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Abstract 

The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D ge- 
ometries including multi-body domains. The prisms cover the region close to each body’s surface, 
while tetrahedra are created elsewhere [8]. Two developments are presented for hybrid grid genera- 
tion around complex 3-D geometries. The first is a new octree/advancing front type of method for 
generation of the tetrahedra of the hybrid mesh. The main feature of the,present advancing front 
tetrahedra generator that is different from previous such methods is that it does not require the 
creation of a background mesh by the user for the determination of the grid-spacing and stretching 
parameters. These are determined via an automatically generated octree. The second development 
is a method for treating the narrow gaps in between different bodies in a multiply-connected do- 
main. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) 
type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra 
instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. 
A solution adaptive scheme for viscous computations on hybrid grids is also presented [a]. A hybrid 
grid adaptation scheme that employs both h-refinement and redistribution strategies is developed 
to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation 
scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms. 

An Octree/Advancing Front Method for Tetrahedra Generation 

A new method is presented for generating the tetrahedra of the hybrid grid. Advancing front 
type of methods require specification by the user of the distribution of three parameters over the 
entire domain to be gridded. These field functions are: (i) the node spacing, (ii) the grid stretching, 
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and (iii) the direction of the stretching. In the present work these parameters do not need to 
be specified. The distribution of grid size, stretching, and direction of stretching is automatically 
determined via an octree. There is no need for a special background.mesh which has been the 
backbone of previous advancing front generators. 

The tetrahedra that are generated should progressively become larger as the front advances 
away from the original surface. Their size, the rate of increase of their size, as well as the direction 
of the increase are given from an octree consisting of cubes which is generated automatically via 
a Divide-and-Conquer method. This process generates octants that are progressively larger with 
distance away from the body. Their size will be the characteristic size of the tetrahedra that will 
be generated in their vicinity. 

Generation starts from the outermost surface of the layer of prisms surrounding the body. The 
triangles of this surface form the initial front. Then, a list of points is created that consists of a new 
node, as well as of “nearby” existing points of the front. One of these points is chosen to connect to 
the vertices of the face. Following choice of the point to connect to, a new tetrahedron is formed. 
The list of the faces, edges, and points of the front is updated by adding and/or removing elements. 
The algorithm followed in the present work is the one presented in [3, 41. The method requires a 
data structure which allows for efficient addition/removal of faces, edges and points, as well as for 
fast identification of faces and edges that intersect a certain region. The alternating digital tree 
(ADT) algorithm is employed for these tasks [5 ] .  

Figure 1 illustrates the symmetry plane of the HSCT geometry. The quadrilaterals (dark lines) 
correspond to the faces of the octants on this plane, while the triangles (light lines) correspond to 
the faces of the tetrahedra. It is observed that the size of the tetrahedra, as well the stretching of 
the mesh and the direction of stretching is guided quite accurately by the octree. 

Simplicity and no user intervention are main advantages of the octree. The usual trial-and- 
error procedures for constructing the field functions that give the local size of the tetrahedra, the 
stretching of the mesh, and the direction of the stretching (background mesh) for previous advancing 
front generators are avoided in the present method. The octree is generated once and remains the 
same throughout the generation process. Details of the octree are presented in [7, 81. 

Hybrid Grid Generation for Multi- y Domains 

The developed hybrid grid generation method is flexible and general in order to treat domains 
that contain multiple bodies. A prismatic layer is created around each one of the bodies, while the 
regions in between these meshes are filled with tetrahedra. Any location and orientation of these 
bodies is allowed. This is accomplished via a special method for treatment of narrow gaps that 
frequently form in multiply-connected domains, such as multi-element wings. The key feature. of 
the method is the fact that the prismatic grid around each of the bodies is generated independently 
of all the other bodies. As a result, such generation is as simple as the generation of prisms,for 
a domain containing a single body. However, overlapping meshes are avoided here by employing 
a special technique that redistributes the prisms nodes along their corresponding marching lines 
after the initial generation. This redistribution occurs in the vicinity of the regions of overlapping 
prismatic meshes and results in formation of gaps in between the previously overlapping prisms 
layers. Then a tetrahedral grid is generated in order to fill in those gaps. It should be emphasized 
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Figure 1: Effect of the octree on growth of the tetrahedra. View of the octants (quadrilateral faces), 
as well as of the tetrahedra (triangular faces) on the symmetry plane. Growth of the tetrahedra 
away from the outermost prisms surface follows growth of the octree quite faithfully. 

that the structure of the prismatic grid is not destroyed. Further details of the method are given 
in [8]. 

