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Chapter 1

Introduction

Unsteady flow is present in man, machine and nature. The flow of blood in arteries

and capillaries in the human body is pulsatile - composed of a mean flow superposed

with an oscillating component. The tides that wash in and out of rivers, harbors and

estuaries are unsteady flows with very long periods of oscillation. Many engineering

devices employ pulsatile and oscillating flow. Pulsating flow is defined here as a

periodic flow with a net displacement of fluid over each flow cycle. Oscillating flow

is defined as a periodic flow with a zero mean over each cycle. The subject of this

thesis is oscillating flow and heat transfer in pipes which make up the heater and

cooler sections of the NASA Space Power Research Engine (SPRE) currently under

development. This engine uses the Stifling cycle as the thermal energy converter

in a power plant for future space applications. The information presented in this

thesis will of course be applicable to the design of many types of machinery which

employ oscillating flow and heat transfer.

1.1 Invention of the Stirling Engine

What is known today as the Stirling engine was first proposed by Reverend Robert

Stifling in his patent application of 1816. This closed air-cycle engine was expected



to compete with the steam engine, which was a crude, inefficient and dangerous

device at that time. Other air-cycle engines had been proposed, but none included

Stirling's economizer, referred to nowadays as the regenerator. This single compo-

nent raised the efficiency of the device to the point where it could run on its own

power, a feat that many contemporary engine designs could not accomplish. Stirling

recognized that heat could be captured within the regenerator during expansion,

and then absorbed back into the working fluid later in the cycle. This physical

insight is notable, since Carnot's technique of heat engine analysis would not be

formalized until 1824. An engine of this design was used for a short time in 1818 to

drive a quarry pump, before the iron heater vessel failed under thermal stress and

oxidation.

After this, Robert Stirling's attentions were directed increasingly toward the

church, leaving the younger brother James, himself a trained engineer, to pursue

further development of the engine. The next significant Stifling engine was built in

1828, employing a small auxiliaz7 compressor to raise the air pressure and thereby

increase the efficiency. James noted that the engine produced about 20 hp upon

startup, but that the power feU off as the engine wanned. Apparently in the absence

of knowledge of Carnot's recent work, Stirling reasoned that coding must be applied

to the engine in order that the "requisite difference of temperature" be maintained

on opposite ends of the regenerator. Cooling was not addressed in Robert's original

patent. A water-coded engine was built in the 1830's to test the design. A patent

for the water-coding feature was granted in 1840.

Perhaps the first commercially successful Stifling engine was installed at the

Dundee Foundry in 1841. The water-cooled engine produced 21 hp with an efficiency

of about 6.5%, similar to the available steam engines. James had by this time also

reconfigured the firebox in order to eliminate direct radiant heating of the engine

2



and thereby reduce the thermal stresses imposed on the heater vessel. Uniform

heating was obtained by carefully directing the flue gases to flow around the heater.

This engine was unable to satisfy the needs of the growing foundry, and was replaced

in 1843 by a double-acting version of 45 hp and 18% efficiency. No steam engine

of the time, nor any air-cycle engine of the nineteenth century could compete with

this efficiency. Nevertheless, the engine was replaced by a steam engine some three

years later after a series of heater failures which idled the foundry on three separate

occasions.

By the middle of the nineteenth century the steam engine had become a reliable

and reasonably efficient engine to power the industrial revolution. Most large power

requirements during this period were met by steam engines. Many low power closed

air-cycle engines were proposed and offered commercially during the end of the

nineteenth century and running well into the twentieth. At low power, these engines

could compete with steam in terms of efficiency (typically on the order of 1%), and

were much simpler and cheaper to build and operate at a time when electricity

was not widely available. These small engines may well have kept the spirit of the

Stirling engine design alive during a period when other engines obtained dominance.

