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Abstract 

The goal of the ongoing research described in this 
paper is to analyze real-time ground test data in or- 
der to identify. patterns associated with the anoma- 
lous engine behavior, and on the basis of this analysis 
to develop an expert system which detects anomalous 
engine behavior in the early stages of fault develop- 
ment. A prototype of the expert system has been de- 
veloped and tested on the high frequency data of two 
SSME tests, namely Test #901-0516 and Test #904- 
044. The comparison of our results with the post-test 
analyses indicates that the expert sys tem detected the 
presence of the anomalies in a significantly early stage 
of fault development. 

A complex physical system, such as the Space 
Shuttle Main Engine (SSME), is subject to compo- 
nent failures a t  any time during its testing or opera- 
tion. When a fault does occur, it is most likely that its 
effects will lead to damages in its components, possi- 
bly including partial or total destruction of the SSME. 
While testing the SSME, engineers are not able to see 
the onset of a fault, so when the fault fully develops, 
it could cause either early engine shutdown or serious 
damage to the SSME. Worse scenarios could happen 
if a slowly occurring fault goes undetected throughout 
all of the SSME's ground and flight tests, and once 
the engine is inserted into the shuttle for an actual 
flight, the fault fully develops, causing catastrophic 
damage to the shuttle and the crew. 

When afault does occur, extensive post-test data 
analysis is performed by examining a set of sensor 
plots from different time slices in order to determine 
a fault's behavioral characteristics, such as the time 
the sensor data started to indicate the faulty behav- 
ior and how the sensor data showed the fault's trend 
throughout its development. Many times some of the 
sensors start indicating abnormal SSME behavior 
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considerably before the fault is noticeable by the en- 
gineers and before the parameters set for the redline 
criteria are met, especially if i t  is a slowly occurring 
fault. If the engineers or flight crew have an eariy 
indication of the developing anomalous engine behav- 
ior, preventative measures can be taken in order to 
avoid or minimize the consequences of the fault. 

Automating the sensor data analysis process per- 
formed by engineers will result in an online detection 
system that can discover faults in a physical system 
during their early development stages by noticing the 
behavioral changes in all of the sensors' data. Such a 
system can be a useful tool in aiding engineers during 
a test, since it would warn them about the onset of 
anomalies occurring in the SSME during the test as 
opposed to afterward when a fault might cause early 
engine shutdown and damage to the SSME. 

When analyzing the sensor data, engineers inte- 
grate the results from several sensors in order to come 
up with a more substantial hypothesis or conclusion 
about what has occurred with the SSME. By inte- 
grating the results from all of the generated sensor 
hypotheses, a detection expert system can provide a 
better and more precise indication of the health of a 
rocket engine, thereby diminishing the possibility of 
false alarms located generated by noise found in the 
data or by sensors located away from the monitored 
component. 

Many diagnostic expert systems have been de- 
veloped for rocket and jet engine domains [I-81. The 
following is a review of the different approaches taken 
by researchers in solving fault detection and diagnos- 
tic problems. 

The system described in [2] uses explicit knowl- 
edge representation and explicit reasoning to detect 
and diagnose faults in a jet engine. The detection of 
faults is based on stored explicit knowledge incorp* 
rated into each node in the domain dependent diag- 
nostic tree. If a certain symptom matches a node in 
the tree, then reasoning rules, which are specific to a 
given node, are applied in order to guide the'traversal 
through the fault diagnosis tree. 



Rule-based diagnostic systems were used by the 
systems in [5,8]. In the system described in [5], the 
detection of faults is done by looking for abnormali- 
ties based on analytical redundancy contained in the 
Kalman Filter. The diagnostic process involves two 
approaches, one in which the origin of a failure is de- 
termined by the elements most likely to have caused 
the problem, and the other in which the mathemat- 
ical modeling corresponds to aircraft configuration 
changes due to the origins of a fault. Rules are used 
for transforming the scheduled tasks and failure ac- 
commodation into a search problem, which schedules 
and selects the actions taken by the system. In the 
second system [S] rules are used to actually perform 
the diagnosis of a fault. I t  has two approaches in diag- 
nosing faults. 'The first approach involves fault mod- 
eling based on the operation of the engine; it identi- 
fies the problems and determines the fault following 
trouble-shooting procedures, In the second approach, 
a qualitative model is used to generate fault hypothe- 
sis; the system then chooses one of the hypothesis and 
looks into the physical layout in order to infer which 
problems could occur. If the problems do not match 
the symptoms determined by the system, then that 
given hypothesis is eliminated. 

The system described in 17) uses qualitative and 
, temporal data to perform diagnostics in rocket engine 
. data. Comparisons between the input and previously 

seen data are executed by the reasoning processor, 
and similarities found are used to diagnose abnormal- 
ities found in the sensor data. In this way, the system 
can detect faults that have not yet exceeded the safety 
parameters set for the rocket engine. 

