinement , nonsimplicial meshes, and higher dimensions.

Jones and Plassmann [4] show theoretically that no two vertices will be created at the same
position and that neighbor information in the dual graph is correctly updated. In addition, a
P-RAM version of this algorithm is given whose expected runtime is & C l (l ~ ~ ~ ~ ~ F =) x L p , where
Q,,,,, = maxl I Q r I and Lp is the number of levels of propagation. This result implies that the
running time is a very slowly growing function of the number of vertices, and thus the algorithm
can be expected to scale well, as is shown in the Results section.

UNBALANCED RECURSIVE BISECTION

As grid points are dynamically added and deleted in an adaptive mesh, we must recalculate
the partitioning of vertices across the processors of a distributed memory architecture. The quality
of a partitioning is related to the equity of work assigned to the processors and the cost of com-
municating data among processors. In particular, for finite element meshes we use the following
measures to determine the quality of a partition: the degree of imbalance between the sizes of the
partitions, the maxirnum number of partition neighbors, and the maximum number of edges cut in
the finite element mesh. The relative importance of these measures is dependent on the computer
architecture and problems considered.

166

One partitioning algorithm that is effective for the meshes that typically arise in finite element
calculations is orthogonal recursive bisection (ORB) [2]. The vertices of the mesh are partitioned
according to their physical coordinates in the computational domain. An initial cut is made to
divide the grid points in half. Orthogonal cuts are then made recursively in the new subdomains
until the grid points are evenly distributed among the processors. This algorithm has the advan-
tages of ease of implementation, inexpensive execution costs, and ease of parallelization. However,
i t also yields partitionings in which the maximum number of neighbors of any partition is O(Jir),
where p is tlie total iiuinber of processors [2]. That is, the maximum number of messages that a
processor may have to send is dependent on the total number of processors thereby implying a lack
of scalability.

To address this problem, we have developed a modification of ORB which we call unbalanced
recursive bisection (URB). Let the partition aspect ratio, up, be given by max(h, f), where h is the
height of the partition and w is tlie width. Instead of dividin the unknowns in half, we choose the
cut that minimizes up and divides the unknowns into 9 and % sized groups, where n is the total
number of unknowns and k E (1,2, ..., p - 1). Like the ORB algorithm, this algorithm is geometric
in nature and hence is easy to implement, inexpensive to execute, and easy to parallelize. Unlike
the ORB algorithm, this algorithm does not require that orthogonal cuts be made at each step.
That is, we choose tlie cut that minimizes up regardless of the direction of the previous cut. This
modification results in improved partitionings for which it can be shown that all of the above criteria
can be bounded independently of p for smoothly varying finite element meshes. Hence, the URB
algorithm yields scalable partitionings. For a complete description of this work, including proofs of
the partition bounds, see [3]. In Figure 3, we show the resulting ORB and URB partitions for a
smoothly varying mesh where the densest portion of the mesh is in the lower right i corner. Botli
algorithms generate partitions with an evenly distributed load. However, tlie ORB algorithm yields
partitions with high aspect ratios which tend to have a large nutnber of partition neighbors. In
contrast, the partitions generated by tlie URB algorithm tend to be square and have fewer partitiou
neighbors.

URB ORB

Figure 3: A comparison of ORB partitioning and URB partitioning.

167

EXPERIMENTAL RESULTS

To demonstrate tlie effectiveness and efficiency of tlie parallel refinement and partitioning
algorithms, we consider a variety of large scale applications on the Intel DELTA. We use triangular
meshes with linear finite elements to solve the following three partial differential equations.

Test Problem 1: (POISSON) Our first test problem arises from Poisson’s equation,

- f (~ , y) in domain S a 2 U PU

a x 2 dy2
_----

u = 0 on boundary (2)

on a square domain, where f(x, y) is a Gaussian charge distribution which forces refinement around
a point (SZ, Sy). We move the point (S,, Sy) several times and find a new solution/mesh from the
old solution/mesh. This movement requires mesh refinement around the new position and define-
ment around the old position while the rest of the mesh remains nearly constant.

Test Problem 2: (ELASTIC) We solve the eIasticity equations for the plane stress problem given
here (without inclusion of the load):

d2v d2v 1 + Y d2v d 2 U -+- = -(7+-). 8x2 dy2 2 ax dxdy

(3)

(4)

These equations are solved on an annulus with a load placed on the edges of the domain. In each
case aboveS we selectively refine the mesh until the local error estimate at each triangle is acceptable.

Test Problem 3: (SUPER) Our final test problem arises in the study of tlie internal structures
and configurations of the vortices found in high-temperature superconductors. The model used in
these calculations is the ~ioxidime~isionalized Ginzburg-Landau free energy functional given by

where $ = a + ib is the complex-valued order parameter and A = [A,, Ay] is the vector potential.
These three terms are generally known as the condensation, kinetic, and field energy terms and are
given by the formulae

These. equations are solved on a rectangular domain, which we assume is far from the boundaries
of the physical sample so that magnetic periodic boundary conditions may be used. The mesh is

168

refined by proximity to tlie vortex core singularities.

