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SUMMARY

To be truly compatible with structured grids, an AMR algorithm should employ a block struc-
ture for the refined grids to allow flow solvers to take advantage of the strengths of structured grid
systems, such as efficient solution algorithms for implicit discretizations and multigrid schemes.
One such algorithm, the AMR algorithm of Berger and Colella, has been applied to and adapted
for use with body-fitted structured grid systems. Results are presented for a transonic flow over a
NACA0012 airfoil (AGARD-03 test case) and a reflection of a shock over a double wedge.

INTRODUCTION

Solution adaptive mesh refinement (AMR) can be used to enhance accuracy and efficiency of
many practical flow solvers. By now it is used, almost routinely, in flow solvers employing unstruc-
tured grids. Yet, in flow solvers designed for body-fitted curvilinear grid systems (structured grids),
similar techniques are rarely used. A possible reason is that the limitations of FORTRAN77, the
programming language typically used for structured flow solvers, make it difficult to implement
AMR algorithms that are truly compatible with the use of structured grids.

To be compatible with the use of structured grids, an AMR algorithm should allow the flow
solver to take full advantage of the strengths of structured grid systems, such as allowing effective
use of various efficient solution algorithms for implicit discretizations, various schemes based on
dimensional splitting, and multigrid schemes. In essence, the AMR algorithm should use a block
structure for the refined grid. To date, only a few methodologies of this nature have been proposed.
The method of Berger and Oliger! is one of the earliest. In their method, the refined grids are al-
lowed to overlay the underlying coarse grids in an arbitrary manner. The blocks of the refined grids
are constructed in physical space based on the shape and size of the region to be refined. The re-
sulting grids tend to align with discontinuities and other features that determine the shape and size
of the region. Although this approach has not been widely adopted, the work systematically ad-
dressed many important issues related to adaptation of structured grids via local refinement, such
as proper nesting of the grid levels and a suitable time-stepping scheme for multi-level grids.

Building on the work of Berger and Oliger, Berger and Colella? devised a methodology in which
the refined grids conform with the coarse grids, i.e., the boundaries of the fine-grid blocks are made
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to coincide with grid lines of the coarse grid. The block structure for the refined grids is created us-
ing a special algorithm that operates purely in the index space of the coarse grid. The algorithm
fits topologically rectangular patches over the regions of the coarse grids where the error in the
“solution is estimated to be above a specified threshold value. The blocks on the refined grids are
then created by subdividing the coarse grid cells within each of the patches. Advantages of the new
approach, compared to that of Berger and Oliger, include greatly simplified prolongation and re-
striction operators for transferring data between a coarse grid and a refined grid, and rigorously en-
forced conservation at interfaces between coarse and fine grids. This approach has been used exten-
sively for Cartesian grids (see e.g. Ref. 2-5) but only to a limited extent for body-fitted structured
grids ( see Ref. 6 to 8). Algorithms of similar nature to those by Berger and co-workers have been
suggested by other authors but have not been as fully developed (see Ref. 1 for a review). Also,

Quirk® developed an AMR algorithm, one very similar to that of Berger and Colella, to locally re-
fine Cartesian grid systems.

All the approaches reviewed above have in common that the block-structure of the refined grid
is determined automatically at run time when the solution is computed. A different approach was
proposed by Davis and Dannenhoffer!?. In this approach, the entire structured grid system is di-
vided up into sub-blocks of uniform size and dimensions. During adaptation, each sub-block is re-
fined either in its entirety or not at all. In a recursive manner, a sub-block that has been refined
is itself divided into sub-blocks, each of which can be refined. In the algorithm of Davis and Dan-
nenhoffer, directional refinement is used, i.e., the grid can be refined in only one, two or three direc-
tions as desired.

The methodology used in the present work is based on the AMR algorithm of Berger and Col-
ella. It inevitably resembles the methodology used in Ref. 7, although important differences exist.
The present approach is described in some details in Ref. 8. Here, only an outline is given. Re-
sults are presented for two inviscid flows, a transonic flow over a NACAO0012 airfoil (AGARD-03
test case) and a reflection of a shock over a double wedge.

AMR ALGORITHM—SPECIAL ISSUES FOR STRUCTURED GRIDS

In the AMR algorithm of Berger and Colella, the solution exists on several levels of finer and
finer meshes which form an hierarchical structure. Each mesh level, excluding the coarsest which
covers the entire domain, is embedded within the next coarser level and is created where high res-
olution is required by refining cells on that coarser level. The AMR algorithm performs two major
tasks, i.e., to create and maintain hierarchy of mesh levels and to advance in time the solution on
the hierarchy. Both are described in detail in Ref. 2. The present adaptation of the algorithm to
body-fitted grids is described in Ref. 8. Here, only an outline of the AMR algorithm is given and
some special issues related to curvilinear grid systems are pointed out.

