
NASA Contractor Report 198440

j/l _ 7

(-_ e/

i"

TADS-A CFD-Based Turbomachinery and

Analysis Design System With GUI
Volume I--Method and Results

D.A. Topp, R.A. Myers, and R.A. Delaney

Allison Engine Company

Indianapolis, Indiana

December 1995

(NASA-CR-198440) TADS: A CFD-BASED

TURBOMACHTNERY AND ANALYSTS DESIGN

SYSTEM WITH GUT. VOLUME 1: METHOD

AND RESULTS Final Report (A1|ison

Engine Co.) 121 p

G3107 0099810

Prepared for
Lewis Research Center

Under Contract NAS3-25950

National Aeronautics and

Space Administration

Contents

1

2

3

4

Summary 1

Introduction 3

Analysis Coupling
3.1

3.2

3.3

7

Solution Procedure 7

Programming Philosophy and Standards 10

3.2.1 File Naming Convention 11

3.2.2 Data Standards 11

3.2.3 Coordinate Systems 12

3.2.4 Shared Routines and Data 13

Input Requirements 13

Development of Program Modules
4.1

4.2

4.3

4.4

4.5

4.6

15

INTIGG 15

TIGGC3D 19

ADPAC Input Generation 20

BODYF 22

4.4.1 Airfoil Thickness Determination 22

4.4.2 Mean Stream Surface Determination 23

4.4.3 Carter's Rule 26

4.4.4 Mean Stream Surface from MEANSL 26

ADPA C 27

4.5.1 Body Force Implementation 27

4.5.2 Verification of Blockage Model 30

4.5.3 Verification of Body Force Formulation 30

Streamline Finder and Airfoil Slicer 36

6

7

4.7
4.8
4.9

4.6.1 RADSL 36

4.6.2 SLICER 40

GRAPE 40

RVCQ3D 44

Locating the Mean Stream Surface 44
4.9.1 RESTACK 44

4.9.2 MEANSL 45

Development of GUI 47

5.1 Panel Overview 47

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5.2

Main Panel 47

Remote Host Setup Panel 52

Input Panels 54

Slice-Dependent Panels 57

Action Buttons 60

Programming Philosophy 60

5.2.1 Panels as Objects 62

5.2.2 X-Windows/Motif Widget Implementation 63

5.2.3 Scope of Data 65

Modification of TADS

6.1

6.2

6.3

6.4

6.5

67

Program Module Modifications 67

Adding Program Modules to the GUI 69

6.2.1 Creating an Input Panel 69

6.2.2 Finishing the Installation 73

Component Group Modifications 74

Adding New Host Types for Remote Execution 74
Makernake 75

Verification 77

7.1 NASA Rotor 67 77

List of Figures

3.1

4.9

4.10

4.11

4.12

The coupled throughflow and blade-to-blade analysis is an it-

erative, multi-step process

4.1 The various interpretations of geometric features must be care-

fully accounted for in the program modules 17

4.2 The grid extents and airfoil projection are computed from the

definitional surfaces 18

4.3 The ADPAC boundary conditions are set based on user sup-

plied aerodynamic quantities and geometric considerations... 21

4.4 The airfoil thickness is determined by an interpolation proce-

dure which handles differences in airfoil descriptions 24

4.5 The procedure for determining the airfoil mean camber line

strongly affects the incidence angle 25

4.6 Simple channel flow with linear variation in cross sectional

area results in a linear variation of the blockage term X 31

4.7 Predicted Mach number contours for simple channel flow with

linear area variation using revised ADPACformulation 32

4.8 S-Duct geometry is a partial helix constructed from an annular

sector 33

The axisymmetric solution with body forces and the axisym-

metric average of the full 3-D solution are in good agreement. 34

Axisymmetric Mesh System for NASA Rotor 67 Test Case... 35

Convergence history for ADPAC based throughflow analysis

applied to NASA Rotor 67 37

Predicted axisymmetric total pressure contours for NASA Ro-

tor 67 based on ADPAC axisymmetric analysis with body
forces from different sources 38

°°.

111

4.13 Comparison of airfoil surface point distributions in the GRAPE

code 43

5.1 The Main panel of the GUI controls the complete analysis.

The "Edit/Run" mode is shown here 49

5.2 In the "Edit Programs" mode, the user selects program mod-

ules from a pull-down menu for each component of the analysis. 50

5.3 Input data panels for the program modules can be accessed

from the main panel in Edit/Data mode 51

5.4 In the "Edit Machines" mode, the user selects a host processor

for each program module 53

5.5 Program modules can be run on remote hosts configured using

the Setup Panel 54

5.6 The ADPAC input panel is an example of a simple input panel. 56

5.7 The GRAPE input panel is an example of a slice-dependent

panel 59

5.8 The Slicer panel of the GUI enables the user to control the
location of the meridional streamlines for blade-to-blade anal-

ysis. Radio buttons axe grouped and interconnected to insure

consistent input 64

7.1 The relative Mach number contours show how the throughflow

solution responded to changes in the mean stream surface be-

tween iterations 79

iv

List of Tables

5.1 Action buttons on standardized input panels control file cre-

ation, modification and restoration 61

V

vi

Chapter 1

Summary

The primary objective of this study was the development of a CFD (Compu-

tational Fluid Dynamics) based turbomachinery airfoil analysis and design

system, controlled by a GUI (Graphical User Interface). The computer codes

resulting from this effort are referred to as TADS (Turbomachinery Analysis

and Design System). This document is the Final Report describing the the-

oretical basis and analytical results from the TADS system, developed under

Task 18 of NASA Contract NAS3-25950, ADPAC System Coupling to Blade

Analysis & Design System GUI.

TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-

to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis

capability was developed in ADPAC through the addition of blade force and

blockage terms to the governing equations. A GUI was developed to simplify

user input and automate the many tasks required to perform turbomachinery

analysis and design. The coupling of the various programs was done in such

a way that alternative solvers or grid generators could be easily incorporated

into the TADS framework. Results of aerodynamic calculations using the

TADS system are presented for a highly loaded fan, a compressor stator, a

low speed turbine blade and a transonic turbine vane.

PAGE
J_

2 Summar_

Chapter 2

Introduction

The aerodynamic design of turbomachinery airfoils is one avenue to improved

engine performance, efficiency, and weight. Flow over turbomachinery air-

foils is 3-dimensional (3-D) and viscous, with complicated flow features aris-

ing from shock waves, tip clearances, seal cavities, and cooling passages.

Airfoil design also involves trade-offs between aerodynamic performance and

requirements from stress, heat transfer, and other mechanical considerations.

Traditional airfoil design approximates the 3-D flow by the quasi-3D flow

in two perpendicular surf_es. One surface ($1) is in the blade-to-blade plane,

and models the flow between the airfoils along a streamline in the meridional

plane. The other surface ($2) is in the meridional plane, and models the

radial distribution of flow. This is often called the throughflow analysis. The

shape of the $2 surface is determined from the S1 surface, and the shape of

the S1 surface is determined from the $2 surface. Convergence of the scheme

can be achieved by iteration. Frequently, only one iteration is performed:

the shape of the $2 surface is set from the airfoil shape and deviation and

loss correlations, and the blade-to-blade conditions are determined from the

$2 solution. This approach, introduced by Wu, Ref. [21], forms the basis of

most turbomachinery airfoil design systems in use today.

In the last few years, advances in CFD have enabled the use of 3-D

codes to model the flow in turbomachinery blade rows. While modern CFD

codes are capable of modeling the important features of these complicated

flows, they are relatively slow and use large amounts of computer memory.

Advances in computer technology and in solution algorithms are reducing

the penalties associated with 3-D modeling, but routine design is still not

4 Introduction

practical with these tools.

The advantage of 3-D modeling is obvious: more of the flow features are

calculated, instead of being prescribed by correlations. The advantage of

the traditional approach is that the airfoil can be designed as a stack of 2-D

sections. There is a large experience base in the design of 2-D sections, and

the associated design parameters are well understood. While 3-D analysis

is common, 3-D design is not. Currently, 3-D design is accomplished by

adjusting 2-D parameters in response to 3-D analysis.

Recently, there has been considerable interest in updating the traditional

design methods with modern CFD tools. There is a large gap in capabil-

ity between the traditional design system and full 3-D viscous flow analysis.

Much of this gap can be closed by incorporating the latest CFD techniques

into the the traditional approach. For instance, the deviation angle in the

blade-to-blade solution need not be specified if a Navier-Stokes solver is used

to compute the detailed flow solution for the airfoil section. Similarly, the ef-

fects of upstream total temperature and pressure profiles can be captured by

a CFD based throughflow analysis. The effects of neighboring blade rows can

also be economically modeled by an axisymmetric representation of the flow.

The work of Spurr, Ref. [18], and Jennions and Stow, Ref. [9] in the 1980's

laid the groundwork for a number of recent publications. Yao and Hirsch,

Ref. [23], developed a throughflow analysis based on CFD techniques. Damle,

Dang, and Reddy, Ref. [5], developed a throughflow analysis with capability

for both analysis and design. Sayari and Bolcs, Ref. [15]. investigated the

effects of different averaging procedures and blockage models in the through-

flow analysis.

These papers on throughflow analysis differ in focus, but follow a com-

mon strategy: the presence of the airfoil in the passage is modeled by body

force terms and a blockage term. As the flow proceeds through the bladed

region, the body forces model the change in swirl velocity imparted by the

airfoil. The blockage term models the acceleration and deceleration of the

flow, caused by the thickness of the airfoil in the passage, and by deviation

of the flow from the airfoil surface. A new model for body forces and block-

age was developed in the ADPAC solver for this purpose. ADPAC is a 3-D

Euler/Navier-Stokes analysis which is capable of performing axisymmetric

calculations, Ref. [8].

Quasi 3-D blade-to-blade solvers have special features for solving flow

between airfoils along a meridional streamline. These features include to-

Introduction 5

tational terms, radius terms, and stream tube thickness terms. The radius

and stream tube thickness terms differentiate a 2-D solver from a quasi 3-
D solver. These terms allow the blade-to-blade flow to feel the effects of

the changes in the meridional flow path. The radius terms account for the

change in blade pitch associated with changes in radius, and the stream tube

height terms account for the change in the distance between neighboring

streamlines. RVCQ3D, Ref. [2] and Ref. [3], is a good example of a quasi-3D

analysis.

The objective of the present work is to produce a turbomachinery air-

foil design and analysis package built on the traditional approach, but us-

ing modern analytical techniques. This new Turbomachinery Analysis and

Design System (TADS) is controlled by a Graphical User Interface (GUI),

which simplifies user input and automates the many required tasks. TADS

couples a throughflow solver (ADPA C) with a quasi-3D blade-to-blade solver

(RVCQ3D) in an interactive package. The coupling is done in such a way

that alternative solvers or grid generators can be easily incorporated into the
TADS framework.

6 Introduction

Chapter 3

Analysis Coupling

A coupled throughflow and blade-to-blade analysis requires many steps, re-

peated iteratively. Figure 3.1 shows the work flow of a typical analysis. A

converged analysis is achieved when the meridional streamlines are settled in

the throughflow analysis and when the mean stream surface is settled in the

blade-to-blade analysis. Each analysis provides the solution surface for the

other, and iteration is required to determine the final shapes. In practice,

only one iteration is required to achieve an acceptable solution in many cases.

3.1 Solution Procedure

Since the coupled analysis is an iterative procedure, there is more than one

possible path. There are two possibilities: start with the blade-to-blade

analysis, or start with the throughflow analysis. Which one to choose is

a function of the airfoil shape design program and of user preference. In

either case, there is some critical information which must be fabricated as an

initial guess. The throughflow analysis requires a mean stream surface which

is found from the blade-to-blade solutions, and the blade-to-blade solutions

are performed along streamlines provided by the throughflow calculation.

TADS begins with the throughflow analysis, using the mean camber line

and, optionally, Carter's deviation angle rule to set the mean stream surface.

The first step in the analysis is to acquire a description of the airfoil

and of the flow path. Certain aerodynamic data are also required, such

as the upstream total pressure and temperature, upstream flow angle, and

8 Analysis Coupling

Coupled Throughflow and Blade to Blade Analysis

Blade Design i(Not yet available)

Redefine Blading?
STOP

Yes or No

No

Have

Yes (not converged)

(converged)

I Grid (TIGG)

I I
I 2-D Axlaymmetric Flow ISolution (ADPAC)

Streamlines

Grid (GRAPE)

I Blade to Blade Flow ISolution (RVCQ3D)

Find Mean Streamsudace I

Figure 3.1: The coupled throughflow and blade-to-blade analysis is an iter-

ative, multi-step process.

Analysis Coupling 9

downstream static pressure. Typically, airfoil design programs specify the

aerodynamic inflow and outflow quantities at the leading and trailing edges,

respectively. TADS follows this convention and extrapolates the required

data to the upstream and downstream grid boundaries when required. Ac-

tually, only the throughflow analysis utilizes this aerodynamic data: the

blade-to-blade analysis takes its aerodynamic input by interpolation from

the throughflow solution.

The second step is to generate a grid for the throughflow calculation. This

requires the flow path and the meridional projection of the airfoil leading and

trailing edges. The axisymmetric grid generator used in TADS is TIGGC3D,

which is related to TIGGERC, Ref. [12]. The output is a planar axisymmetric

grid with grid lines coinciding with the leading and trailing edges.

The third step is to run the throughflow analysis, ADPAC. ADPAC re-

quires as input the grid, an input file containing controlling parameters, a

boundary condition file, and a body force file. The grid must be modified to

show the shape of the mean stream surface in the bladed region. ADPAC

forces the flow to be tangent to the grid in the bladed region, and computes

the body forces required for flow tangency. A separate program is used to

apply the mean stream surface shape to the grid from TIGGC3D. Another

program is used to generate the boundary condition file, and the input file is

constructed from the GUI. The user sees only the input panel on the GUI;

the rest is transparent to the user. After the analysis is run, some checking

is appropriate for convergence and for solution quality.

The fourth step is to find the meridional streamlines from the throughflow

solution. Only the number and distribution of the streamlines are required

as input. The streamlines are found by accumulating flow from hub to tip

along radial grid lines. The flows are then normalized, and contours are

traced from inlet to exit at values of constant mass flow.

The fifth step is to slice the airfoil along the meridional streamlines. This

step requires no new input. The output of this step are the airfoil sections

along the meridional streamlines which are to be used in the blade-to-blade

analysis.

The sixth step is to generate blade-to-blade grids for each airfoil section.

The input is controlled by the GUI, and includes parameters for the grid size,

upstream and downstream extents, number of blades, etc.

The seventh step is to run the blade-to-blade solver for each airfoil section.

This step is typically the most time consuming part of the analysis. The

10 Analysis Coupling

input is controlled by the GUI, and includes parameters for the number

of iterations, the size of time step, turbulence model choices, etc. These

solutions should also be checked for convergence and quality. One good check

is to sum the mass flows from the blade-to-blade solutions, and compare with

the output of the throughflow analysis.

The eighth and final step is to compute the mean streamline between the

airfoils for each airfoil section. This involves stacking the quasi 3-D solutions

into an equivalent 3-D file, finding streamlines on the blade-to-blade surfaces,

and interpolating the shape onto the throughflow grid. This step can be

omitted if no iteration is to be performed.

These eight steps can be repeated, iteratively, until the mean stream

surface used in the throughflow analysis and the radial streamlines used in

the blade-to-blade analysis are settled.

3.2 Programming Philosophy and Standards

The TADS system is an amalgamation of many different programs under a

single GUI. One of the objectives in the development of TADS was to enable

new modules to be added to perform any of the tasks without major coding

effort. That is, additional choices for grid generators or flow solvers could be

added in a modular fashion. The biggest obstacle to modularity is that each

program has its own set of standards. Each has its own input and output

format, its own coordinate system, its own non-dimensionalization, etc.

One approach is to make each program a subroutine called by the GUI.

This way, all data could be passed internally and the system would be tightly

coupled. There are many disadvantages to this approach, however. First,

each code would require significant modification to be integrated into the

GUI. These modifications would need to be remade each time a new release

of the code was received. Second, if each code is a subroutine of the GUI,

it is difficult to send calculations to a remote machine to take advantage of

faster platforms. Finally, each code would no longer work as a stand-alone

product. The user would be forced to use the GUI to be able to access the

code. Many of these codes can be used for purposes outside of TADS, and it

is advantageous to retain access to these unused features.

A second approach is to leave each code as a stand-alone module, and

either modify the I/O of the code to conform to some standard, or write

Analysis Coupling 11

conversion modules into the input generators and post-processors for each

code. Since the grid and solution files are the only link between one program

and another, it is simpler to modify the I/O than to write special conver-

sion routines. TADS follows this approach. The disadvantage to the TADS

approach is that there are many files created during an analysis, and the

directory can become cluttered. Although the clutter is unfortunate, these

files provide a built-in restart capability for the analysis.

3.2.1 File Naming Convention

The files created or used by TADS use the casename.extension file name

convention adopted from ADPAC. The user specifies a case name for the

problem, and each file needed by TADS assigns a unique extension to it.

This way, multiple airfoils could be run in the same directory. There is also

much less confusion about which files were created by TADS. Some pro-

grams, notably the grid generators and quasi 3-D solvers expect files with

specific names for input and output. These files do not follow the convention

adopted for TADS. This is not a serious problem unless multiple runs of the

same program must be made in the same directory. Multiple runs would

require multiple files with the same name, resulting in overwritten data or

confusion about the contents of files. While it would be possible to write

scripts to rename or symbolically link files to the expected names, it is clearer

and simpler to create subdirectories to contain these files. TADS creates a

subdirectory for each blade-to-blade section to be analyzed. Within the sub-

directory, some files do not conform to the naming convention, but confusion

is avoided because the subdirectories themselves are named descriptively.