1.2 Renaissance of the Stirling Engine

The steady improvement of the steam engine, the development of reliable internal

combustion engines and the widening distribution of electric power eliminated all

commercial Stirling-type engines by the mid 1930's. Shortly thereafter the design

was rekindled by a company seeking to increase the market for it's own radio equip-

ment. Philips Company of the Netherlands sought to devise a power source that

would enable them to sell radios in parts of the world where electric power was not

yet available over a conventional distribution grid. The external combustion Stirling

3



engine was considered as a means of providing electric power and was preferred over

storage batteries, which would eventually require recharging and were heavy and

difficult to transport. The Stirling engine offered several advantages over other heat

engines, including quiet operation and the ability to run on poor fuels. The Philips

team was able to build and run a 16 watt engine by 1938. This was the first in a

long series of engines built by or in association with Philips. By 1950, Philips was

able to manufacture 150 generator sets of 200 watt capacity. This was closest any

of the engines came to commercial success. (On a related note, Stirling refrigerators

developed by Philips were commercially successful for cryogenic cooling and gas liq-

uefaction.) The Philips engines were tested in household fans, boats, self-propelled

lawn mowers, cars and buses. An artificial heart pump and several stationary en-

gines were also tested. The pistons of the Philips engine designs were connected by

linkages, being referred to as kinematic engines. Philips abandoned Stirling engine

research in 1979. Theirs was by far the longest development effort. A history of

the Philips Stirling engine projects, along with the early history of Stirling engines,

is given in the very thorough text of Hargreaves (1991), from which much of the

preceding discussion has been drawn.

The Philips kinematic engines were never commercially successful for a number

of reasons, including

• inadequate lubrication of the pistons

• gradual fouling of the regenerator

• inadequate life of the seals used in various locations

• poor heat transfer into the hot end of the engine



These issueshighlight the difficulties involved in bringing the otherwise simple

Stifling engineinto common use.

1.3 The Stirling Engine in Space

The space race began in 1957 with the launch of Sputnik, providing further mo-

tivation to develop the Stifling engine. General Motors and Philips had by 1959

produced a 3 kW generator set driven by a solar-powered Stirling engine. The

hot end of the engine would be heated by liquid metal circulating through a solar

collector array. The single-cyhnder engine used a rhombic drive mechanism and a

centrifugal oil circulation system to provide lubrication under microgravity. The en-

gine met the design power specification, but was overshadowed by the development

of photo-voltaic cells, which provided sufficient power to satisfy the newly available

low-power solid-state electronics.

The manned space station project being developed by NASA will require sig-

nificantly more power than the simple satellites of the sixties. The engine used

for this space power application must not suffer from any of the limitations of the

kinematic engine, and must have a considerable useful life with (preferably) zero

maintenance. One means of eliminating some of the problems mentioned above

is to use a free-piston design. In this design the displacer and power pistons are

not rigidly connected, but instead communicate with one another through pressure

forces transmitted by the working fluid. An advantage of this configuration is the

tendency for the frequency of operation to be fixed by the natural frequency of the

displacer piston, a parameter which the engine designer controls. Varying load lev-

els are satisfied in a very natural way by self-induced changes in piston strokes and

phase angle (West, 1986). As a free-piston engine, journal bearings are not used, so

mechanical friction occurs only between the pistons and cylinders. The "loading"
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on these surfaces is symmetrical and negligible in the microgravity environment. As

a result, the engine requires no lubrication (other than that provided by the working

fluid). Fouling problems are thereby also eliminated. The entire volume of working

fluid can be hermetically sealed into the engine casing such that reciprocating and

rotating shaft seals are eliminated. Insuring adequate heat transfer from the heat

source to the working fluid remains as a design challenge, providing motivation for

the present research. Details of the mathematical models used to design free-piston

Stifling engines are found in Walker and Senft (1985). An overview of the Stifling

SPRE development program is given by Dochat (1990). Recent SPRE test results

obtained at NASA Lewis Research Center are discussed in Cairelli, et al. (1991).