- Assuming a time-accurate discretization, the AMR algorithm refines simultaneously in space
and time by an integer refinement ratio r. Refinement is done where an error estimation procedure
based on Richardson extrapolation determines that error is above a specified tolerance. The refined
cells are organized into a small number or rectangular blocks, the union of which make up the mesh
level. The solution on the hierarchy of mesh levels is advanced in time recursively, level by level,
such that every time the solution on a coarse mesh level is advanced by a time step At, the solu-
tion on the next finer level is advanced r times by a time step At/r. After the r fine grid time steps,
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the solution on the fine mesh level is restricted to the underlying coarse grid. At interfaces between
coarse and fine grids, boundary conditions for the fine grid are obtained by interpolating the so-
lution on the coarse grid. Conservation on the interface is ensured by agglomorating, through the

r time steps on the fine grid, the boundary fluxes on the fine grid that correspond to each coarse
grid cell adjacent to the interface, and in a special “refluxing” step, correcting the solution in the
adjacent coarse grid cell by the difference between the agglomorated flux and the original flux com-
puted on the coarse grid. This treatment of the interface ensures that under mesh refinement the
numerical solution converges to a weak solution of the governing equations.11

The AMR algorithm of Berger and Colella operates purely in the index space of the grid system
rather than the physical space. Thus, it applies equally to structured body-fitted grid systems and
Cartesian grids. Nonetheless, when the algorithm is applied to body-fitted grid systems, special is-
sues arise as refined curvilinear grid systems must be generated from an existing coarser curvilinear
grid. This grid refinement must be done carefully to ensure sufficiently smooth grids on all levels
of refinement. In this study, the grid refinement is done by combining parametric cubic spline in-
terpolation and Hermite interpolation. The cubic splines, here natural cubic splines, are used to
“reconstruct” the grid lines from the discrete grid points. The interpolation is done grid line by
grid line and produces cubic polynomials that bridge between any two neighboring grid points on
a grid line. Then, the Hermite interpolation is used to bridge between the four cubic polynomials
that define the edges of the coarse grid cell and to define the grid points of the refined grids. Since
the polynomials describing the shape of the edges of the cell were constructed using cubic splines,
the overall refined grid system, obtained by refining the coarse grid cell by cell, will be smooth and
at least C! continuous. In the flow solver, the proper shape of the cells (i.e., cubic polynomials) is
taken into account when cell areas are computed. Thus, the total area of fine grid cells created by
refining a single coarse grid cell will always equal that of the coarse grid cell. This greatly simplifies
communication between grids on different levels of refinement over the case when straight-side cells
are assumed.

For greater details on the AMR algorithm for body-fitted structured grids, see Ref. 8 as well as
Ref. 2.

OBJECT ORIENTED IMPLEMENTATION

The methodology described in this paper has been implemented using mixed language program-
ming. A driver module for the AMR algorithm was written in the C4++ programming language
while all routines performing floating point intensive parts of the algorithm (e.g., the approximate
Riemann solver) were written in FORTRAN. This implementation is possible due to the modu-
larity of the AMR algorithm and allows one to take advantage of the strengths of the different
programming languages. Here, the strengths of C++, including object-oriented capability, flexi-
ble data structures and dynamic memory allocation, make that language very effective for the im-
plementation of a driver for the AMR algorithm while the extensive optimization by FORTRAN
compilers of floating point operations on array data structures makes FORTRAN the language of
choice for most of the compute-intensive parts. The implementation makes extensive use of the
AMR library developed by Crutchfield and Welcome.l2 The AMR. library is written in C4++ and
FORTRAN, and is a collection of space-dimension independent classes specially designed to aid in
implementation of schemes employing the AMR algorithm.
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In the present implementation for structured grids, the main objects manipulated by the AMR
driver module are instances of classes called LevelBlock and MeshLevel. A LevelBlock consists of
all data for a single block from a block structured grid and a set of routines that essentially form a
self-contained generalized single block flow solver. A MeshLevel is a collection of LevelBlocks which
form a multiblock grid system on a single level of refinement, along with routines that control com-
munication between blocks on the level, communication between coarse and fine levels, and time
stepping scheme for the levels. A doubly-linked list of MeshLevels forms the hierarchical, adaptively
refined grid structure on which computations are performed.