3.2.2 Data Standards

All files used by TADS are either ASCII text, or binary files written with

the SDB library. SDB is a library of I/O routines which create platform

independent binary data. On each platform, an SDB library is available to

perform the necessary conversions. Using SDB, any platform can read bi-

nary data created by any other platform. Supported platforms include Cray,

Silicon Graphics, IBM RS/6000, Sun, etc. The binary data structure of SDB

is equivalent to reading and writing binary data in C on a Silicon Graphics

workstation. SDB is documented in Ref.[20]. All TADSfiles are platform in-

12 Analysis Coupling

dependent, so any program task can be performed on any supported machine

without loss of generality.

Most of the binary files used by TADS are geometry or flow data files.

All geometry or flow data files are written in PLOT3D format using SDB.

Specifically, all files are 3-D, whole, multiple grid files, in accordance with

the definitions in Ref. [19], pp 162-165.

3.2.3 Coordinate Systems

While PLOT3D files are Cartesian, many of the modules within TADS use

cylindrical polar coordinates. Most TADS modules read the Cartesian coor-

dinates and convert immediately to cylindrical polar for the internal calcu-

lations. All output files are converted back to Cartesian for output.

In the conversion between cylindrical polar and Cartesian coordinates,

there are two common orientations: place 0=0 along the Y axis, or place

0=0 along the Z axis. The standard orientation in TADS places the R axis

in cylindrical coordinates along the Z axis in Cartesian coordinates when

0=0. This is, in effect, a right handed system in which (X,0,R) corresponds to

(X,Y,Z). Some TADSmodules, notably TIGGC3Dand ADPAC, operate with

a left handed coordinate system. Since only two dimensions are used, it is

relatively unimportant except that the Cartesian orientation of a TIGGC3D

grid is in violation of the TADS standard. The TIGGC3D mesh is modified

by the body force calculator, which then sets the 0 distribution according to

the TADS standard.

The standard coordinate system and orientation make it simple to graph-

ically compare the input and output of the various codes. For example, the

user can examine the difference between the axisymmetric average stream

surface computed from the blade-to-blade solver and the distribution set ac-

cording to the mean camber line. It is also possible to verify that the mean

camber line lies properly in the original airfoil description. Most of the mod-

ules would perform equally well with input files in another orientation, but

verification would be more difficult. The coordinate system standard was

adopted so that the geometric information used in each step of the analysis

could be compared graphically without a coordinate transformation.

Analysis Coupling 13

3.2.4 Shared Routines and Data

There are many routines which are shared between TADS modules. There

are also many modules which need the same data structures (common blocks,

etc) as other TADS modules. These routines and include files are saved in

a separate subdirectory which is accessible by all TADS modules. This was

done to eliminate duplicate (and possibly conflicting) copies of subroutines

and include files. The common routines are bound into a library which is

linked into each of the TADSmodules. The include files are made available to

the TADS modules through symbolic links. Each module has a makefile, to

build the executable from the source code. Each makefile has a dependencies

section which causes routines to be recompiled if an include file has been

updated. The dependencies section insures that all object code will be up

to date before an executable is made. These practices dramatically reduce

the possibility of data errors in the codes. Each module uses the same data

structures, and only one copy of each routine or include file exists.

3.3 Input Requirements

The TADS system requires four things as input: a case name, a Cartesian

description of the airfoil, a description of the meridional flow path, and aero-

dynamic data. The airfoil is input as a 3-D surface in two parameters. One

parameter wraps clockwise around the airfoil to form a closed surface, and

the other runs with the span of the airfoil. The meridional flow path is de-

fined by two lines in the (X, R) plane. The aerodynamic data contains tables

of information at the leading and trailing edges. These tables consist of radial

profiles of total temperature and pressure, static pressure, and Mach number

components. This file also contains the ratio of specific heats, the number of

blades, and the tangency points of the airfoil. The tangency points are those

points in the airfoil description which denote where the leading and trailing

edges join the pressure and suction surfaces. The User's Manual provides

details on the contents and organization of the input files. All other infor-

mation needed by TADS has either a default value which can be reset in an

input panel, or is generated by another part of the analysis.

14 Analysis Coupling

Chapter 4

Development of Program
Modules

The TADS system is comprised of many independent modules which are

linked together by the GUI. This chapter details the development of each

module, in the order they are normally encountered in an airfoil analysis.

Many of these modules were developed specifically for the TADS system,

while others were provided. The user is referred to existing documentation

for the provided programs for additional details.

4.1 INTIGG

INTIGG is an input generator for TIGGC3D. INTIGG takes its input from

the casename.tdsaxi file and from the airfoil description and flow path files.

The casename.tdsaxi file is created by the GUI, and contains the user choices

entered in the TIGGC3D input panel. Included in this information are the

grid size, indices of the leading and trailing edge, grid extents as a fraction

of the axial chord, and whether or not to apply Carter's deviation angle

rule. The Carter's rule trigger is ignored by INTIGG but is used by another

program module.

INTIGG requires an axisymmetric representation of the airfoil, which

consists of the shape of the leading and trailing edges in the meridional

plane. The meridional projection of the leading and trailing edges is com-

puted simply by locating the minimum and maximum axial extents of the

15

*,i_ _! ., 'q. -; _. _,.
L

16 Module Development

airfoil description on each defining slice. If the machine is a centrifugal or

radial device, then the appropriate radius is found instead.

It should be noted that this procedure may not yield the same result as

taking the minimum and maximum values from a grid generated on the same

surface, Figure 4.1. The true extrema could be yet a third set of values. There

is no requirement that the airfoil definition explicitly define the minimum or

maximum axial extent of the airfoil, so small errors are introduced by using

the the largest and smallest values to represent the meridional projection of

the leading and trailing edges.

From the standpoint of the throughflow analysis, the error introduced is

probably inconsequential. However, from a numerical standpoint, a number

of potential problems arise. In the TADS system, there are many representa-

tions of the airfoil: the definition, the airfoil slices on the meridional stream-

lines, the blade-to-blade grids, the meridional projection in the throughflow

grid, etc. Data is often transferred between the various representations by

interpolation. Because the endpoints of the domain are different in each

representation, interpolation errors are possible at the endpoints. This is

of some consequence, since the largest flow gradients are frequently at the

leading edge. TADS modules minimize the error introduced by interpolating

along grid lines where possible, and by using a normalized airfoil chord when

necessary. This essentially says that the leading edge in one representation is

equal to the leading edge in another representation, regardless of variations

in the (X, Y, Z) data which describes it.

INTIGG also requires the intersection points between the leading edge

and the flow path, and the trailing edge and the flow path. Again, the airfoil

description does not necessarily conform to the flow path; the description

may not even span the entire flow path. Consequently, INTIGG finds the

intersection points between the airfoil and the flow path by locating the

intersection of splines through the given data, Figure 4.2. The upstream and

downstream boundary locations of the grid are then computed using the hub

axial chord, and the user specified fractional extent.

TIGGC3D treats the throughflow grid as three blocks: upstream of the

airfoil, within the airfoil row, and downstream of the airfoil. INTIGGdefaults

to equal axial spacing within each of the three blocks. The spanwise spacing

is determined by a user defined trigger which indicates whether a viscous or

inviscid throughflow analysis is to be performed. The default is an inviscid

analysis, and INTIGG prescribes uniform spacing in the spanwise direction.

Module Development 17

Representation of Geometric Features on an Airfoil

Minimum X from Grid

Minimum X from Definition

Leading edge

• Minimum X values from airfoil definition and grid are different

• Actual leading edge location may not exist in either description

Figure 4.1: The various interpretations of geometric features must be care-

fully accounted for in the program modules.

18 Module Development

Meridional Representation of Airfoil in Throughflow Grid

Leading

Upstream grid-_ _ I Downstream grid-_

°°un°arY_ _ _ ._. /l b°undllrY _

Fiowpoth from detini7. - /-Trailing edge IX/Detail of intersection oiected from definition

X

Intersection point found from intersection of splines

Figure 4.2: The grid extents and airfoil projection are computed from the
definitional surfaces.

Module Development 19

TIGGC3D writes out the final grid as a single block.

4.2 TIGGC3D

TIGGC3D is a 2-D/3-D grid generator for turbomachinery applications. It is

a multiple block H-type grid generator with algebraic and some elliptic capa-

bilities. TIGGC3D was originally designed to model multi-row core/bypass

flows, and the input structure reflects this heritage. The TADS system uses

TIGGC3D, version 5.2, as an 2-D axisymmetric grid generator for a single

block algebraic grid. This capability is found in a related code TIGGERC,

and is documented in Ref. [12]. TIGGERC was merged with TIGGC3D by

NASA to reduce the code maintenance burden and to provide more capabil-

ity in a single code. TIGGC3D is the only module aside from the GUI itself

which uses graphics in the TADS system. TIGGC3D is also the only graphi-

cal module in TADS which does not use the Motif library under X-Windows.

The graphics in TIGGC3Duse the Forms Library, Ref. [14] which, in turn,

is programmed in Silicon Graphics GL. There also is an X-Windows version

of the Forms library called XForms, or the Forms Library for X Ref. [22]. A

TIGGC3D executable can be made with either Forms or XForms, but only
the Forms executable has the intended look and feel.

Unfortunately, some of the drawing routines are programmed directly in

GL. This is a limitation to porting TIGGC3D to other platforms which do

not support the SGI GL graphics library. IBM offers a GL graphics board on

its RS6000 systems, but the IBM implementation is not fully compatible with

the SGI implementation. While the TIGGC3D executable can be made on

an IBM workstation with a GL board, the graphics do not perform properly

on the IBM.

TIGGC3D has a batch mode option, which does not call the graphics

routines. This option is particularly useful on IBM RS/6000 systems where

an executable can be made, but the graphics are not functional.

Other than the graphics related issues discussed above, the TIGGC3D
code is used as received from NASA Lewis. Other versions of the code can

be substituted, if necessary, without modification.

2O Module Development

4.3 ADPAC Input Generation

The ADPA Cthroughflow analysis requires four files as input: a grid, a bound-

ary condition file, a body force file, and an input file.

The input file is created by the GUI based on user choices in an input

panel, or default values. The input file consists of execution control param-

eters and reference conditions. All ADPAC input parameters are described

in Ref. [7]. Using the default parameters normally results in a successful

throughflow analysis. However, the CFL number, number of time steps, and

body force under-relaxation parameters are particularly useful for difficult

Ca_es.

The grid file is created by TIGGC3D, and must conform to the ADPAC

naming convention, casename.mesh. If the batch version of TIGGC3D is

used, the casename is set by default, but in the interactive mode, the user

must type in the proper name when prompted.

The program ADPACBC prepares the boundary condition file for AD-

PAC. A DPA CBC uses the axisymmetric grid, the user-supplied aerodynamic

data, and the flow path description as input. ADPAC requires reference

quantities which are used for non-dimensionalization. These are prescribed

as the hub values of total pressure, total temperature and Mach number

specified in the aerodynamic data file. For a throughflow calculation of a

single airfoil, the ADPAC boundary conditions are depicted in Figure 4.3.

The implementation of the 1-D boundary condition extrapolation re-

quired careful attention to geometric issues. For example, the user specifies

radial profiles of total pressure, total temperature and Mach number compo-

nents at the leading edge. These profiles are accompanied by the appropriate

radii. ADPA CBC extrapolates the data from the leading edge (as defined by

the aerodynamic data) to the upstream boundary of the grid. It is not cor-

rect to ratio the areas from the grid and the aerodynamic data file to enforce

the conservation of mass. Because there is no requirement for the user data

to span the flow path at the leading and trailing edges, the resulting areas

may not be correct. This problem was solved by computing the normalized

distribution of the points on the radial profile based on areas. This normal-

ized distribution is then applied to the leading edge and the inlet boundary

as defined by the grid. The ratio of areas is performed using only areas based

on the grid, ensuring self-consistency. The exit static pressure is computed

using similar techniques.

Module Development 21

Specification of ADPAC Boundary Conditions

Inlet Exit

Boundary Solid Surface (Inviacid or Viscous)

Leading Trailing
Edge Edge

Solid Surface (Inviscid or Viscous)

• User specifies aerodynamic data at the leading and trailing edges
as radial profiles

• ADPACBC extrapolates the data to the inlet and exit boundaries

• Extrapolation is according to 1-D gas dynamics, conservation

of mass and angular momentum

Figure 4.3: The ADPACboundary conditions are set based on user supplied

aerodynamic quantities and geometric considerations.

22 Module Development

4.4 B OD YF

BODYF creates the body force file for ADPACand applies the mean stream

surface shape to the axisymmetric grid. The input files for BODYF are

the axisymmetric grid, the aerodynamic data file, the airfoil definition, and

the mean stream surface file from MEANSL if available. BODYF is unique

among the TADS program modules in that it expects to both read and write

the axisymmetric grid file. There are no other program modules which modify

a file read as input.

BODYF has two possible modes of operation: one is to create a mean

stream surface from the mean camber line and possibly Carter's deviation

angle rule, and the other is to interpolate a mean stream surface determined

by MEANSL onto the axisymmetric grid. In either case, the blockage is

computed and written to the body force file.

The blockage is defined at each grid cell center as the fraction of the total

pitch open to flow. Except in the bladed region, the blockage is 1.0. In the

blade region, the blockage is computed from the 0 values on the pressure

and suction surface at a given X and R. The difference between 0 values

is subtracted from the pitch, and normalized by the pitch to arrive at the

blockage value.

4.4.1 Airfoil Thickness Determination

The airfoil description and the axisymmetric grid may have slightly different

locations for the leading and trailing edges. To avoid interpolation difficulties

between the different airfoil representations, a new procedure was developed.

Figure 4.4 shows an axisymmetric grid and the blade geometry description

projected on the axisymmetric plane. Both grids are defined in two pa-

rameters, where the indices i and j run in the axial and radial directions

respectively. To determine the blade thickness values for the axisymmetric

grid it necessary to interpolate the circumferential coordinate, 0, from blade

geometry description.

The first step is to define a reference line whic_ joins the_.. _._

trailing edge points on the j=constant curves in th ._mm_id. Next, "_-,.__
the radial differences between the reference line and _nstant curve at I "

each i station are computed. This radial difference is then splined versus the

fractional distance from the leading edge (distance=0.0 at the leading edge

Module Development 23

point and 1.0 at the trailing edge point) using a cubic spline. The next step is

to define the j=constant curves in the axisymmetric grid on the projection of

the blade geometry in the axisymmetric plane. Again, radial differences are

computed from the same reference line used in the axisymmetric grid. This

time though, they are calculated along i=constant curves at each j station.

At each station, the fractional distance from the leading edge point is used to

lookup the radial difference from the spline formulated for the axisymmetric

grid. A difference of the radial differences is then calculated. A parameter is

formulated along the i=constant curves which is the linear distance between

ordered points. The blade coordinates (X and 0) are splined versus this

length parameter and the length parameter is splined versus the difference of

the radial differences. Where the difference of the radial differences is zero,

the j=constant curves in axisymmetric grid intersect the blade geometry.

Using this fact, the length parameter is easily determined from the spline

of the differences versus the length parameter. The corresponding blade

coordinates are looked up from their respective splines versus the length

parameter. The final step is to formulate a spline of 0 versus the fractional

distance from the leading edge. This spline is then used to interpolate 0 onto

the axisymmetric grid. For generality, the procedure has also been coded to

handle radial turbomachinery using a similar technique.

4.4.2 Mean Stream Surface Determination

The mean stream surface between airfoils is approximated by the mean cam-

ber line, in the absence of a computed stream surface from MEANSL. Origi-

nally, the mean camber line was approximated by the average of the 0 values

on the airfoil surface used for determining blade thickness. An improved

procedure was later incorporated which computed the mean camber line as

the locus of the centers of circles which are tangent to both the pressure

and suction surface. The difference between these descriptions can be signifi-

cant, especially near the leading and trailing edges, Figure 4.5. Of particular

importance is the fact that the mean camber lined defined by a circumfer-

ential average passes through the minimum X point, and not through the

true leading edge. The result is that the leading edge metal angle is dis-

torted, especially at high setting angles, leading to incidence problems in the

throughflow analysis.

The new procedure finds circles which are tangent to both surfaces at a

24
Module Development

(_) compute Arl vs. x for stream line

Arl

v

l xcalculate Ar2 along s
and look up &rl&

//11
//11

//11

I
<_ stream line intersects blade

where Ar2-&rl=0.0

At2- Arl

"=00

® repeat for each radial

group of points

S

_) interpolate blade
(x,r,O)

: Si

vS

Figure 4.4: The airfoil thickness is determined by an interpolation procedure
which handles differences in airfoil descriptions.

Module Development 25

NASA Rotor 67 Hub Section

Mean Camber Line Representations

11 s

is11.s LLll

-- Meanline defined by ..-.""

rcumferential average .-'"

_e defined by centers of circles tangent to both

pressure and suction surfaces

Figure 4.5: The procedure for determining the airfoil mean camber line

strongly affects the incidence angle.

26 Module Development

number of axial locations. The airfoil is considered to be made of three parts:

the body, and the leading and trailing edges. The beginning and end of the

body of the airfoil is determined from the tangency points. Only the body

of the airfoil is used to determine the mean camber line. The leading and

trailing edge angles are extrapolated from the spline of the mean camber line

through the body of the airfoil. Using this procedure, a good representation

of the mean camber line can be found, even for airfoils with non-circular

leading and trailing edges.

