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Summary

When one or more new values are added to a developing time

series, they change its descriptive parameters (mean, variance,

trend, coherence). A "change index (CI)" is developed as a

quantitative indicator that the changed parameters remain

compatible with the existing "base" data. CI formulae are

derived, in terms of normalized likelihood ratios, for small

samples from Poisson, Gaussian, and Chi-Square distributions, and

for regression coefficients measuring linear or exponential

trends. A substantial parameter change creates a rapid or abrupt

CI decrease which persists when the length of the bases is

changed.

Except for a special Gaussian case, the CI has no simple

explicit frequency distribution that could be used to delineate

critical regions for tests of hypotheses. However, its design

ensures that the series sampled need not conform strictly to the

distribution form assumed for the parameter estimates. The use of

the CI is illustrated with both constructed and observed data

samples, processed with a Fortran code "Sequitor" (Appendix B).



1. Introduction

Modern statistics came into being and developed, on the

fields of the British agricultural research station Rothamsted,

from carefully designed randomized experiments and results

obeying strictly valid frequency distributions with well-defined

population parameters. But from the start there was another

reality, consisting of uncontrollable observational data from the

natural and human environments - an untidy mess of scattered,

trended, abruply changing numbers with stretches of

"statistically controlled" variation around quasi-constant

central values. An example is shown in fig.la. When a

sufficiently large number of such data have been assembled an

apparently orderly behavior may be constructed a posteriori (fig.

Ib), but often the past is no reliable guide to a developing

future, which then needs to be examined "sequentially" anew with

each accruing observation.

A full analysis of time series with such short-lived quasi-

steady regimes demands consideration of two disparate scales. A

long time scale serves to define frequency distributions of

regime lengths, regime sequences, and transitions between

different regimes (cf. e.g.Olberg 1977). Here we shall be

concerned exclusively with the other time scale: that of

individual regimes, each of which needs to be considered on its

own because its sample parameters contitute the full information

available.

2.Probability argument.

The basic assumption made is that each observation has a

probability p(x;8,0',0"...) of occurring where the parameters 6

remain valid or change as new observations are added. For a

sample of n observations the product of the n individual

probabilities define its "likelihood" L(n;9,9',9",. . . ) =

p,p2...pn. In the simplest situation, two different estimates for

a single parameter 9 constitute a "null hypothesis" H, (9=0,)

which will be rejected in favor of the alternative hypothesis

H,(0=e1) when the data fall into a "critical region" of the
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Fig. la: Deviations of the Arctic annual mean temperature from
its 1946-1960 mean (adapted from Raper et al. 1983). Note the
abrupt changes of mean around 1920,1955, and 1980; the trend
changes around 1905 and 1940; and a variance change around 1968,
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n-dimensional sample space. The critical region is constructed to

allow only a small probability a for H, in fact being true; a

represents an "error of the first kind" and is also known as the

"size" of the critical region. In the remainder of the sample

space the acceptance of H,_ when in fact H, is true occurs with

another probability /3 , known as "error of the second kind".

The likelihood ratio L( n; 6,)/L(n;0,) serves to define a best

critical region if it exists. Its choice is to ensure that, for a

prescribed small error of the first kind a (probability of

rejecting H, though true), the error of the second kind

(probability of rejecting H, and accepting H, in the remainder of

the sample space) is as small as possible. This implies also that

the probability of correctly accepting. H, in the critical region

becomes 1 - /3 .

A possible optimum critical region can be found, according

to the Neyman-Pearson theory of hypotheses, by making the

likelihood ratio L(n ;8,)/L(n ;6,) larger than a constant k in

the critical region, and smaller than k outside it. Intuitively

this makes sense since the denominator is small in the critical

region while the numerator (representing the probability 1 -/3)

should be as large as possible to minimize /3 .

The distribution of the likelihood ratio directly defines

best critical regions but, as shown by Kendall and Stuart (1967,

ch. 24), its form in most cases is known for large n only. For

one special case of practical importance (see Kendall and Stuart,

example 24.1 ), however, the distribution of the likelihood ratio

is an explicit function of Student's t ;this will be further

discussed below. Without such an explicit distribution function

the likelihood ratio can still serve for exploratory tests which

confirm H, when the likelihood ratio is near 1 and rejects it

when the ratio is large. A sequential "change index" for such a
test will now be described.

It employs four likelihoods L(n;9J, where 0n is a

parameter estimate derived from n observations x,, i = 1,2,3...

with probability p(x( ;9n) of occurring. Two of the likelihoods



use optimal ("maximum likelihood") parameter estimates, 6, for a

base sample of m and 6iH for one of a series of "augmented"

samples of n =m+j, j=l,2,.... The remaining two use 0, for the

augmented sample, and 6.^ for the base sample. Thus L(m;eB)=L, ,

say; L(m+j, 9I(j) = L2; L(m+j,e,,) = L3; and L(m,e.tj) = L4.

The likelihood ratios q(m+j) = L,/L3 and q(m)=L,/L4 compare

maximum likelihood estimates of 6, using the full samples, with

"cross-over" likelihoods using parameter estimates based on more

(L4) or fewer (L,) data, respectively. If the j new values

represent a regime different from that of the initial m "base"

values, both q(m+j) and q(m) will be larger than 1 and increase

rapidly with increasing j. Without a regime change both ratios

remain near 1 or increase slowly as the parameter estimates for

the augmented samples drift towards some population values

("return to normal").

The sum of the two likelihoods for a sample of m or m+j

represents a measure of the probability that either parameter

estimate is acceptable. For comparisons of different sample sizes

these sums can be used to normalize their likelihoods. With

L,/(L,+ L4) =^, , say, the other base likelihood becomes

L|/{L,+L4) = 1 -<£,; that normalization leaves their ratio intact

as L,/L4 = (1 -d',)//,. The corresponding normalization

of the augmented-sample likelihoods L2 and L, leads to

L;/L, = (1 -<f*t)) /,5V) ) • Writing the product of the two ratios as

Q = L, L2 /L, L4 5 (1 -g )/f finally defines the "change index

(CI)" ! in terms of the geometric average Ql/2 = [ q (m ) q ( m+ j ) ] U1

as fl- = (1 + Q1''1)-' (2.1)

Its maximum value , in absence of any parameter change, is 0.5,

except in some special cases, discussed in section 3.3, when

incompatible parameters can create values between .5 and 1.
2

'Alternative names used during the project include
"compatibility index" or "consistency index", and "no-change
probability(NCP)"



3. Properties of the change index (CI).

Likelihood ratio products Q are derived in Appendix A for

the major probability laws ( Poisson, Gaussian, Chi-square). For

small samples of observational data the choice of lav; is somewhat

arbitrary; it is then useful that the normalized likelihood

ratios involved in Q are less sensitive to the distribution form

assumed than the likelihoods themselves. Except in the special

case mentioned earlier and discussed in 3.2 below, the frequency

distribution of the CI is unknown, but some of its properties

have been determined experimentally, as described in the

following sub-sections.

3.1. CIs from Poisson samples.

For Poisson samples of m and m+j , with means ~XB and

xI(J, respectively, the normalized likelihood ration product Q is

derived in Appendix A (equation A.1.6) as

2=exp ] \oge(] (3.1)

where y = (xB)j - x. )/TC, . This dependenc of Q on the base mean

and the means difference scaled with the same base mean has been

used by Radok and Brown (1993) to demonstrate the general

dependence of the CI on the base sample mean and on the sample

sizes m and m+j when all the new values x^ j=l,2... equal the

average of a Poisson distribution with mean "x ' =XB + ^ = x; . Then

with g = A/X^, say, y = jg/(m-t-j), and equ. 3.1 takes the form

Q' = exp{jxB (l+g)loge[l+jg/(m+j)] - jg/(m+j)} (3.la



Change indices have been calculated with (3.la) for

different combinations of the parameters m, x., j, and g. The

results are shown in figs. 3.la and b. Longer bases (larger m)

slow the response of the no-change probability to the change in

mean but leave the curves essentially unaltered in shape. The

decline in the change index starts at the change of mean and

accelerates down to values of the order of 0.'3 -0.2 before

becoming more gradual as small CIs are approached.

While of theoretical interest, these curves do not offer any

help for assessing -small samples which at best can be believed to

have come from a Poisson distribution. The curves do however

illustrate the basic tendency of the CI to decrease as a

(Poisson) sample is being augmented.

3.2 CIs derived from Gaussian samples.

The product Q of the normalized likelihood ratios for

Gaussian samples is derived in Appendix A (equation A.2.8) as

Q =exp
m o2

log, -T
(3.2)

m m ! _ g"+(A^)21 _ m+J f j _ £™+L

The first two terms of (3.2) could be combined, but the form

given will prove convenient for a development later in this

section. The dependance of (3.2) on sample sizes and parameters

cannot be evaluated in a manner analogous to that used for

Poisson samples. Instead CI calculations have been carried out

for small sets of independent values drawn at random from
Gaussian populations with mean 10 and variances 4 and 25

{N(10;4), N(10;25)} as well as from the same data rendered
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Fig. 3.1 a and b: The change index (CI; here called "no-change
probability") of Poisson samples that result when the same new
value x + ̂  is added j times to a base sample of m with mean x.
The curves represent different values of Y , m, and g= -^V x (from
Radok and Brown, 1993).
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autoregressive with moving averages of lengths A = 3 and <A = 7

{N(10;4/3),N(1);4/7), etc.}, creating non-zero lag correlations

r^ = (A -A )/ A , A -1,2...(A -1 ).

In order to describe the CI decrease with the number j of

added new data, the medians M, of the CI as functions of j for

different base lengths m were fitted with linear regression lines

of the form Ma = a, - b, j . Close approximations to the actual

median CIs resulted in each case. The regression slopes b, ,

representing the incremental CI change per new value added to the

sample, are given in table 3.1 :

Table 3.1 : Change rate - b. per added datum of the CI medians

M. = a. - bt j as functions of base length m:

Gaussian data set parameters m = 5 7 10 13

mean variance mov aver.
A

10 4 0 .021 .014 .011

10 4 3 .050 .045 .037

10 4 7 .079 .073 .073

10 25 0 .035 .019 .013 .009

10 25 3 .108 .058 .034

10 25 7 .144 .080 .045 .052

The entries in the table were obtained from 50 random

samples of 20 values each. As expected, the CI decreases in a

regular way when nmore values are added to the base sample, and

the rates of decrease are enhanced for the autocorrelated series

of moving averages. For quantiles lower (higher) than the median

the decrease is faster (slower), as demonstrated by the following

trends for samples from the N(10,25) data set and from the 7-

term moving averages of the same data, with 13-term bases:

Data set Quantile: 20% 50% 80%
N(10,25) -b, = .015 .009 0

7-term mov.aver -b, = .091 .052 .025



A more general and complete description of Gaussian CI

properties can be given for a test which allows for changes in

means only. In that case, when ^,H is used as alternative mean

for the base sample of m values, the alternative variance CT,,J

becomes a* + (̂ )2 , where <&v =y, - yiH . Similarly, when

y, is to be tested as a potential alternative mean for the

augmented sample of m+j, the alternative variance becomes

a^j + (<£>p)2 . With these variances inserted in (3.2), the last

two terms cancel, and the remaining terms yield as likelihood

ratio product

Q' = [1+ (^)/aj]
lt[l+{^)/a./ (3.2a

With sample means xn and variances s^ = [n/(n-1)Jo* , the

variable (&x)2/[s^- (n-1)] represents the square of a "Student"

variable tr., with n-1 degrees of freedom. Thus the product of the

likelihood ratios becomes

Q' = [l+(m-l)t^]"! [l+(m+j-l)tB
z
(M ]"-('"J (3.2b)

The CI for this special case then has the explicit frequency

distribution

f^^U+U-Hn-Dt^,}"'2]-' (3.2c)

in terms of a "Student" variate with m-l< n < m+j-1 degrees of

freedom.

Fig. 3.2a shows the cumulative form of equ. (3.2c) to be
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similar for different degrees of freedom. With the probabilities

for n=10 in fig. 3.2a, a scale has been constructed on which

those probabilities fall along a straight line. That scale is

used in figs. 3.2b and 3.2c to examine the distribution of some

of the CIs obtained from random samples with the full Gaussian

equation (3.2). All the plots are approximately linear and

distorted only for high values of the CI. Critical regions for

small values of the change index might then be constructed with

the distribution function (3.2c) even when both mean and variance

are allowed to vary. But as in the case of Poisson samples, such

regions will be have little practical value when a small data

sample constitutes the complete information available.

3.3 CIs for regression coefficients.

The formulae derived in Appendix A.3 for the change index

of regression coefficients again clearly have no simple

interpretations. They have therefore been evaluated for some of

the Gaussian samples described in the preceding section. The

results are summarized in the following table for the independent

data with population mean 10 and population variance 25

(N(10;25)}, as well as for the autocorrelated 7-term moving

averages of the same data, N (10;25/7):

Table 3.2 Frequency (%) of regression-coefficient change
indices for Gaussian samples. Frequencies in
parentheses relate to CIs < 0.4.