Another fault diagnostics approach implemented 
in [I] is a diagnostic system that combines two parallel 
approaches when detecting and diagnosing anomalous 
behavior in propulsion systems. In the first approach, 
the system learns and identifies sensor data behav- 
ior patterns, and generates hypothesis based on the 
behavior of the system. At the same time, the sub- 
system involved with the second approach processes 
the sensor data and reasons with the processed data, 
the design and functional knowledge of the propul- 
sion system, and the knowledge of the principles of 
physics and mechanics of the propulsion system in 
order to generate a fault hypothesis. Results from 
both approaches are then integrated to form a final 
hypothesis about the propulsion system. 

Neural networks have also been used as a method 
for detecting and diagnosing faults in rocket and jet 
engines [3,4,6]. They analyze temporal rocket or jet 
engine data represented in the form of sensor data 
curves. In [3] faults are detected and diagnosed by 

- -, 1 matching an incoming curve with known stored pat- 
terns with which the neural network has been trained, 
wbereas in [4,6] detection and diagnosis is performed 

by looking at the activation values of the middle layer 
nodes. 

The god of the ongoing research described in this 
paper is to analyze real-time ground test data, to 
identify patterns associated with the anomalous en- 
gine behavior, and on the basis of this analysis to 
develop an "Identification and Detection Expert Sys- 
tem (IDES) which detects anomalous engine behavior 
in the early stages of fault development significantly 
earlier than the indication provided by the redline de- 
tection mechanism. A prototype of IDES has been de- 
veloped and tested on the high frequency data of the 
two tests where anomalous behavior of a High Pres- 
sure Oxidizer Turbo-Pump (HPOTP) was the cause 
of the fault. IDES'S detection approach is based on 
the methodology applied by rotordynamics experts 
when they analyze the post-test high frequency sensor 
data. The system is designed to look for any kind of 
anomalies present in the monitored information found 
in the sensor data. The system also integrates each 
sensor's information into a single hypothesis about 
what the sensor sees as the behavior of the HPOTP, 
and then all of the generated sensor hypothesis are 
integrated in order to determine whether there is 'an 
actual fault occurring, or whether one of the sensors 
is just picking up feed through frequencies from other 
components. 

In order to detect HPOTP faults more accurately 
and in their very early developing stages, the Isola- 
tor and Weld Strain Gage sensors were selected for 
monitoring. These sensors have been determined by 
the experts to be the best indicators of HPOTP faults 
because they are the closest sensors to the source of 
the problems we have analyzed in the two tests. The 
Isolator Strain Gages, when present in the HPOTP, 
are internal to the pump, while the Weld Strain Gages 
are located on the outside casing of the HPOTP. 

' 
I t  should be noted that the sensor data is not in 

a steady state from the beginning to the end because 
of scheduled events that have an impact on the data, 
causing sensor data to become transient for a while. 
In order to deal with transient state sensor data, the 
system utilizes knowledge about the scheduled thrust 
level changes in order to  determine if the sensor data 
should be sampled and processed. If the system de- 
termines that the current time slice falls within the 
non-transient monitoring time period, it aIlows for 
the sensor data to be sampled and analyzed; other- 
wise, the system ignores the sensor data for that time 
slice and waits for the next possible processing time 
slice. The system also keeps information on the sched- 
uled vehicle commands and informs the user whenever 
a scheduled event occurs during the safe monitoring 
period, so that if an anomaly is detected, the user is 
made aware that it could have been caused by the 
scheduled event. 



The system also monitors and identifies inter- 
mittent frequencies found in a sensor's window of 
data. This allows for the system to warn engineers 
about frequencies that are significantly appearing in 
the sensor data, possibly indicating faults in other 
components of SSME. While some of the intermit- 
tent frequencies are known to engineers, others are 
of an unknown nature, giving engineers more infor- 
mation about HPOTP's behavior. The system also 
tracks and informs engineers about intermittent fre- 
quencies which it has detected in the past for each of 
the monitored sensors. In this way engineers can see 
which intermittent frequencies are always appearing 
in a sensor's data. 

. .  : 11. Exoert Svstem Architecture 

The architecture of the Identification and Detec- 
tion Expert System (IDES) is shown in Figure 1. It 
is comprised of four modules. These modules are: 
the Monitor, the Frequency Extractor, the Data Ana- 
lyzer/Fault Detector, and the Sensor Integrator. The 
Profile of Scheduled Events provides information to 
the Monitor in order to allow IDES to differentiate 
anomalies from scheduled events. A user interface is 
also integrated with IDES in order to facilitate the 
interaction between the user and the system. 
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Figure 1. The System's Architecture. 

The Monitor 

The Monitor is responsible for sampling sensors 
from sequential windows of 0.4 seconds duration from 
the non-transient portion of data. The non-transiency 
of data is determined by utilizing the information 
provided by the Profile of Scheduled Events. A fast 
fourier transform of the data of each window is consid- 
ered for further analysis. The Monitor is also respon- 
sible for checking with the Profile of Scheduled Events 
in order to avoid mistaking a scheduled event for an 
anomaly. The interface also informs users about the 
temporal events when a thrust level change command 
or any other scheduled vehicle command is executed. 