4.4.3 Carter's Rule

Carter's deviation angle rule is often used in the design of compressor blades

to account for the deviation of the mean stream surface from the mean cam-

ber line. Accounting for deviation with Carter's rule leads to more realistic

throughflow solutions.

Carter's deviation-angle rule is a correlation which relates the deviation

angle to the airfoil camber, solidity, the blade-chord angle (the angle between

the blade chord line and the axial direction), and an experimentally derived

factor. The details of Carter's rule are presented in Ref. [10].

Carter's rule specifies the deviation at the trailing edge, but does not

specify the growth of the deviation along the airfoil chord. In the current

work, the distribution is patterned after the method used in other design

systems. Namely, the growth of deviation is specified as a parabola start-

ing value at the trailing edge. This distribution is smooth and grows most

strongly at the trailing edge, as is observed in experimental airfoil data.

4.4.4 Mean Stream Surface from MEANSL

The mean stream surface description found by MEANSL is defined only along

the meridional streamlines from the blade-to-blade ana/yses. This description

must be interpolated onto the full axisymmetric grid, which normally has

more points in the radial direction. The interpolation is one-dimensional

because the points in the MEANSL description of the mean stream surface are

aligned with the radial grid lines in the axisymmetric grid. The interpolation

assumes that the hub and shroud adhere to the same flow path. A linear

interpolation is performed along the radial grid lines, using radius as the

common parameter between the two representations.

Module Development 27

4.5 ADPAC

ADPAC is a general multi-block 3-D Euler/Navier-Stokes solver capable of

operating in either Cartesian or cylindrical-polar coordinates, Ref. [8]. AD-

PAC employs an explicit four stage Runge-Kutta algorithm to solve the fi-

nite volume representation of the governing equations, and uses a variety

of convergence acceleration techniques, such as multigrid and implicit resid-

ual smoothing. While the existing ADPAC code could solve axisymmetric

problems, it did not incorporate the blockage or body forces required for a

throughflow analysis.

4.5.1 Body Force Implementation

At this point, some explanation of the various approaches to body forces is in

order. The idea of using body force terms to simulate the presence of bodies

in a flowfield is not new, nor is it unique to TADS. Recently, two main types

of body force models have been employed in CFD codes.

A review of the literature shows that most previous authors add a force

term to each momentum equation to account for the force exerted by the

airfoil on the fluid. Frequently, these force terms are computed as pressure

differences between the pressure and suction sides of an airfoil projected onto

an element of area in each coordinate direction. Additionally, a blockage term

is computed based on geometric quantities and is applied to the continuity

equation. Any physical force could be modeled by these body force terms,

simply by computing the magnitude and direction of the force.

In 1985, J. Adamczyk of NASA Lewis proposed a method of modeling

the presence of neighboring blade rows in turbomachinery calculations with

what he termed an "average-passage" representation, Ref [1]. In the Adam-

czyk scheme, the body force terms have a less physical interpretation. They

are computed as the difference between an axisymmetric solution, and the

axisymmetric average of a 3-D solution. A source term is computed for each

conserved quantity and for pressure. A blockage term is also computed to

account for the presence of the body in the flow. The source terms are not

computed as forces acting on the faces of the control volume, but are accu-

mulated as flux differences at each grid cell. In this procedure, the source

terms automatically account for deviation and other phenomena which are

not direct results of the pressure difference across the airfoil. However, this

28 Module Development

procedure requires a full 3-D solution to compute the body force terms.

The present work follows a similar project in which researchers at NASA

Lewis employed VIADACas a throughflow solver, Ref. [11]. VIADAC and

VSTAGE are two codes which use the Adarnczyk body force approach. In

VIADAC, the body forces are computed from stacked blade-to-blade solu-

tions by the accumulation procedure outlined above. The original intent

was to employ Adamczyk style body forces in an ADPAC-based throughflow

analysis. While ADPAC does not have the full average passage algorithm,

the coding already existed to create and use Adamczyk-style body force files.

It was hoped that simply verifying the existing code would provide a suitable

throughflow analysis. After further study, it was concluded that the original

blockage/body force term implementation in the A DPAC code required some

reformulation in order to be consistent with the design system strategy.

The original blockage/body force implementation in the ADPAC code

was based on the scheme developed for the VSTAGE and VIADAC codes.

This approach results in a coupled blockage/body force representation which

did not permit accurate solutions for cases involving blockage alone without a

priori knowledge of the flowfield. Consequently, it was not possible to impose

a geometric blockage (such as the global effects on channel flow due to an

internal strut) in the axisymmetric flow unless the resulting axisymmetric

flow is already known. This is contrary to the design system philosophy, and

resulted in the reformulation of the blockage representation.

A simple 2-D derivation of the revised ADPAC blockage term implemen-

tation is given below. Starting with the continuity equation in Cartesian

coordinates modified for blockage represented by the term)_:

OpA cOpuA OpvA

(9--_ + 0---'_ + (gy-0 (4.1)

Next, taking the x momentum equation in nonconservation form we have:

Ou Ou cgp Ou

P-_ + PU-_x + _xx + pV_yy = 0 (4.2)

If we multiply the continuity equation by u, and add to A times the z mo-

mentum equation, collect terms, and recast in conservation form, the result is

Module Development 29

(9pu)_ (9(pu 2 q- p)_ (9puv_ t9/_

On-t -+ Oz + Oy - P Oz

Similarly, the y momentum equation becomes

(4.3)

apvA apuv,_ a(pv 2 + p)A aA
o---7-+ 0--7-+ ay

Finally, the energy equation is

(4.4)

a.(pe + p)_ av(pe + p)_
Ope._.___A+ + in 0 (4.5)

cgt c3z Oy

It is clear that the addition of the blockage term results in a source term

which must be added to the solution scheme in order to properly account for

the effects of geometric blockage.

The reformulated analysis utilizes a three-dimensional blade definition in

the form of a mean camber surface (which must be accurately represented in

the two-dimensional mesh) and a specified blockage (thickness) distribution

over the bladed region. The body force utilized in the circumferential mo-

mentum equation is updated iteratively during the ADPAC time marching

solution using a simple under relaxation procedure such that, at convergence,

the resulting predicted relative flow stream surface is tangent to the local

blade camber surface over the entire blade. The corresponding axial and ra-

dial momentum equation body force terms and energy equation source term

are also updated consistently based on the components of the local blade

surface unit normal vector. This implies that the body forces thus represent

the idealized pressure forces imparted by the airfoil on the mean flow. The

overall procedure is based on the analytical technique described by Damle,

Dang, and Reddy [5]. It is relatively easy to upgrade the analysis to include

more sophisticated body force models including the effects of local loss [5].

The ADPAC multigrid and grid sequencing capabilities were modified

to incorporate the new throughflow analysis technique, providing a nearly

threefold improvement in the convergence rate.

The final ADPAC code retains the Adamczyk capability, but also offers

the reformulated approach. Both approaches use the same body force file

format, but different meaning is attached to the variables. In addition to the

source terms associated with the momentum and energy terms, there is also a

30 Module Development

pressure "body force" term in the Adamczyk approach which is unnecessary

in the reformulated approach. The ADPA C User's Manual, Ref. [7], explains

the operation of these features.

4.5.2 Verification of Blockage Model

A sample application representing 2-D inviscid planar flow in a channel is

presented in Figure 4.6. The channel has a linear variation in cross sectional

area due to converging sidewalls. It follows that the blockage term A should

also have a linear variation from inlet to exit in the duct. In this example,
was set to 1.0 at the duct inlet and 0.7 at the duct exit. Since the flow

is inviscid and 2-D, the solution is essentially 1-D and can be determined

based on area change and inlet Mach number alone. Due to the coupling of

blockage and body forces in the VSTAGE and VIADAC codes, this type of

flow cannot be accurately represented by specifying the geometric blockage

alone. However, the predicted Mach number contours presented in Figure 4.7

based on the revised ADPAC formulation accurately reproduce the effects of

the linear area variation with blockage specification only.

4.5.3 Verification of Body Force Formulation

Two test cases have been run to verify the body force terms: an annular

twisting channel (S-duct) and NASA Rotor 67.

The S-duct, Figure 4.8, was chosen for its simplicity. It is an annular

sector which has been twisted into a partial helix. A 49x9x9 grid was gener-
ated for an Euler calculation. The

is encountered. The solution was

and the pressure body force term

body forces were computed using a

(Average Passage) code, and used

duct has constant width, so no blockage

run as a static geometry (no rotation),
was omitted from the calculation. The

full 3-D solution from the ADPAC-APES

in an axisymmetric run of ADPAC. The

ADPAC solution converged easily. Figure 4.9 shows a comparison of the re-

sulting ADPAC solution and the axisymmetric average of the 3-D solution.

Clearly, the body force terms are working as hoped.

NASA Rotor 67 provides a much more meaningful and difficult test of

the body force formulation. An existing three-dimensional mesh was selected

and altered to describe the airfoil in the mean stream surface/blockage for-

mat defined above. Computational results were collected from a 3-D solution

Module Development 31

2-D Converging Channel

Inlet Blockage
Factor = 1.0

Exit Blockage
Factor [] 0.7

FLOW

2-D Solution Plane

FLOW

P

I I II I IIII lllr Ill Ill IIIII IIII III IIi ii iii iiiiii
[I III IIII llll III I II III IIIIII III II I I [iii ii r i
I IIIIIIIII I II I II I II I II IIIIII iii ii i i i iii iii i
I I IIIIIIIIIII II I I II III 11 iiii iii ii i ii iii iiii ii
I llllllllllllrll+ll ill iiiiiiiiiii111 iiiiiiiiii

'"""""'""+"+'"'"'"""'"llliillilfillllJllfillilfllillllllllfl111il]ll
IIIl[lllllll[lllllllll[lllllllllllllllllllll[I
I [III llll If Ill III Ill I 111 IIIII III I III II III II I II
II IIIIIIIIII IIII[IIIIIIIIII II11111111111[IIII
II IIIIIIIIIIII ll[llllllllllll lllllilllllI[llll
II IIIIIIIII llllll IIIIIIIIIIII III lllllllllllll
II III IIIIII III III IIIIII IIIIII III I I II II II
11
I I II I IIII II II I II I I111 III II II I II I Ill I II Itl I I II I
IIIIIIIIIIIllllllllllllllllllllllllllltlllllll

Figure 4.6: Simple channel flow with linear variation in cross sectional area

results in a linear variation of the blockage term A.

32 Module Development

CONTOUR LEVELS
0.26000
0.26500
0.27000
0.27500
0.28000
(} 285(_)
(1 2;)0(_:"

o. 30t_
0.,, _500
0.31000
o.31500
o.320_;

,%3 %;_'.'b"

0.35_3
o.35500
0.3__00
0.36500
0.37000
0.37500
0.380(X)
0.38500
O.39OO0

• i

i !
i i

: i i

i i

i
•

! { ! i

i i i _

i i

Figure 4.7: Predicted Mach number contours for simple channel flow with

linear area variation using revised ADPAC formulation.

t

1
I
I

!
i
i

! ,

based on the original (3-D) mesh, an axisymmetric solution based on the ap-

parent body forces computed from the 3-D solution, and the new throughflow

analysis based on the mean camber surface mesh. It should be noted that

the 3-D solution and the axisymmetric analysis with body forces computed

from the 3-D solution result in, by default, identical axisymmetric flowfield

representations, Therefore, only the axisymmetric solution is presented.

The axisymmetric representation of the mesh used for this comparison

is given in Figure 4.10. For the axisymmetric solution utilizing body forces

derived from the 3-D solution, the mesh can have any variation in the circum-

ferential direction as only the meridional portion of the grid is used during

the numerical solution. However, for the new throughflow analysis capabil-

ity, the mesh must conform to the mean blade surface in the vicinity of the

embedded blade row. The mesh surface is used to approximate the mean

blade surface to properly update the body forces for the momentum and

energy equations. In this initial set of calculations, the body forces for the

new throughflow analysis were updated using an ad hoc under relaxation

procedure defined by:

Module Development 33

S-Duct Geometry

S-Duct is an annular channel with twisting. The Inlet and exit are
parallel to the machine axis so no body forces are present near the
boundaries. The width is constant, so there is no blockage.

Figure 4.8: S-Duct geometry is a partial helix constructed from an annular
sector.

34 Module Development

Body Force Implementation in ADPAC, S-Duct

i I i i

VALUES

1- 0.30C

2- 0.31C

3- 0.32C

4- 0.3_C

5- 0.34(:

1 5- 0.3SC
0.000 10.0 20.0 30.0 40.0

Absolute Mach Number

ADPAC _isymm_ri¢ Solution wRh Body Forces

50.0 7- 0.36(:

8,, 0.37(:

9- 0.38C

10,, 0.3g

11- 0.4(:

20.0

10.o

0.000| I I I I I

VALUES

1,0.30C

2,, 0.31C

3- 0.32C

4,, 0.33(:

5- 0.34(:

6- 0.35(:

7,, 0.36C

5- 0.37C

9,0.38(:

10- 0.3G

11- 0.4C

0.000 10.0 20.0 30.0 40.0 50.0

AhAnh th_ Msmh NI irnkmr

ADPAC-APES Axisymmetric Average of 3--D Solution

Figure 4.9: The axisymmetric solution with body forces and the axisymmet-

ric average of the full 3-D solution are in good agreement.

Figure 4.10: Axisymmetric MeshSystemfor NASA Rotor 67 Test Case.

B_ '+1 = B_' + a(Ve bt_d_ - Ve_ct'at) (4.6)

where B_ and B_ +1 represent the previous and updated circumferential mo-

mentum body forces, respectively, Veb_d_ is the apparent circumferential ve-

locity required for flow tangency at the mean blade surface, V0_ct_ is the

actual circumferential velocity from the flow solution, and a is the under

relaxation coefficient (0.5, in this case) used to update the body force. The

body forces were updated at every iteration of the time marching solution.

The convergence history for the new throughflow analysis is given in Fig-

ure 4.11. Solution convergence was naturally slowed by the constant manip-

ulation of the body force terms, but convergence is ultimately achieved after

36 Module Development

approximately 400 iterations.

Figure 4.12 shows the predicted absolute total pressure contours using

body forces from three different sources. The top plot shows the contours

with body forces derived from the 3-D solution imposed on the axisymmetric

solution. The middle plot shows the corresponding contours from the new

throughflow analysis using the iterative body force calculation. The mean

stream surface to which the flow was forced to be tangent was derived from

the 3-D solution. Finally, the bottom plot shows the total pressure contours

from the new throughflow analysis with the mean stream surface derived

from the mean camber line of the airfoil and Carter's deviation angle rule.

In general, the predictions compare well qualitatively, but show some discrep-

ancy quantitatively. The top plot shows a smeared shock near the trailing

edge because this solution is equivalent to an axisymmetric average of a 3-D

solution. Since the shock is not aligned with the circumferential direction,

the average tends to diffuse the shock. The center and bottom plots show a

sharp shock at the trailing edge because the shock is axisymmetric, a con-

sequence of the axisymmetric analysis. The bottom plot also shows a total

pressure gradient at the leading edge. This indicates that the mean camber

line is not actually the mean stream surface. Between the various solutions,

the mass flow agrees within 2% of the axisymmetric average from the 3-D

solution.

4.6 Streamline Finder and Airfoil Slicer

The blade-to-blade analysis is performed along streamlines in the meridional

plane as found by the throughflow analysis. This requires that the meridional

streamlines be located in the throughflow solution, and that the airfoil be

sliced along these streamlines. TADS uses two separate programs to accom-

plish this purpose: RADSL and SLICER.

4.6.1 RADSL

RADSL locates the streamlines in the throughflow solution according to a

distribution specified by the user in a GUI input panel. The user specified

distribution is a normalized distribution which is applied at either the leading

or trailing edge. The user selects whether the distribution is applied based

Module Development 37

0.0
Convergence History

I 1 I I 100.0

Mass Flow Rate

I I I I

-2.0

-4.0

-6.0

-8.0 '
0.0

I i I , I , I i

100.0 200.0 300.0 400.0 500.0

Iteration Number

80.0

V
60.0

0.0
I J I , I , I ,

100.0 200.0 300.0 400.0 500.(

Iteration Number

1.8

1.6

t--
..r
3-

1.4
X
JJ

3-
1.2

1.0
0.0

Pressure Ratio

I I f

I , I _ I , I ,

100.0 200.0 300.0 400.0 500.0

Iteration Number

0.98

0.94

0.90

0.86

0.82

0.78

0.74

0.7O '
0.0

Efficiency

I I I I

I , I , I _ I ,

100.0 200.0 300.0 400.0 500.(

Iteration Number

Figure 4.11: Convergence history for ADPAC based throughflow analysis

applied to NASA Rotor 67.

38 Module Development

NASA Rotor 67 Axlsymmetrlc Throughflow Analysis
Absolute Total Pressure

Figure 4.12: Predicted axisymmetric total pressure contours for NASA Rotor

67 based on ADPAC axisymmetric analysis with body forces from different

sources.

Module Development 39

on percent mass, percent span or percent area. The user selects the number

of streamlines and the percentages where streamlines will be located.