Sample size m=5 m=10
CI Range j=5 10 15 j=5 10

Data set

0.5(.4) >CI>0: N(10;25) 62(36) 44(24) 36(18) 88(38) 72(42)
N(10;25/7) 32(12) 36(20) 28(18) 44(26) 44(30)

CI>0.5 N(10;25) 38 56 64 12 28
N(10;25/7) 68 64 72 56 56

The first two rows of frequencies in the table represent CIs in

the range 0.5<CI<0. For the longer of the two base lengths

tested, a majority of trend change indices for random samples
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remain above 0.4. The corresponding frequencies for the moving-

average (autocorrelated) series are smaller but increase in the

same way for longer base samples.

The remaining two lines of the table refer to CIs that are

larger than 0.5. Such unrealistic CIs arise from the violation of

a limiting condition noted in the derivation of the regression

formulae (A.3.7) and (A.3.8) in Appendix A.3 : the use of the

regression coefficient bBJj with the base sample of m values, and

of bs with an augmented sample of m+j values must not result in

a zero or negative residual sum of squares. This implies that a

good regression fit with small residuals will narrow the limits

for permissible alternative regression coefficients, increasing

the sensitivity of the change index.

3.4 CIs from chi-square samples.

The product Q of the normalized likelihood ratios for

samples from a chi-square distribution with y degrees of freedom

(d.f., which represent also the mean and one half the variance of

the distribution) is derived in appendix A (equation A.4.8) as

4(Vm-'
vm+j

V . • — V m+j
+—:;—- I'og.r

m-t-l

(3.4)

Some of the characteristics of this expression have again been

determined experimentally for chi-square values calculated from

the Gaussian data sets N(10;25) and N(10;25/7) introduced in

section 3.2. For sample variances computed from 5 values, the

chi-sqares of the first data set should have 4 d.f. and those of

the autocorrelated set, 1.14 d.f. (cf Radok 1992). The following
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table gives the percentage frequencies of CIs calculated for 50

samples of 100 in each case:

Table 3.3 Frequency (%) of change indices for chi-square

samples. Bracketed frequencies relate to CIs < 0.4 .

Sample size m=5 m=10

CI Range j=5 10 15 j=5 10

Data set

0.5(.4) > CI >0: (N10;25) 76(58) 78(46) 74(50) 86(72) 78(62)

N(10;25/7) 72(48) 70(34) 54(18) 48(38) 50(30)

CI>0.5 N(10;25) 24 22 26 14 22

N(10;25/7) 28 30 36 52 50

These frequencies show a concentration of random-sample CIs

in the 0.4 to 0.5 range but also a substantial fraction of

unrealistic values exceeding 0.5, the largest value possible if

the estimates „ and 1(j represent maximum-likelihood estimates

for their respective samples of m and m+j. The Gamma functions in

the chi-square likelihoods dominate the value of Q, especially in

the region of small x where T(x) has a minimum around x= 1.46

and goes to infinity as x goes to zero. This suggests that chi-

square CIs require samples larger than those used for table 3.3.

3.5 Limitations and scope.

The experimental results presented in the preceding sections

despite their limited extent establish clearly that the change

index and the underlying likelihood ratios have downward trends

for growing samples even when the data have been drawn at random

from a single population. The change index is not intended for

finding critical regions for rejecting the null hypothesis - i.e.

that the base and augmented sample estimates are equivalent,

within a prescribed error probability. That represents a

"confirmatory" task, as defined by Flueck and Brown (1993) for

which standard tests (e.g. the "Student" t test) can be used. The
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change index instead serves the "exploratory" purpose of

detecting and measuring parameter changes that have resulted from

the addition of even a single new observation, leaving the

implications to be assessed from whatever information is

contained in the small sample(s) under consideration.

The difference between the two types of statistical problem

sketched above can be illustrated for one of the random Gaussian

samples introduced in section 3.2 and plotted in fig. 3.3a.

Inspection suggests that its first eleven values have a smaller

variance than the nine values that follow, while both sections

vary around similar means ( as permitted by the characteristic

independence of the two parameters in a Gaussian population).

To confirm that the data in fig. 3.3a come indeed from the

same Gaussian population, the sample means and variance of m

values from the first section and j values from the second have

been compared with a t-variable of the form

t,,,,. = (Xj -x. ){(m+j-2)mj}1/:/{(m+j)[ (m - 1) s*+{ j-l)s*}"2 (3.5)

Probabilities P of exceeding these t values of the differences

between the independent means Xj of three and more new

observations and different base means "x, have been calculated

with the corresponding sample variance estimates s* and s*

The values of P ( +1 or 2 or 3, in order to separate the curves)

are shown in fig. 3.3a for different bases m, with j increasing

from 3 to 20-m in each case. Except for m=5 the probabilities of

exceeding t lie well above the 5% significance level and vary

little for the different m; a sudden temporary increase in P

occurs as the more variable section ( and hence a smaller t

value) is encountered. The t test therefore confirms, within
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Fig. 3.3a: A Gaussian sample (heavy Line), and probabilities that
differences between the means of the initial m values and means
of j=3,4...20-m subsequent values exceed tdiff. determined with
equ.(3.5) .
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Fig. 3.3b: Change indices (CI) taking account of both means and
variances of the Gaussian sample in fig. 3.3a (heavy line). Note
the CI decrease signalling the onset of more variable values.
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the limitations of a single 20-term sample, that the data in fig.

3.3a could indeed come from a single Gaussian population.

The CIs for the same data are shown in fig. 3.3b and tell a

very different story. For the same bases as before and j starting

with 1 rather than 3 (reflecting an advantage the CI has over the

t test), the CI drops abruptly to almost zero as soon as the more

variable section is encountered with the 12th value. But after

the first two values of that section have become part of the

base, with m=13, the CI remains near 0.5 for the rest of the

series. This exploratory test therefore responds sensitively to

the sudden substantial increase in variance. It leaves open the

question of whether that increase is compatible with a single

Gaussian population or perhaps points to some other type of

distribution - a question that may not have a firm answer if the

data in question represent the full information available.

Fig. 3.4 serves ,cto illustrate this type of uncertainty.

Its data form come from a series of annual numbers of North

Atlantic hurricanes (Case 1988) which will be shown in section

4.1 to approximate a Poisson distribution. As a consequence,

sample means and variances would be expected to vary in a similar

way, but this clearly is not the case in figure 3.4: the mean

number for the first ten years (4.9) differs little from that for

the remaining 5 years (5.2), whereas the sample variance

increases from 0.89 for the first ten years to 6.56 for the last
five years. The CI formula for Poisson samples considers the

means only, and the Poisson CIs ( full lines in fig. 3.4 )

remain in the 0.4 to 0.5 range throughout.

However, as noted earlier, independence of mean and variance

is a defining characteristic of the Gaussian distribution; the

data in fig. 3.4 in fact bear a close resemblance to the Gaussian

sample of fig. 3.3. They have therefore also been analyzed with

the Gaussian formulae of section 3.2. A set of Gaussian CIs

calculated with equation (3.2a) considering only means changes is

shown as a dotted curve and resembles the Poisson curves. By

contrast the broken CI curves, calculated with equation (3.2),
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take into consideration both the sample means and sample

variances and drop to small values in 1980, when the first of the

more variable numbers is encountered. After that year becomes

itself part of the base set, the full Gaussian CIs approximate

those derived with the Poisson formula.

This underlines the need for flexibility in the choice of

the distribution form for the CI calculation when alternative

forms are not firmly ruled out by the limited data available. The

examples of CI tests to be presented next will therefore not be

concerned with confirming the distribution forms assumed for the

parameter estimates and likelihoods, but rather with the

parameter changes themselves that resulted from the addition of

extra observations, and with possible physical implications.

4 . Examples.

The examples in this section have been chosen to illustrate

potential alternative uses of the CI. The index is uniquely

suited for assessing a single new observation which seems out of

line with the quasi-controlled regime of its predecessors. In

existing longer series the index can also be used to identify

transition points between regimes, created by unknown causes or

by suspected events such as a station shift or change in

observational routine. Currrent data can be subjected to real-

time monitoring with CIs calculated both retrospectively for the

immediate past and progressively for each new observation that

comes to hand.

4.1 Retroactive use of the CI.

The data of the first example are annual numbers of tropical

hurricanes, reported for the North Atlantic by Case (1988) and

updated to 1990; some of them were already used in section 3.5.

Their frequency distribution (fig. 4.1) approximates a Poisson
distribution (light shaded bars) with mean (and variance) 5.6.

The annual numbers themselves are shown in fig. 4.2a and have

been used to calculate sequences of progressive means shown in
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Fig. 3.4: Annual numbers of North Atlantic tropical hurricanes
and change indices assuming a Poisson distribution ( full lines),
a Gaussian distribution with constant variance ( dotted line),
and a Gaussian distribution with changing mean and variance
(broken lines).
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Fig. 4.1: Histogram of annual numbers of North Atlantic tropical
hurricanes (Case 1988, updated). The light-shaded bars give the
frequencies of a Poisson distribution with the observed mean
number (5.6).



Fig. 4.2: (a) Time series of the annual number of North Atlantic
tropical hurricanes; (b) Progressive means of the numbers in (a)
starting with those of different base periods; (c) Change indices
("Gamma") starting from the ends of the base periods.
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Fig. 4.2b. Each of these starts with the mean of a "base" section

and continues until a parameter change is suggested by a

substantial decrease in the change index CI (here called "no-

change probability"), computed with equation 3.1 and shown in

fig. 4.2c. This illustrate the use of the CI for delineating

plausible "regimes" in an existing series, whereas the analysis

of the 1970-1984 subset in section 3.5 simulated a real-time test

initiated on the occurrence of a single anomalous value.

The first base period (1931-1935) had a mean value of 5.6

and was followed by several years with small hurricane numbers

which produced a steady slow CI decrease. Starting anew with the

numbers for 1937-1042 as base (mean 3.8) produced a sharper CI

signal of a return to larger numbers in the late 1940s. The next

base period (1948-1952) had an annual mean number of 7.6

hurricanes which decreased in the late 1960s to the original mean

number of 5.6 for the next base period (1961-1965). Subsequent

CIs showed no further change of control even after a new base

period was adopted for the 1970s to sharpen the test.

The next illustration uses a composite annual mean

temperature for four Alaskan airfields ( Fairbanks, Anchorage,

Nome, Barrow) reported by Bowling (1991). Fig. 4.3 shows the

(cumulative^ frequency distribution of the initial 23 values to

approximate the Gaussian form, a straight line in the coordinate

system of fig. 4.3. The annual mean temperatures themselves are

shown in fig.4.4a. To detect changes in mean and/or variance,

three base periods of 7 values each are used, ending in 1960,

1967, and 1974. Cumulative means and variances following each of

the three base periods are shown in fig. 4.4b and Fig.4.4c,

respectively.

The cumulative variance decreased steadily from 1960, the

end of the first base period, while the cumulative mean remained

near its base level. Both mean and variance increased rapidly

after the 1977 change to higher winter temperatures reported by

Bowling (1991) .
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Fig. 4.3: Probabilities of exceeding different composite annual
mean temperatures at four Alaskan airfields ( deviations from the
1954-1976 mean; Bowling 1991). The probability scale turns a
Gausian distribution into a straight line (cf. e.g.Radok 1992).



Fig. 4.4: (a) Time series of the Alaskan airfields mean
temperature deviations in fig. 4.3, updated; (b) Progressive
means starting with those of different base periods;
(c) progressive variances; (d) Means/variances change indices
("Gamma") starting from the ends of base periods.
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The corresponding CI values are shown in fig. 4.4d. The

initial progressive decline in variance was reflected in a

similarly gradual CI decline after each of the first two base

periods. That CI decline was reversed temporarily by the 1977

temperature increase before continuing as a steeper CI descent.

With the base period ending in 1974, the combined increases in

both cumulative mean and variance produced a much steeper CI

decrease after 1977, which became only a little more gradual when

the entire set of 21 years was used as base period. CIs

calculated with the temperatures for 1977-1981 as a new base

suggested a return to slightly lower temperatures and unchanged

small variance values during the 1980s, which have persisted

through 1993 (Radok and Brown 1995).