The Frequency Detector 

This module is responsible for analyzing each 
window of data and detecting the presence of ire- 
quencies of unusually high amplitude. First, attempts 
are made to identify these frequencies as some of the 
known frequencies. The frequencies which cannot be 
identified as known frequencies are treated as inter- 
mittent frequencies. Through the user interface, ex- 
perts/operators are informed about the presence of 
these abnormal activities in the data. 

The Data Analyzer/Fault Detector 

The purpose of this module is to perform a com- 
parative analysis of the newly extracted values of the 
-monitored sensor information in order to determine 
if any of them are detecting anomalous HPOTP ' be- 
havior. Given each of the extracted values and their 
respective expected normal values, the Data Ana- 
lyzer/Fault Detector (DA/FD) calculates an abnor- 
mality score for each value, representing the degree 
by which it is detecting anomalous behavior. Based 
on the calculated abnormality scores, DA/FD decides 
whether an anomaly exists in any monitored informa- 
tion of a given sensor. When processing normal data, 
this module is also made responsible for learning what 
the expected normal values for the sensor information 
are. 

The Sensor Data Integrator 

This module has two components that are re- 
sponsible for performing sensor data integration. The 
first component integrates all the available informa- 
tion on a sensor's monitored frequencies and generates 
a consistency score, which states how consistently any 
of the monitored sensor information has been detect- 
ing anomalies. After each sensor has been processed, 
the second component then integrates all of the gener- 
ated sensor consistency hypotheses into a single over- 
all hypothesis about whether the HPOTP's current 
status is normal or if any of the sensors are showing 
anomalous behavior. 



The User intedace 

En order to organize the display of IDES'S out- 
put and to simplify a user's interaction with IDES, a 
user interface was integrated with the overall system. 
The layout for the interface consists of four sensor 
analysis output display windows and a set of system 
commands that allow the user to interact with IDES, 
as shown in Figure 2. 

the Scheduled Events Window, along with the previ- 
ously and next scheduled events. In the Sensor Fusion 
Analysis Window, the final hypothesis generated by 
IDES about the HPOTP is displayed for each moni- , 
tored time slice; the sensors that contributed to the 
final hypothesis have their names indicated under the 
hypothesis. 

The set of system commands displayed on the 
top of the interface's screen allows a user to inter- 
act with IDES without knowing any of the required 
parameters and function calls needed to run IDES. 
These commands provide the user with the flexibility 
of loading different test cases to be run through IDES. 
They are activated by either clicking the mouse on the 
desired option, or by typing a desired command in the 
command line. 

Ill. Scheduled Events and Monitoring Strateqy 

IDES maintains a profile of scheduled events. 
The information contained in this profile is used by 
the Monitor in order to determine SSME's transient 
time period between scheduled thrust level changes, 
the new thrust level, and any scheduled vehicle com- 
mands that may affect the amplitude values of the 
monitored frequencies. The Profile of Scheduled 
Events is composed of two parts, one which contains 
the available information on the thrust level events, 
and the other which contains the available informa- 
tion on all the vehicle commands scheduled for a given 

Figure 2. The User Interface. 

Each of the windows shows a specific set of infor- 
mation that has either been extracted from the sensor 
data, supplied by the Profile of Scheduled Events, or 
deduced during IDES's reasoning process. The Nom- 
inal Frequency Window (NFW) and the Intermit- 
tent Frequency Window (IFW) display the frequency 
names, the frequency values, and the frequency ampli- 
tudes for all of the frequencies displayed in the respec- 
tive windows. In the NFW, if a frequency is detect- 
ing an anomaly, its abnormality score is also output 
to the screen. This window also displays the white 
noise value for each of the sensors. In IFW, if any 
of the currently extracted frequencies have been seen 
before by the respective sensor, then it informs the 

' .  user of that-by printing a Y under the Seen column. 
Any time that a vehicle command is scheduled during 
IDES's current monitoring time slice, it is displayed in 

A change in thrust level causes a transient state 
in the sensor data and brings instability to the fre- 
quency and amplitude relationship. These instabili- 
ties may mislead the system to erroneous frequency 
analysis. This is especially true if the thrust level 
change is drastic, as when it changes from 104 to 65 
%. In order to avoid erroneous results, IDES em- 
ploys a scheduled event profile to skip the transient 
and unstable period of data and analysis data of non- 
transient and stable durations only. 

At each thrust change, the Profile of Scheduled 
Thrust Level Change Events (PSTLCE) provides the 
IDES with the SSME's new thrust level, and the sta- 
ble data monitoring start and end times for the given 
thrust level. With this information IDES determines 
the time duration during which it can sample the sen- 
sor data. 