For example, if five equally spaced streamlines are to be placed at the

leading edge on a percent area basis, the procedure is as follows. The nor-

malized mass flow is computed from hub to shroud at each axial grid station

in the throughflow solution. At the leading edge, the values of mass flow are

found, corresponding to the five locations: 0%, 25%, 50%, 75%, and 100%

area. These streamlines are then traced through the entire domain. It should

be noted that the chosen area distribution is applied only at the leading edge:

elsewhere in the flowfield, the streamlines may not correspond to that par-

ticular area distribution. The percent span option functions similarly. If the

percent mass option is chosen, then the the distribution is held throughout
the flowfield.

There is one additional option: the user can find slices based purely on

geometry, ignoring the flow solution. This option is triggered by selecting

"Everywhere" as the location at which to hold the specified distribution. In

this release, the only available distribution function is percent area. This

option is useful in cases where the throughflow solution is suspect, or where

there is some reason to want the blade-to-blade solutions along a constant

area slice instead of along a streamline. The GUI input panel defaults to five

equal slices at constant percent mass, with the streamlines anchored at the

leading edge.

In all cases, the first and last streamlines are assigned to the hub and

shroud as defined in the throughflow grid. User input which conficts with

this standard is ignored by RADSL

Finally, RADSL interpolates the throughflow solution onto the stream-

lines. The output file is a PLOT3D flow file whose dimensions are the number

of axial points in the throughflow grid, and the number of streamlines. This

information may be used by the blade-to-blade analysis to set boundary

conditions. Because the blade-to-blade analysis acquires its boundary condi-

tions directly from the throughflow solution, the throughflow calculation is

normally run in Euler mode. It is not clear how to set the total pressure, tem-

perature and flow angle on the hub and shroud, when the velocities are zero

on viscous surfaces. The current version of TADS expects the throughflow

analysis to be run as an Euler calculation.

40 Module Development

4.6.2 SLICER

SLICER uses the original airfoil description and the streamlines found by
RADSL to find the airfoil cross-sections to be used in the blade-to-blade

analysis. SLICER also reads in the aerodynamic information file and inter-

polates flow conditions from the radial profiles onto the streamlines at the

leading and trailing edges. This information may be used instead of the

PLOT3D file interpolated from the throughflow calculation to set boundary

conditions in the blade-to-blade analysis.

The process of slicing the airfoil along the streamlines involves repeatedly

finding the intersection of two splines. Along each spanwise line in the airfoil

definition, the intersection with each streamline is computed. The resulting

airfoil description has the same number of points around the airfoil as the

original definition. This airfoil description is used as the airfoil definition

by the blade-to-blade grid generator. One limitation on the TADS system

is imposed here: the spline along the span of the airfoil uses the radius as

parameter. This means that centrifugal and radial devices cannot be handled

by SLICER.

4.7 GRAPE

The blade-to-blade analysis uses the GRAPE code to generate a grid con-

forming to each axisymmetric surface defined by the meridional streamlines.

GRAPE was originally written by Reese Sorenson at the NASA Ames Re-

search Center a.s a 2-D Cartesian grid generator, Ref. [16] and Ref. [17]. The

code was subsequently modified for cascades of airfoils by R. Chima of NASA

Lewis Research Center, Ref [4]. TADS uses GRAPEto generate C-type grids

which are later used by RVCQ3D. A GUI input panel provides choices and

defaults for the important input parameters. The user selects the grid size

and adjusts various parameters to improve grid quality.

GRAPE remains a 2-D Cartesian grid generator. However, a cylinder

can be mapped directly into a plane by "unrolling." This is equivalent to

using the quantity Rcyl • 0 in place of Y. where Rcyl is the radius of the

cylinder. GRAPE can also be used for arbitrary surfaces of revolution by

projecting the arbitrary surface onto a cylinder. The radius of the cylinder is
set to the mean radius of the streamline. Further, the meridional distance is

Module Development 41

substituted for the X value in the grid so that the grid is along the streamline.

RVCQ3D expects the grid in this format, and remaps it to the proper radius

internally.

A number of modifications were made to GRAPE for use in TADS. The

output routine was rewritten to produce platform independent binary files by

incorporating the SDB library. Also, user experience led to changes in some

of the GRAPE input parameters. These changes make it easier to specify a

set of defaults which yield acceptable grids over a wide range of shapes.

In the original code, some of the input parameters were inter-related. This

was a source of user confusion, and proper handling of inter-related variables

would require dynamic linkages between fields in the GUI. This capability is

not available in the current release of TADS. In most cases, new parameters

were introduced in the input routine, replacing similar parameters in the

original code. The original parameters are then computed from the new

parameters, leaving the internal workings of GRAPE basically unchanged.

For example, GRAPE originally had parameters for the number of points

around the leading edge and the spacing between grid points around the

leading edge. To increase the point density around the leading edge, the

user needed to decrease the spacing parameter, and also increase the number

of points around the leading edge. To create suitable grids from default

parameters, the revised code expects the user to specify the leading edge arc

length and the number of points around the leading edge. The arc length of

the leading edge region is computed internally by the GUI from the airfoil

tangency points, which are specified in the casename.tdsaro file. The user

specifies the number of points around the leading edge, and the spacing is

computed by GRAPE. This change removes the inter-dependence between

variables, and simplifies user input by computing a reasonable default value

for the leading edge arc length. A similar approach was taken with the

trailing edge parameters.

The GRAPE code also requires the user to specify the grid index of

the trailing edge. In a C-grid, there are two grid points which define this

point, one on the lower surface and one on the upper surface of the airfoil.

Originally, GRAPE required the user to specify both. Since the upper surface

trailing edge index can be computed from the grid size and the lower surface

trailing edge index, the upper surface parameter was eliminated from the

input. The input routine computes the upper surface trailing edge index,

and passes the value to the rest of the GRAPE code.

42 Module Development

In the GRAPE code, the leading edge point distribution is set by clus-

tering points around a certain point on the airfoil surface. This point is

specified as a fraction of the arc length around the airfoil, starting from the

trailing edge. This parameter is named dsra, and has a default value of 0.5.

The default value clearly inadequate for sharp airfoils with camber, because

the cluster point will be located on the suction surface, rather than on the

leading edge. However, it is difficult for the user to choose the proper value

for dsra. The GRAPE input generation subroutine computes an appropriate

value for this parameter from the airfoil geometry and the airfoil tangency

points. The leading edge is taken to be at half the arc length between the

leading edge tangency points. Figure 4.13 shows a comparison between grids

generated using the the default value of dsra and the value computed by the
GUI for the hub section of NASA Rotor 67.

Finally, the original GRAPE code expected to receive the location of

the upstream and downstream grid boundaries, specified in inches. These

quantities are difficult for the user to specify, and different values should

be specified for each meridional streamline to achieve suitable grid quality.

Some other blade-to-blade grid generators locate the boundaries as a fraction

of the airfoil axial chord or the pitch between airfoils. These parameters are

an improvement, but user intervention is still required. For a compressor fan,

for example, specifying the boundaries as a constant fraction of axial chord

results in grids with too much space upstream of the leading edge at the

hub, and too little space upstream of the leading edge at the tip. Conversely,

specifying the boundaries as a fraction of the airfoil pitch results in grids

with too little space at the hub, and too much space at the tip.

For the purposes of TADS, the boundaries are specified as a fraction of

a distance. This distance is defined as the average of the axial chord and

the airfoil pitch at each meridional streamline. In the cases tested, this has

produced acceptable grids with minimal user effort. Two new parameters

were introduced to GRAPE: zupfrc is the fractional distance of the upstream

boundary, and xdnfrc is the fractional distance of the downstream boundary.

Default values have been set for these parameters, but these may need to be

adjusted depending on the shape of the airfoil (e.g. compressor blades nor-

mally require a smaller upstream fraction than turbine vanes). In GRAPE,

the original parameters zleft and zright are computed from the new parame-

ters and passed to the rest of the code.

Module Development 43

GRAPE Grids for NASA Rotor 67 Hub Section

Default Surface Point Distribution

Improved Surface Point Distribution

Figure 4.13: Comparison of airfoil surface point distributions in the GRAPE
code.

44 Module Development

4.8 RVCQ3D

RVCQ3D is an Euler/Navier-Stokes analysis capable of analyzing the quasi

3-D blade-to-blade flow in turbomachines, Ref. [2], and Ref. [3]. The input to

RVCQ3D is specified in a GUI panel. RVCQ3D uses C-type grids generated

by the GRAPE code. The input grid is not along the streamline, but is

along a cylinder with radius corresponding to the mean streamline radius as

described above. RVCQ3D also reads a table of values describing the radius

and stream tube height distribution along the streamline.

The I/O routines in RVCQ3D were modified to utilize the SDB library in

conformance with the TADS standard. Also, a change was made in the way

that RVCQ3D sets boundary conditions at the upstream boundary. RVCQ3D

expects to receive aerodynamic information at the leading edge and it ex-

trapolates to the upstream grid boundary. The procedure is similar to the

way that ADPACBC extrapolates data for the throughflow analysis. Since

the blade-to-blade flow conditions are interpolated directly from the through-

flow calculation, there is no need for RVCQ3D to perform an extrapolation.

These modifications are limited and could be easily made to future releases

of RVCQ3D.

4.9 Locating the Mean Stream Surface

Once the blade-to-blade analysis is completed, the last task is to determine

the mean hub-to-tip stream surface between the airfoils. This task has two

components: first the individual blade-to-blade solutions must be restacked

into a 3-D representation, then the axisymmetric average of the solution must

be computed, and the mean stream surface integrated from the averaged

velocities.

4.9.1 RESTA CK

RESTACK assembles the various blade-to-blade grids and solutions into

PLOT3D X and Q files. This is a rather simple program: the only com-

plication is in the conversion of data from the blade-to-blade representation

to a true 3-D representation.

Module Development 45

The blade-to-blade solutions are not computed on a true (X, Y, Z) rep-

resentation of the data: the two dimensions are (M, R × 0). These coordi-

nates reflect what the flow actually "sees" along a streamline. Additionally,

the velocities output by the throughflow analysis are (V,,, V0) The merid-

ional coordinates and velocities must be converted to their 3-D cylindrical

polar equivalents, and then converted to Cartesian coordinates for output.

The streamline file written by RADSL provides the data needed to trans-

form meridional coordinates back to 3-D cylindrical polar coordinates. The

meridional velocity is converted to V_ and V_ by multiplying the meridional

velocity by the unit vector tangent to the streamline. RESTA CK is subject

to alteration if other blade-to-blade analyses are incorporated into TADS.

RESTACKis programmed to expect data in the form written by RVCQ3D.

In particular, RVCQ3D normalizes the aerodynamic quantities using a ref-

erence total temperature and pressure. For uniform upstream conditions,

these reference quantities are normally set to 1.0, but radial profiles can be

accounted for by setting different references on each streamline. TADS takes

advantage of this capability. The hub streamline references are set to 1.0,

and the other streamlines are set proportional to it according to the up-

stream profiles. No additional work is required to renormalize the flow on

each slice to a consistent reference quantity when creating a 3-D file. The

3-D files created from RVCQ3D solutions are naturally self-consistent. Some

other blade-to-blade solvers normalize the flow by setting the upstream total

pressure and temperature to 1.0 internally. These solutions would have to

be renormalized to a consistent reference before restacking.

4.9.2 MEANSL

MEANSL finds the shape of the mean hub-to-tip stream surface between

adjacent airfoils starting with PLOT3D X and Q files. To perform this cal-

culation, the grid and flow data are converted to cylindrical polar coordinates.

The averaging is performed in the 0 direction at axial locations chosen from

the throughflow grid. The result is an axisymmetric averaged flow solution

on a 2-D grid: one dimension is the number of points in the axial direction,
the other dimension is the number of meridional streamlines.

The averaging procedure minimizes the dependency on the type or quality

of the grid. MEANSL does the averaging as an accumulation of flow along

a line, and not as an accumulation through 2-D faces. By formulating the

46 Module Development

average along a line, the dependence upon neighboring slices is removed.

For each desired axial location along a streamline, two sweeps of the

grid are performed: the first finds all of the intersections with the grid lines

which wrap around the airfoil (contours), and the the second finds all of

the intersections with the lines emanating from the airfoil (normals). The

intersections are then sorted by 0, in the passage between adjacent airfoils.

The axisymmetric averages are then computed by accumulating the fluxes

along the sorted line.

This averaging procedure has a number of advantages. The procedure

does not expect any particular grid topology, simplifying the job of adding

different blade-to-blade analyses. The accumulated fluxes are comprised of

as much data as possible because every intersection between the grid and

the line of interest is used. Therefore, boundary layers or other flow features

are resolved as well in the accumulation of fluxes as they are in the solution.

This would be of particular benefit for blade-to-blade analyses with adaptive

gridding.

The axisymmetric average data is used to determine the shape of the

mean stream surface between the airfoils. The averaged velocities are, by

definition, tangent to the mean stream surface. An integration is performed

along each meridional streamline to find the shape of the mean blade-to-blade

stream surface from the averaged velocities. The tangent to the mean stream

surface is formed as the angle between the circumferential velocity and the

meridional velocity. By integrating the angle with respect to the meridional

distance along the streamline, a mean stream surface is determined. The

output of MEANSL is a PLOT3D X file containing an axisymmetric grid,

warped into the shape of the mean stream surface. This shape would be

interpolated onto the full throughflow grid by BODYF to apply this stream

surface shape in the throughflow analysis.

Chapter 5

Development of GUI

The Graphical User Interface (GUI) for the TADS system controls the oper-

ation of the program modules. It organizes the work flow into logical pieces,

and provides a simple way to select or modify program input parameters.

5.1 Panel Overview

The GUI consists of a number of interactive panels with push buttons, pull-

down menus, text fields, etc. These panels allow the user to select which

programs to execute, create input sets for the chosen modules, and config-

ure remote hosts on which modules can be executed. The GUI is written

using the Motif widget library under X-Windows. Motif and X-windows axe

highly portable, having become a de-facto standard among workstation and

supercomputer vendors.

5.1.1 Main Panel

A main panel controls the operation of all other panels within the GUI and

all program module execution, Figure 5.1. There are three groups of buttons

on the main panel: the group on the left is the "program mode selector", the

buttons on the right axe the "component group controls", and the buttons on

the bottom are the "action buttons." The program mode selector determines

the appearance of the main panel, and the behavior of the component group

controls. The component group controls allow the user to make choices

47

48 GUI Development

regarding each functional task in the analysis. The action buttons allow

the user to define remote hosts, open a UNIX shell, or exit the GUI.

There are five modes of operation available in the program mode selec-

tor. The selected mode determines how the GUI will respond when program

modules are selected. The first mode, labeled "Edit Programs," causes the

component modules to change appearance from push buttons to pull-down

menus, Figure 5.2. The pull-down menus allow the user to select a pro-

gram module to perform each task (e.g. TIGGERCor Batch TIGGERCcan

be chosen for the axisymmetric grid generator). At present, most compo-

nent modules have only one working choice, but the capability was added

so that users could easily incorporate their favorite grid generators and flow

solvers into the TADS system. The program modes labeled "Edit Data,"

"Edit/Run," and "Run" cause the component modules to appear as either

push buttons or toggle buttons. These modes control input creation and pro-

gram execution of the component modules. In the "Edit/Run" and "Run"

modes, a small green button labeled "Run" is enabled at the bottom of the

component group controls as seen in Figure 5.1. The user selects which mod-

ules are to be run using toggle buttons to the right of each component. When

all of the desired modules have been selected, the user selects the "Run" but-

ton to start the execution process. In the "Edit/Run" mode, the input panel

for each selected module is brought up starting at the top of the component

groups and working down. After the user finishes with the input panel, the

program module is run. The program modules are run sequentially until all

selected modules have been completed. In the "Run" mode, no input panels

are brought up, the selected modules are simply run starting at the top and

continuing down the component group.

In the "Edit Data" mode, the user selects push buttons which bring up

the appropriate input panels, Figure 5.3. The input data is created and saved

for that module only, and no execution is performed. The user may select

these panels in any order. One strategy for running the GUI is to use the

"Edit" mode to define all of the input parameters needed for each program

module, and then the "Run" mode is used to execute the entire analysis.

This keeps the user from having to wait for programs to finish before setting

up the next program module.

Another strategy is to use the "Edit/Run" mode to perform the analysis

piecemeal. It is frequently convenient to select only the modules associated

with the throughflow analysis to be sure that an acceptable solution has

GUI Development 49

Figure 5.1: The Main panel of the GUI controls the complete analysis. The
"Edit/Run" mode is shown here.

5O GUI Development

Figure 5.2: In the "Edit Programs" mode, the user selects program modules

from a pull-down menu for each component of the analysis.

GUI Development 51

Figure 5.3: Input data panels for the program modules can be accessed from

the main panel in Edit/Data mode.

52 GUI Development

been obtained before attempting to run the airfoil slicer and blade-to-blade

modules. The remaining modules can be executed as a second step. The

advantage of this strategy is that later modules will not have to be rerun be-

cause of errors in an early module. Because of its flexibility, the "Edit/Run"

mode is the most common approach to controlling an analysis.

The final mode of operation in the main panel is labeled "Edit Machines."

This panel is shown in Figure 5.4. This mode allows the user to select which

host is to perform the calculations for each program module. It is often

advantageous to run the longer running portions of the analysis (e.g. the

throughflow and blade-to-blade flow solvers) on a remote machine to take

advantage of faster processors. This option is only functional if hosts other

than the local machine have been configured in the remote host setup panel.

At present, all slices in the blade-to-blade analysis must be run on the same
host.

In addition to the main panel, a status panel is created whenever the

GUI is executed. This panel gives information about the function of certain

buttons, and indicates when a program module is being executed. It displays

the name of the module, the host on which it is being run, and the pathname

to the current working directory. This panel is for display only, and no user

input is accepted in this panel.

