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EFFICIENT, FULL-SPECTRUM, LONG-LIVED, NON-TOXIC MICROWAVE LAMP -
FOR PLANT GROWTH’

Donald A. MacLennan, Brian P. Turner, James T. Dolan, Michael G. Ury, and Paul Gustafson

Fusion Systems Corporation, 7600 Standish Place,Rockville, MD 20855

INTRODUCTION

Fusion Systems Corporation has developed a mercury-free, low infra-red, efficient microwave
lamp using a benign sulfur based fill optimized for visible light. Our literature search and
discussions with researchers directed us to enhance the bulbs red output. We have demonstrated
a photosynthetic efficacy of over 2 micro-moles per microwave joule which corresponds to over
1.3 micro-moles per joule at the power main. Recent work has shown we can make additional
increases in overall system efficiency. During the next two years, we expect to demonstrate a
system capable of producing more than 1.5 micro-moles/joule measured at the power main with
significantly less IR than alternative lamp systems.

BACKGROUND

The results described are from NASA SBIR" funded work. We determined optimal plant growth
light requirements via a literature search and researcher input. We surveyed candidate lamp fill
materials to be used in combination with sulfur and explored several methods of increasing
photosynthetic efficacy. Following is a description of the lamp's potential and the work done
without disclosing proprietary information.

Advantages of Sulfur LLamp Technology

Why sulfur lamp technology? The sulfur bulb technology stems from 22 years of research and
development work on microwave powered mercury based electrodeless light sources at Fusion.
We summarize the properties of this new electrodeless sulfur light source:

» Spectral Non-reactive fill materials and the absence of
Stability electrodes lead to lamps with virtually no shift in spectrum over their life.
* Long Life Life tested to nearly 10,000 hours. No evident failure mode internal to the

lamp envelope discovered to date ("infinite" bulb life). System life is now
limited by magnetrons which with development could be doubled to
20,000 hours or more.

"Based on work supported by NASASmall Business Innovation Research (SBIR) Phase I Contract
NAS10-11978.
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The source has been tested at above 2 micro-moles per microwave
joule, bare bulb”. We expect improvements from this value.

There are no large spikes in the spectral distribution. See Figure 1.
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Spectral Irradiance of 6700° CCT bulb (upper solid curve) with solar
spectra (discrete points -- CIE Pub. 85, Table II). Lower curves are
scotopic and photopic eye responses for comparison only.

The bulb is non-toxic, mercury-free, and safe -- low pressure when not
operating.

We estimate bulb light output at 10,000 hours will be 95 percent
of initial output. This is referred to as "maintenance."

Stops and starts do not affect an electrodeless bulb's lifetime. As an
example, comparable Fusion UV bulbs are warranted for 100,000 cycles
and have achieved 400,000 in tests.

*Bare bulb means the output measured using bulb input power without ballast or fixture losses
included. This method of expressing efficacy is usual within the lighting industry. Unless
otherwise stated we will use efficacy at the power main to mean bare bulb with ballast, but

without a lamp fixture (reflector, etc.)
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. Rapid Cold start is significantly shorter than conventional HID lamps.

Start
. Operating Packages in the range 2,000 to 6,000 micro-moles per meter squared
Range per second of PAR are potentially practical.
. Low UV See Figure 2. We expect to make further improvements
and IR
36.4% UV+IR 62% UV + IR
63.6%
38 %
Cool White Flourescent HPS (Air Cooled)
312 % UV + IR 31.5% UV + IR
68.8% 68.5%
HPS (Water cooled) Microwave Sulfur

Fig. 2. 400 to 800 nm radiation versus UV + IR radiation (percent power output) or
various lamps. From data adapted from Both et. al. (1994).