The detection of trend changes can be illustrated with the

first part of the same Alaska data, repeated in fig. 4.5 from

fig.4.4a. Fig. 4.5 shows progressive regression coefficients

starting with that for the 7-year base 1954-1960. The CIs in

fig. 4.5 indicate the beginning of a distinctly different slope

regime in 1964. The series of CI values is continued until two

CI=1 are encountered, to illustrate what happens when the base

regression coefficient b, exceeds the upper limit bn ,„, (the

dotted line) for its use in an augmented sample,

None of the regression lines in this example explains more

than 10% ( = r2, where r is the temperature-time correlation) of

the total variance. For a good regression fit the permissible

range for b, as alternative for b,4j becomes very narrow. This is

demonstrated in table 4.1 for an exponential approximation to

annual mean atmospheric carbon dioxide conentrations C(ppm)

observed at Mauna Loa, Hawaii ( data from Boden et al, 1990):
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Fig. 4.5: Change indices (CI) for the progressive trend bl(j
in the Alaskan airfields mean temperature deviations (top curve)
from the base trend bw.Unrealistic values CI=1 arise after the
b.,. curve descends below the value of b (dotted line).
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Table 4.1: Regression analysis of C02 concentrations C (ppm)

represented by y = 100 (logC-5.8):

Base period 1983-1988,b, = 4.83

year 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

y 37 41 46 49 54 61 66 70 74 75 77

Change index CI 0.95 0.85 0.97

Progressive regression coefficient blH 4.78 4.55 4.31

upper limit b, Ba8 for use in augm. sample: 4.80 4.57 4.35

residual variance (1 -r2 ) % 0.7 0.5 1.1 1.8

The base regression of 4.83 leaves a mere 0.7 of the total

variance unaccounted for. When the observations for the years

1991 through 1993 are added, this percentage remains almost the

same, while the base regression coefficient immediately begins to

exceed its permissible limits.

The final example, from Brown and Radok (1995), illustrates

how the CI can be used to detect inhomogeneities in a climate

series, caused by a station move or by a change in observational

routine. Such discontinuities resemble sudden regime changes, or

appear as outliers if the change was of short duration. An

example is provided by temperatures observed at the San

Francisco, California, National Weather Service airport station,

which is known to have been moved further inland during the

1940s. By reducing the number of maritime air incursions this

should have raised the mean temperatures for the summer months.

Fig.4.6 shows those mean summer temperatures for the years

1933 through 1956. The CI calculations in this case used a moving

ten-year base period advancing by two-year steps. For each of the

first three bases, the gradual CI declines changed to a. rapid

drop with the 1948 temperature; this drop vanished as soon as the

moving ten-year base reached and included the 1948 temperature

itself. The station move in fact took place that year { Jon

Eischeid, pers. comm.).
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Fig. 4.6: Summer mean temperatures observed at the San Francisco
Airport, and change indices for base periods extending between
corresponding numbers. The CI decrease in 1948 arises from a
change of station location.
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4.2 Real-time CI analysis.

The first example of an (almost) real-time CI analysis also

serves to demonstrate its broad applicability. The data used are

shown as dots in Fig. 4.7; they represent Dow Jones 65-stock

averages, as reported by the Wall Street Journal prior to and

during the 1994 Congressional elections. Dow values of November 7

are used as an expanding base with m= 4 through 8. All the CIs

decreased slowly during November 7 and early on November 8, until

a noon increase in the Dow started a precipitous CI decrease to

values near zero.

A possible form of real-time climatic monitoring is

illustrated in tables 4.1 and 4.2 for global mean temperature

anomalies y from their 1951-1980 averages, using data kindly

provided by Dr. Henry Diaz. For each season 5 different bases

extend backward from 1990, to provide retrospective CIs testing

the statistical control or lack of it during the early 1980's.

The same bases provide progressive CIs for 1991 through 1993.

With the years 1985 through 1990 as base, the earlier anomalies

for winter and, to a lesser degree, for summer appear to belong

to different regimes, but all the most recent anomalies have

remained within the framework of the statistical control

established during the 1980s.

5. Alternatives.

Several other procedures have been proposed over the years

for the specific purpose of detecting abrupt changes in time

series ( e.g.Oerlemans , 1979; Epstein, 1982; Goossens and

Berger, 1987; Howell, 1995). All of them postulate some form of

change to be confirmed by filtering. In the example shown in fig.

5.la, Epstein (1982) postulated three possible change scenarios

to account for the rise at the end of the 1970s of the annual

mean temperatures recorded by a global network of radiosonde

stations (Angell and Korshover 1977, updated to 1981). The

parameter values of the scenarios were chosen to maximize

Gaussian likelihood ratios, shown in fig. 5.1b. These ratios are
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Table 4.1 Change in current global land temperature
anomalies y *C from 1951-1980 (H.Diaz, pers. comm).
Numbers in table are change indices CI*103

1) Winter (DJF)
y yr base: 5 6 7 8 9 10

.437 81 000 465 454 488 488

.093 82 000 477 485 491

.449 83 000 493 484
-.001 84 000 488
-.380 85 000

.210 = base mean
.159 86 .185 81-90 = base years
.247 87 .197 82-90
.426 88 .161 83-90
.291 89 .188 84-90
.382 90 .301 85-90

86-90
.530 91 369 477 472 480 477 482
.391 92 353 448 442 457 453 463
.329 93 368 413 469 429 428 441

2) Spring (MAM)

10y
356
025
264
070
026

yr
81
82
83
84
85

base : 5
315
301
391
408
465

6
429
427
468
485

7
476
478
490

8
491
478

9
492

. 242 = base mean
215 86 .221 81-90 = base years
112 87 .262 82-90
397 88 .261 83-90
269 89 .293 84-90
739 90 .346 85-90

86-90
442 91 486 488 489 489 489 490
276 92 462 467 471 475 476 479
296 93 419 430 439 447 450 456



Table 4.(cont'd): Change in current global land temperature
anomalies y °C from 1951-1980 (H.Diaz, pers. comm).
Numbers in table are change indices CI*103

3) Summer (JJA)

y
.186

-.016
.226
.004

-.014

.047

. 269

.421

. 224

.393

.439

.012

. 156

y
.086

- .070
. 367

-. 116
-.081

- . 108
. 203
. 273
. 182
.467

. 275
-. 185
-.075

yr
81
82
83
84
85

86
87
88
89
90

91
92
93

yr
81
82
83
84
85

86
87
88
89
90

91
92
93

base: 5
177
182
305
285
408

.271
86-90
476
463
463

base : 5
354
372
436
372
462

. 203
86-90
486
454
391

6
406
421
475
474

.223
85-90

475
494
498

4)

6
470
479
497
473

. 156
85-90

488
483
450

7
466
483
490

. 192
84-90

471
494
499

Fall

7
492
498
481

. 117
84-90

489
494
475

8
477
478

,

. 196
83-90

469
490
499

9
492

173
82-90

466
489
497

10

. 174
81-90

462
485
496

(SON)

8
472
487

. 148
83-90

491
484
464

9
492

. 124
82-90

491
494
476

10

. 120
81-90

492
493
476

base mean
base years

base mean
base years
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equivalent to those in equ. (3.2a); however Bayesian scruples

prevented the author from drawing firm conclusions about their

significance.

Fig. 5.2 shows CI profiles for the same temperatures. CIs

calculated with equ. (3.2a) (dotted line) suggested no change

when means are considered alone; by contrast when the variance is

taken into account as well, with equ. (3.2), the CIs in fig. 5.2

decrease rapidly after 1977 for a 6-year base extending from 1971

through 1976, and more gradually for a base including all data

prior to 1977. The change index therefore would have provided an

objective basis for the initial decision to postulate different

change scenarios, but no guidance to their possible forms.

6. Conclusion.

The likelihoods computed for an existing sample, and for the

same data augmented by a single new value or by a small number of

such values, indicate changes in progress that can represent the

end of a "regime" or a new beginning. The "change index (CI)"

provides a quantitative measure of differences between one or

more parameters estimated from the original and augmented

samples. The normalisation of the likelihood ratios used in the

CI reduce its sensitivity to the form of distribution assumed to

govern the data, and makes the index an effective exploratory

tool when a small amount of data represents the full information

available.
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Appendix A: Formulae

Subscripts will be used to indicate the number of values used for parameter estimates, and bracketed

symbols the numbers used to calculate the likelihoods and their ratios. Thus L(m; 0m) = Lj becomes

Lm(m),L(m +j, 6m) = L3 = Lm(m +j), etc.

A.I Poisson mean (= variance)

With the mean number x of occurrences the basic probability is

P =
xx

x \exp(x)

The logarithmic likelihood functions are

(A.I.I)

logeLm(m) = mxm logexm - £ logex ! - mxn
l

(A.1.2a)

= mx - % logex ! - mxm+j
i

(A.1.2b)

m+j

logf^m+y - Z loge jf!-(m +j)xm+j

}
(A.1.2c)

\ogexm -
m+j

+j)x (A.1.2d)

likelihood ratios

q (m +j) = exp

ilog,. -*«)

-Xm)

(A. 1.3)

(A. 1.4)

so that
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Q = exp
!

, .. — — i , m TJ . ,— —
(m +/ )xm+j - mxm > log, — y (xm+;- - xn

Xm
(A. 1.5)

withy = (xm+j -xmYxn

Q = exp )y + j ] log e ( l+y) - jy \ (A. 1.6)

A.2 Gaussian means and variances

Gaussian distribution.

p = (2nc2Tl/2 exp
-(x- It)2

2o2 (A.2.1)

Hx
For the population mean |i and variance o2 we use the sample estimates x - — and

5- =
1

(n - 1)

i T , ^ m . o m i 2log, Lm (m) = - — log, 27t - — log, a2 - (A.2.2)

2with J^U - u)2 = ma2,, the last term reduces to - m/2.

Proceeding in the same way for L4 = Lm +J (m) leads to

rnr , ^ , . ^
e Lm+j (m) =- — log, 2n - — log, a^+; -

~M-m+/ )
~ (A.2.3a)

with nm+, - \im - Au., the numerator of the last term can be written as

KJC - Hm )2 - £(- 2x Au + 2iim A^ + An2)
i i

= -ma -

so that equation (A.2.3a) becomes
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/7I "»
\ogeLm+j(m)~ - — Iog2n - —

subtracting equation (A.2.2b) from equation (A.2.3) gives the log likelihood ratio

(A.2.3b)

m

2
m
T

1 - (A.2.4)

augmented set ofm+j values proceeding in the same way for the yields first

log,
m + j . - m + j ,

r-^- log, 2n -- T-^ log,
0 -

+. (A.2.5)

where the last term, with £ (x - u.m+,)2 =
i

/) Gm+j> reduces to -(m + j)/l. Next,

m +1 „ m +i i
log, Lm (in +j) = -^ log, 27t - —^ log, a^ -

- Au))2

(A.2.6a)

Expanding the last term as before yields

, ~ , ^log,27t - —- log,a2 (A.2.6b)

Subtracting equation (A.2.6b) from equation (A.2.5) we obtain the second log likelihood ratio

log, <? (m +/) = —— log. 1- (A.2.7)

Q = q ( m ) q ( m +j) = exp m +j
2

m , ^m+j
Tl08' ^T -f m + j

1 1 -
(Au.2)

(A.2.8)

A.3 Trends (least-square regression)

Observations made at equally spaced times r = 1,2 • • • n (n = m or m + 7) are represented by
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y = A + Bt + e (A.3.1)

This also covers the case of exponential regression when y = log*. The residuals e are assumed to be

normally distributed with zero mean and variance a2. Sample estimates of the regression coefficients A

and B satisfying least-square requirements are

a =y + b t ; b = (A.3.2)

where

- .

The regression estimate y" for a given t' is then y' = y +b( t ' -7), and the corresponding residual

e, = y', - \', has a Gaussian distribution with zero mean and variance

n -2 1=1

n ( n 2 - 1)
12

n + 1
n

(n-M)l "

[ 2 J
n( / i 2 - l )

12

(A.3.3)

The general form of the likelihood functions defined by the n residuals e,,

t = \,2, • • • n(- m or m + j) is

= exP
(y,-y,)2

(A.3.4)

log,Lffl = Iog ,L ,=- m -2

2\SS(m)-b^c
(A.3.5)

t= \
t -

m + 1

/n



-A5-

m -2 (y -
/=! r

m d(m + j]

(A.3.6)

\ogeLm(m + j ) = - \
m + -2 (y -y'm)/2

(=1

j + 1

m +j +\
2

m d(m

(A.3.7)

valid only with bm < jSS(m +j)
d(m

m -2 (y -
; (A.3.8)

t= \
t -

m d(m)

valid only with bm+j < /55(m) ,

where 5S(n ) = £ ( y - y)2 ;
(=1

y n = a n + b n t
12

n = m o r m + j (A.3.9)

Finally as before

Q = (A.3.10)

A.4 Chi-square

The variances j2 of samples from a Gaussian population with variance a2 define a chi-square variate
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02 '
(A.4.1)

where h is the number of values in each sample. If these values are independent of one another, x2 has

h-l degrees of freedom (d.f.). For "coherent" (autocorrelated) series the d.f. number (which also

represents the mean of the chi-square distribution as well as one half its variance) is reduced (Radok,

1992) to

22 = v = h - e(/i), (A.4.2)

where

2 ( h - \ ) 2(h-2)
' v 2

-r
n

(A.4.3)

Here the /-,- are the autocorrelations of observations / values apart, and /j-e(/i) represents the

number of independent observations in each section, which equals h—\ when all autocorrelations are

zero.