5.1.2 Remote Host Setup Panel

The action button labeled "Setup" opens a display panel for defining remote

hosts, Figure 5.5. All modules within the GUI can be executed either on the

local host or on a remote host. The remote hosts must be configured so that

the GUI can call the appropriate executables in the appropriate directories.

The text block labeled "Hosts" lists the available hosts for execution. Only

hosts on this list can be accessed for remote execution. The radio button

group labeled "Type" specifies the vendor and machine type for each host.

At present, the panel has choices for Silicon Graphics and IBM RS/6000

workstations. There are two possible SGI choices to differentiate between

the SGI R4000 chip and the R8000 chip. The SGI Power Challenge selection

uses executables which have been optimized to run on the RS000 chip. The

text boxes at the bottom right of the panel specify the paths to the executa-

bles and to the working directory for the highlighted host. Each host can

have different paths for both executables and working directories. This was

GUI Development 53

Figure 5.4: In the "Edit Machines" mode, the user selects a host processor

for each program module.

54 GUI Development

Figure 5.5: Program modules can be run on remote hosts configured using

the Setup Panel.

designed to work with NFS mounted file systems which may have different

pathnames to the same directories on different machines. The buttons at the

bottom of the screen are action buttons which handle the saving and restor-

ing of data, and allow the user to return to the main panel. A similar set of

buttons exists in all input panels. The specific function of these buttons is

discussed in Section

5.1.3 Input Panels

Most of the panels in the GUI are for creating input files for program mod-

ules. These input panels are similar in form and function, but some control

multiple executions of the same program. Specifically, the panels associated

with the blade-to-blade analysis have additional features to deal with the

fact that the program modules they control must be run once per stream-

line. These panels, called "slice-dependent" panels, are discussed in the next

section. Examples of simple input panels are the TIGGC3D input panel and

GUI Development 55

the ADPAC input panel, shown in Figure 5.6. The GRAPE and RVCQ3D

input panels are slice-dependent panels.

An input panel is essentially a container widget which holds other widgets

corresponding to input variables in the program modules. Action buttons at

the bottom of the panel control the saving of data and closing the panel. The

control widgets are most often editable text fields, but can also be pull-down

menus or toggle buttons. The control widgets are laid out in a row-column

matrix with labels indicating their significance.

Each input parameter has a separate controlling widget and label. Pro-

vision has been made to include a brief description of the highlighted input

parameter on the screen as a reminder of its function. This reminder appears

at the top of the screen, adjacent to the casename, and it changes with the

input focus. This provision has not been fully implemented, but it is avail-

able in all input panels. All that is required is to add a text string for each

variable in the GUI panel code.

In the case of text fields, provision has also been made for input data

checking for valid types and ranges. For example, an integer field will not

accept fractional entries or character data. Also, the entered value must lie

within an acceptable range, or the entry is not accepted. An error dialog

widget indicates the proper data range. In the input panel source code, a

range of acceptable data is not required, and defaults to all inputs. The

values typed into a text field are checked and accepted whenever the input

focus changes.

Focus changes when the enter key, tab key or mouse input is received

by the GUI. This does not mean that the data has been saved permanently,

or that it will be written to an input file, but merely that it is part of

the current data set. Data saving and input file creation are accomplished

through the action buttons. The point here is that the user can create and

view a complete input set before committing to the changes. Provision is

made to abandon all changes made since the last save through the action
buttons.

For variables with few options, pull-down menus and toggle buttons are

employed. Toggle buttons are used in cases where the variable is either "yes"

or "no," "true" or "false." Examples of this are triggers to generate a restart

file, run viscous or inviscid, etc. The actual input variable may be an integer,

but in each case, the input parameter controls an either/or choice.

Variables with limited options are well suited to the pull-down menu.

56 G UI Development

Figure 5.6: The ADPAC input panel is an example of a simple input panel.

GUI Development 57

Pull down menus display the values of the available choices, and a brief

description of each choice. For example, the RVCQ3D input panel uses a

pull-down menu to select the type of upstream boundary condition to be

employed: subsonic flow holding inlet flow angle, supersonic flow, or subsonic

flow holding circumferential velocity component. The description fields are

especially helpful for variables which are rarely changed.

Each input panel has a default dataset which is part of the initialization

code. This default data is the most basic default: other defaults are used

when available. Some of the input panels have database files associated with

them which keep track of previous user choices for a particular case. Other

input panels use the input files created in previous runs of the same case.

When available, data from these files are loaded into the input panel and

form the initial data set. The idea is to minimize user input requirements by

using the results of a previous run as the initial data set for the current run.

Some input variables in one program must be consistent with input to

other programs. For example, the grid size for the blade-to-blade solver is

set when generating the blade-to-blade grid. Therefore, the user is prevented

from changing the grid size in the blade-to-blade solver input panel: the value

input to the grid generator panel is displayed, but can't be edited. When a

text box can be edited, the background of the box is white. When a text

box is for display only, the background is the same as the background color

of the container widget.

Where possible, the input parameters are grouped as they appear in the

program module documentation, or in sample batch input files. This may be

a drawback for inexperienced users, especially in cases where the organization

of the input files is poorly conceived. For the user who is used to running the

programs outside the GUI, it is beneficial to group them in the customary
order.

5.1.4 Slice-Dependent Panels

There are a number of additional features and complications associated with

slice-dependent panels. Figure 5.7 is an example of a slice-dependent panel.

The most important aspect of slice-dependent panels is understanding how

data is used and saved between slices. In simple input panels, there is no

ambiguity; values are set and used in the normal manner. However, in dealing
with slice-dependent panels, there are some variables which are the same for

58 GUI Development

all slices, and some which vary from slice to slice. For example, the number

of blades on the wheel is a constant along the span of an airfoil, but the axial

position of the inflow boundary may vary between meridional slices. It is

important to know when a variable is set for all slices, and when it is set for

only the current slice.

In slice-dependent panels, there is an additional widget in the upper right-

hand comer which indicates which slice is being edited. This widget is a

pull-down menu with an entry for each slice plus an entry for "All Slices."

When "All Slices" is selected, the variables which are changed in the panel

are set as constants for all slices. When data is saved, it is saved for all slices,

any individual slice modifications are lost. A warning panel is displayed to

alert the user, and a confirmation is required before data is overstored. In

any event, only editable variables are propagated for all slices; parameters

which are not editable are set internally for each slice.

Variables which are set individually for each slice are not editable in the

"All Slices" view. When an individual slice is selected, only the variables

which can vary among the slices are editable. When data is saved from the

individual slice view, only the data for the current slice is affected. There are

some variables which are frequently constant for all slices, but are sometimes

slice-dependent. There is a provision for treating a single variable as either

constant or variable among the slices, but most of these have been converted

to slice-dependent variables to remove the confusion surrounding their use.

The slice-dependent panels make use of a relational database which is

maintained for each slice dependent panel. The database files are random

access binary files, containing the values of all parameters for all slices. The

database files follow the naming convention casename.program_name.db (e.g.

rotor67.grape.db). When data is saved, it is written to the database file,

and when data is restored, it is re-read from the database file. When a

slice-dependent panel is exited, new input files for the program module are

created for each slice. Simple input panels do not employ a database, but

rather work directly with existing input files, when available.

The recommended procedure for setting data in slice-dependent panels

is to set the values for "All Slices" first. After saving the "All Slices" data,

then select the individual slice panels which require modification. Save each

of these panels and return to the main panel.

As before, not all parameters can be set by the user. Some are computed

from known data (such as the number of blades and the airfoil pitch), and

GUI Development 59

Figure 5.7: The GRAPE input panel is an example of a slice-dependent

panel.

6O GUI Development

some are set in other panels and may not be modified (such as grid sizes,

etc).
Another feature is provided in slice-dependent panels which is not avail-

able on simple panels. When viewing the input panel under the "Edit Data"

mode selected in the main panel, an additional action button is displayed.

This button, labeled "Run," allows the user to execute the program module

for a single slice instead of for all slices. This is particularly useful when the

user is unsure of the parameters chosen for the blade-to-blade grid generator

or flow solver. Instead of waiting for all slices to run before discovering an

input error, the user can execute a single slice and check the results before

executing the other slices. This is also useful, for checking the sensitivity of

an analysis to a particular parameter (such as incidence angle). A single slice

can be run repeatedly without running any other slices. To avoid confusion,

the "Run" button is de-activated when "All Slices" is selected from the pull-

down menu. The button is activated only when the user is viewing the data

for a single slice.

5.1.5 Action Buttons

All of the input panels in TADS have a row of action buttons located across

the bottom of the panel. Generally, these action buttons control file creation

and modification. Some buttons also initiate program execution. Generally,

these buttons behave as described in Table 5.1. The few exceptions are

documented in the User's Manual.

5.2 Programming Philosophy

The programming philosophy used in creating a GUI can make the difference

between an intuitive, easily maintained interface, and a confusing interface

built on tangled code. Recognizing the importance of standardizing the look

and feel, the structure of routines, and the exchange of data between pro-

grams, the TADS system follows an object-oriented approach.

Conceptually, an object oriented approach means that the program mod-

ules are designed around the function they perform instead of the data on

which they operate. Most codes are built around the data. This means that

each routine is specific for the job it performs. In this model, it is often dif-

GUI Development 61

Table 5.1: Action buttons on standardized input panels control file creation,

modification and restoration.

Save Overstore current panel data to a file if changes have been

made. If no changes have been made, then no action is
taken.

Restore Restore current panel data from a file. Any changes not

saved prior to a restore are lost. This action button is

only active if the input file exists (from a previous save).

Default Reset current panel data to default values. These de-

faults are setup specifically for TADS. This means they

are not necessarily the same as the defaults stated in the

formal documentation of the individual component mod-

ules. Any changes not saved prior to a default are lost.

Done Save current data and then exit current panel. In some

instances, this action button will force the execution of

secondary component programs such as preprocessors.

Also, a message will appear in the message panel indi-

cating any programs being executed.

Cancel Exit current panel without saving current changes. If a

save has been done prior to cancel secondary programs

will be executed (if appropriate) as described above for

done If changes have been made to the data without a

save being done, the user will be so informed and given

the option to return to the current panel.

62 GUI Development

ficult to re-use code because the data structure is embedded in the routine.

A slightly different problem requires all new code. Under the object-oriented

approach, the routines are written around the function they perform. Code

re-use is planned from the start. The GUI is programmed in C, which is

not an object-oriented language, but object oriented philosophy was adopted

where possible.

An object oriented approach was used in generating the panels: each

panel can be considered to be an instance of a model. That is, each panel

is patterned after a model with changes only to the data to suit a particular

use. The code interprets the data structure and creates appropriate objects

for each input parameter.

To clarify the idea behind object-oriented programming, consider the fol-

lowing example. Suppose that two input panels are to be created. The first

panel requires a pull-down menu for the first input item, and text fields for

all others. The second panel requires a pull-down menu for the second and

fourth items and text fields for all others. Traditional programming would

write two separate routines to handle these cases. While much of the two

routines would be common to both, custom coding would be used to handle

the special cases. The traditional approach is data-oriented programming:

routines are written specifically for the data that they handle. In the object-

oriented approach, only one routine would be written, capable of handling

each case. Each input item has associated data which indicates the desired

type of widget. The code simply knows that each input item will require an

object on the display panel. The type of object to be used is interpreted for

each parameter. With the object oriented approach, the data structure is

larger, but there is very little redundant code. A further benefit is realized in

the object-oriented approach in that changes to the objects are automatically

effective for all panels, minimizing code maintenance.

5.2.1 Panels as Objects

There are four model panels in TADS: the main panel, input panel, slice-

dependent input panel, and the remote host setup panel. Each model panel

has flexible data structures which are used in each panel of its type. A new

instance of the structure is created for each panel, and the particular data is

loaded into the structures, but the function and nature of each structure is

the same in all panels. The data structures are comprised of many records,

GUI Development 63

one for each input parameter on the display. Included in the data structure

is the parameter name, the value, the valid limits for the values, the type of
widget to be displayed, and some information about initialization.

5.2.2 X-Windows/Motif Widget Implementation

The GUI is programmed with the Motif widget library running under X-

Windows. As is customary with X-Windows/Motif applications, a resource
file controls the colors, fonts, borders, and other aesthetic features of the

individual windows and widgets. One weakness of the X-Windows system is

that there is no standard way to refer to font names, and no guarantee that

the fonts used by an application exist on a particular machine. In particular,

SGI and IBM differ on the proper names for fonts. A separate resource file

is provided for SGI and IBM implementations of the GUI. If other types

of workstations are to be used, there may be some modification required to

achieve a working set of fonts. One point of confusion is when the GUI is

run on a remote machine with the panels displayed on a local machine. In

X-Windows, the fonts are resolved on the local machine. That is, if the user

is sitting at an SGI workstation, the SGI resource file should be used, even

if the GUI is run as a remote process on an IBM workstation.

Most of the objects which appear in the GUI panels are conglomerations

of Motif widgets. There are many instances where widgets were combined

or customized, but the following four examples are most often used. The

ability to enable or prevent editing of a parameter was required to prevent

users from specifying contradictory input. Part of the data structure de-

termines the conditions under which a particular parameter is editable. A

special widget was made which contains both a text entry field and a label.

The ability to group widgets was required in the airfoil slicer input panel,

Figure 5.8. Pulldown menus were customized to cause the background color

to change when the widget is enabled or disabled. In each case, the under-

lying routines for the screen objects are pure Motif widgets. Following the

object oriented philosophy, new objects were created from existing objects
to minimize coding and maximize the clarity of the main routines.

64 GUI Development

Figure 5.8: The Slicer panel of the GUI enables the user to control the

location of the meridional streamlines for blade-to-blade analysis. Radio

buttons are grouped and interconnected to insure consistent input.

GUI Development 65

5.2.3 Scope of Data

A common issue when coupling codes into an integrated system is that of

the scope of data. The basic question is: "If a parameter is changed in

one routine, do all other routines receive the changes?" Most parameters

are strictly local. The advantage of local parameters is that there are no

unintended side-effects. Often, two programs will have a variable of the same

name with different meanings. Local variables keep the modules isolated.

Certain parameters have been identified within the GUI which have global

scope. These parameters are available to all routines within the GUI. Among

them are the number of airfoils, grid sizes, reference total pressure and tem-

perature, and the wheel speed. The global parameters are listed in the routine

globals.c. There are other parameters which are shared between routines, but

are not global in scope. Most data sharing is accomplished through I/O in

shared files. An example of this sharing is the axisymmetric grid. Many

routines read the grid as input, and two routines write out the file. This

type of data sharing is not truly global in that only routines which read the

file receive updates to the data.

This means that it is a simple matter to generate a new panel of a given

type. The changes consist of filling the data structure with the input pa-

rameters for the particular application, and adding a new stanza to some

conditional blocks to show the new choice on parent menus. New stanzas

must be added to the call-back block to show how the application is exe-

cuted, and some parameter statements need to be added to a header file.

Adding a new panel can be accomplished in about two hours if a suitable
model exists.

66 GUI Development

Chapter 6

Modification of TADS

The TADS system is built on program modules with data transfer via files

and flexible data structures. This architecture was adopted to minimize the

effort required to extend or modify the system. The TADS system is divided

into two parts: the GUI and the program modules. The program modules

are loosely coupled to one another through files and are separate executables

from the GUI. The GUI is more tightly coupled with data sharing through C

structures. Object oriented programming concepts were employed to maxi-

mize modularity in the GUI. The program modules written specifically for

the TADS system are modular, but the flow solvers and grid generators are

used as received from the authors. Details about the program modules are

found in the chapter "Analysis Coupling". The GUI calls the program mod-

ules via the C "system" function, which forks a new process as a child of the

GUI process in the UNIX system.

6.1 Program Module Modifications

Program modules can be added to the TADS system, but some modification

to the GUI and the module source code will be required. This section deals

with the modifications required to the program module itself.

The required modifications to program modules are normally straightfor-

ward. The program module should perform I/O to named files following the

casename.extension standard, should read and write mesh and flow data to

PLOT3D style files using the SDB library, and should take all required input

67

ett C., lt PAr. NOT,FIL,I,AEn

68 Modification of TADS

from files, rather than from screen input. All I/O that does not use the SDB

library should be ASCII text.

Of course, there are exceptions to the above rules. The blade-to-blade

analyses are run in subdirectories of the main directory, and the file nam-

ing convention is relaxed in the subdirectories. Also, some programs are

inherently interactive (e.g. TIGGC3D), and naturally require keyboard and

mouse input.

Program modules with their own graphics or graphical interfaces are a

special case. The ideal situation is for graphics in a program module to be

programmed in X-Windows using the Motif widget library. These programs

will be fully portable across all machine types supported by the GUI itself.

Programs using strictly XForms graphics calls are also portable. Program

modules with Silicon Graphics GL or other proprietary graphics library rou-

tines will generally limit the portability of the module. Obviously, portability

is not an issue in homogeneous systems of workstations. Also, GL applica-

tions can be run on remote SGI machines so long as they are displayed on a

local SGI machine.