Although anomalous behavior found in the sen- 
sor data usually indicates the development of an 
anomaly, it could be caused as an after-effect of a ve- 
.hicle command scheduled to occur at a given time. In 
,'order to account for anomalous sensor dgta behavior, 
the Profile of Scheduled Vehicle Events provides the 
user with the current scheduled event, the previously 



scheduled event, and the next scheduled event. If 
anomalous behavior is detected during a time sched- 
uled for a vehicle command, the user is informed that 
the event may have had an effect on the sensor data, 
especially if some of the sensors detect anomalies in 
their monitored frequencies and no fault hypothesis 
is generated for the next few seconds. 

As explained earlier, the monitor is responsible 
for sampling sensors from sequential windows of 0.4 
seconds duration. The frequency spectrum of a win- 
dow of strain gauge 12 data is given in Figure 3 which 
illustrates amplitudes of all frequencies between 0 and 
2000 Hz. Each frequency in this spectrum represents 
the mid point of the 5 Hz bin which is used in sam- 
pling the data by the monitor. 

0 sco 1000 1500 

Figure 3. A Window of Sensor Data 

IV. The Frequencv Extractor (FE) 

.Buman experts employ certain specific frequen- 
cies and their harmonics (termed as basic frequencies 
in this paper) in analyzing anomalous engine behav- 
ior. A list of such frequencies is given in Table 1. The 
presence of high amplitude at  any arbitrary frequen- 
cies other than basic frequencies (termed as intermit- 
tent frequencies in this paper) may also indicate the 
presence of an anomaly. The Frequency Extractor, 
composed of two modules, scans each sensor data win- 
dow and identifies and retrieves the needed frequency 
information for the analysis of HPOTP's health sta- 
tus. The two modules of FE are the Basic Frequency 
Extractor and the Intermittent Fkequency Extractor, 
and each is described in the following subsections. 

hdgn of the Basic Freqwncy htrador 

The Basic Frequency Extractor (BFE) design is 

I.FUNDAnENTAL SYNCHRONOUS FREOUENCY ( I N )  
2.SECONDHARMONlCOF SYNCHRONOUSFREOUENCY (2N) 
3. THIRD HARMONIC OF SYNCHRONOUS FREOUENCY (3N) 
4,FOURTHHARMONlCOF SYNCHRONOUSFREQUENCY (4N) 
5. FUNDAnENTAL CAGFE FREOUENCY ( IXf  
6. SECOND HARMONIC OF CAGE FREQUENCY (2X) 
7. THIRD HARMONIC OF CAGE FREOUENCY (3x1 
8. FOURTH HARMONIC OF CAGE FREQUENCY (4x1 
9. INNER RACE FREOUENCY (It?)' 
10. OUTER RACE FREQUENCY (OR) 
I I. WHITE NOISE LEVEL 

S b l e  1. Extracted Sensor Data Information 

based on the heuristics applied by the experts when 
they identify the synchronous and cage fundamental 
frequencies, their respective harmonics, and the in- 
ner and outer race frequencies. Each frequency has 
a certain range in the data window where it can be 
found, and it is identified as the highest amplitude 
peak within that range. If there is not an apparent 
peak found within the expected frequency range, the 
given frequency is said to be absent a t  that current 
data window, or not significantly appearing in the 
sensor data. 

When analyzing sensor data at  different thrust 
levels, one can notice a shift in the frequency loca- 
tions as shown in Figure 4. BFE needed a way to 
determine the necessary frequency ranges so that it 
can search for the desired frequencies, regardless of 
SSME's current thrust level. Sensor data was not 
available for all the possible thrust levels, thus elim- 
inating the possibility of containing a table with fre- 
quency ranges for all the thrust levels. Another possi- 
bility could have been to keep ranges wide enough so 
that the desired frequencies could be found no mat- 
ter what the thrust level is, but this method could 
produce wrong frequency identifications due to over- 
lapping frequency ranges, such as the fundamental 
synchronous frequency and the first cage harmonic 
ranges, and to aliasing of frequencies around a given 
frequency's range. 

This frequency range problem was solved by first 
manually analyzing several windows of normal data 
at different thrust levels, extracting the fundamen- 
tal synchronous frequency from each of the windows, 
and then fitting the frequency points through a sec- 
ond degree. polynomial curve that determines the ap- 
proximate location of the first synchronous frequency 



at any given thrust level. In this way, in analyzing a 
new test data, a shorter range off 30Hz is put around 
the approximate first synchronous frequency location EFT w i n d o w  W045( r e s c  039 SG 121 65.0-69.0 ( 65%) 

(determined from the second degree polynomial) to LOoo 

insure that if the synchronous frequency has shifted, 
i t  can still be found within the expected range, espe- 800 

cially since error is introduced by the sampling rate 
of the data and by the approximation of the inter- 

600 
polated function. Once the fundamental synchronous 
frequency has been identified for a given thrust level, 
a range off 10 Hz is put around it, creating a shorter 400 

range by which BFE must search for the fundamental 
synchronous frequency in subsequent windows. This 200 

process was not repeated for the other frequencies 
since their ranges are determined by the correct iden- 

- tification of the fundamental synchronous frequency. 0 

0 so0 1000 IS00 2000 

In order to determine the frequency ranges for 
the synchronous harmonics, BFE generates a range 
of f 10 Hz around the first synchronous frequency. 
It then multiplies this range by two, three, and four 
to get the first, second, and third harmonic ranges 
respectively. 