The basic probability for the chi-square distribution is

P =
r.
2

(A.4.4)

Here v is the number of degrees of freedom which equals the mean as well as half the variance of the dis-

tribution. Then the logarithmic likelihood functions take the form

m
\og e L m (m) = - — vmloge2-mlog,r - 1

1 m

7Z
*• \

m
log, Lm+j (m) = - — vm+j log, 2 - m log, F

*m+j
-1

(A.4.5a)

(A.4.5b)



log,L,m+j
m

-A7-

.•Ioge2-(m +;)loge] -1

(A.4.5c)

log, Lm (m +/ ) = - -- vm loge 2 - (m + j )loge

m+j
(A.4.5d)

The likelihood ratios become

f \
fv • ]1 V fft _1_ ir l "* T/

*

1 2 ,

rkl1 2 J .

m

exp

r _

1 ™ 2
2 vm vm+J ^ ogeX

and

(A.4.6)

q(m

m+j

exp (A.4.7)

so that

Q =

r
i
-•j (Vm Vm-Hj ;) I°gp2 +j loge .

ri

vm

2

Vm+j

2

V • -V m+y

2 m+1
(A.4.8)

The gamma functions can be evaluated with the Euler relation

where

(A.4.9)

c = lim
<'—»oo

= 0.5772156649' (A.4.10)
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However, a more efficient alternative procedure for determining the Gamma function has been provided

by Press et al. (1986, 6.1). It has the form

1 »i
exp -z + Y+J m C 0 + l

z + 1 z +2 z+N (z

(A.4.11)

The constants c are given in the Fortran routine, Appendix B.



Appendix B

Program "SEQUTTOR" is designed to be an interactive program for analysis of Gaussian

mean and variance, Poisson mean, chi-square (coherence), and linear (or exponential) trend

changes in a sequential time series. The user typically will receive FORTRAN source code,

providing an opportunity to make code changes as desired. For example, in the original code, data

input is assumed to be free format. However, the user may desire to change this to a specific

format. It may also be desirable for the user to add write statements that exclude headings, such

that the results can then be easily imported into a graphics package.

An input/output flowchart is included in this appendix. Each square box represents an

input step by the user, and an oval represents results output. A brief description of the input steps

follows:

Enter input filename: This is the input data filename up to 80 characters.

Enter descriptive title: This a descriptive header of the data and/or the analysis up to 80 characters.

Enter number of values in series: This is the total number of rows in the input data file. It is
assumed that the input data file contains a column of x-values (column 1) which represent an index
or year for example, followed by n columns of v-values containing the actual series for analysis.

Enter missing value: This program allows for missing values. Enter a unique number (e.g., -999.)
to represent missing values.

Enter column number: Input data files may contain multiple v-value columns. This entry should be
from 1 to n depending upon which v-value column is desired for analysis. The very first column
in the input data file is considered column 0.

Enter 0=continue, l=reverse data input order: Often it is desirable to do the sequential monitoring
analysis beginning with the most recent value and working backwards. This helps identify
"regimes" in the time series. Enter either a 0 or 1.

Enter beginning and ending *-range values: Enter values separated by a comma. This range
corresponds to the x-values in the very first column of the input data file. Since the x-values might
represent an index or year, examples would be 10,18 or 1985,1992. Note that these values can
represent a sub-set of the input data file.

Enter window size for sub-samples: In determining a regime, it is useful to examine smaller sub-
sets of values. A typical sub-sample might contain 5 values. If the total number of cases in the
series is not evenly divisible by the window size, the remaining values will be ignored in only the
sub-sample analysis.

Enter analysis type: Here there are several options. Entering 1 through 4 places the user in the
desired sequential analysis routine. Other options include changing the sub-sample size, changing
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the column number, changing the data range, reversing the data order, or simply quitting the
program.

Enter number of base period values: Within each analysis routine, the user is prompted for the
number of base period values. These should typically be small, say 5 to 15 or so. Base period
results is ouput at this point

Enter 0=continue, l=change number of base values: Upon examining the base period results, the
user is given the option to change the base period size, or continue with the final analysis.

This program was written interactively because it is intended to be exploratory in nature.

An attempt was made to allow the user to make changes during the analysis, instead of having to

restart the program several times. Results are output to the screen and to a file named

"sequitor.out", which is replaced each time the program is run.

The program contains minimal comments, but variables are defined at the beginning of each

subroutine to help the user understand the program; a sample analysis is included in this appendix.
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Flowchart of input/output for program SEQUITOR

f Sequrtor j

I
Enter input filename:

Enter descriptive title:

Enter number of values in series:

Enter missing value:

i
Enter column number:

Enter 0=continue, 1=reverse data input order

Enter beginning and ending x-range values:

Enter window size for sub-samples:

Enter analysis type
1=Gauss, 2=Poisson, 3=chi-square, 4=linear,

0=change sub-sample sire, 6=change column number,
7=change data range, 8=reverse data order, 9=quit:

Enter number of base period values:

Enter 0=continue, 1=change number
of base values:

Gauss, Poisson, cht-square,
or linear trend output

End program
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ENTER INPUT FILE NAME:
gauss.dat
ENTER DESCRIPTIVE TITLE:
Detection of change in Gaussian mean and variance, Test I
INVERSE SEQUENTIAL MONITORING (PROGRAM <SEQUITOR>)
ENTER NUMBER OF VALUES IN SERIES:
15
ENTER MISSING VALUE: gauss.dat
-999
ENTER COLUMN NUMBER: 1978. -5.0 -5.0 10.2
1 ' 1979. -1.3 -1.3 9.2
ENTER 0=CONTINUE, 1=REVERSE DATA INPUT ORDER: 1980. 10.2 10.2 6.8
0 . 1981. 14.9 14.9 8.8
ENTER BEGINNING AND ENDING X-RANGE VALUES: 1982. -0.6 -0.6 5.1
1978,1992 1983. 2.6 2.6 6.7

1984. 6.6 6.6 6.9
FULL SAMPLE UNIVARIATE STATISTICS: 1985. 2.5 2.5 5.1
X-VALUE RANGE = 1978.-1992. . 1986. 20.2 12.4 9.7
NUMBER OF VALUES = 15 1987. 9.2 10.5 14.0
NUMBER OF MISSING VALUES = 0 1988. 6.8 8.9 10.4
SAMPLE MEAN = 6.240 1989. 8.8 8.7 6.1
SAMPLE VARIANCE = 40.034 - 1990. 5.1 7.7 6.5
SAMPLE SLOPE = 0.466 1991. 6.7 8.6 8.6

1992. 6.9 8.8 6.8
ENTER WINDOW SIZE FOR SUB-SAMPLES:
5

SUB-SAMPLE PARAMETERS:
INDEX X-VALUE NUMBER OF MISSING
RANGE RANGE VALUES VALUES MEAN VARIANCE CHI-SQUARE

1- 5 1978.-1982. 5 0 3.640 71.713 7.165
6- 10 1983.-1987. . 5 0 8.220 52.852 5.281

11- 15 1988.-1992. 5 0 6.860 1.723 0.172

ENTER ANALYSIS TYPE
1=GAUSS, 2=POISSON, 3=CHI-SQUARE, 4=LINEAR,
0=CHANGE SUB-SAMPLE SIZE, 6=CHANGE COLUMN NUMBER,
7=CHANGE DATA RANGE, 8=REVERSE DATA ORDER, 9=QUIT:
1

I TEST FOR CHANGE IN GAUSSIAN MEAN AND VARIANCE |
-t- +

ENTER NUMBER OF VALUES IN BASE PERIOD:
5

BASE PERIOD PARAMETERS:
X-VALUE RANGE = 1978.-1982.
NUMBER OF VALUES = 5
NUMBER OF MISSING VALUES = 0
BASE MEAN = 3.640
BASE VARIANCE = 71.713

ENTER 0=CONnNUE, 1=CHANGE NUMBER OF BASE VALUES:
0

PROGRESSIVE PARAMETERS:
X Y DELTA

INDEX OBSERVATIONS MEAN VARIANCE GAMMA GAMMA

Macx Clipboard Page 1 Wed, Apr 28, 1993
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6 1983.000 2.60 3.467 57.551 0.486
7 1984.000 6.60 3.914 49.361 0.456 0;030
8 1985.000 2.50 3.737 42.560 0.410 0.047
9 1986.000 20.20 5.567 67.353 0.453 -0.044
10 1987.000 9.20 5.930 61.189 0.422 0.031
11 1988.000 6.80 6.009 55.139 0.394 0.028
12 1989.000 8.80 6.242 50.775 0.351 0.043
13 1990.000 5.10 6.154 46.644 0.322 0.029
14 1991.000 6.70 6.193 43.078 0.280 0.042
15 1992.000 6.90 6.240 40.034 0.236 0.044

ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:
0

ENTER ANALYSIS TYPE
1=GAUSS, 2=POISSON, 3=CHI-SQUARE, 4=LINEAR,
0=CHANGE SUB-SAMPLE SIZE, 6=CHANGE COLUMN NUMBER,
7=CHANGE DATA RANGE, 8=REVERSE DATA ORDER, 9=QUIT:
9

END OF SEQUITOR RUN

MacX Clipboard Page 2 wed, Apr 28, 1993
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PROGRAM SEQUITOR

AUTHOR: TIMOTHY J. BROWN

INVERSE SEQUENTIAL PROGRAM

pr"\TTQT<"W PTQTnRV

LEVEL AUTHOR DATE DESCRIPTION

.01A. TJB 93/04/28. ORIGINAL VERSION.

.01B. TJB 93/05/07. REMOVED UNUSED VARIABLE ' CFLAG'

_ 1.

FROM OUTPUT
IN ROUTINES SGAUSS, SCHI, AND SPOISS.

.01C. TJB 93/08/26. CHANGED ALGORITHM FOR COMPUTING
CHANGED ALGORITHM FOR COMPUTING
FUNCTION IN CHI 2 CALCULATION.
ADDED OUTPUT OF BASE CHI -SQUARE

SIX SUBROUTINES ARE ATTACHED TO THE MAIN PROGRAM:
'SGAUSS' COMPUTES CHANGE IN GAUSSIAN MEAN AND VARIANCE.
'SPOISS' COMPUTES CHANGE IN POISSION MEAN.

CHI 2;
GAMMA

MEAN.
_

J

'SCHI' COMPUTES CHANGE IN CHI -SQUARE DEGREES OF FREEDOM.
'SLINEAR' COMPUTES CHANGE IN LINEAR TREND.
'UNIVAR' COMPUTES UNIVARIATE STATISTICS MEAN, VARIANCE,
'RCOEFF' COMPUTES LLS REGRESSION BO AND Bl COEFFICIENTS

INPUT IS ASSUMED TO BE FREE -FORMAT, BUT USER CAN CHANGE

THE PARAMETER STATEMENT AND COMMON BLOCK IS LOCATED IN
THE USER SHOULD CHANGE 'NDIM' AS REQUIRED.

AND SUM.
.

AS DESIRED.

ALL SUBROUTINES

THE FOLLOWING ARRAYS AND VARIABLES ARE USED IN THE COMMON BLOCK:
'FINDEX' INDEX VALUE (1, 2,...N) ASSOCIATED WITH EACH
'FXVAL' INPUT X-VALUES.
'FYVAL' INPUT Y-VALUES.
'XDATA' WORK ARRAY FOR X-VALUES.
'YDATA' WORK ARRAY FOR Y-VALUES.

'FMISS' NUMBER REPRESENTING MISSING VALUES.
'NDIM' DIMENSION SIZE FOR DATA AND WORK ARRAYS.

Y- VALUE .

'NCASE' NUMBER OF FULL SAMPLE VALUES WITHIN INDEX RANGE.
'OUNIT' OUTPUT UNIT NUMBER.

THE FOLLOWING ARRAYS AND VARIABLES ARE USED IN THE MAIN PROGRAM:
'FDATA' HOLDS THE Y-VALUES WHEN THEY ARE INPUT; SHOULD BE

DIMENSIONED >= NUMBER OF COLUMNS IN INPUT FILE.
'FXDATA' HOLDS THE ORIGINAL X-VALUES OR REVERSED ORDER
'FYDATA' HOLDS THE ORIGINAL Y-VALUES OR REVERSED ORDER
'XWORK' WORK ARRAY FOR X-VALUES.
'YWORK' WORK ARRAY FOR Y-VALUES.