Currently, there are very few places in the TADS system where the user

can specify contradictory input between program modules. One objective of

any extension of the system should be to prevent contradictions with existing

data or programs. This could easily occur for program modules with their

own graphical interfaces. For example, TIGGC3D has its own interface and

takes most of its input from a file. When TIGGC3D is executed, the user

must specify the name of the input file to load the data, and must also

specify the name of the output grid. These names must be the ones that

other program modules expect in the TADS system, or the other program

modules will not find their input files. For example, the ADPACflow solver

expects the mesh to be in a file called casename.mesh. There is no simple

means to enforce the TADS requirement for file names in TIGGC3D. This is

a fairly minor point, but it illustrates how two uncoupled interfaces can lead

to multiple specifications of the same parameters and contradictions between

modules. If a new program module calls for interactive input of data which is

already known to the GUI, a mechanism needs to be developed for the GUI

to output the required information to a file, and for the program module to

use the contents of that file as the default values in its interface. Otherwise,

the user must be educated about the connections between the new module

and existing modules in TADS.

Modification of TADS 69

6.2 Adding Program Modules to the GUI

A number of modifications need to be made to the GUI to add a program

module. These consist of creating an input panel, adding the program module

to the list in the main panel, creating subroutines to read and write the

program module input files, and updating the global parameters.

6.2.1 Creating an Input Panel

The object oriented philosophy used in the GUI greatly simplifies the task

of generating new a new input panel. The best procedure is to make a copy

of a similar panel and modify it for the new application.

Since the blade-to-blade tasks are the most likely place for new modules

to be added, the RVCQ3D input panel will be used as an example of how

to create a new panel. The RVCQ3D input panel code is called rvcq3dgen.c

in the gui subdirectory of the TADS system. In this file are many variables

which start with the letters "rvc'. A three letter abbreviation of the new

application should be chosen to replace "rvc" in the variable and function

names. This will insure that all new variable and function names are created,

and that there will be no side effects between functions. There are many other

variables in the code, but they are either global already, or are local to the

RVCQ3D input panel code.

Action Buttons

For every panel there is a structure for the action buttons named BTNS.DATA.

There is also a manifest constant (RVC_BTN_CNT in rvcq3dgen.c) which is

defined to be the number of action buttons on the panel (6 for RVCQ3D).

The BTNS_DATA structure defines the widget name and the placement of

each action button. The specific form of this and all other data structures

is found in the guilib subdirectory in a file called ltds.h. The actions of the

buttons are defined in the function "rvc_inp_dec_pbCB". The BTNS_DATA

structure and call back function generally do not require modification, except

for changing the variable names as discussed above.

70 Modification of TADS

Input Panel Data Structures

There are two data structures which need to be tailored to the new module:

GROUP_DATA and GROUP_PNTRS. These structures control the names,

contents and behaviors of the individual parameter widgets on the input

panel. The manifest constant "RVC_CNT" sets the number of input groups

to be displayed on the input panel. The groups are arbitrary divisions of

the input parameters, which are grouped and titled on the input panel. For

RVCQ3D the groups correspond to the members of each input namelist. If

the FORTRAN namelist style input is used in the program module, the input

groups should be defined by the namelist members. Each group can have as

many as 30 parameters associated with it, as defined by the MAX_CELLS
constant in the file ltds.h. The constant "RVC_CNT" is defined in the file

constants.h. A new constant needs to be defined for the new panel in the

form of "RVC_CNT" (use the three letter abbreviation chosen above).

For each input group there are two sets of parameters encased in curly

braces. The first set of parameters describes the characteristics of the group:

the group title, namelist name (if applicable), position, size and margins, the

number of input variables in the group, and the number of columns to be used

by the widgets on the input panel. The second set of parameters is repeated

for each input variable. The first three parameters are the variable name and

two widget id parameters. The widget id parameters are set internally by

the GUI and the user should initialize them to 0. The fourth parameter is a

Boolean variable which determines whether the widget is active (editable) or

not. This parameter may be reset internally, but the specified value is used

initially.

The fifth parameter determines the behavior of the widget for slice-

dependent input panels. A value of 0 means that the widget is active or

inactive regardless of whether the panel is in "All Slices" mode, or is set to a

specific slice. A value of 0 effectively means that the fourth parameter con-

trols the behavior of the widget (used for slice-independent data). A value of

1 means that the widget is active in "All Slices" mode and inactive for any

individual slice. Conversely, a value of 2 means that the widget is inactive in

"All Slices" mode and active for any individual slice.

The sixth, seventh and eighth parameters are values of the input variable.

The sixth parameter is a pointer to the current value of the input variable.

The seventh parameter is the default value of the input variable. The eighth

Modification of TADS 71

parameter is used internally to determine whether or not the value has been

changed on the input panel. This parameter should be initialized to the
default value.

The ninth parameter is the number of decimal places to be displayed in

the input panel. The number of decimal places is also used when generating
the input file for the program module. The tenth and eleventh variables

are pointers to the minimum and maximum acceptable values for the input
parameter.

The twelfth parameter specifies the type of data range checking to be

performed. A value of 0 means no data checking. A value of 1 means check

a range between the minimum and maximum. A value of 2 means the input

value must be greater than or equal to the minimum value. A value of 3

means the input value must be less than or equal to the maximum value.

The thirteenth parameter specifies the type of widget to be displayed on

the input panel. A value of 0 means that a text box will be displayed. A

value of 1 indicates a pulldown menu, and a value of 2 specifies a toggle
button.

The GROUP._PNTRS data structure has a record for each input variable

divided into groups like the GROUP.DATA structure. The parameters in

the GROUP_PNTRS structure are the pointed-to locations of the pointers

in the GROUP_DATA structure. The three parameters are the current value,

minimum and maximum for the input variable. The current value is a place-

holder for a variable which is set internally, and should be initialized to 0.

The minimum and maximum values should be set to the valid limits of the

parameter whenever possible. In the event that the range is unknown, the

values should be set to 0, and the data checking parameter in GROUP_DATA

(twelfth) should be set to 0.

The reason for the GROUP_PNTRS structure is that it provides a conve-

nient mechanism for creating and using the database files associated with the

slice-dependent input panels. The contents of these databases are read and

written directly from the GROUP_PNTRS structure. The whole GROUP__DATA

structure is not part of the database because some parameters, such as the

widget id, have different values for each execution of the TADS system. If

these were part of the database, then the widget id numbers would be cor-

rupted on restart. Other parameters are constant and need not be part of

the written database. The GROUP_PNTRS structure avoids unnecessary

storage and corruption of internally generated values.

72 Modification of TADS

Implementing Callback Functions

Once the new panel has been created, variable names changed, and data

structures specified appropriately, the next step is to add callback functions.

Callback functions are the pieces of code which perform actions in response

to various events. Examples of events are opening the input panel, quitting

the input panel or pressing an action button. Without the callbacks, the

input panel is not connected to the GUI or the program modules.

Most of the changes to the new input panel function code required to im-

plement callbacks are accomplished by the variable name changing described

above. The bulk of the effort is in writing the functions required by the call-

backs. There is a function for reading data from an existing input file and

recomputing special input parameters, and a function for writing new input

files.

The file input function is called when the input panel is opened, and when

the TADS system is initialized. The file input function obviously contains

coding to read an input file for the program module. However, the values

from an existing input file are not appropriate for some input parameters. In

the case of the blade-to-blade flow analysis, the reference conditions, bound-

ary conditions, and geometric information should be computed from values

known in TADS, rather than used directly from an existing input file. Gen-

erally, if an input parameter can be computed, the computed value should be

used rather than the read value. This eliminates the possibility of specifying

conflicting data in the GUI. The computation of input parameters frequently

requires reading other TADS files, and working with globally defined data

(such as a grid size).

Frequently, the file input function is written in FORTRAN, while the

GUI is written in C. C codes can call FORTRAN subroutines provided that

two issues are resolved. First, all elements in FORTRAN argument lists are

passed by reference, and not by value. Therefore, the C code must specify all

arguments as pointers. For simplicity, current functions pass all arguments

as float (real) values. If the actual argument is an integer, temporary vari-

ables are used inside the function, and assignments are made appropriately.

It is not necessary to follow this strategy, but it simplifies the writing of the

C statement to call the FORTRAN subroutine. Second, FORTRAN compil-

ers use different naming conventions for modules, depending on the vendor.

For example, the SGI compiler refers to subroutines by their name in lower

Modification of TADS 73

case post-pended with an underscore. The IBM compiler can be forced to to

the same, with compiler options. Other vendors use different naming conven-

tions, and that affects the way that the C code calls the FORTRAN routines.

Some experimentation may be required before the various modules will link

into an executable.

The file output routine contains coding to write an input file for the

program module. If the program module uses namelist style input, the func-

tion "punch_namelist" can be used, following the model in rvcq3dgen.c. If

not, then custom coding must be written and linked to the GUI. The above

discussion about mixing C and FORTRAN applies here also.

Modifying the Main Panel

Changes must be made to the main panel source code main.c to add the pro-

gram module to the appropriate component group. In the function "init_guiJnput_panels"

is a case block which determines which input panel is initialized for each

component group. The new module should be added here under the ap-

propriate case. Similar changes must be made to a case block in the func-

tion "dec_btnCB" which initializes the program module input data in the

"Edit/Run" and "Run" modes. The function "runCB" contains a case block

which initializes the input data and runs the appropriate program module.

Again, the new module needs to be added, following the example of other

modules. There will be multiple changes to this function because there are

multiple events which cause the execution of a program module. Also, proto-

types of the new functions need to be added to the header section of main.c.

6.2.2 Finishing the Installation

The TADS system must know where the executables can be found for each

supported platform. The source code for the new program module should be

placed in the modules subdirectory with the other modules. Also, symbolic

links to the executables should be placed in the apl subdirectory. At present,

executables are required for SGI R4000 and R8000 workstations, and IBM

RS/6000 workstations.

This completes the addition of a new program module to an existing

component group. Adding a new program module following an existing model

can be accomplished in about a day by an experienced programmer.

74 Modification of TADS

6.3 Component Group Modifications

Adding a component group is a more complicated exercise, and may require

new coding for which no model exists, depending on the function of the com-

ponent. An example of a new component would be a blade shape generation

code for the design system. The majority of the effort will be in modifying

main.c to handle the new capability. If the new task fits in one place sequen-

tially in the work flow, the changes will mostly involve expanding existing

decision blocks. On the other hand, if the new module is callable in many

places during the analysis sequence, then whole new decision structures will

be required.

New interface routines may also be needed between the new component

and existing components of the analysis. These routines should be placed

with the program modules in the modules subdirectory. The common direc-

tory under modules is a valuable source of routines for reading and writing

TADS files, and converting data between various coordinate systems.

6.4 Adding New Host Types for Remote Ex-

ecution

Adding new host types is relatively straightforward. An example of this

would be to add Cray computers to the list of supported execution platforms.

This involves changing the configgen.c source code in the gui subdirectory.

In the function "configuregen" is a case block which identifies the supported

platforms ("Silicon Graphics", "IBM", etc.). The new host type should be

added to this list, and the loop index should be increased to reflect the new

choice. Also, the file config.h has an enumerated type "roach_types" which

needs to be updated following the pattern of the case block modification.

The maximum number of supported platforms is specified by the manifest

constant "MAX_NO_MACHINES" in the file constants.h.

The program modules are executed via "system" function calls from the

GUI. The "system" is used to invoke the UNIX shell script rsh_tds from the

apl subdirectory. The shell script tests to see which machine type is required,

and creates the appropriate execution statement. The test logic must be

updated to show the new machine type. The machine types correspond to

the enumerated type mentioned above. The script interprets the type of

Modification of TADS 75

input and output files required from the number of arguments received by
the shell script. Some modification may be necessary to create the proper

execution statement. The script then executes the statement on the local

machine, or starts a remote shell to run on the specified host.

6.5 Makemake

Makemake is a UNIX shell script to create makefiles for TADS program

modules. It is run in the source directory of a program module and creates
a new makefile named Makefile.new.

Makemake offers many features for managing coupled codes. One diffi-

culty in supporting multiple platforms is keeping the object files segregated

in the source directory. Makemake applies different suffixes to the object files

from each compiler to avoid problems with linking dissimilar objects.

Also, targets are provided in the makefiles for checking source codes into

and out of the Revision Control System. RCS allows the evolution of a code

to be tracked by managing different releases of each source code in a special

subdirectory. Any previous release of a subroutine can be recalled so that

older capabilities are always recoverable. A release numbering scheme enables

incremental improvements to be distinguished from major new releases. All

program modules written for TADS use RCS.

A dependencies section is generated in the makefiles so that if a file is

updated, all objects dependent on that file will automatically be re-compiled

when the next executable is made. Dependencies are identified in either the

C or FORTRAN syntax. A reliable dependencies list greatly reduces the

time (or uncertainty) involved with creating new executables.

The ability to create archive libraries of subroutines is also incorporated

into makefiles created by mnakemake. These libraries are identified with the

associated revision level of the code so that executables can be created easily
for older releases.

Program modules written for the TADSsystem share include files between

modules. In each source directory, a symbolic link is made to the include files

in the common directory. To avoid entering the include files into multiple

RCS directories, the symbolic links should be removed before running Make-

make. A UNIX shell script rmlinks accomplishes this job. Similarly, the

script linkinc restores the links.

76 Modification of TADS

Makemake requires a makefile template. The resulting makefile is effec-

tively an edited version of the template. To create a different style of makefile,

the user simply supplies a suitable template. Makemake and the associated

tools and templates are found in the TOOLS subdirectory.

Chapter 7

Verification

The coupled throughflow and blade-to-blade analyses have been successfully

applied to four cases which will be reviewed here: NASA Rotor 67, the fifth

stator from an 8-stage core compressor (AST), the first rotor from the Purdue

Low Speed Turbine Rig, and the vane from a turbine stage tested in a shock

tunnel (VBI stage). These four cases represent vanes and blades from both

compressors and turbines, and span the spectrum of turbomachinery flow

conditions from incompressible to transonic. The purpose of these studies is

to verify the operation of the TADS system. Euler results from the ADPAC

throughflow solver are compared with the axisymmetric average of a full 3-D

Euler ADPAC solution, demonstrating the performance of the body force

and blockage implementation in the throughflow analysis. Euler solutions of

individual blade-to-blade streamlines are compared with the corresponding

results from the full 3-D Euler analysis, to verify the sharing of boundary

condition information between the throughflow and blade-to-blade analyses.

The sum of the mass flows from the blade-to-blade analyses are compared

with the mass flow from the throughflow calculation and with the full 3-D

calculation to verify the internal consistency of the coupled system.

7.1 NASA Rotor 67

NASA Rotor 67 is a transonic fan which has been studied extensively both ex-

perimentally and analytically. The highly loaded rotor was tested by Pierzga

and Wood at NASA Lewis in 1985, Ref. [13]. Analytical researchers have had

77

78 Verification

difficulty matching the data from the experiments, leading to the conclusion

that the reported "hot shape" of the airfoil was inadequate. Since then, a

new "hot shape" for the rotor was generated from the cold coordinates us-

ing finite element methods at Allison, and subsequent analytical results were

significantly better. This redefined "hot shape" was used in the current work.

Contour plots of absolute total pressure are shown for the throughflow

and 3-D analyses in the section "Verification of Body Force Formulation."

The 3-D and throughflow analyses have been rerun using finer grids, and

those results are presented here.

The analysis was run for three full iterations: that is, the throughflow

analysis and blade-to-blade solvers were run three times each, updating the

meridional and blade-to-blade stream surfaces each iteration. Figure 7.1

shows the relative Mach number contours from the throughflow analysis at

each iteration. As seen, the shock spreads down the span of the airfoil and

a radial gradient forms downstream of the airfoil as iterations progress. The

changes are smaller between the second and third iteration, indicating that

the total system is converging. The large change between the first and second

iteration is largely due to changes in the mean stream surface near the leading

edge. The mass flow varies with iteration, and is closest to the mass flow from
the full 3-D Euler solution after the third iteration. The pressure ratio drops

and the efficiency rises with each iteration. The magnitude of the changes
decreases between iterations.

Figure 7.2 shows the comparison of the relative Mach number contours

between the third iteration through TADS and the axisymmetric average of

the full 3-D Euler solution. The general trends are the same between solu-

tions, but the details are different. The contours upstream and downstream

of the rotor are in good agreement. In the bladed region, the differences are

much larger. To some extent, these differences are expected because of the

different solution procedures used. In the full 3-D solution, there is a shock

structure, but the axisymmetric average de-emphasizes the shocks because

the shocks are not aligned with the circumferential direction. On the other

hand, the throughflow analysis is incapable of producing an oblique shock be-

cause the flow is assumed axisymmetric. This explains why the strong shock

is present in the throughflow solution and not in the axisymmetric average.

The presence of the shock accounts for most of the difference between the
two solutions.

The throughflow solution is used primarily to provide the meridional

Verification 79

NASA Rotor 67 Throughflow Analysis

Relative Mach Number

VALUE. _

1-0.40(

2- 0.50(

3.0J_

4- 0.70(

5, 0.80(

6,, 0.90(

7- 1.00

8- 1.10

9- 1.20

10- 1.3

11- 1.4

12,, 1.5

13,, 1.6

14- 1.7

First Iteration
VALUEE

1- 0.40(

2,1 0.50(

3. O.(NX

4- 0.70(

5- 0.80(

6- 0.90(

7- 1.00

6- 1.10

9- 1.20

19- 1.3

11- 1.4

1L_ 1.5

13- 1.6

14- 1.7

Second Iteration

Third Iteration

Figure 7.1: The relative Mach number contours show how the throughflow

solution responded to changes in the mean stream surface between iterations.