Experts in the field have determined that the 
fundamental cage frequency is always found within 
a range of 4247 % of the fundamental synchronous 
frequency. The system computes this range and iden- 

I tifies the fundamental cage frequency as the highest 
peak in that range. Once the first cage frequency is 
identified, BFE generates a range of f 10 Hz around 
it, and multiplies the new range by two, three, and 
four in order to generate the first, second, and third 
cage harmonic ranges. 

Once all of the harmonic ranges are found, BFE 
matches the synchronous harmonics to the fundamen- 
tal synchronous frequency, and the cage harmonics 
to the fundamental cage frequency. The top three 
peaks within each of the ranges are identified as pos- 
sible matches to their respective fundamental frequen- 
cies.' Out of the three selected peaks, BFE identifies 
the desired harmonic as the peak whose frequency 
is the closest multiple to the respective fundamental 
frequency, given a range of error of f 15 Hz. In the 
case where there is not a match between the top three 
peaks of a harmonic's range with the respective first 
harmonic frequency, meaning that the given harmonic 
is not significantly showing in the sensor data, BFE 
uses the calculated harmonic frequency position and 
extracts the information for that given harmonic at  
the calculated frequency. 

The reasoning behind looking for the closest mul- 
tiple instead of an exact multiple is due to the sam- 
pling of the high frequency data input to the sys- 

: .tern, which is set at 5 Hz. A point is picked from 
each frequency bin as the representative amplitude 
for'the given bin, and the frequency value selected is 

A. Sensor Data at 65 Percent Thrust Level. 

OPT window W045( C.SC 039 SO 12) 30.0-34.0 (109+) 

b sio 1000 isbo 2bo o 

B. Sensor Data at 109 Percent Thrust Level 

Figure 4. Frequency Shift at Different Thrust Level 

the hslfway point of the bin, making the exact loca- 
tion of a frequency unknown to BFE. The range of 
f 15 Hz allows for a harmonic to be found within 
three bins to the right or left of the expected har- 
monic frequency value, due to the error introduced 
by the sampling rate of the sensor data. 

Since the inner and outer race frequencies are 
exactly determined by a window's fundamental syn- 
chronous frequency, the cage to synchronous ratio, 
and the number of balls in a bearing, they do not go 
through the same identification process as the syn- 
chronous and cage frequencies. To find the inner race 
frequency information, BFE applies the following 



formula: 

INNER RACE FREQUENCY=1X * NB 

The outer race frequency is computed by almost 
the same formula, except that instead of multiplying 
the fundamental cage frequency, BFE uses the com- 
plement of that value, or one minus the fundamental 
cage frequency: 

OUTER RACE FREQUENCY=lN*(l-(lX/lN))*NB 

where 

1N = Fundamental Synchronous Frequency 

1X = hndamental Cage Frequency 

NB = Number of Balls in a Bearing 

Once the frequencies are identified, BFE uses the 
specific frequency point and extracts the correspond- 
ing amplitude value. 

The Design of the Intermittent Frequency 
Extractor (IFE) 

Intermittent frequencies are defined as the fre- 
*quency peaks found in a sensor's data window that 
cannot belcategorized as basic frequencies and are 
significantly appearing in the data. If any of the fre- 
quencies in the data window are selected as intermit- 
tent frequencies, they are sent to the Intermittent fie- 
quency Classifier (IFC), either to be identified as one 
of the possible feed-through frequency signals from 
the other SSME components, shown in Table 2, or to 
be classified as unknowns. 

In determining the intermittent frequencies, IFE 
employs a threshold significantly above the white 
noise level. The White Noise Level Extractor 
(WNLE) determines the white noise level by ana- 
lyzing a sensor's data window. In order to avoid 
the monitored frequencies) peaks from influencing the 
white noise value, they are removed from the data 
window before the computation; in this way, only the 
noisy amplitudes contribute to the white noise value. 
WNLE then averages the remaining amplitude values 
to determine the white noise level value for a given 
sensor a t  each time slice. Because this value is also 
used as a threshold basis for the extraction of some 
frequencies, its standard deviation is also computed. 