'BO' INTERCEPT FROM LLS REGRESSION.
'Bl' SLOPE FROM LLS REGRESSION.
'CFILE' INPUT DATA FILE NAME.
'CTITLE' DESCRIPTIVE TITLE.
'H' NUMBER OF VALUES WITHIN EACH SUB-SAMPLE.
' I ' DO LOOP COUNTER .
'II' INDEX COUNTER.
'IBEG' INDEX COUNTER.

VALUES .
VALUES .
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'C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

'IEND'
'IDIR'
'ITYPE'
'IUNIT'
' J'
'K'
'N;

'NBEG'
'NEND'
'NN7

'NCOL'

'NMISS'
NPOP'
NSUB'
'NVALS'
'POPVAR'
XBEG'
XEND'
'YEAR'
'YSUM'
YVAR'

B7

INDEX COUNTER.
DATA DIRECTION FLAG (1=REVERSE DATA ORDER, 0=CONTINUE).
ANALYSIS TYPE.
INPUT UNIT NUMBER.
DO LOOP COUNTER.
COUNTER.
DO LOOP COUNTER.
.BEGINNING INDEX NUMBER FOR INDEX RANGE.
ENDING INDEX RANGE FOR INDEX RANGE.
COUNTER.
COLUMN NUMBER OF Y-VALUES TO BE ANALYZED.
THIS IS USEFUL FOR FILES CONTAINING MULTIPLE COLUMNS OF DATA.
X-VALUES ARE ASSUMED TO BE IN COLUMN ONE.
NUMBER OF MISSING VALUES.
NUMBER OF POPULATION VALUES.
NUMBER OFfSUB-SAMPLES.
NUMBER OF NON-MISSING VALUES.
POPULATION VARIANCE FROM FULL SAMPLE.
BEGINNING VALUE OF X-RANGE.
ENDING VALUE OF X-RANGE.
MEAN OF Y-VALUES.
SUM OF Y-VALUES.
VARIANCE OF Y-VALUES.

PARAMETER (NDIM=10000)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),

+ YDATA(NDIM) , FINDEX (NDIM) , NCASE, NSUB, H,
+ OUNIT, FMISS

REAL FDATA(15)
REAL FXDATA(NDIM) , FYDATA (NDIM) , XWORK(NDIM), YWORK(NDIM)
INTEGER H, OUNIT
CHARACTER* 80 CTITLE, CFILE

DATA IUNIT, OUNIT / 1, 2 /
c -------------------------------------------------------------------
C
C THIS SECTION REQUESTS THE INPUT INFORMATION, OPENS FILES, INPUTS
C THE DATA, AND COMPUTES FULL SAMPLE UNIVARIATE STATISTICS.
C

WRITE(*,801)
READ (*, 101) CFILE

OPEN ( IUNIT, FILE=CFILE,STATUS=' OLD' )
OPEN (OUNIT, FILE='sequitor. out' )

WRITE(*,802)
READ (*, 101) CTITLE

WRITE (OUNIT, 900)
WRITE (*, 900)
WRITE (OUNIT, 901) CTITLE

WRITE(*,803)
READ ( * , * ) NPOP
WRITE (*, 804)
READ(*,*) FMISS

3 CONTINUE

WRITE(*,805)
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READ(*,*) NCOL
REWIND IUNIT

C
C INPUT THE DATA AND FILL WORK ARRAYS. REVERSE DATA ORDER IF REQUESTED.
C
C

DO 13 I = 1, NPOP

READ(IUNIT,*) FXDATA(I), (FDATA(J),J=l,NCOL)

FINDEX(I) = FLOAT(I)
FYDATA(I) = FDATA(NCOL)

13 CONTINUE
C
5 CONTINUE

WRITE(*,806)
READ(*,*) IDIR

C
IF( IDIR .EQ. 1 ) THEN

K = 0
C

DO 14 I = NPOP, 1, -1

K = K + 1
XWORK(K) = FXDATA(I)
YWORK(K) = FYDATA(I)

14 CONTINUE
C
C

DO 15 I = 1, NPOP

FXDATA(I) = XWORK(I)
FYDATA(I) = YWORK(I)

15 CONTINUE
C

END IF
C
C
C FILL WORK ARRAYS WITH DATA WITHIN SELECTED INDEX RANGE AND COLUMN.
C
4 CONTINUE

WRITE(*,807)
READ(*,*) XBEG, XEND

C
DO 18 I = 1, NPOP

IF( FXDATA(I) .EQ. XBEG ) NBEG = I
IF( FXDATA(I) .EQ. XEND ) NEND = I

18 CONTINUE
r<

C
IF( NBEG -LT. 1 ) THEN
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WRITE(*,810)
GOTO 4

END IF
C
C

IF( NEND .GT. NPOP ) THEN

WRITE(*,810)
GOTO 4

END IF
C

NCASE = 0
C

DO 16 I = 1, NPOP
C

IF( I .GE. NBEG .AND. I .LE. NEND ) THEN

NCASE = NCASE + 1

FXVAL(NCASE) = FXDATA(I)
FYVAL(NCASE) = FYDATA(I)
XDATA(NCASE) = FINDEX(I)
YDATA(NCASE) = FYVAL(NCASE)

END IF
C
16 CONTINUE
C
C
C COMPUTE FULL SAMPLE STATISTICS AND OUTPUT RESULTS
C

CALL UNIVAR( NCASE, NVALS, NMISS, YEAR, YVAR, YSUM )
CALL RCOEFF( NCASE, BO, Bl )

IRANGE = NEND - NBEG + 1

WRITE(OUNIT,902) FXVAL(l), FXVAL(IRANGE), NVALS, NMISS, YEAR,
+ YVAR, Bl

WRITE(*,902) FXVAL(l), FXVAL(IRANGE), NVALS, NMISS, YEAR,
+ YVAR, Bl

1 CONTINUE

WRITE(*,808)
READ(*,*) H

WRITE(OUNIT,903)
WRITE(*,903)

C
C COMPUTE SUB-SAMPLE STATISTICS.
C

POPVAR = YVAR
NN = 0
K = 0
N = 0
NSUB = 0
IBEG = -(H) +1
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DO 17 I = NBEG, NEND

K = K + 1
IBEG = IBEG + 1
N = N + 1

IF( FYVAL(N) .GT. FMISS ) THEN

NN = NN + 1
YDATA(NN) = FYVAL(N)

END IF
C
C

IF( K .EQ. H ) THEN

CALL UNIVAR( NN, NVALS, NMISS, YEAR, YVAR, YSUM )
C
C OUTPUT SUB-SAMPLE STATISTICS.
C

II = (I-H) + 1
IEND = IBEG + H - 1

WRITE(OUNIT,904) II, I, FXVAL(IBEG), FXVAL(IEND), NVALS,
+ NMISS, YEAR, YVAR

WRITE(*,904) II, I, FXVAL(IBEG), FXVAL(IEND), NVALS. NMISS,
+ YEAR, YVAR

NSUB = NSUB + 1
NN = 0
K = 0

END IF
C
17 CONTINUE
C
C
C BRANCH OFF TO APPROPRIATE SUBROUTINE, CHANGE SUB-SAMPLE SIZE,
C CHANGE COLUMN NUMBER, OR STOP PROGRAM.
C
2 CONTINUE

WRITE(*,809)
READ(*,*) ITYPE

IF( ITYPE .EQ. 0 ) THEN

GOTO 1

ELSE IF( ITYPE .EQ. 1 ) THEN

WRITE(OUNIT,1001)
WRITE(*,1001)

CALL SGAUSS

ELSE IF( ITYPE .EQ. 2 ) THEN

WRITE(OUNIT,1002)
WRITE{*,1002)
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CALL SPOISS

ELSE IF( ITYPE .EQ. 3 ) THEN

WRITE(OUNIT,1003)
WRITE(*,1003)

CALL SCHI

ELSE IF( ITYPE .EQ. 4 ) THEN

WRITE(OUNIT,1004)
WRITE(*,1004)

CALL SLINEAR

ELSE IF( ITYPE .EQ. 6 ) THEN

GOTO 3

ELSE IF( ITYPE .EQ. 7 ) THEN

GOTO 4

ELSE IF( ITYPE .EQ. 8 ) THEN

GOTO 5

ELSE IF( ITYPE .EQ. 9 ) THEN

WRITE(OUNIT,907)
WRITE(*,907)

GOTO 999

ELSE

WRITE(*,905)
GOTO 2

END IF
i _ _ _ _ —

GOTO 2

101 FORMAT(A)

801 FORMAT(' ENTER INPUT FILE NAME:')
802 FORMAT(' ENTER DESCRIPTIVE TITLE:')
803 FORMAT(' ENTER NUMBER OF VALUES IN SERIES:')
804 FORMAT(' ENTER MISSING VALUE:')
805 FORMAT(' ENTER COLUMN NUMBER:')
806 FORMAT(' ENTER 0=CONTINUE, 1=REVERSE DATA INPUT ORDER:')
807 FORMAT(' ENTER BEGINNING AND ENDING X-RANGE VALUES:')
808 FORMAT (/,' ENTER WINDOW SIZE FOR SUB - SAMPLES-.')
809 FORMAT(/' ENTER ANALYSIS TYPE',/,

+ ' 1=GAUSS, 2=POISSON, 3=CHI-SQUARE, 4=LINEAR,',/,
+ ' 0=CHANGE SUB-SAMPLE SIZE, 6=CHANGE COLUMN NUMBER,',/,
+ ' 7=CHANGE DATA RANGE, 8=REVERSE DATA ORDER, 9=QUIT:')

810 FORMAT(/'RANGE EXCEEDS TOTAL NUMBER OF CASES')
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• 900 FORMAT('INVERSE SEQUENTIAL MONITORING (PROGRAM <SEQUITOR>)'}

901 FORMAT(//,A)

902 FORMAT(/,'FULL SAMPLE UNIVARIATE STATISTICS:',/,
+ 'X-VALUE RANGE = ',F5.0,'-',F5.0,/,
+ 'NUMBER OF VALUES = ',I3,/,
+ 'NUMBER OF MISSING VALUES = ',I3,/,
+ 'SAMPLE MEAN = ',F8.3,/,
+ 'SAMPLE VARIANCE = ',F8.3,/,
+ 'SAMPLE SLOPE = ',F8.3)

903 FORMAT(/,'SUB-SAMPLE PARAMETERS:',/,
+ ' INDEX X-VALUE NUMBER OF MISSING',/,' ',
+ 'RANGE RANGE VALUES VALUES MEAN VARIANCE',/,

904 FORMAT(13,'-',13,2X,F5.0,'-',F5.0,2X,19,2X,17,2(2X,F8.3))

905 FORMAT(/,'»> NOT A VALID SELECTION <«',/)

907 FORMAT(//'END OF SEQUITOR RUN')

1001 FORMAT (/, ' + + ',
+ /,'| TEST FOR CHANGE IN GAUSSIAN MEAN AND VARIANCE |',

1002 FORMAT (/, ' + + ',
+ /,'| TEST FOR CHANGE IN POISSON MEAN |',

1003 FORMAT(

+ /,' I TEST FOR CHANGE IN CHI-SQUARE DEGREES OF FREEDOM \ ' ',

1004 FORMAT (/, '+ '• + ',
+ /,'| TEST FOR CHANGE IN LINEAR TREND |',
+ /,'+ + ')

999 STOP
END

csssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
SUBROUTINE SGAUSS

C
C SUBROUTINE TO COMPUTE CHANGE IN GAUSSIAN MEAN AND VARIANCE.
C
C VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:
C 'BARM' MEAN OF BASE PERIOD VALUES.
C 'BARMJ' PROGRESSIVE MEAN.
C 'DGAMMA' CHANGE IN GAMMA FROM PREVIOUS VALUE.
C 'GAMMA' GAMMA VALUE.
C 'GAMOLD' PREVIOUS VALUE OF GAMMA.
C 'J' PROGRESSIVE VALUE INDEX.
C 'JJ' DO LOOP COUNTER.
C 'Jl' STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
C 'J2' ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
C 'M' REAL VALUE OF NUMBER OF BASE VALUES.
C 'MBASE' NUMBER OF BASE PERIOD VALUES.
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C 'Q7 RATIO OF QMJ/QM.
'C 'QM' BASE PERIOD LIKELIHOOD RATIO.
C 'QMJ' PROGRESSIVE PERIOD LIKELIHOOD RATIO.
C 'SDM' STANDARD DEVIATION OF BASE PERIOD VARIANCE.
C 'SDM2' BASE PERIOD VARIANCE.
C 'SDMJ' PROGRESSIVE STANDARD DEVIATION.
C 'SDMJ2' PROGRESSIVE VARIANCE.
C 'Tl' WORK VARIABLE; FIRST TERM IN EITHER Q(M) OR Q(M+J) EQUATIONS.
C 'T2' WORK VARIABLE; SECOND TERM IN EITHER Q(M) OR Q(M+J) EQUATIONS.
C 'T3; WORK VARIABLE; THIRD TERM IN EITHER Q(M) OR Q(M+J) EQUATIONS.
C