80 Verification

NASA Rotor 67

Relative Mach Number

VALUE. (

1- 0A0(

2- 0.50(

3,, 0.e0(

4- 0.70(

5,, 0J0(

6,, 0.90(

7- 1.00

b 1.10

9,,1.20

10,, 1.3

11- 1A

12- 1.5

13,, 1.6

14,, 1.7

Third Iteration Through Coupled Throughflow and Blade-to-Blade Analyses

Axlaymmetrlc Average of Full 3-D Eular Solution

Figure 7.2: The relative Mach number contours from the third iteration

and the axisymmetric average of the full 3-D solution are in good agree-

ment outside of the bladed region. The presence of the normal shock in the

throughflow analysis accounts for differences in the blade row.

Verification 81

streamline shapes and boundary conditions for the blade-to-blade analysis.

If the upstream and downstream solutions are in good agreement, and the

streamlines from the throughflow solution are close to the streamlines from

the 3-D solution, then the differences between the solutions are not terribly

important to the overall analysis. However, the shape and distribution of

the streamlines have a first order effect on the blade-to-blade solutions. The

rate of change of radius (dr/dz) and the rate of change of stream tube height

(db/dx) appear in the source terms in the quasi-3D analysis. Small irreg-

ularities in the streamline shape or the stream tube height can cause large
differences in the blade-to-blade solutions.

Figure 7.3 shows the meridional streamlines computed three ways: from

the axisymmetric average of the full 3-D Euler analysis, from the third itera-

tion of the coupled throughflow and blade-to-blade system, and from purely

geometric considerations, saying that flow is directly proportional to area.

As seen, the streamlines from the TADS solution have nearly the same shape

as streamlines from the axisymmetric average. The radial locations of the

streamlines are slightly different, indicating that there is more flow near the

tip in the full 3-D Euler solution. This relates to the differences in the shock

structure between the two solutions.

A second flow feature also affects the distribution of the streamlines in

the meridional plane. In the blade-to-blade plane, there is a flow separation

at the hub region of the rotor, Figure 7.4. The extent of the separation is

influenced by two factors. First, the radial distribution of the streamlines sets

the stream tube height in the blade-to-blade flow, which in turn, influences

the diffusion near the trailing edge. Second, all of the results presented in

this report are solutions of the Euler equations. Since the flow is inviscid,

the separation seen in the solutions is largely a function of the artificial

dissipation in the various codes. The artificial dissipation scheme in RVCQ3D

produces more losses than the scheme in ADPAC. It turns out that the

RVCQ3D solution is quite similar to the hub section of a full 3-D Navier-

Stokes solution, because of the artificial dissipation in RVCQ3D. The grids

used in the blade-to-blade analysis are clustered near the airfoil surface, which

exacerbates the problems associated with artificial dissipation in RVCQ3D.

However, less refined meshes resulted in poor solution quality near the airfoil
surface due to lack of resolution.

Figure 7.5 shows the comparison of the midspan sections from the blade-

to-blade analysis and the full 3-D Euler solution. The agreement between

82 Verification

NASA Rotor 67

Meridional Streamlines

Axisymmetric Average of
Full 3-D Euler

Constant Percent Area

Alter 3 Iterations

in TADS

MeridiQnel streamlines am comDuted three ways:

1. Streamlines are assumed to be along lines of constant percent area
2. Streamlines are computed from throughflow solution after three

iterations through coupled throughfiow and blade-to-blade analyses
3. Streamlines are computed from axisymmatric average of a full 3--D

Euler solution

Figure 7.3: The meridional streamlines from TADS differ slightly from the

full 3-D Euler streamlines because of differences in the shock structure be-

tween the two solutions.

Verification 83

NASA Rotor 67

Relative Mach Number

RVCQ3D Blade-to-Blade Euler Solution

Full 3-D Euler ADPAC Solution

Hub Section

VALUES

1= 0.00OE+(

2=-0.100

3= 0_00

4= 0.3OO

3=0.40O

6= 0.500

7= 0.60O

8= 0.70O

9= 0.800

10, 0,g00

11= 1.00

12= 1.10

13= 1.20

14= 1.30

15= 1.40

15= 1.50

17= 1,00

15= 1.70

19= 1,B0

20= 1.g0

_1= _,tYJ

VALUES

1_ 0.000E+(

2-,0.100

3= O.20O

4_ 0.300

5=0.40O

6- 0.500

7_ 0.600

8- 0.700

9- 0.800

10- 0.900

11- 1.00

1_ 1.10

l_b, 1.20

14- 1.30

15,, 1.40

17g 1.80

10- 1.70

19- 1.80

20- 1.110

Figure 7.4: The relative Mach number contours at the hub section are similar,

but significant differences arise because of the separation at the trailing edge

in the RVCQ3D solution.

84 Verification

these solutions is not particularly good, for many of the reasons already

discussed. The shape of the midspan streamline is different between the

throughflow analysis and the full 3-D Euler analysis, Figure 7.3. In transonic

flow, small differences in flow area can have a dramatic effect on the location

and strength of shock waves. In fact, in the first iteration through TADS,

it was necessary to use the streamline definition based purely on geometry

in order to get the blade-to-blade analysis to converge on some streamlines.
The mean blade-to-blade stream surface was based on the mean camber line

and Carter's rule in the first iteration, because no blade-to-blade solution was

available at that point. This stream surface was not correct, and resulted in

inaccurate positions of the meridional streamlines found from the throughflow

solution. The blade-to-blade analysis was not able to find a stable solution

along some of these meridional streamlines.

Figure 7.6 shows the comparison of the tip sections from the blade-to-

blade analysis and the full 3-D Euler solution. These solutions are in rather

good agreement both qualitatively and quantitatively. Again, the larger wake

in the RVCQ3D solution is the result of the higher dissipation near the blade

surface resulting from the damping scheme in RVCQ3D. The tip solutions

are less influenced by the streamline definition from the throughflow analysis

because only the blockage is different between the solutions. The location

of the hub and tip streamlines are fixed to the flow path definition. In light

of this, it is expected that the hub and tip solutions would be in better

agreement with the full 3-D solution than the interior streamlines.

Generally, the TADS solution of NASA Rotor 67 shows that the cou-

pling of the program modules within the TADS system is correct. Boundary

condition information is properly passed between the various codes, and the

conversions between the non-dimensionalization schemes used in the codes

are correct. Table 7.1 shows the comparison between successive iterations

through TADS and the ADPAC3-D Euler solution for Rotor 67. The agree-

ment between the overall performance quantities in TADS and the 3-D Euler

calculation is quite good. This is remarkable in that there are significant

local differences between the various solutions, as discussed above.

Verification 85

NASA Rotor 67

Relative Mach Number

VALUES

1= O.O00E+(

2= 0.100

3= 0.200

4= 0.300

5= 0.400

6=0.500

7= 0.600

8= 0.700

9= 0.800

10= 0.900

11= 1.00

12= 1.10

13= 1.20

14= 1.30

15= 1.40

16= 1.50

17= 1.60

18= 1.70

19=- 1.80

20= 1.90

21= 2.00

Full 3-D Euler
ADPAC Solution

RVCQ3D Blade-to-Blade
Euler Solution

Midspan Section

Figure 7.5: The relative Mach number contours at the midspan section are
different because of differences in the meridional streamlines and stream tube

heights between the solutions.

86 Verification

NASA Rotor 67

Relative Mach Number

Full 3-D Euler ADPAC Solution

VALUES

1= 0.000E+(

2= 0.100

3= 0.200

4= 0.300

5= 0.400

6= 0.500

7= 0.600

8= 0.700

9=- 0.800

10=- 0.900

11= 1.00

12= 1.10

13= 1.20

14= 1.30

15= 1.40

16= 1.50

17= 1.60

18= 1.70

19=- 1.80

20=- 1.90

21= 2.00

RVCQ3D Blade-to-Blade

Euler Solution

Tip Section

Figure 7.6: The relative Mach number contours at the tip section are in very

good agreement.

Verification 87

Table 7.1: Comparison of TADS iterations with ADPAC 3-D Euler solution

for NASA Rotor 67 shows good agreement.

Flow (lbms/sec) Pressure Ratio Efficiency
TADS Iter. 1

TADS Iter. 2

TADS Iter. 3

ADPAC 3-D Euler

77.57

76.73

77.83

78.52

1.781

1.696

1.692

1.695

87.8%
90.9%

92.2%

92.6%

7.2 AST Compressor Stator 5

The fifth stator from the Allison candidate engine for the NASA Advanced

Subsonic Technology (AST) program was also analyzed with the TADS sys-

tem. The AST compressor is an eight stage high speed machine (19000 rpm)

and is representative of current core compressor designs. The fifth stator was

chosen because the flow is in the high subsonic range and the flowpath has

significant contraction. The TADS analysis was performed for three full iter-

ations through the throughflow and blade-to-blade analyses, and an ADPAC

3-D Euler calculation was run for comparison.

Figure 7.7 shows the Mach number contours from the throughflow analysis
for each TADS iteration. As seen, there are differences between the first and

second iteration but the second and third iteration are very similar. Unlike

the Rotor 67 case, the first iteration, which uses the mean camber line and

Carter's rule as the mean stream surface, is a good approximation to the

converged solution.

Figure 7.8 shows the comparison between the converged throughflow anal-

ysis and the axisymmetric average of the 3-D Euler solution. The two so-

lutions are in good agreement, both inside and outside the bladed region.

There are no strong shock waves or large separated zones in either the blade-

to-blade or throughflow solutions as there were in the Rotor 67 study. As

discussed above, strong shocks tend to be misrepresented by the axisym-

metric assumption in the throughflow analysis. Also, the losses caused by

large flow separations are not modeled in the current analysis. The fact that

losses computed in the blade-to-blade analysis are not communicated to the

throughflow analysis leads to inconsistencies between the two analyses. In

the absence of these factors, the coupled system performs well.

Figure 7.9 shows the meridional streamlines computed from the TADS

88 Verification

AST Compressor Stator 5 Throughflow Analysis
Mach Number

Flint Iteration

7

Second Iteration

Third Iteration

VALUES

I- 0.400

_- 0.425

3. 0.450

4- 0.4?5

5- O.5OO

e- 0.528

7,, 0.MO

8,- 0.STS

b 0.e00

10- 0.62

11s 0.(16

12- 0.87

13, O.7O

14- O.72

15, 0.?5

12- 0.77

17_ O,gN

VALUES

1• 0.400

2- 0.4_,

3,,O.48O

41, 0.475

2- 0._0

(I, 0Ji25

7,, O.$8O

2,O.$?5

8,,0.80O

10,, 0._

11m 0.11_

12, O.e7

13--0.?0

14.0.72

lS- 0.75

12,0.?"/

171 ON)

VALUES

1.0.400

2,. 0.425

3. 0.460

4- 0.4?5

3,0.$OO

?. O,_SO

8- 0.575

9. 0.eO0

10- 0._

,'In O.e5

12,. 0.e7

12- 0+70

14-0.72

15-0.?5

13,0.77

17_ NNi

Figure 7.7: The Mach number contours show little difference between itera-

tions, indicating that the initial stream surfmze (the mean camber line plus

Carter's rule) is a good approximation to the converged solution.

Verification 89

AST Compressor Stator 5 Throughflow Analysis
Mach Number

J

i |

VALUES

1- 0.400

2- 0.425

3- 0.450

4- 0.475

5= 0.500

6- 0.525

7- 0.550

6- 0.575

9= 0.600

10,, 0.62

11-0.65

12= 0.67

13= 0.70

14,, 0.72

15- 0.75

16- 0.77

17,, fl N1

Third Iteration Through Coupled Throughflow and Blade-to-Blade Analyses

III

Axisymmetric Average of Full 3-D Euler Solution

VALUES

1= 0.400

2- 0.425

3,, 0.450

4- 0.475

5- 0.500

6- 0.525

7- 0.550

6- 0.575

9=0.600

10=0.62

11,0.65

12- 0.67

13,, 0.70

14- 0.72

15,, 0.75

16- 0.77

17= C).N11

Figure 7.8: The Mach number contours from the converged TADS analysis

and the axisymmetric average of the full 3-D solution are in good agreement

both inside and outside the bladed region.

90 Verification

Table 7.2: The TADS iterations show good convergence, and reasonable

agreement with the ADPAC 3-D Euler solution for the AST Compressor

Stator 5.

TADS Iter. 1

TADS Iter. 2

TADS Iter. 3

ADPAC 3-D Euler

Flow (lbms/sec)

68.42

69.19

69.18

67.58

analysis and from the axisymmetric average of the 3-D Euler calculation.

The TADS streamlines are from the first iteration, which is essentially the

same as the converged solution. As seen, the streamlines are essentially par-

allel lines, and there is good agreement between the two analyses. Generally,

the streamlines from the TADS analysis are at slightly higher radii than the

streamlines from the 3-D solution. These differences have only a minor effect

on the blade-to-blade solutions. The source terms in the quasi-3D analysis

contain derivatives of the streamtube height and streamline shape. Because

the throughflow streamlines are essentially parallel to the axisymmetric av-

eraged streamlines, the derivatives are the roughly equal. Thus a quasi-3D

analysis run with either streamline definition will produce the same result.

A comparison of the hub, midspan and tip Mach number contours be-

tween the two analyses are presented in Figures 7.10, 7.11 and 7.12, respec-

tively. In all three cases, there is excellent agreement between the blade-to-

blade analysis (RVCQ3D and the ADPAC 3-D Euler analysis. The minor

differences in the streamline shapes are the cause of the small differences in

Mach number levels between the solutions. In the hub and tip sections, the

Mach numbers from the TADS analysis are slightly higher than from the 3-D

solution.

Table 7.2 shows the mass flows after each iteration through TADS and

from the A DPA C3-D Euler solution for the AST fifth stator. The consistency

between iterations indicates that the TADS analysis has converged, and that

the first iteration is a good approximation to the converged solution. The

mass flow from the converged TADS solution is within 2.5% of the full 3-D

analysis, which is consistent with the blade-to-blade comparisons presented

above. A small adjustment to the exit static pressure would eliminate this

difference.

Verification 91

AST Compressor Stator 5
Meridional Streamlines

Throughflow Analysis

Leading Edge

Trailing Edge

Axisymmetric Average

of Full 3-D Euler

Meridional streamlines are computed tWo ways:

. Streamlines are computed from throughflow solution which used

the mean camber line plus Carter's deviation angle rule as the
mean stream surface.

2. Streamlines are computed from the axisymmetric average of a full 3-D

Euler solution.

Figure 7.9: The meridional streamlines between the two analyses are in good

agreement.

92 Verification

AST Compressor Stator 5

Mach Number

VALUES

I= 0.000E+(

2= 0.100

3= 0.200

4= 0.300

5= 0.400

6= 0.500

7= 0.600

6= 0.700

9=- 0.800

10==0.900

11= 1.00

Ion

Hub Section

Figure 7.10: The Mach number contours at the hub section are in good

agreement. The quazi-3D solution is at a slightly higher flow rate than the

3-D Euler section.

Verification 93

AST Compressor Stator 5

Mach Number

RVCQ3D Blade-to-Blade Euler Solution

VALUES

1,, 0.000E+(

2,0.100

3- 0.200

4- 0.300

5- 0.400

6- 0.500

7= 0.600

8= 0.700

9= 0.800

10- 0.900

11- 1.00

- C Solution

Midspan Section

Figure 7.11: The Mach number contours at the midspan section are in ex-

cellent agreement.

94 Verification

AST Compressor Stator 5

Mach Number

RVCQ3D Blade-to-Blade Euler Solution

Full 3-D Euler ADPAC Solution

Tip Section

VALUES

1- O.O00E._

2-0.100

3- 0.2OO

4= 0.300

5,, 0.400

6- 0.5O0

7= 0.1_00

8= 0.700

9,= 0.800

10,, 0.900

11- 1.00

Figure 7.12: The Mach number contours at the tip section are in good agree-

ment. The quasi-3D solution is at a slightly higher flow rate than the 3-D

Euler section.

Verification 95

Table 7.3: The TADS iterations show good convergence for the first rotor of

the Purdue Low Speed Turbine Ri_;.

Flow (lbms/sec) Pressure Ratio
TADS Iter. 1

TADS Iter. 2

TADS Iter. 3

TADS Iter. 4

5.447

6.657

6.765

6.774

.9361

.9326

.9329

.9329

The AST fifth stator calculations show that the TADS analysis is ca-

pable of accurately predicting the flow through a modern compressor stator.

Carter's deviation angle rule performs well in the absence of shock waves and

separated zones, yielding effectively the converged solution. In cases such as

this, it is appropriate to run the TADS system for only one iteration.

7.3 Purdue Low Speed Turbine Rotor

The first rotor from the Purdue Low Speed Turbine Rig was chosen as a

test case because of the high camber of the airfoil. The flow is basically

incompressible, with a peak Mach number of around 0.3. The flowpath is

annular, and the wheel spins at 2500 rpm.

The meridional Mach number contours from the throughflow analysis are

shown for each iteration of the TADS system in Figure 7.13. The mean

camber line was used as the initial mean stream surface because Carter's

deviation angle rule is not applicable to turbine airfoils. As seen, the TADS

system converges on the third iteration. Judging from the downstream Mach

number distribution, the second iteration would be an acceptable stopping

point for normal design work. Table 7.3 shows the mass flows and pressure
ratios from each iteration.