Any frequency whose amplitude is significantly 
above the white noise level of a sensor's data window 
is extracted by the Intermittent Frequency Extrac- 
tor (IFE). In order to distinguish the intermittent 
frequencies from the noise found in a sensor's cur- 
rent data window, a threshold based on the sensor's 
white noise level is applied to the remaining frequen- 
cies. This threshold is set at three standard deviations 
above a sensor's current white noise level, and if any 
frequency's amplitude is above this threshold, i t  is ex- 
tracted from the window and sent to the Intermittent 
Frequency Classifier for possible identification. 

The choice for using three standard deviations 
above the white noise was determined after applying 
2 and 3 standard deviations above the noise to the 
sensor data, and selecting the threshold which best 
eliminated the noisy frequencies from the ones that 
are clearly above the noise level, as shown in Figure 
5, over a set of data windows. 

I .  6 0  Hz LINE 

2. HPOTP CASE MODE 

3. HPOTP FIRST ROTOR MODE 

4. LPOTP SYNCHRONOUS AND HARMONICS 

'5. LPFTP SYNCHRONOUS AND HARMONICS 

6. HPFTP SYNCHRONOUS AND HARMONICS 

Table 2. Possible SSME Component Feed-through Figure 5. Intermittent Fkequency Thresholding Cri- 
Frequencies teria 



The Intermittent Frequency Classifier, IFC, at- 
tempts to identify the selected frequencies as one of 
the possible feed-through frequencies that, at times, 
may appear in the sensor data. Since these frequen- 
cies also shift based on SSME's current thrust level, 
average ratios between the nominal frequencies and 
the first synchronous frequency were derived from the 
values used by experts and shown in Table 3, in or- 
der to determine the approximate location of the fre- 
quency in a data window. These approximate loca- 
tions are then used by IFC to attempt to match an 
intermittent frequency as one of the other possible 
feed-through frequencies. 

:Iltible 3. Feed-Through Frequency Positions at  Dif- . 

ferent Thrusts 

The calculated ratios for identifying intermittent 
frequencies are encoded in a set of data-driven pro- 
duction rules. IFC applies each production rule, com- 
pu ting the approximate ranges for the feed-through 
frequencies, and attempts to match an incoming in- 
termittent frequency as one of the possible other nom- 
inal frequencies. If the incoming kequency does not 
fit in any of the ranges, then it is classified as an un- 
known frequency; otherwise, it is identified with the 
namecof the nominal frequency at that range. 

109% 

88 

273 

490 

605 

Another function IFC performs is to learn inter- 
mittent frequencies that it h a .  not seen, and to recog- 
nize the ones that it has seen in a previous data win- 
dow for each of the monitored sensors. Elom the be- 
ginning of a run, IFC starts learning the intermittent 
frequencies for each of the sensors, and after the first 
time slice, it starts to recognize previously seen inter- 
mittent frequencies. For each intermittent frequency 
that IFC extracts and recognizes as a previously seen 
frequency, IFC flags the output information for that 
frequency as a recognized frequency; otherwise, IFC 
learns the new frequency for that given sensor so that 
it can remember it later if the frequency reappears in 
a different time slice. 

104% 

86 

264 

470 

586 

FREQUENCY N A M  

I. LPOTP 

2. LPFTP 

3. HPOTP 

4. HPFTP 

During the development of IDES, several training 
methods were studied in order to analyze and detect 
anomalies through sensor data. This section presents 
and explains each of the approaches that .have been 
tested. 

100% 

84 

260 

444 

572 

Off-line Training Met hod 

This method involved training the system to dis- 
tinguish between normal and abnormal sensor data 
off-line. This was done by using test data which 
NASA engineers considered normal, and then using 
that normal data as a basis of comparison with the 
data from any of the other tests. When comparing the 
incoming data with the expected normal data in order 
to detect anomalous frequencies, IDES calculates the 
number of how many deviations the new frequency 
amplitude is above the expected normal amplitude. 

In order to train the system, the amplitudes for 
each of the frequencies were extracted from several 
windows a t  the different thrust levels present in test 
901-039. The mean and standard deviation values 
were calculated for each of the frequencies at  each 
thrust level. Then, for each of the frequencies, an 
interpolating function was generated utilizing the dif- 
ferent thrust levels and the mean amplitudes at each 
specific thrust level. In this way, an interpolated mean 
amplitude can be found for any thrust level, even the 
ones that were not represented in test 901-039. 

Since the abnormality score is based on how 
many deviations an amplitude value is above the ex- 
pected interpolated mean, the deviation selected for 
each frequency was the highest deviation value of that 
frequency over all of the represented thrust levels. 
Choosing the highest deviation value for a frequency 
eliminated the possibility of a normal frequency am- 
plitude being classified as an anomaly in case the se- 
lected deviation had been lower than that frequency's 
deviation at  the given thrust level. 