In order to illustrate validity of the previous procedure, the case of a two-element wing with 
variable size of the gap between the main wing and its flap is considered. Stage one involves 
generation of the two separate prismatic meshes that cover each one of the two bodies. Generation 
is quite simple due to the fact that each layer of prisms is grown independently of the other layer. 
The two grids overlap locally as shown in Figure 2(a). In the second stage, the thickness of the 
prisms layers is reduced locally and the overlap no longer occurs as shown in Figure 2(b). Comparing 
the grids of Figure 2, it is observed that the receding occurs over a larger region which results in 
a smooth variation of the local thicknesses of both meshes. The final stage involves generation of 
the tetrahedral mesh that covers all areas in between the prisms. Figure 3 shows the final hybrid 
(prismatic/tetrahedral) grid on the plane of symmetry. The quadrilaterals are the signature of the 
prisms on that plane, while the triangles correspond to faces of the tetrahedral mesh. 

Hybrid Grid for the HSCT 

A High Speed Civil Transport (HSCT)-type of aircraft geometry was chosen as the test case 
for the developed grid generator. Figure 4 shows the triangulation of the initial surface. The mesh 

203 



consists of 4412 triangles and 2275 nodes. A symmetry plane is considered that divides the body. 
Thus, hybrid grid is generated for half of the space. 

The time required to generate the prismatic grid around the HSCT was 90 seconds for 40 layers 
of prisms on an IBM 390 workstation. Generation of approximately 170,000 tetrahedra took about 
67 minutes on the same station. It should be emphasized that employment of a hybrid grid for 
the HSCT geometry required only 170 K tetrahedra instead of an estimated two million had a 
tetrahedral mesh been used in the prisms region, as well. 

Figure 5 illustrates the hybrid mesh on two different planes that are perpendicular to each 
other. The first plane is the symmetry and it is indicated by the darker lines, while the second is 
intersecting the fuselage at a location upstream of the wing and it is shown via light lines. It should 
be noted that the irregularity of the lines observed on the second plane are due to the fact that the 
grid it intersects is not planar as it is on the symmetry plane. 

Combined Refinement /Redistribution for the Hybrid Grid 
A dynamic grid adaptation algorithm has previously been developed for 3-D unstructured grids 

[6]. The algorithm is capable of simultaneously un-refining and refining appropriate regions of the 
flow domain. This method is extended to the present work and is coupled with prismatic grid 
adaptation to implement a hybrid adaptation method. 

Directional Division of Prisms 
The prisms are refined directionally in order to preserve the structure of the mesh along the 

normal-to-surface direction. The prismatic grid refinement proceeds by dividing only the lateral 
edges that lie on the wall surface and hence the wall faces. The faces are divided either into two 
or four subfaces. The resulting surface triangulation is replicated in each successive layer of the 
prismatic grid. This results in all the prisms that belong to the same stack (namely, the group 
of cells that originate from the same triangular face on the wall surface) getting divided alike. 
The prismatic grid refinement preserves the structure of the initial grid in the direction normal 
to the surface. The primary advantage of using such an adaptive algorithm for prisms is that the 
data structures needed for its implementation are essentially as simple as that for refining a 2-D 
triangular grid. 

The directional division of the prisms does not increase resolution of flow features that are 
aligned in a direction that is normal to the wall surface. However, a grid redistribution algorithm 
can be employed in order to recluster nodes in the normal direction so as to better resolve the 
viscous stresses [l, 81. 

The tetrahedral cells constitute the portion of grid where inviscid flow features are dominant. 
These features do not exhibit the directionality that is generally prevalent in viscous stresses. Hence, 
the tetrahedra are refined by division into eight, four, or two subcells. 