PARAMETER (NDIM=10000)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),

+ YDATA(NDIM), FINDEX(NDIM), NCASE, NSUB, H,
+ OUNIT, FMISS

REAL J, M
INTEGER OUNIT, H

C
C FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD
C STATISTICS, AND OUTPUT RESULTS.
C
1 CONTINUE

WRITE(*,801)
READ(*,*) MBASE
WRITE(OUNIT,1000)
WRITE(*,1000)

DO 20 I = 1, MBASE

XDATA(I) = FINDEX(I)
YDATA(I) = FYVAL(I)

WRITE(OUNIT,1001) I, XDATA(I), YDATA(I)
WRITE(*,1001) I, XDATA(I), YDATA(I)

20 CONTINUE
C

CALL UNIVAR( MBASE, NVALS, NMISS, YEAR, YVAR, YSUM )

IF( NVALS .GT. 0 ) THEN

WRITE(OUNIT,1002) FXVAL(l), FXVAL(MBASE), NVALS, NMISS, YEAR,
+ YVAR

WRITE(*,1002) FXVAL(l), FXVAL(MBASE), NVALS, NMISS, YEAR,
+ YVAR

ELSE

WRITE(*,1003!
RETURN

END IF

WRITE(*,802)
READ(*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

WRITE(OUNIT,1004)
WRITE(*,1004)
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C
•C INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP.
C

BARM = YEAR
SDM = SQRT(YVAR)
SDM2 = YVAR
M = FLOAT(MBASE)
GAMOLD = FMISS
Jl = MBASE + 1
J2 = NCASE

C
C FILL PROGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND
C OUTPUT RESULTS.
C
C

DO 22 JJ = Jl, J2

XDATA(JJ) = FINDEX(JJ)
YDATA(JJ) = FYVAL(JJ)

CALL UNIVAR( JJ, NVALS, NMISS, YEAR, YVAR, YSUM )
C
C COMPUTE GAMMA. SEE TEXT FOR EQUATION DETAILS.
C
C

IF( NVALS .GT. 0 ) THEN

BARMJ = YEAR
SDMJ = SQRT(YVAR)
SDMJ2 = YVAR
J = FLOAT(JJ) - M

Tl = M * ALOG(SDM / SDMJ )
T2 = ((M - 1.) / 2.) * (l. - (SDM2 / SDMJ2))
T3 = (M / (2. * SDM2)) * (BARMJ - BARM)**2
QM = EXP(T1 + T2 - T3)

Tl = (M + J)* ALOG(SDM / SDMJ )
T2= ( ( M + J - 1 . ) / 2.) * ((SDMJ2 / SDM2) - 1.)
T3 = ((M + J) / (2. * SDM2)) * (BARMJ - BARM)**2
QMJ = EXP(T1 + T2 + T3)

Q = QMJ / QM
GAMMA =!./(!.+ SQRT(Q))
DGAMMA = GAMOLD - GAMMA

IF( GAMOLD .EQ. FMISS ) THEN

WRITE(OUNIT,1005) JJ, FXVAL(JJ), YDATA(JJ), YEAR, YVAR,
GAMMA

WRITE(*,1005) JJ, FXVAL(JJ), YDATA(JJ), YEAR, YVAR,
GAMMA

ELSE

WRITE(OUNIT,1005) JJ, FXVAL(JJ), YDATA(JJ), YEAR, YVAR,
GAMMA, DGAMMA

WRITE(*,1005) JJ, FXVAL(JJ), YDATA(JJ), YEAR, YVAR,
GAMMA, DGAMMA
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END IF

-C

GAMOLD = GAMMA

ELSE

WRITE(OUNIT,1006) JJ, FXVAL(JJ), YDATA(JJ)
WRITE(*,1006) JJ, FXVAL(JJ), YDATA(JJ)
GAMOLD = FMISS

END IF
C
22 CONTINUE
C

WRITE(*,802)
READ(*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

801 FORMAT(/,' ENTER NUMBER OF VALUES IN BASE PERIOD:')
802 FORMAT(/,' ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:')

1000 FORMAT(/'BASE PERIOD INPUT VALUES:'
+ /'INDEX X Y'
+ /'===== ======== ========')

1001

1002

1003

1004

1005

1006

FORMAT(I5,2X,F8.3,2X,F8.2)

FORMAT(/,'BASE PERIOD PARAMETERS:',/,
'X-VALUE RANGE = ',F5.0,'-',F5.0,/,
'NUMBER OF VALUES = ',I3,/,
'NUMBER OF MISSING VALUES = ',13,/,
'BASE MEAN = ',F8.3,/,
'BASE VARIANCE = ',F8.3,/)

FORMAT(' ALL VALUES IN BASE PERIOD MISSING')

FORMAT(/,'PROGRESSIVE PARAMETERS:',/,
X Y DELTA',/,

'INDEX- OBSERVATIONS MEAN VARIANCE GAMMA GAMMA',/,

FORMAT(I5,2X,F8.3,IX,F7.2,2(2X, F8 . 3 ) , 2X,F6.3,2X,F6.3)

FORMAT(15,2X,F8.3,IX,F7 . 2)

RETURN
END

SUBROUTINE SPOISS

C SUBROUTINE TO COMPUTE CHANGE IN POISSON MEAN.
C
C VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:
C 'BARM' MEAN OF BASE PERIOD VALUES.
C 'BARMJ' PROGRESSIVE MEAN.
C 'DGAMMA' CHANGE IN GAMMA FROM PREVIOUS VALUE.
C 'GAMMA' GAMMA VALUE.
C 'GAMOLD' PREVIOUS VALUE OF GAMMA.
C 'J' PROGRESSIVE VALUE INDEX.
C 'JJ' DO LOOP COUNTER.
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G 'Jl' STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
C- 'J2'' • ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
C 'M' REAL VALUE OF NUMBER OF BASE VALUES.
C 'MBASE' NUMBER OF BASE PERIOD VALUES.
C 'Q' COMBINED LIKELIHOOD RATIOS.
C 'Tl' WORK VARIABLE; FIRST TERM IN EITHER Q EQUATION.
C 'T2' WORK VARIABLE; SECOND TERM IN EITHER Q EQUATION.
C 'T3' WORK VARIABLE; THIRD TERM IN EITHER Q EQUATION.
C

PARAMETER (NDIM=10000)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),

+ YDATA(NDIM), FINDEX(NDIM), NCASE, NSUB, H,
+ OUNIT, FMISS

REAL J, M
INTEGER OUNIT, H

C
C FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD
C STATISTICS, AND OUTPUT RESULTS.

. C
1 CONTINUE

WRITE(*,801)
READ(*,*) MBASE
WRITE(OUNIT,2000)
WRITE(*,2000)

DO 20 I = 1, MBASE

XDATA(I) = FINDEX(I)
YDATA(I) = FYVAL(I)

WRITE(OUNIT,2001) I, XDATA(I), YDATA(I)
WRITE(*,2001) I, XDATA(I), YDATA(I)

20 CONTINUE
C

CALL UNIVAR( MBASE, NVALS, NMISS, YEAR, YVAR, YSUM )

IF( NVALS .GT. 0 ) THEN

WRITE(OUNIT,2002) FXVAL(l), FXVAL(MBASE), NVALS, NMISS,
YEAR, YVAR, YSUM

WRITE(*,2002) FXVAL(l), FXVAL(MBASE), NVALS, NMISS, YEAR,
YVAR, YSUM

ELSE

WRITE(*,2003)
RETURN

END IF

WRITE(*,802)
READ(*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

WRITE(OUNIT,2004)
WRITE(*,2004)

C
C INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP.
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BARM = YEAR
M = FLOAT(MBASE)
GAMOLD = FMISS
Jl = MBASE + 1
J2 = NCASE

C
C FILL PROGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND
C OUTPUT RESULTS.
C
C

DO 22 JJ = Jl, J2

XDATA(JJ) = FINDEX(JJ)
YDATA(JJ) = FYVAL(JJ)

CALL UNIVAR( JJ, NVALS, NMISS, YEAR, YVAR, YSUM )
C
C COMPUTE GAMMA. SEE TEXT FOR EQUATION DETAILS.
C
C

IF( NVALS .GT. 0 ) THEN

BARMJ = YEAR
J = FLOAT(JJ) - M

Tl = (BARMJ * (M + J)) - (BARM * M)
T2 = ALOG(BARMJ / BARM)
T3 = (BARMJ - BARM) * J
Q = EXP(T1 * T2 - T3)
GAMMA =1. / (1. + SQRT(Q))
DGAMMA = GAMOLD - GAMMA

C
IF( GAMOLD .EQ. FMISS ) THEN

WRITE(OUNIT,2005) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,
+ YSUM, GAMMA

WRITE(*,2005) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,
+ YSUM, GAMMA

ELSE

WRITE(OUNIT,2005) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,
+ YSUM, GAMMA, DGAMMA

WRITE(*,2005) JJ, FXVAL(JJ), YDATA(JJ), BARMJ, YVAR,
+ YSUM, GAMMA, DGAMMA

END IF
C

GAMOLD = GAMMA

ELSE

WRITE(OUNIT,2006) JJ, FXVAL(JJ), YDATA(JJ)
WRITE(*,2006) JJ, FXVAL(JJ), YDATA(JJ)
GAMOLD = FMISS

END IF
C
22 CONTINUE
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WRITE(*,802)
READ(*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

801 FORMAT(/,' ENTER NUMBER OF VALUES IN BASE PERIOD:7)
802 FORMAT(/,' ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:')

2000 FORMAT(/'BASE PERIOD INPUT VALUES:'
+ /'INDEX X Y'
+ /'===== ======== ========')

2001 FORMAT(I5,2X,F8.3,2X,F8.2)

2002 FORMAT(/,'BASE PERIOD PARAMETERS:',/,
+ 'X-VALUE RANGE = ',F5.0,'-',F5.0,/,
+ 'NUMBER OF VALUES = ',I3,/,
+ 'NUMBER OF MISSING VALUES = ',I3,/,
+ 'BASE MEAN = ',F8.3,/,
+ 'BASE VARIANCE = ' , F8.3 , /,
+ 'BASE SUM = ',F6.O,/)

.2003 FORMATC ALL VALUES IN BASE PERIOD MISSING')

2004 FORMAT(/,'PROGRESSIVE PARAMETERS:',/,
+ ' X Y
+ ' DELTA',/,
+ 'INDEX OBSERVATIONS MEAN VARIANCE SUM GAMMA',
+ ' GAMMA',/,

2005 FORMAT(I5,2X,F8.3,1X,F7.0,2(2X,F8.3),2X,f6.0,2X,F6.3,2X,F6.3)

2006 FORMAT(I5,2X,F8.3,1X,F7.0)

RETURN
END

C
SUBROUTINE SCHI

C
C SUBROUTINE TO COMPUTE CHANGE IN CHI-SQUARE DEGREES OF FREEDOM.
C
C VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:

CHANGE IN GAMMA FROM PREVIOUS VALUE.
CHI-SQUARE VALUE FOR EACH SUB-SAMPLE.
GAMMA VALUE.
VALUE OF THE GAMMA FUNCTION FOR THE BASE PERIOD.