Sulfur Electrodeless Lamp Technology Qverview

Like all HID lamps, visible light from sulfur bulbs comes from a hot gas or plasma within a
transparent envelope or bulb. The plasma is heated in conventional lamps by a current between
special metal electrodes. These electrodes can be a significant deleterious factor for bulb life and
maintenance of output. The sulfur bulb's plasma is heated by microwave energy interacting with the
material within a quartz spherical bulb -- no electrodes. The sulfur bulb is extremely simple in
concept, just a quartz envelope, noble gas, and sulfur. These materials do not react with each other.
See Figure 3. To this mixture, we have added other materials on a trial basis. This simplicity and the
absence of chemical reactions is the reason for the sulfur bulb's long-life and excellent output

maintenance.
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Fig. 3. Microwave Electrodeless Quartz Sulfur Bulb.
The microwave energy for the sulfur bulb is generated by a magnetron, similar if not identical to
those found in microwave ovens. The magnetron is powered by direct current electricity from a

power supply, which receives its energy from the alternating current electrical power mains. Figure 4
is a schematic of the lamp. Not shown in the figure is the magnetron to bulb coupling means.
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Fig. 4. Microwave Electrodeless Lamp Schematic.

Figure 5 is a cross-section of a lamp head showing the microwave coupling to the bulb. Surrounding
the bulb is a microwave containment screen and outside the screen is a reflector.
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Fig. 5. Microwave Electrodeless Lamp showing Bulb Coupling.

A recent and complete review of RF and microwave electrodeless lamps for lighting with an
extensive citation list was authored by Wharmby (1993). The basic paper on the sulfur lamp
technology was presented by Dolan et al. (1992).

Potential Applications

Commercial applications for Fusion's plant growth lighting innovation are in three areas:
experimental plant growth chambers, enclosed artificially-lighted plant growth factories, and
supplementary early season lighting for commercial nurseries and farms. Spectrum, efficacy,
cost, life, and infra-red content are key factors which will determine market success. Each
market area weights the factors differently.

Experimental plant growth chambers. Plant growth chambers are essentially sophisticated,
lighted, walk-in refrigerators designed to maintain a constant temperature and humidity. Control

of carbon dioxide and other gases can be important. Low infra-red emission, output and
wavelength stability, and adequate photosynthetic radiation are key criteria to plant growth
researchers. Lamp life, efficacy, and cost are less important. We have found an improved
spectra would be welcome by researchers.

Experimental growth chambers are used at colleges and universities, bio-technology firms, in
government, and research laboratories.

Enclosed artificially-lighted plant growth factories. Phytofarms of America may be the only US
firm to grow lettuce and other greens hydroponically totally under artificial light commerciaily
(water cooled high pressure sodium) in the US for a period of time. See Field (1988).
Phytofarms is no longer operating. One critical factor in shutting down was the cost of
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electricity. For artificially lighted plant growth factories, the cost per quanta delivered to the
plant is the most critical factor. At the present time no source appears to have the efficacy to
allow plant growth factories to flourish in the US. Apparently such growth farms are successful
in Japan. Low infra-red content and cost per unit dry weight grown are key factors in this
market.

Supplementary early season lighting. The largest near term potential market is supplementary
lighting for early season plant growth. In this market, initial cost of equipment and operating

costs are primary. High pressure sodium has adequate spectra and initial and operating costs for
many situations. According to a limited sample of commercial growers, infra-red from high
pressure sodium lamps is not a problem and may be helpful as the supplementary lighting helps
keep the ground warm during December through February.

OPTIMAL PLANT GROWTH SPECTRA

When starting this work, the authors decided to obtain input on the optimal plant growth spectra
so lamp objectives could be properly set. We choose to do this by examining the literature and
talking with key plant growth researchers.

Summary

Our literature search and researchers' comments” suggest an optimal plant growth spectral energy
distribution for photosynthesis and most photomorphogenic processes: 10% of the energy in the
blue region of the spectrum, preferably at about 440 to 460 nanometers, and 90% of the energy
in the red region of the spectrum with approximately 75% in the region between 600 and 700
nanometers, and less than 25% of the red energy in the far-red from 700 to 800 nanometers. UV
radiation below 360 nanometers wavelength has been shown to have deleterious affects on plant
morphology, and infrared radiation past 800 nanometers doesn't contribute to plant growth and
can be harmful at high levels (McCree 1984).

We also learned photosynthetic radiation, the number of photons between 400 and 700
nanometers, expressed in micro-moles, is a good initial metric for the output of plant growth
bulbs. This metric is simple, widely used, and sufficiently close to the well known McCree
(1972) relative quantum yield curve as to be quite useful.