In this method the abnormality score was com- 
puted by subtracting the interpolated normal ampli- 
tude of a frequency from the newly extracted ampli- 
tude, and then dividing the result by the highest devi- 
ation of that frequency. Anomalous frequencies were 
detected whenever their deviation number was above 
a threshold of 5 deviations. Since sensor data have dif- 
ferent data scales in different tests (as shown in Figure 
6), a scaling factor for each frequency was computed 
based on the first window of data. In this way, sub- 
sequent extracted frequencies' amplitudes were mul- 
tiplied by their respective scaling factors in order for 
them to >be scaled into representative amplitude val- 
ues that were comparable to the data scaling of the 
trained normal amplitudes. 



presence of a violation. En the absence of a viola- 
m y  I ~ , ~ W  "043, t..t 0 3 7  SG LII- tion the amplitude was added to the running average; 

toOoo otherwise, the running average was not updated for 
that time slice. The training terminated when either 

(000 twenty-five windows had been averaged, or when one 
of the sensors had detected anomalies in three consec- 

sooo utive windows. In the second modification, the algo- 
rithm was changed for the inclusion of non-violating 

4ooo amplitudes in the running average. All the frequen- 
cies which did not show anomalous behavior during 

loOo the training time period, were considered normal and 
were allowed to update their respective running aver- 

0 
O ages. 

Since, in this approach, IDES learned online 
about the expected normal amplitudes for each of 
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. . .  the frequencies, it saved the learned information along 

11-10 with the respective thrust level for possible future use 
during the test. After each thrust level change, IDES 

10.00 readjusted its expected normal amplitude values to 
reflect the new thrust level. For every previously un- 

1.10 observed thrust, IDES retrained itself for the data 
of this new thrust. But if the new thrust level had 

l.OO been observed earlier then the system retrieved the 
trained amplitude information for that thrust level, 

2.10 rather than learning it again. 

0.00 Modified On-line Training Method 

Figure 6. Same Sensor Data From Different Tests. 

On-line Training Method 

In this approach IDES learned online (from the 
same test) the expected normal value for each of the 
frequencies' amplitudes, thus eliminating the need for 
computing scaling factors between sensor data from 
different tests. Since the sensor data stabilized within 
a few seconds after thrust change and can be assumed 
to be representative of the normal frequency ampli- 
tudes, the expected normal values were based on the 
first window of data, after the sensor data stabilized 
from a thrust change. Subsequent frequency ampli- 
tudes then compared to the amplitudes found in the 
first data window, and the abnormality scores were 
determined based on the percentage by which the new 
amplitude increased from the learned expected nor- 
mal amplitude. Anomalies were detected whenever a 
frequency's amplitude exceeded the specified percent- 
age threshold for that specific frequency. 

Two improvements were made to the online 
training algorithm. In the first improvement, the 
system was modified to compute a sunning average 

,' of the normal amplitude values over a series of data 
windows. Before adding an amplitude to the run- 
ning average of a frequency, IDES checked for the 

This approach borrowed concepts from the two 
p-revious training and detection methods. It utilized 
a modified detection criteria for the training algo- 
rithm to track all of the frequencies' amplitudes that 
were being included in each frequency's running av- 
erage. During the training period, the detection of 
anomalies was still based on the percentage method, 
but after the system stops training, the detection of 
anomalous frequencies was switched to a different al- 
gorithm. The mean and standard deviation for each 
of the frequency's amplitudes were computed during 
the training period, and the running average values 
were replaced by the sum of the mean and a multiple 
of the standard deviation of each frequency after the 
training period. Detecting anomalies in the data then 
was based on the new frequencies' amplitudes exceed- 
ing the threshold set by the sum of each mean with 
its respective multiple of the standard deviation. 

VI. Sensor Integration Module 

When looking at sensor data in an attempt to 
fuse the information provided from several sensors, 
experts have always emphasized the consistency of a 
sensor in detecting an anomalous signal as being very 
important. The sensor integration algorithm devel- 
oped for this system uses this consistency heuristic as 
the basis for generating and integrating the 'sensors's 
hypotheses. 



The Sensor Integration Module is divided into two Table 4, or that there is only one anomaly detected 
parts: in any of the sliding windows at 97.4 seconds in Table 
1. SingIe Sensor Integrator 4. 
2. Multiple Sensor Integrator 

The first module generates a consistency hypoth- 
esis about HPOTP's behavior as seen by a single sen- 
sor and based on its monitored frequencies. The sec- 
ond module integrates all the hypotheses generated 
for all of the sensors into a single overall hypothesis 
about HPOTP's behavior. 

Single Sensor Integrator 

The Single Sensor Integrator (SSI) is designed to 
look at all of a sensor's currently extracted informa- 
tion to  see if anomalies have been detected, so that it 
can combine the new results with the previous ones 
in order to  generate a sensor's consistency hypoth- 
esis about possible anomalous behavior of HPOTP. 
The generated hypothesis is based on a sensor's con- 
sistency in detecting anomalous behavior within the 
same monitored sensor information over a period of 
three sequential windows. 