RESULTS

Results are presented for two of the test cases proposed for this workshop, namely, the AGARD-
03 test case of a transonic flow over a NACAO0012 airfoil, and a reflection of a plane shock over a
double wedge. Both cases are inviscid. The computations presented here were done using a dis-
cretization of the Euler equations based on the multi-dimensional upwind scheme of Colella.13

The first results to be presented are for steady flow over a NACAO0012 airfoil at free-stream
Mach number of 0.95 and zero angle of attack. This case is a surprisingly tough test case for AMR
algorithms as the location of the normal shock that forms behind the airfoil is very sensitive to the
proper capturing of the smooth expansion that takes place in the flow at the leading edge of the
airfoil.’® The starting grid system used in the computation was a C-grid with 32 cells on half the
airfoil surface, 64 cells from the trailing edge to the outflow boundary, and 32 cells from the airfoil
surface to the free-stream boundary. The outer limits of the grid were 100 cords away. The grid
in the neighborhood of the airfoil is shown in Fig. 1. In the present computations, the flow con-
ditions at the free-stream boundary were fixed while all variables are extrapolated at the outflow
boundary. This treatment of the boundary conditions has the potential to affect the accuracy of
the computed solutions. However, the large distance from the airfoil to the free-stream surface does
to some extent compensate for the treatment at the boundary. The sensitivity of the solution to
the distance to the free-stream boundary has not been studied.

The flow over the airfoil was computed using zero to three levels of refinement with refinement
ratio r = 2. Figures 2-3 show the computed solution obtained using three levels of refinement. Ap-
parent in Fig. 3 is a low amplitude oscillation behind the oblique shock. This oscillation is due to
the low level of artificial dissipation in the present discretization. According to the computations,
the location of the normal shock trailing the airfoil, based on where the Mach number on the sym-
metry line is unity, is at 3.456 cords, 3.346 chords, 3.279 chords, and 3.274, for zero to three levels
of refinement, respectively. In comparison, Ref. 14 reports values between 3.32 and 3.35 chords as
the correct location. Thus, the error in the solution on the finest grid is within 2%. In the compu-
tation shown here, less than 20% of the cells on the coarsest grid were refined to the finest level.

The second test case to be presented is the reflection of a plane shock over a concave double
wedge. The wedge angles are 20° and 50°. The shock Mach number is 2.16. An ideal gas with spe-
cific heats ratio of 1.4 is assumed. Under these conditions, a Mach reflection is formed as the plane
shock hits the first wedge. A second Mach reflection is formed as the Mach stem of the first reflec-
tion hits the second wedge. The triple point of the second reflection travels faster in the direction
parallel to the plane shock than the triple point of the first reflection and gradually overtakes it.
Complicated interactions take place as discontinuities of the two reflections intersect.
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Computations were done using two levels of refinement with refinement ratio » = 4. The starting
grid system used in the computations is shown in Fig. 4. Figures 5 and 6 show the computed solu-
tion at two instances in time. Figure 5 shows the solution shortly after the Mach stem of the first
reflection has reflected off the second wedge. At the specific moment shown, the reflected shock
from the second reflection is about to overtake the slip line emanating from the triple point of the
first reflection. In Fig. 6, the triple point of the second reflection has overtaken the triple point of
the first reflection.

The computed solution for the double Mach reflection case has not been compared in specific de-
tails to experimental data. However, at least qualitatively, the results compare very well to experi-
mental results by Itoh, et al.1> At any time in the simulations, only a small percentage of the coarse
grid cells were refined to the finest level. Consequently, the overall cost of the simulation was only
a small fraction of the cost of a simulation done using a single-level grid with the same resolution
as the finest grid. This demonstrates how a simulation, intractable if traditional unadapted struc-
tured grids are used, can become feasible when adaptive refinement is used.

CONCLUSIONS

An algorithm for adaptive refinement of body-fitted structured grids has been tested on two of
the benchmark cases of this work shop. The algorithm used is based on the AMR algorithm of
Berger and Colella.? It uses a block structure for the data on the refined grids, which makes the
algorithm very well suited for adaptive refinement of structured body fitted grid systems. The
AMR algorithm has been found to work very well for the two test cases attempted and holds great
promise for use in general purpose flow solvers employing structured grids.
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Figure 1. Grid system in two blocks for Figure 2. Transonic flow over a NACAO0012
NACAOQ012 airfoil—grid lines drawn through airfoil at M = 0.95—contours of Mach number:
cell centers and boundary points. M; =02, AM =0.1.
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Figure 3. Transonic flow over a NACAO0012 airfoil at M = 0.95—contours of Mach number: M; =
0.2, AM = 0.1 (boxes indicate boundaries of blocks on the two finest mesh levels).
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Figure 4. Grid system in two blocks for concave double' wedge—grid lines drawn through cell
centers and boundary points.
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Figure 5. Shock reflection over a double wedge—Mach stem of first reflection has hit the second
wedge. Contours of density; p; = 1.35, Ap = 0.2 (boxes indicate boundaries of blocks on the refined
mesh levels).

Figure 6. Shock reflection over a double wedge—triple point of second reflection has overtaken
that of the first. Contours of density; p; = 1.35, Ap = 0.2 (boxes indicate boundaries of blocks on the
refined mesh levels). '
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