Researcher Comments

The total energy of the radiation input to the plants has two separate criteria, where for most
plants (except wheat and certain other seed grasses), a "blue" energy input of 30 to 35 micro-
moles per meter squared per second has been suggested as the minimum needed for decent plant
growth, and 70 to 75 micro-moles M? sec”’ has demonstrated better performance (Sager). Total
energy has been postulated as optimized at approximately 600 micro-moles M2 sec. By
controlling the total energy output to that level, direct comparisons can be made between the

"Researchers supplying comments are listed following references.
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Fusion visible system and fluorescent, metal halide and high pressure sodium lamps. The reason
is fluorescent lamps are limited to approximately that range and many researchers have
concluded plant growth performance for fluorescent illuminated systems is acceptable (Downs).

There were also some comments from researchers as to the reasoning they used in selecting a
particular spectral distribution. Robert J. Downs said the residual radiation energy following
transmission through a single soybean leaf is almost completely quenched below 700
nanometers, thus indicating the green and blue radiation is absorbed or reflected by the topmost
leaves in the foliage. Thus in order to get sufficient leaf mass, red radiation between 600 and
800 nanometers is very important, as only that radiation contributes to photosynthesis in the
leaves below the top-cover foliage.

Downs also expressed the opinion the Fusion spectrum of Figure 1 is too blue. A flatter
distribution would be better.

Frank Salisbury suggested the [sulfur] spectra would be considered "ideal" as it presently exists
for researchers working in the areas of plant environmental and pollution research, as the
researchers would be able to model solar equivalent response and have the ability to rapidly
study such topics as ozone depletion, greenhouse gas effects, volatile hydrocarbon pollution,
acid rain effects and other environmental variables as well as their impact on plant growth,
morphology and physiology. Salisbury also stated for many wheat-like plants, the red output
from high pressure sodium works extremely well, and those types of plants seem to have little
need or requirement for the 10% blue radiation as defined by other researchers.

Theodore Tibbitts indicated a differing view. He suggested the bulk of the radiation would be
most useful if the radiation distribution were partitioned into 10% in the blue near 450
nanometers, and 90% in the region between 550 and 680 nanometers. He believes this would be
an optimal spectra for nearly all commercial applications. He suggested the spectra would be
best if it was strongly peaked near 600 nanometers with a rapid fall to zero above 800
nanometers and below 300 nanometers.

Two of Fusion's lamps are being used by the USDA, Climate Stress Laboratory by Dr. Steven J.
Britz and his co-workers in plant growth studies. Dr. Britz, writes "I doubt that a single
spectrum will be optimal under all conditions. Much will depend on the species or genetic
variety being used." His general conclusion, however, is in line with other researchers -- 90 %
of quanta in the red, 10 % in the blue. A key point in Britz's communication is "... our interest in
the [Fusion sulfur] lamp is based primarily on its ability to simulate sunlight more accurately
with respect to spectral quality and irradiance ..."

Tibbitts' note reminds us the photomorphology for most plants has a strong far-red response at
approximately 730 nanometers, which is one of the themes of Kasperbauer's paper on
phytochrome regulation (Kasperbauer 1992). With a strong control on radiation within the red
and far-red, plant morphology can be highly regulated. Fusion's present spectral output for the
sulfur bulb is slightly higher in the red to far-red ratio in comparison to solar radiation, which
helps explain Britz's finding of a phytochrome photoequilibrium distribution of 0.76 for the
sulfur bulb system as compared to 0.72 for solar radiation (Britz e/ a/. 1994). Thus the present
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spectra should have a tendency to have elevated growth of plant dry matter and a reduced
photomorphological response, enabling the morphology to be controlled by addition of "far-red"

light at approximately 730 nanometers.

Galland's review (1992) can be regarded as a cautionary note for any assumptions or statements
regarding previous blue-light research and plant physiology and photomorphology.

At a meeting at Fusion Systems Corporation (June 4,1992), Jerry Deitzer pointed out the
importance of radiation in the 700 to 800 nanometer region. He also stated "... [for commercial
growers] photons per watt is the key." At the same meeting, Robert Langhans suggested a key
advantage of the Fusion lamp in plant growth chamber studies was the low amount of far

infrared.
CANDIDATE LAMP FILLS

We examined a number of candidate lamp fills and designs. For our purpose here, we describe
two.