Figure 7.14 shows the meridional streamlines after the first and second

iterations through the TADS system. The third and fourth iteration are es-

sentially replicas of the second iteration, and are not shown. The streamlines

from the first iteration sag at the trailing edge, probably due to the fact that

the flow does not follow the mean camber line near the trailing edge. Near

the hub, the flow is being turned too much, the mass flow will be too high at

the hub compared to the tip. Most likely, this is the cause of the small dip

96 Verification

Purdue Low Speed Turbine Rotor 1

Throughflow Analysis

A

First Iteration

Second Itemlion

Third Kerstion

V_

1- O.O00E*(

2- 0.2SOE-O

3- O_._OE-O

4- 0.TF:_E-O

r.- 0.100

3-0.125

7,,0.150

8-0.175

8- O2OO

10- 0.225

11.0.2SO

12- 0275

13,0300

14. 0,32S

1Ri n ,_trm

Fourth Iteralk)n

Relative Mach Number

Figure 7.13: The relative Mach number contours from each iteration show

that the TADS system is converged after three iterations.

Verification 97

in the streamlines near the trailing edge.

Figure 7.15 shows the blade-to-blade solutions for the hub, mean and tip

sections of the Purdue Low Speed Turbine Rig first rotor. This turbine was

designed to be two-dimensional: there is little radial migration of flow, and

the loadings at each section are approximately the same. There is very little

difference between the solutions for each section, indicating that the design
intent was achieved.

The TADS results show the expected behavior for the Purdue Low Speed

Turbine Rig. This case has much greater blockage than the compressor cases

presented above. The success of the analysis indicates that the blockage

terms are performing as designed in the throughflow analysis.

7.4 VBI Turbine Vane

The fourth test case selected to verify the operation of the TADS system is the

Vane-Blade Interaction (VBI) turbine vane. The VBI turbine is a single stage

transonic turbine, which spins at 11,400 rpm in an annular flowpath. The

steady and unsteady performance of the VBI turbine has been investigated

at the Calspan Research Center by M. Dunn. Reference [6] documents the

geometry, the experimental apparatus, and presents both experimental and

analytical aerodynamic data for the VBI turbine. The VBI vane makes a

good test case because of the significant airfoil thickness and the transonic
flow.

The TADS system was run for four full iterations. Figure 7.16 shows the

Mach number contours from the throughflow analysis after each iteration.

The solution is converged in three iterations, but the first iteration is a rea-

sonable approximation to the converged solution. The meridional streamlines

found from the throughflow analysis after the first and fourth iterations are

shown in Figure 7.17. The only difference in the streamlines between the first

and fourth iterations is near the trailing edge. In turbine airfoils, however,

the trailing edge is the critical area because the throats are typically set at

the trailing edge. Changes in the stream tube height at the trailing edge can

have a significant effect on the Mach number levels seen in the blade-to-blade

solutions. In this case, the differences in the midspan solutions between the

first and fourth iterations are minimal, Figure 7.18.

Table 7.4 shows the mass flows after each iteration through TADS and

98 Verification

Purdue Low Speed Turbine Rotor 1
Meridional Streamlines

Iteration 2

Leading

Edge

Trailing Edge

Iteration 1

Meridional streamlines are computed two ways:

Iteration 1. Streamlines are computed from the throughflow solution,
which used the mean camber line as the mean stream

surface

Iteration 2. Streamlines are computed from the throughflow solution,
which used the mean stream surface calculated from the

blade-to-blade solutions in Iteration 1.

Figure 7.14: The meridional streamlines computed from the throughflow
solution are constant after two iterations.

Verification 99

Purdue Low Speed Turbine Rotor 1
RVCQ3D Blade-to-Blade Solution

VALUI-._

1- O.(X)OE+(

2- 0.250E..0

3- 0.500E-O

4- 0.750E-0

5-0.100

6- 0.125

7,0.150

8,0.175

9-02OO

10- 0.225

11- 0.250

12,, 0.275

13,, 0.300

14,0.325

lS,- 0.350

HubS e ct ion

Midspan Section Tip Section

Relative Mach Number

Figure 7.15: The relative Mach number contours from the blade-to-blade

analysis show that the loading is essentially constant from hub to tip.

I00 Verification

I
VBI Turbine Vane

Throughflow Analysis

First Iteration

I
Second Iteration

/t
Third Iteration

,t
Fourlh Iteration

Mach Number

VALUt:U

1. GOK('_

b GIOCE*(

k, GI00

ll- G400

e-GN0

?- 0.m0

8-O.7OO

0,, Glm

10- O.mO

11. I,GGO

12- I.t0

i_.',Z
lb 1._

11_ IlW

17" 140

18- 1./0

lib t80

Figure 7.16: The meridional Mach number contours from each iteration of

the throughflow analysis show that the TADS system is converged after three

iterations.

Verification 101

VBI Turbine Vane

Meridional Streamlines

_ Iteration 1

ailing Edge

Leading

Edge

._ L _ Iteration 4

Meridional streamlines are computed two ways:

Iteration 1. Streamlines are computed from the throughflow solution,

which used the mean camber line as the mean stream

surface

Iteration 4. Streamlines are computed from the throughflow solution,

which used the mean stream surface calculated from the

blade-to-blade solutions in Iteration 3.

Figure 7.17: The meridional streamlines from the first iteration are a good

approximation to the final solution.

102 Verification

VBI Turbine Vane

Mach Number

3.

Iteration 1 Iteration 4

VALUES

1= 0.000E+(

2= 0.100E+(

3= 0.200

4= 0.300

5= 0.400

6= 0.500

7-- 0.600

8= 0.700

9= 0.800

10= 0.900

11= 1.000

12= 1.10

13= 1.20

14= 1.30

15= 1.40

16= 1.50

17= 1.60

18= 1.70

19= 1.80

RVCQ3D Blade-to-Blade Euler Solution

Midspan Section

Figure 7.18: The midspan Mach number contours from the blade-to-blade

analysis are effectively the same between the first and fourth iteration of the

TADS system.

Verification 103

Table 7.4: The TADS iterations show good convergence, and reasonable

agreement with the ADPAC 3-D Euler solution for the VBI Turbine Vane.

Flow (lbms/sec)
TADS Iter. 1

TADS Iter. 2

TADS Iter. 3

TADS Iter. 4

ADPAC 3-D Euler

22.89

22.04

24.78

24.80

23.67

from the ADPAC3-D Euler solution for the VBI vane. The mass flow reaches

the converged value on the third iteration, consistent with the meridional

Mach number contours presented in Figure 7.16. The converged mass flow

is also in reasonable agreement with the 3-D Euler solution.

Figures 7.19, 7.20, and 7.21 show the comparison between the RVCQgD

blade-to-blade solutions and the ADPAC 3-D Euler prediction for the hub,

midspan, and tip sections, respectively. As seen, the solutions are generally

in good agreement, although there are minor differences in the position of
some contours.

7.5 Summary

In each test case, the TADS system predictions are reasonable, and agree

with 3-D Euler solutions at the same conditions. The good agreement demon-

strates not only that the blade-to-blade solver is functioning properly, but

that the system coupling is correct as well. The TADS system is a coupled

system of quasi-3D solvers: the throughflow and blade-to-blade analyses both

solve the governing equations in two dimensions, and rely on outside infor-

mation to model the third dimension. The blade-to-blade analysis takes

its boundary condition information from the throughflow analysis, and the

throughflow analysis enforces flow tangency to the mean stream surface shape

found by the blade-to-blade analysis in the bladed region. In order for the

blade-to-blade results to agree with the 3-D results, the static pressure passed

from the throughflow analysis must be correct. The static pressure in the

throughflow solver is set by radial equilibrium at the grid exit. The radial

equilibrium equation in the throughflow solver predicts the static pressure,

104 Verification

VBI Turbine Vane

Mach Number

VALUES

1= 0.(XX)E+(

2= 0.100E+(

3= 0.200

4= 0.300

5= 0.400

6= 0.500

7= 0.600

8= 0.700

9=-0.800

10=-0.900

11= 1.000

12= 1.10

13= 1.20

14= 1.30

15= 1.40

16= 1.50

17= 1.60

18= 1.70

19=- 1.80

ADPAC Full 3-D Euler Solution RVCQ3D Blade-to-Blade Euler Solution

Hub Section

Figure 7.19: The Mach number contours from the hub section blade-to-blade

analysis agree well with the 3-D Euler results.

Verification 105

VBI Turbine Vane

Mach Number

ADPAC Full 3--D Euler Solution

VALUES

1= 0.000E+(

2= 0.100E+(

3= 0.200

4= 0.300

5= 0.400

6= 0.500

7= 0.600

8= 0.700

9=- 0.800

10= 0.900

11= 1.000

12= 1.10

13= 1.20

14= 1.30

15= 1.40

16= 1.50

17= 1.60

18= 1.70

_ 19= 1.80

RVCQ3D Blade-to-Blade Euler Solution

Midspan Section

Figure 7.20: The Mach number contours from the midspan section blade-to-

blade analysis agree well with the 3-D Euler results.

106 Verification

VBI Turbine Vane

Mach Number

VALUES

1= 0.000E+(

2= 0.100E+(

3= 0.200

4= 0.300

5= 0.400

6= 0.500

7= 0.600

8= 0.700

9=-0.800

10= 0.900

11= 1.000

12= 1.10

13= 1.20

14= 1.30

15= 1.40

16= 1.50

17= 1.60

18= 1.70

19= 1.80

ADPAC Full 3-D Euler Solution RVCQ3D Blade-to-Blade Eular Solution

Tip Section

Figure 7.21: The Mach number contours from the tip section blade-to-blade

analysis agree well with the 3-D Euler results.

Verification 107

accounting for swirl in the flow.

The test cases presented here demonstrate convincingly that the coupling

between the analyses in TADS is done correctly. Further, the TADS anal-

ysis is applicable to a wide range of problems in turbines and compressor

airfoil design. There are some difficulties with transonic fans, due to the

shock structure. Because the actual shock structure is not axisymmetric,

the throughflow analysis does not predict the the same flow pattern as the

axisymmetric average of a 3-D prediction in the bladed region. This affects

the location of the meridional streamlines, and in turn, the blade-to-blade

analysis. The TADS predictions are good within the limits of the assump-

tions in the analysis, but oblique shock waves are not modeled properly in

an axisymmetric calculation.

108 Verification

Chapter 8

Conclusions

A turbomachinery airfoil analysis system has been developed by coupling

a throughflow analysis with a blade-to-blade analysis. This analysis, the

Turbomachinery Analysis and Design System TADS, enables a designer to

analyze airfoil shapes without the expense of a full 3-D calculation. A GUI

was developed to assist the user in controlling the work flow in the analysis.

Input panels were developed for each task in the analysis, and capability

was included to run each task on a remote host. Programs were developed to

link the various grid generators and flow solvers, passing information between

them by way of files. The system was designed to enable new codes to be

added to the list of choices for any of the major tasks (e.g.grid generation,

throughflow analysis, or blade-to-blade analysis).

The throughflow analysis was developed by adding body force and block-

age terms to the ADPAC code. These terms model the presence of the airfoil

in the axisymmetric flow: the body force terms enforce a turning distribu-

tion, and the blockage term simulates the airfoil thickness. Convergence ac-

celeration techniques such as multigrid and implicit residual smoothing were

preserved in the throughflow analysis. The newly developed throughflow

analysis was verified with simple test cases and with NASA Rotor 67.

The total coupled analysis was applied to four test cases: NASA Rotor

67, the AST compressor fifth stator, the Purdue Low Speed Turbine Rig first

rotor, and the VBI turbine vane. These cases spanned the flow speed regime

from incompressible to transonic flow. The body force and blockage terms

were verified with highly cambered, thick airfoils as well as thin low camber

shapes. In each case, the TADS system converged to a reasonable solution,

109

110

comparing favorably with 3-D Euler calculations performed at the same flow

conditions. As a coupled system of codes, iteration is required to converge

the TAD,f; analysis. In all cases, TADS converged in three or fewer iterations

through the coupled throughflow and blade-to-blade solutions. With the

exception of flows with strong shock waves, the analysis has been shown to

be a good approximation to a 3-D analysis.

Bibliography

[1] Adamczyk, J., "Model Equation for Simulating Flows in Multistage Tur-

bomachinery," ASME Paper 85-GT-226, 1985.

[2] Chima, R., "Explicit Multigrid Algorithm for Quasi-Three-Dimensional

Viscous Flows in Turbomachinery," Journal of Propulsion and Power,

Vol. 3 No. 5, 1987.

[3] Chima, R., Turkel, E. Schaffer, S., "Comparison of Three Explicit

Multigrid Methods for the Euler and Navier-Stokes Equations," NASA

TM88878, Jan., 1987.

[4] Chima, R., "Revised GRAPE Code Input for Cascades," NASA-Lewis

Research Center, June, 1990.

[5] Damle, S., Dang, T., and Reddy, D. R., "Throughflow method for Tur-

bomachines Applicable for All Flow Regimes," ASME Paper 95-GT-395,
1995.

[6] Delaney, R., Helton, D., Bennett, W., Dunn, M., Rao, K.V., and Kwon,

O., "Turbine Vane-Blade Interaction," WRDC-TR-89-2154, March 1990.

[7] Hall, E., Topp, D., and Delaney, R., "Task 7 - ADPAC User's Manual"

NASA CR195472, 1995.

[8] Hall, E., Topp, D., Heidegger, N., McNulty, G., Weber, K., and Delaney,

R., "Endwall Treatment Inlet Flow Distortion Final Report," NASA

CR195468, 1995.

[9] Jennions, I. K., and Stow, P., "A Quasi-Three-Dimensional Turboma-

chinery Blade Design System: Part 1 - Throughflow Analysis," ASME

Paper 84-GT-26, 1984.

111

112 Bibliography

[10] Lieblein, S., "Experimental Flow in Two-Dimensional Cascades," Aero-

dynamic Design of Axial FLow Compressors, NASA SP-36,1965.

[11] Miller, D., and Reddy, D., "The Design/Analysis of Flows Through

Turbomachinery in a Viscous/Invisid Approach," AIAA Paper AIAA-

91-2010.

[12] Miller, D., "TIGGERC - Turbomachinery Interactive Grid Generator

for 2-D Grid Applications and Users Guide," NASA TM106586, 1994

[13] Pierzga, M., and Wood, J., "Investigation of the Three-Dimensional

Flow Field Within a Transonic Fan Rotor: Experiment and Analysis,"

ASME Journal of Engineering for Gas Turbines and Power, Vol. 107, pp.

436-449, 1985.

[14] Overmars, M., "Forms Library: A Graphical User Interface Toolkit

for Silicon Graphics Workstations," Department of Computer Science,

Utrecht University, The Netherlands, December, 1991.

[15] Sayari, N. and Bolcs, A., "A New Throughflow Approach for Transonic

Axial Compressor Stage Analysis," ASME Paper 95-GT-195, 1995.

[16] Sorenson, R., "A Computer Program to Generate Two-Dimensional

Grids About Airfoils and Other Shapes by Use of Poisson's Equation,"

NASA TM81198, 1980.

[17] Steger, J., and Sorenson, R., "Automatic Mesh Point Clustering Near

a Boundary in Grid Generation with Elliptic Partial Differential Equa-

tions," Journal of Computational Physics, Vol. 33, Dec. 1979, pp.405-410.

[18] Spurr, A., "The Prediction of 3D Transonic Flow in Turbomachinery

Using a Combined Throughflow and Blade-to-BLade Time Marching

Method," Intl. Journal of Heat and Fluid Flow Vol. 2 No. 4, 1980.

[19] Walatka, P., Buning, P., Pierce, L, Elson, P., "PLOTJD User's Manual,

Version 3.6" NASA TM101067, 1990.

[20] Whipple, D., "BDX-Binary Data Exchange Preliminary Information,"

NASA-Lewis Research Center 1989.

Bibliography 113

[21] Wu, C., "A General Theory of Three Dimensional Flow in Subsonic

and Supersonic Turbomachines of Axial, Radial and Mixed Flow Types,"

NACA TN2604, 1952.

[22] Zhao, T., and Overmars, M., "Forms Library: A Graphical User In-

terface Toolkit for X" Department of Physics, University of Wisconsin-

Milwaukee, Milwaukee, WI, 1995.

[23] Zheng, Y., and Hirsch, C., "Throughflow Model Using 3D Euler or

Navier-Stokes Solvers,": European Turbomachinery Conference, Elan-

gen, Germany, March 1-3, 1995.

Form Approved

REPORT DOCUMENTATION PAGE OMaNO.0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1995 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

TADS-A CFD-Based Turbomachinery and Analysis Design System With GUI
Volume l--Method and Results

6. AUTHOR(S)

D.A. Topp, R.A. Myers, and R.A. Delaney

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Allison Engine Company
P.O. Box 420

Indianapolis, Indiana 46206--0420

9. SPONSORING/MONITORINGAGENCYNAME(S)AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

WU-505--62-10

C-NAS3-25950

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-10058

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-198440

11. SUPPLEMENTARYNOTES

Project Manager, Kestutis C. Civinskas, Propulsion Systems Division, NASA Lewis Research Center, organization
code 2760, (216) 433-3944.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 07

This publication is available from the NASA Center for Aerospace Information, (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

The primary objective of this study was the development of a CFD (Computational Fluid Dynamics) based turbomachiner 3

airfoil analysis and design system, controlled by a GUI (Graphical User Interface). The computer codes resulting from this

effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is the Final Report describ-

ing the theoretical basis and analytical results from the TADS system, developed under Task 18 of NASA Contract NAS3-

25950, ADPAC System Coupling to Blade Analysis & Design System GUI. TADS couples a throughflow solver (ADPAC)

with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was devel-
oped in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed

to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling

of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into

the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a

compressor stator, a low speed turbine blade and a transonic turbine vane.

14. SUBJECT TERMS

Computational fluid dynamics; Design; Turbomachinery

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIRCATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

121
16. PRICE CODE

A06

20, LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-1B

298-102