GAMNUMJ' VALUE OF THE GAMMA FUNCTION FOR THE PROGRESSIVE PERIOD.
PREVIOUS VALUE OF GAMMA.
BASE PERIOD MEAN FOR GAMMA FUNCTION.
PROGRESSIVE MEAN FOR GAMMA FUNCTION.
NUMBER OF SUB-SAMPLES.
PROGRESSIVE VALUE INDEX.
DO LOOP COUNTER.
STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
INDEX COUNTER.
INDEX COUNTER.
REAL VALUE OF NUMBER OF BASE VALUES.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

'DGAMMA'
'FCHI2'
'GAMMA'
'GAMNUM'
'GAMNUMJ
' GAMOLD '
'GNUM'
'GNUMJ'
'H'
' J'
' JJ'
' Jl'
' J2'
'K'
'KK'
'M'
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G 'MBASE' NUMBER OF BASE PERIOD VALUES.
•C 'NBASE' ACTUAL NUMBER OF CASES IN BASE PERIOD.
C 'NUM' BASE PERIOD MEAN.
C 'NUMJ' PROGRESSIVE MEAN.
C 'Q' COMBINED LIKELIHOOD RATIOS.
C 'SUMCHI2' PROGRESSIVE SUM OF CHI-SQUARE VALUES.
C 'Tl' WORK VARIABLE; FIRST TERM IN EITHER Q EQUATION.
C 'T2' WORK VARIABLE; SECOND TERM IN EITHER Q EQUATION.
C 'T3' WORK VARIABLE; THIRD TERM IN EITHER Q EQUATION.
C 'YVARC' VARIANCE FOR EACH CHI2 VALUE (SUB-SAMPLE).
C 'YVARM' VARIANCE FOR BASE PERIOD.
C

PARAMETER (NDIM=10000)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),

+ YDATA(NDIM), FINDEX(NDIM), NCASE, NSUB, H,
+ OUNIT, FMISS

REAL J, M, NUM, NUMJ, FCHI2(NDIM)
INTEGER OUNIT, H

C
C FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD
C STATISTICS, AND OUTPUT RESULTS.
C
1 CONTINUE

WRITE(*,801)
READ(*,*) MBASE
WRITE(OUNIT,3000)
WRITE(*,3000)

C
DO 20 I = 1, MBASE

XDATA(I) = FINDEX(I)
YDATA(I) = FYVAL(I)

WRITE(OUNIT,3001) I, XDATA(I), YDATA(I)
WRITE(*,3001) I, XDATA(I), YDATA(I)

20 CONTINUE
C

NBASE = MBASE * H
C

DO 21 I = 1, NBASE

YDATA(I) = FYVAL(I)

21 CONTINUE
C

CALL UNIVAR( NBASE, NVALS, NMISS, YEAR, YVAR, YSUM )
C

IF( NVALS .GT. 0 ) THEN

WRITE(OUNIT,3002) FXVAL(l), FXVAL(NBASE), NVALS, NMISS,
+ YEAR, YVAR

WRITE(*,3002) FXVAL(l), FXVAL(NBASE), NVALS, NMISS, YEAR,
+ YVAR

YVARM = YVAR
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ELSE

WRITE(*,3003)
RETURN

END IF
C
C
C COMPUTE CHI2 VALUES.
C

KK = 0
C--

DO 22 JJ = 1, NSUB

K = 0
XDATA(JJ) = FLOAT(JJ)

C
DO 24 I = 1, H

K = K + 1
KK = KK + 1
YDATA(K) = FYVAL(KK)

24 CONTINUE
C

CALL UNIVAR( H, NVALS, NMISS, YEAR, YVAR, YSUM )

YVARC = YVAR
C ---

IF( JJ .GT. MBASE ) THEN

KK = JJ * H
C

DO 26 I = 1, KK

YDATA(I) = FYVAL(I)

26 CONTINUE
C

CALL UNIVAR( KK, NVALS, NMISS, YEAR, YVAR, YSUM

FCHI2(JJ) = (H - 1.) * YVARC / YVAR

ELSE

FCHI2(JJ) = (H - 1.) * YVARC / YVARM

END IF
C
22 CONTINUE
C
C

DO 28 I = 1, MBASE

YDATA(I) = FCHI2(I)

28 . CONTINUE
C

CALL UNIVAR( MBASE, NVALS, NMISS, YEAR, YVAR, YSUM )
C



C COMPUTE GAMMA FUNCTION FOR THE BASE PERIOD.
'C

NUM = YEAR

WRITE(OUNIT,3004) NUM
WRITE(*,3004) NUM
WRITE(*,802)
READ(*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

WRITE(OUNIT,3005)
WRITE(*,3005)

GNUM = YEAR / 2 .
CALL GAMMLN( GNUM, GAMNUM )

C
C INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP,
C

Jl = MBASE + 1
J2 = NSUB
M = FLOAT(MBASE)
GAMOLD = FMISS
SUMCHI2 = 0.

C
C FILL PROGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND
C OUTPUT RESULTS.
C
C

DO 30 JJ = Jl, J2

SUMCHI2 = SUMCHI2 + ALOG(FCHI2(JJ))
C

DO 32 I = 1, JJ

YDATA(I) = FCHI2(I)

32 CONTINUE
C

CALL UNIVAR( JJ, NVALS, NMISS, YEAR, YVAR, YSUM )
C

IF( NVALS .GT. 0 ) THEN
C
C COMPUTE GAMMA FUNCTION FOR PROGRESSIVE VALUES.
C

NUMJ = YEAR
GNUMJ = YEAR / 2.
CALL GAMMLN( GNUMJ, GAMNUMJ )
J = FLOAT(JJ) - M

C
C COMPUTE GAMMA. SEE TEXT FOR EQUATION DETAILS.
C

Tl = (J * (NUM - NUMJ) * ALOG(2.)) / 2.
T2 = J * ALOG(GAMNUM / GAMNUMJ)
T3 = ((NUMJ - NUM) / 2.) * SUMCHI2
Q = EXP(T1 + T2 + T3)

GAMMA =1. / (1. + SQRT(Q))
DGAMMA = GAMOLD - GAMMA
KK = JJ * H
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DO 34 I = 1, KK

YDATA(I) = FYVAL(I)

34 CONTINUE
C

CALL UNIVAR( KK, NVALS, NMISS, YEAR, YVAR, YSUM )
C

IF( GAMOLD .EQ. FMISS ) THEN

WRITE(OUNIT,3006) JJ, FCHI2(JJ), NUMJ, YVAR, GAMMA
WRITE(*,3006) JJ, FCHI2(JJ), NUMJ, YVAR, GAMMA

ELSE

WRITE(OUNIT,3006) JJ, FCHI2(JJ), NUMJ, YVAR, GAMMA,
+ DGAMMA

WRITE(*,3006) JJ, FCHI2(JJ), NUMJ, YVAR, GAMMA, DGAMMA

END IF
C

GAMOLD = GAMMA

ELSE

WRITE(OUNIT,3007) JJ, YDATA(JJ)
WRITE(*,3007) JJ, YDATA(JJ)
GAMOLD = FMISS

END IF
C
30 CONTINUE
C

WRITE(*,802)
READ(*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

801 FORMAT(/,' ENTER NUMBER OF VALUES IN BASE PERIOD:')
802 FORMAT(/,' ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:')

3000 FORMAT(/'BASE PERIOD INPUT VALUES:'
+ /'INDEX X Y'
+ /'===== ======== ========')

3001

3002

3003

3004

3005

FORMAT(15,2X,F8.3,2X,F8.2)

FORMAT(/,'BASE PERIOD PARAMETERS:',/,
'X-VALUE RANGE = ',F5.0,'-',F5.0,/,
'NUMBER OF VALUES = ',I3,/,
'NUMBER OF MISSING VALUES = ',I3,/,
'BASE MEAN = ',F8.3,/,
'BASE VARIANCE = ',F8.3)

FORMAT(' ALL VALUES IN BASE PERIOD MISSING')

FORMAT('BASE CHI-SQUARE = ',F8.3,/)

FORMAT(/,'PROGRESSIVE PARAMETERS:',/,
CHI-SQUARE

'INDEX OBSERVATIONS MEAN VARIANCE GAMMA
DELTA',/,
GAMMA',/,
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+ '===== ============ ======== ======== ======

3006 FORMAT(I5,2X,F12.3,2(2X,F8.3),2(2X,F6.3))

3007 FORMAT(I5(2X,F12.3)

*

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

RETURN
END

SUBROUTINE SLINEAR

SUBROUTINE

VARIABLES
'AM'
'BM'
'DM'
'DMJ'
' DENOM '
'DGAMMA'
'GAMMA'
' GAMOLD '
' I'
' J'
' JJ'
' Jl'
' J2'
' LNL1 '
' LNL2 '
' LNL3 '
' LNL4 '
'M'
' MBASE '
'PREDM'
'PREDMJ'
'Q'
'QM'
'QMJ'
'RESIDM'
'RES I DMJ'
'SSM'
'SSMJ'
' SUMT2 '
'SUMT21'
'SUMT22'
'T'
'Tl'
'T2'
'Til'
'T12'
'T21'
'T22'

TO COMPUTE CHANGE IN LINEAR TREND.

USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:
BASE PERIOD INTERCEPT FROM LLS REGRESSION.
BASE PERIOD SLOPE FROM LLS REGRESSION.
CONSTANT USED IN Q (M) LIKELIHOOD RATIO.
CONSTANT USED IN Q (M+J) LIKELIHOOD RATIO.
DENOMINATOR IN 'T21' AND 'T22' TERMS.
CHANGE IN GAMMA FROM PREVIOUS VALUE.
GAMMA VALUE.
PREVIOUS VALUE OF GAMMA.
DO LOOP COUNTER.
PROGRESSIVE VALUE INDEX.
DO LOOP COUNTER.
STARTING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
ENDING VALUE FOR DO LOOP COMPUTING PROGRESSIVE VALUES.
NATURAL LOG LIKELIHOOD 1.
NATURAL LOG LIKELIHOOD 2.
NATURAL LOG LIKELIHOOD 3.
NATURAL LOG LIKELIHOOD 4.
REAL VALUE OF NUMBER OF BASE VALUES.
NUMBER OF BASE PERIOD VALUES.
PREDICTED VALUES FROM REGRESSION EQUATION USING 'M' VALUES.
PREDICTED VALUES FROM REGRESSION EQUATION USING 'M+J' VALUES
RATIO OF QMJ/QM.
BASE PERIOD LIKELIHOOD RATIO.
PROGRESSIVE PERIOD LIKELIHOOD RATIO.
ARRAY OF BASE PERIOD RESIDUALS FROM LLS REGRESSION.
ARRAY OF PROGRESSIVE VALUE RESIDUALS FROM LLS REGRESSION.
SUM OF SQUARES FOR BASE PERIOD.
SUM OF SQUARES FOR 'M+J' VALUES.
SUM OF 'T2' TERM IN 'LNL1' AND ' LNL4 ' FORMULAE.
SUM OF 'T2' TERM IN ' LNL2 ' FORMULAE.
SUM OF 'T2' TERM IN ' LNL3 ' FORMULAE.
REAL VALUE OF BASE PERIOD LOOP INDEX.
WORK VARIABLE FOR FIRST TERM IN ' LNL1 ' AND ' LNL4 ' FORMULAE.
WORK VARIABLE FOR SECOND TERM IN ' LNL1 ' AND ' LNL4 ' FORMULAE.
WORK VARIABLE FOR FIRST TERM IN ' LNL2 ' FORMULAE.
WORK VARIABLE FOR FIRST TERM IN ' LNL3 ' FORMULAE.
WORK VARIABLE FOR SECOND TERM IN ' LNL2 ' FORMULAE.
WORK VARIABLE FOR SECOND TERM IN ' LNL3 ' FORMULAE.

PARAMETER (NDIM=10000)
COMMON /WORK/ FXVAL(NDIM),

YDATA(NDIM),
OUNIT, FMISS

REAL RESIDM(NDIM), RESIDMJ(NDIM),
REAL M, J, LNL1, LNL2, LNL3, LNL4
INTEGER OUNIT, H

FYVAL(NDIM),
FINDEX(NDIM)

XDATA(NDIM),
NCASE, NSUB, H,

PREDM(NDIM), PREDMJ(NDIM)
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e
-C FILL WORK ARRAYS WITH BASE PERIOD VALUES, COMPUTE BASE PERIOD
C STATISTICS, AND OUTPUT RESULTS.
C
1 CONTINUE

WRITE(*,801)
READ(*,*) MBASE
WRITE(OUNIT,4000)
WRITE(*,4000)

DO 20 I = 1, MBASE

WRITE(OUNIT,4001) I, FXVAL(I), FYVAL(I)
WRITE(*,4001) I, FXVAL(I), FYVAL(I)

20 CONTINUE
C
C

DO 21 I = 1, NCASE

XDATA(I) = FINDEX(I)
YDATA(I) = FYVAL(I)

21 CONTINUE
C

CALL UNIVAR( MBASE, NVALS, NMISS, YEAR, YVAR, YSUM )

IF( NVALS .GT. 0 ) THEN

CALL RCOEFF( MBASE, AM, BM )

SDM = SQRT(YVAR*(12./(FLOAT(MBASE)*(FLOAT(MBASE**2)-1.))))
SDM2 = SDM**2
BARM = BM

WRITE(OUNIT,4002) FXVAL(l), FXVAL(MBASE), NVALS, NMISS,
YEAR, YVAR, BM

WRITE(*,4002) FXVAL(l), FXVAL(MBASE), NVALS, NMISS, YEAR,
YVAR, BM

ELSE

WRITE(*,4003)
RETURN

END IF

WRITE(*,802)
READ(*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

WRITE(OUNIT,4004)
WRITE(*,4004)

M = FLOAT(MBASE)
DM = (M * (M**2 - 1. ) ) / 12.
SSM = 0.