The results of four typical runs for each of the test problems are shown in the table below.
The number following each test case name gives the number of Intel DELTA processors used in
the trial. We have constructed the problem sets so that the final solution mesh for each successive
problem has roughly twice as many vertices/triangles as in the previous problem. In all three cases,
we solve the linear systems arising from the finite element approximations using the parallel con-
jugate gradient method preconditioned by an incomplete factorization available in the BlockSolve
software [5] [6].

Number Percent Percent Percent
Problem of Refine Partition Solution

Elements Time Time Time
POISSON16 40292 .795 A28 48.1
POISSON32 801 16 .856 516 60.8
POISSON64 159758 .647 .731 59.0

POISSON128 318796 .568 1.03 60.1
ELASTIC16 21043 .697 1.15 98.2
ELASTIC32 42049 .560 1.29 98.1
ELASTIC64 82997 .449 1.30 98.2
ELASTIC128 165468 .268 1.23 98.5

SUPER16 30484 .229 .193 69.5
SUPER32 484 16 .091 .117 86.3
SUPER64 11 1660 .087 .167 88.8
SUPER128 196494 .181 .452 86.0

To show the efficiency of the refinement and partitioning algorithms, the maximum time
required to perform these operations is given as a percentage of tlie total solution time. As a com-
parison, we also include the percentage of total time required to solve the resulting linear systems.
The refinement and partitioning operations required five percent or less of the total execution time
in all cases and the solution of the linear systems dominates the cost of the calculation. The time
not accounted for in these tables is problem initialization and setup, element evaluation, and linear
system assembly.

Average Percent
Adjacent Cross
Partitions Edges

4.63 2.38
5.06 2.60
5.53 2.70
5.64 2.78
4.00 3.56
4.38 3.99
4.75 4.26
5.20 4.27
5.31 6.72
5.40 8.32
5.64 10.0
5.71 13.7

To show the quality of the partitions generated by the URB heuristic, we have also included
statistics on the partitionings for each of the test cases. The average number of adjacent partitions
gives the average number of messages that the processors are sending during each step of the
solution process. In all cases, the average ranged from 4 to 6 neighbors; and although the results
are not included in the table, the maximum number of partition neighbors ranged from 7 to 9. In
the final column we show the maximum final percentage of edges of the finite element mesh cut
by a partition boundary to the total number of edges in the partition. Recall that this indicates
the message volume each processor is required to transmit in the solution of the partial differential
equations. These percentages are quite low for the first two test problems and slightly higher for

169

the final test problem. This reflects the fact that the meshes for the first two problems are much
more smoothly varying than in the final case.

CONCLUSIONS

We have described scalable, efficient parallel algorithms for the adaptive refinement and
partitioning of finite element meshes. Work is currently under way to extend these algorithms
to three-dimensional meshes and higher order e€ements. In addition, we are developing parallel
algorithms for mesh generation and mesh smoothing. This software will be integrated with the
software described in this paper and with Blocksolve to form a complete package for parallef
solution of finite element problems on simplicial meshes.

REFERENCES

111 R. E. Bank and A. H. Sherman. An adaptive inultilevel method for elliptic boundary vahe
problems. Computing, 26:91-105, 1981.

[Z] M. Berger and S. Bokhari. A partitioning strategy for nonuniform problems on multiproces-
sors. IEEE Transactions on Computers, C-36(5), 1987.

131 Mark Jones and Paul Plassmann. Bounds on partition quality for orthogonaE recursive bi-
section. Technical report, University of Tennessee, in preparation, 1994.

[4} Mark T. Jones and Paul E. Plassmann. Parallel algorithms €or the adaptive refinement
and partitioning of unstructured meshes. In Scalable High Performance Computiiig Conference,
KnoxviIle, Tennessee, May 1994.

[5] Mark T. Jones and Paul. E. Plassmann. BlockSolve v1.0: Scalable library software for the
paraIlel solutjbn of sparse linear systems. ANL Report ANL-92/46, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, Ill., 1992.

[6] Mark T. Jones and Paul E. Plassmann. Scalable iterative solution of sparse h e a r systems.
Parallel Computing, 20:753-773, 1994.

f7] W. Mitchell. A comparison of adaptive refinement techniques for elliptic problems. ACM
Transactions of Mathematic So jtware, 15(4) : 326-347, 1989.

[8] R. V. Nambiar, R. S. Valera, K. L. Lawrence, Robert B. Morgan, and David Amil. An algo-
rithm for adaptive rerfinement of triangular element meshes. International JournaZ for Numericat
Methods in Engineering, 36:499-509, 1993.

[9] M. Rivara. Mesh refinement processes based on the generalized bisection of simplices. SIAM
Journal on Nuinerical Analysis, 21 :604-613, 1984.

[IO] 1. Rosenberg and F. Stenger. h lower bound on the angles of triangles constructed by
bisecting .the longest side. Matlieinatics of Computation, 29:390-395, 1975.

170