Each sensor is associated with a symptom ob- 
ject that tracks the consistency of anomalous behavior 
found in%he extracted sensor information along with 
%he hypothesis generated for that given time slice. For 
each extracted sensor information, there is a sliding 
window that holds knowledge about whether a sensor 
has detected an anomaly within the last three time 
periods. At each new time slice, when a sensor data 
has been processed and the abnormality scores have 
been generated, each sliding window is updated to 
either contain a Y, indicating that an anomaly has 
been detected a t  that time for that given sensor in- 
formation, or an N, indicating that no anomaly has 
been identified for that given piece of sensor infor- 
mation. In addition, the oldest element found inside 
each sliding window is removed from it. 

Once all of the sliding windows of a sensor's 
symptom object have been updated, SSI inspects 
them, giving each sensor a consistency score of ei- 
ther three, two, or zero. As shown in Table 4, at 
100.6 seconds a sensor gets a consistency score of 
three when one of its monitored frequencies has con- 
sistently shown an anomaly during three consecutive 
time slices; in this case, the fundamental synchronous 
frequency generated the score of three, If a sensor 
does not receive a consistency score of three, then a 
consistency score of two is given if one of the frequen- 
cies has detected an anomaly in two out of the three 
tracked time slices, as shown in Table 4 at 98.2 and 
98.6 seconds. Otherwise, if a sensor has not received a 

' , - score of either three or two, then it is assigned a score 
of zero, indicating that either no anomalies have been 
detected by the sliding windows at 97.0 seconds in 

Table 4. A Sensor's Data Behavior. 

The Multiple Sensor Integrator 

Once all of the sensors have had their consistency 
hypothesis generated for a given time slice, the symp 
tom objects are sent to the Multiple Sensor Integrator 
(MSI) to have the overall hypothesis about HPOTP's 
health status generated for the current time. MSI 
generates three possible hypothesis: 

1. Possibility of a fault 
2. Good possibility of a fault 
3. Fault occurring based on N consistent sensors 

In order for MSI to generate a hypothesis, it must 
first look into the consistency score found in the symp- 
tom objects of each sensor, and then determine how 
many sensors have received consistency scores of ei- 
ther three or two. For MSI to assign the first hy- 
pothesis (the possibility of a fault) as HPOTP's sta- 
tus, only one of the monitored sensors must have re- 
ceived a consistency score of three, indicating that 
it has consistently detected anomalous HPOTP be- 
havior within three consecutive time slices. For the 
second hypothesis (a good possibility of a fault) to be 
assigned, one of the monitored sensors must have re- 
ceived a consistency score of three, while at least one 



other sensor has received a consistency score of two, 
showing that one sensor has consistently detected 
anomalous behavior in three consecutive time slices, 
and at least one other sensor must have detected 
anomalous behavior in two out of three consecutive 
time periods. When two or more monitored sensors 
have received a consistency score of three, indicating 
that at least two sensors have detected anomalous be- 
havior, the third hypothesis (fault occurring based on 
N consistent sensors) is assigned as HPOTP's status, 
where N is the number of consistent sensors showing 
the fault. No hypotheses are generated in the cases 
where all the sensors have consistency scores of either 
two or zero. 

Examples of the sensor data conditions in which 
the three hypotheses are generated can be seen in 
Table 5. At 107.4 seconds, MSI generates the first 
hypothesis of a possibility of a fault. In this case, the 
Weld Strain Gauge 3A is the cause for the hypothesis 
based on its anomalous second harmonic of the syn- 
chronous frequency. An example of when the second 
hypothesis is generated is at 108.2 seconds, where now 
the Isolator Strain Gauge 12 has detected anomalous 
behavior in two out of the three time slices. At 108.6, 
MSI generates the third hypothesis which says that 
a fault is occurring based on two consistent sensors: 
Isolator Strain Gauge 12 and Weld Strain Gauge 3A. 

a b l e  5. Sensors' T i e  Slice Outputs. 
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We have developed a prototype of the Identifica- 
tion and Detection Expert System (IDES) which has 
been tested on the high frequency data of two SSME 
tests, namely Test $901-0516 and Test # 904-044. 
The comparison of our results with the post-test anal- 
ysis, performed by human experts, indicates the high 
potential capabilities of IDES in detecting anomalies 
significantly earlier than other methods currently be- 
ing applied. However, the implementation of the pro- 
totype is the first step in achieving our goals. The 
success of IDES must be tested on a number of tests 

of different faults as well as on the same fault occur- 
ring with different severities and speeds. We expect 
that several modifications will be needed for the suc- 
cessful testing of IDES on the data of a large num- 
ber of engine tests. Though we have performed pre- 
liminary analysis of intermittent frequencies, a large 
amount of domain knowledge will be needed in or- 
der to successfully interpret and employ the analysis 
of these frequencies to the data of a large number of 
tests. Furthermore, the identification of patterns and 
the detection of anomalies in early stage may not be 
enough. The diagnosis of faults, finding causes and 
sources of the problem, and determining of the pos- 
sible corrective actions will be important extensions 
which we intend to perform in the future. 
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