DO 22 I = 1, MBASE
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IF( YDATA(I) .NE. FMISS ) THEN

SSM = SSM + (YDATA(I) - YEAR)**2

END IF
C
22 CONTINUE
C
C

DO 23 I = 1, NCASE
C

IF( YDATA(I) .NE. FMISS ) THEN

PREDM(I) = (XDATA(I) * BM + AM)
RESIDM(I) = (YDATA(I) - PREDM(D)

ELSE

PREDM(I) = FMISS
RESIDM(I) = FMISS

END IF
C
23 CONTINUE
C

SUMT2 = 0.
Tl = (-1.) * (M - 2.) / (2. * (SSM - (BM**2 * DM)))

C
DO 24 I = 1, MBASE

C
IF( YDATA(I) .NE. FMISS ) THEN

T = FLOAT(I)

T2 = RESIDM(I)**2 / (((M + 1.) / M)
+ + (T - ( (M + 1.) / 2.))**2 / DM)

SUMT2 = SUMT2 + T2

END IF
C
24 CONTINUE

LNL1 = Tl * SUMT2
C
C
C INITIALIZE AND COMPUTE FIXED VALUES; BEGIN PROGRESSIVE VALUE LOOP.
C

GAMOLD = FMISS
Jl = MBASE + 1
J2 = NCASE

C
C FILL PROGRESSIVE WORK ARRAYS, COMPUTE PROGRESSIVE STATISTICS, AND
C OUTPUT RESULTS.
C
C

DO 26 JJ = Jl, J2

XDATA(JJ) = FINDEX(JJ)
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YDATA(JJ) = FYVAL(JJ)

CALL UNIVAR( JJ, NVALS, KMISS, YEAR, YVAR, YSUM )

IF( YDATA(JJ) .EQ. FMISS ) NVALS = 0
C
C COMPUTE EQUATION TERMS AND GAMMA. SEE TEXT FOR EQUATION DETAILS.
C
C

IF( NVALS .GT. 0 ) THEN

CALL RCOEFF( JJ, AMJ, BMJ )

SDMJ = SQRT(YVAR*(12./(FLOAT(JJ)*(FLOAT(JJ**2)-1.))))
SDMJ2 = SDMJ**2
BARMJ = BMJ

SSMJ = 0.
J = FLOAT(JJ) - M
DMJ = ((M + J) * ((M + J)**2 - 1.)) / 12.

DO 30 I = 1, JJ

SSMJ = SSMJ + (YDATA(I) - YEAR)**2
PREDMJ(I) = (XDATA(I) * BMJ + AMJ)
RESIDMJ(I) = (YDATA(I) - PREDMJ(I))

30 . CONTINUE
C

SUMT2 = 0.
Tl = (-1. ) * (M - 2.) / (2. * (SSM - (BMJ**2 * DM)))

DO 32 I = 1, MBASE

T = FLOAT(I)

T2 = RESIDMJ(I)**2 / (((M + 1) / M) +
(T - ((M + 1.) / 2.))**2 / DM)

SUMT2 = SUMT2 + T2

32 CONTINUE
C

LNL4 = Tl * SUMT2

SUMT21 = 0.
SUMT22 = 0.

Til = (-1. ) * (M + J - 2.)
/ (2. * (SSMJ - (BMJ**2 * DMJ)))

T12 = (-1.) * (M + J - 2.)
/ (2. * (SSMJ - (BM**2 * DMJ)))

DO 34 1 = 1 , JJ

T = FLOAT(I)

DENOM = ( (M + J + 1. ) / (M + J))
+ ( (T - ((M + J + 1.) / 2.))**2 / DMJ)
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T21 = RESIDMJ(I)**2 / DENOM
T22 = RESIDM(I)**2 / DENOM

SUMT21 = SUMT21 + T21
SUMT22 = SUMT22 + T22

34 CONTINUE
C

LNL2 = Til * SUMT21
LNL3 = T12 * SUMT22

QM = EXP(LNL4 - LNL1)
QMJ = EXP(LNL2 - LNL3)
Q = QMJ / QM
GAMMA =1. / (1. + SQRT(Q))
DGAMMA = GAMOLD - GAMMA

CNNNNNNNNNNNN
Tl = M * ALOG(SDM / SDMJ )
T2 = ( (M - 1.) / 2. )*(!.- (SDM2 / SDMJ2))
T3 = (M / (2. * SDM2)) * (BARMJ - BARM)**2
QM = EXP(T1 + T2 - T3)

Tl = (M + J)* ALOG(SDM / SDMJ )
T2= ( ( M + J - 1 . ) / 2.) * ((SDMJ2 / SDM2) - 1.)
T3 = ((M + J) / (2. * SDM2)) * (BARMJ - BARM)**2
QMJ = EXP(T1 + T2 + T3)

Q = QMJ / QM
C GAMMA =1. / (1. + SQRT(Q))

DGAMMA = GAMOLD - GAMMA
CNNNNNNNNNNNN
C

IF( GAMOLD .EQ. FMISS ) THEN

WRITE(OUNIT,4005) JJ, FXVAL(JJ), YDATA(JJ), YEAR, YVAR,
+ BMJ, GAMMA

WRITE(*,4005) JJ, FXVAL(JJ), YDATA(JJ), YEAR, YVAR,
+ BMJ, GAMMA

ELSE

WRITE(OUNIT,4005) JJ, FXVAL(JJ), YDATA(JJ), YEAR, YVAR,
+ BMJ, GAMMA, DGAMMA

WRITE(*,4005) JJ, FXVAL(JJ), YDATA(JJ), YBAR, YVAR,
+ BMJ, GAMMA, DGAMMA

END IF
C

GAMOLD = GAMMA

ELSE

WRITE(OUNIT,4006) JJ, FXVAL(JJ), YDATA(JJ)
WRITE(*,4006) JJ, FXVAL(JJ), YDATA(JJ)

END IF
C
26 CONTINUE
C

WRITE(*,802)
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READ(*,*) ITYPE
IF( ITYPE .EQ. 1 ) GOTO 1

801
802

4000

4001

4002

FORMAT (/,' ENTER NUMBER OF VALUES IN BASE PERIOD:')
FORMAT (/,' ENTER 0=CONTINUE, 1=CHANGE NUMBER OF BASE VALUES:')

FORMAT (/' BASE PERIOD INPUT VALUES:'
/'INDEX X Y'
/,

4003

4004

FORMAT ( 15 , 2X , F8 . 3 , 2X , F8 . 2 )

FORMAT ( / , ' BASE PERIOD PARAMETERS : ' , / ,
'X-VALUE RANGE = ' , F5 . 0 , ' - ' , F5 . 0 , / ,
'NUMBER OF VALUES = ' , 13 , / ,
'NUMBER OF MISSING VALUES = ',I3,/,
'BASE MEAN = ' ,F8.3,/,
'BASE VARIANCE = ',F8.3,/,
' BASE SLOPE = ' , F6 . 3 , / )

FORMAT (' ALL VALUES IN BASE PERIOD MISSING')

FORMAT ( / , ' PROGRESSIVE PARAMETERS : ' , / ,
X Y

DELTA',/,
' INDEX OBSERVATIONS MEAN VARIANCE

GAMMA' , /,
SLOPE GAMMA',

4005 FORMAT(I5,2X,F8.3,1X,F7.2,2(2X,F8.3),2(2X,F6.3),2X,F6.3)

4006 FORMAT(I5,2X,F8.3,1X,F7.2)

RETURN
END

c

SUBROUTINE RCOEFF( N, BO, El )
C
C SUBROUTINE TO COMPUTE LINEAR LEAST SQUARES (LLS) INTERCEPT AND SLOPE,
C
C VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:

DO LOOP COUNTER.
NUMBER OF VALUES.
COUNTER FOR NON-MISSING VALUES.
SUMS OF SQUARED DEVIATIONS FROM THE MEAN X-VALUE.
SUM OF THE CROSS PRODUCTS OF DEVIATIONS.
SUM OF NON-MISSING X-VALUES.
SUM OF NON-MISSING Y-VALUES.
SUM OF X-VALUES SQUARED.

SUMSXY' SUM OF X TIMES Y SQUARED.
MEAN OF NON-MISSING X-VALUES.
NUMBER OF NON-MISSING VALUES TIMES 'XBAR' SQUARED.
WORK ARRAY FOR X-VALUES.
'XBAR' TIMES 'YEAR' TIMES NUMBER OF NON-MISSING VALUES.
MEAN OF NON-MISSING Y-VALUES.
WORK ARRAY FOR Y-VALUES.

PARAMETER (NDIM=10000)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

' I'
'N'
'NN'
'SX2'
'SXY'
'SUMX'
'SUMY'
' SUMSX
' SUMSX
'XBAR'
'XBAR2
' XWORK
'XYN'
'YEAR'
'YWORK
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* + YDATA(NDIM), FINDEX(NDIM), NCASE, NSUB, H,
+ OUNIT, FMISS

REAL XWORK(NDIM), YWORK(NDIM)
INTEGER OUNIT, H

SUMX =0.
SUMY = 0.
NN = 0

C
C FILL WORK ARRAYS WITH NON-MISSING VALUES.
C
C

DO 15 I = 1, N
C

IF( YDATA(I) .GT. FMISS ) THEN

NN = NN + 1
XWORK(NN) = XDATA(I)
YWORK(NN) = YDATA(I)

END IF
C
15 CONTINUE

C

C
C COMPUTE SUMS OF X- AND Y-VALUES.
C
C

DO 20 I = 1, NN

SUMX = SUMX + XWORK(I)
SUMY = SUMY + YWORK(I)

20 CONTINUE
C
C
C COMPUTE MEANS OF X- AND Y-VALUES.
C

XBAR = SUMX / FLOAT(NN)
YEAR = SUMY / FLOAT(NN)

SUMSX2 = 0.
SUMSXY = 0.

C
C COMPUTE SUMS OF SQUARED DEVIATIONS AND CROSS PRODUCTS.
C
C

DO 22 I = 1, NN

SUMSX2 = SUMSX2 + XWORK(I)**2
SUMSXY = SUMSXY + (XWORK(I) * YWORK(I))

22 CONTINUE
C

XBAR2 = XBAR**2 * FLOAT(NN)
XYN = XBAR * YEAR * FLOAT(NN)

SX2 = SUMSX2 - XBAR2
SXY = SUMSXY - XYN
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Bl = SXY / SX2
BO = YEAR - Bl * XBAR

RETURN
END

SUBROUTINE UNIVAR( N, NVALS, NMISS, YEAR, YVAR, YSUM )
C
C SUBROUTINE TO COMPUTE LINEAR LEAST SQUARES (LLS) INTERCEPT AND SLOPE.
C
C VARIABLES USED IN SUBROUTINE NOT DESCRIBED IN MAIN PROGRAM:
C 'I' DO LOOP COUNTER.
C. 'N' NUMBER OF VALUES.
C 'SUMS2' SUM OF SQUARED DIFFERENCES.
C 'YWORK' WORK ARRAY FOR NON-MISSING Y-VALUES.
C

PARAMETER (NDIM=10000)
COMMON /WORK/ FXVAL(NDIM), FYVAL(NDIM), XDATA(NDIM),

+ YDATA(NDIM), FINDEX(NDIM), NCASE, NSUB, H,
+ OUNIT, FMISS

REAL YWORK(NDIM)
INTEGER OUNIT, H

YSUM = 0.
NVALS = 0
NMISS = 0

C
C FILL WORK ARRAY WITH NON-MISSING VALUES.
C
C

DO 15 I = 1, N
C

IF( YDATA(I) .GT. FMISS ) THEN

NVALS = NVALS + 1
YWORK(NVALS) = YDATA(I)

ELSE

NMISS = NMISS + 1

END IF
C
15 CONTINUE
C
C
C COMPUTE SUM OF Y-VALUES.
C
C

DO 20 I = 1, NVALS

YSUM = YSUM + YWORK(I)

20 CONTINUE
C
C
C COMPUTE MEAN OF Y-VALUES.
C
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•C
C COMPUTE SUM OF SQUARED DIFFERENCES.
C

SUMS2 = 0.
C

DO 22 I = 1, NVALS

SUMS2 = SUMS2 + (YWORK(I) - YEAR)**2

22 CONTINUE
C
C
C COMPUTE VARIANCE OF Y-VALUES.
C

YVAR = SUMS2 / (FLOAT(NVALS) - 1)

RETURN
END

SUBROUTINE GAMMLN( XX, GAMEXP )
C
C RETURNS THE VALUE LN[GAMMA(XX)] FOR XX > 0.
C FROM NUMERICAL RECIPES IN FORTRAN, 2ND EDITION, 1992, PP. 206-207
C

REAL COF(6)

DATA COF, STP / 76.18009172947146, -86.50532032941677,
+ 24.01409824083091, -1.231739572450155,
+ .1208650973866179E-2, -.5395239384953E-5,
+ 2.5066282746310005 /

X = XX
Y = X
TMP = X + 5.5
TMP = (X + 0.5) * ALOG(TMP)-TMP
SER = 1.000000000190015

DO 20 J = 1, 6

Y = Y + 1.
SER =SER + COF(J) / Y

20 CONTINUE
C

GAMMALN = TMP + ALOG(STP*SER/X)
GAMEXP = EXP(GAMMALN)

RETURN
END