The fills which included Lil do show an additional red component. Typical is Figure 6.
However, we have to pay a large price for the "increase" in the red. First, heat conduction losses
hurt the efficiency due to the low weight (high conductivity) of lithium. Second, the iodine
absorbs blue and green light. Lithium could be introduced into the fill via Li,S which has a
reasonable vapor pressure, but heat conduction losses still remain a concern. We have not
exhausted the work with lithium and are hopeful.

Relative number of photons
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Fig. 6. Sulfur/lithium in the range 400-700 namometers. The ordinate is
proportional to the number of photons per second.
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Sulfur with X, a proprietary material, is shown in Figure 7 compared with the sun. The most
prominent novel characteristic of the bulb fill is the close match to the solar spectrum. The color
stability of this lamp is excellent, and no external filtering is needed to match solar spectrum.

While the photosynthetic efficacy of the source is good, it falls below other possible choices.
See Table L.

(8]

Relative number of photons
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Fig. 7. Sulfur plux X in (continuous line) compared with the sun (discrete
points). The ordinate is proportional to the number of photons per second.

RESULTS
We first list our bare bulb results and then compare the best to a practical configuration.
Bare Bulb Results
We tested several sulfur combinations (sulfur plus other materials) and alternative designs in an
attempt to increase the red output and increase the photons available for photosynthesis. Table I
summarizes a few of the different fill/designs tested and their bare bulb photosynthetic efficacy.

Sulfur alone (lamp of Figure 1) is shown for comparison along with the theoretical maximum
assuming a uniform distribution of photons between 400 and 700 nanometers.
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TABLE | Photosynthetic Efficacy of Fusion Test Bulbs.

Fill micro-moles/RF Comments
joule
Standard comparison 1.75 First sulfur lamp system.
bulb (sulfur + argon)
Sulfur + Lil 1.01 Runs hot.
Sulfur + X" + argon 1.41 Solar-like spectra.
Sulfur + argon (modified Above 2.0 Will be subject of next
design). NASA SBIR contract.
Theory: Constant number 4.6 All energy in 400 to 700

of photons per unit wave
length, 100% efficiency

nm band with photons
distributed uniformly,
no other loss in system.

*Proprietary material. Patent applied for.

Practical Growth Chamber Results

It should be kept in mind the efficacy values given in Table I are bare bulb numbers without
light-directing fixtures, and do not include power supply losses. Actual values on plants will be
significantly lower. With that in mind, we compare our numbers with the values published by
Barta et al. (1992) in Table II, below. Barta er al. numbers reflect experience in "typical growth
rooms and cabinets" and, as such, are lower than would be expected with bare lamps. We added
the fourth line to reflect what might be expected from the 2 plus micro-mole per joule lamp of

Table 1.

TABLE 2 Data from Barta et al. (1992), abridged with added sulfur lamp.

Photosynthetic Radiation Source Electrical Efficacy
(micro-moles/joule) at
plant level
High Pressure Sodium (HPS) 1.00 - 1.52
DH-TS GaAlAs LED 0.20 - 0.91
Cool White Fluorescent 0.13-0.75
Fusion sulfur lamp > 091

Efficacy > (2 X .65 X .70) *

* Efficacy > greater than 2 micro-moles times 0.65 power supply efficiency times

0.70 fixture efficiency.
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Discussion

The high pressure sodium (HPS) values up to 1.52 of Table 2 seem high. Using the same 0.70
fixture efficiency as above, a ballast efficiency of 0.88, and the conversion divider of 82 from
Thimijan et al. (1983), we get for a 1000 watt HPS bulb:
140 lumens per watt / 82 --> 1.71 micro-moles/joule new bare HPS bulb
times 0.88 ballast efficacy
times 0.70 fixture efficacy
equals  1.05 micro-moles per joule for the HPS lamp at plant level.

Actually, given the relative size of the sources, one would expect the sulfur lamp fixture to be of
greater optical efficiency. Thus, we conclude the present sulfur lamp photosynthetic efficacy is
nearly that of the HPS and note the sulfur lamp does not require water cooling.

We expect additional improvement during our next NASA SBIR contract resulting in a system
efficacy greater than HPS.
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