Redistribution of Prisms 
The redistribution algorithm increases local grid resolution by clustering existing grid points in 

regions of interest. .A measure of the grid resolution required normal to the no-slip wall is the values 
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of y+ = 7 ,  with u, = being the wall friction velocity. A criterion based on the values of 
y+ at the wall is employed to either attract nodes towards the wall or repel them away from the 
surface so that a specific value of y+ is attained at all the wall nodes. This procedure in essence 
determines a new value for the spacing Swall of the first node off the wall at all locations on the wall 
surface. The nodes in the prismatic region are then reclustered along the marching lines emanating 
from the corresponding wall node, in accordance with the new value of Swall. Details are presented 
in [2]. 

d- Pwall 

Application of the Adaptation Method 
The test case of flow past a sphere at a free stream Mach number of M ,  = 1.4 and a Reynolds 

number of Re = 1000 (based on the radius of sphere) is considered. The flow is characterized by 
both inviscid and viscous flow features such as shock waves and boundary layer separation. Details 
are given in [2]. 

The hybrid grid adaptation algorithm developed in the present work is now implemented to ob- 
tain numerical solution for the same flow situation discussed above. A coarse hybrid grid comprising - 1400 wall boundary nodes and N 100K tetrahedra is used as the initial grid. The prismatic region 
is constituted by 20 layers of prisms. The locally adapted grid obtained after h-refinement based on 
an initial solution is shown in Figure 6. The figure shows the tessellation on the wall surface, on the 
symmetry plane as well as on an equatorial plane cutting through the interior of the grid, normal 
to the symmetry plane. It is clearly seen that embedding in the tetrahedral region is focussed near 
the shock location just outside of the prismatic-tetrahedral interface. The prismatic region is also 
directionally refined near the upstream and downstream sections of the body. This is due to the 
flow upstream accelerating rapidly from the upstream stagnation point and the flow downstream 
separating that causes flow gradients in the lateral directions that are detected by the directional 
adaptive algorithm. The embedded hybrid grid comprises - 2500 wall boundary nodes and - 275K 
tetrahedra. Mach number contour lines of the solution obtained on the adapted grid are shown in 
Figure 7. 

The effect of grid redistribution in the viscous region is next shown by selecting an initial grid 
that has a relatively large wall spacing 6, and further, the prism layers are equispaced as shown in 
Figure 8 (a). The grid has - 140U wall nodes and N 1QQK tetrahedra. Based on an initial solution 
obtained on this grid, the redistribution algorithm is used to recompute the values of S, at all the 
wall boundary nodes, using y+ as the detection parameter. The hybrid grid with the redistributed 
prismatic region is shown in Figure 8 (b). Observing the grid in the fore section, it is seen that the 
redistribution algorithm reclusters the grid substantially by attracting the nodes very close to the 
wall in order to resolve the large gradients in the normal direction. In the aft region, the boundary 
layer thickens substantially and separates and the algorithm is seen to push the nodes away from 
the wall. 
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Figure 2: (a) Prismatic grids grow around c ~ ~ c l i  hotly i i i t l c ~ ~ ~ c ~ i i t l c n t . l ~  o f  one another (b) Muttial 
receding of the two prismatic grids removes prior overlapping (view oii the symmetry plane). 

Figure 3: (a) Tetra,hedrd grid fills the areas i t ]  hetwcen the. two prismatic incshes (h) Enlarged view 
of the gap region bet,ween the two bodies (vicw on the syrrirwtry plaiic-). 
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Figure 4: Triangulation of the HSCT surface (4412 triangles, 2275 nodes) 

Figure 5: View of the hybrid mesh around the HSCT on two different planes that are perpendicular 
to each other. The first plane is the symmetry (dark lines), while the second is intersecting the 
fuselage at a location upstream of the wing (light lines). 
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Figure 6:  An isometric view of the tessellation on the wall surface, symmetry plane and an interior 
equatorial plane. Hybrid grid embedded isotropically in the tetrahedral region and directionally in 
the prismatic region. 

Figure 7: Mach number contour lines of the solution on the symmetry plane. Solution obtained 
using an embedded hybrid grid (Mmin = O., Mdaz = 2., AM = 0.05). 
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Figure 8: Tessellation on the symmetry plane showing the clustering of grid points in the pris- 
matic region for (a) an initial grid with equispaced prismatic layers and (b) the grid obtained after 
redistributing the former. 
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