Optimization of the SPRE design is taking place in a somewhat empirical fashion,

with adjustments to various components being considered or tested (Wong, et al.

1992). Improved understanding of the flow and heat transfer in oscillating flow

would minimize these expensive hardware design iterations.

1.4 Other Stirling Engine Applications

Several ongoing Stirling engine development efforts will be discussed briefly in this

section. They give some indication of the breadth of applications of the Stirling

engine.

Detroit Diesel Corporation and Stirling Thermal Motors Inc. are jointly build-

ing a 4-cylinder kinematic engine producing 25 kW at 1800 RPM (Bennethum, et

al. 1991). The engine uses a variable angle swashplate drive to provide power

control. The crankcase is pressurized to reduce the demand on the reciprocating

shaft seals. A more conventional and reliable rotating seal is used on the output

shaft. The engine proposes to solve many of the interminable problems associated

with kinematic Stirhng engines, including lubrication, regenerator contamination



and seal life. Cost control efforts have resulted in an engine which is anticipated

to be competitive with diesel engines of similar size. The modular design allows

the same power unit to be applied to portable and marine generator sets, hybrid

electric vehicles, solar conversion and refrigeration.

Free piston Stifling engines are also being considered for earth-bound applica-

tions. Mechanical Technology Inc. has considerable experience with free-piston

engines (Goldwater, 1990). These engines are being considered for residential co-

generation, heat pumps, unmanned submersibles and hybrid electric vehicles. In the

later application a low-powered Stirling engine would drive a sealed linear generator

and act as a range extender for a battery powered vehicle. The size, weight and

cost of available generators has fallen significantly in recent years. De Graaff (1991)

argues for the use of a free-piston Stifling engine and sealed linear generator set as

the sole power source for electric vehicles, given the weight of currently available

storage batteries.

Stifling Technology Company, Sandia National Laboratory and others have co-

operated to design a 25 kW solar power converter system (Wallace, et al. 1991).

This system uses a free-piston Stirling engine, but drives a conventional rotary in-

duction generator. The power pistons of this engine act directly as a hydraulic

pump. A separate hydraulic motor couples the engine to the generator. Besides the

Stirling engine and collector, most components of the system are commercially avail-

able products. The design operating life of the Stifling engine itself is 60000 hours,

a figure presently possible only through the use of the free-piston configuration.

The free-piston Stirling engine can also be configured with "pistons" of water

(Fauvel, et al. 1990). Such an engine is referred to as a Fluidyne. In this arrange-

ment, the addition of heat to the Stirling cycle can be used to pump water. This

system can be applied in irrigation systems in areas of the world where conventional
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pumping enginesand fuels are prohibitively expensive.

Many of the papers referenced above are found in the proceedings of the Interso-

ciety Energy Conversion Engineering Conference, which meets annually. This forum

includes Stirling engines and related technologies, and is often the first publication

to present these papers.

1.5 Literature Survey of Oscillating Flow and

Heat Transfer

This thesis considers methods of improving the modeling of friction and heat trans-

fer in Stirling engine performance codes. The literature survey will be restricted

to those papers which offer guidance for modeling flow and heat transfer under

conditions which axe similar to those in the heater and cooler sections of Stirling

engines. Turbulence modeling has been shown to be a possible limiting feature of

heat transfer predictions and will receive close attention before heat transfer papers

themselves are reviewed. This literature survey updates the thorough survey of

Koehler (1990) and extends the scope to include heat transfer in oscillating flow.

1.5.1 Laminar Oscillating Flow

1.5.1.1 Experiments

Fully developed laminar oscillating flow was first studied experimentally by Richard-

son and Tyler (1929), who used a crank-driven piston-cylinder to produce flow of

nearly sinusoidal bulk variation. They observed that the peak in the velocity profile

moved towards the pipe wall at sufficiently high rates of oscillation. Gaver and

Grotberg (1986) measured the axial velocities in a tapered channel with oscillating

flow and summed the cycle-averaged flow. They found one steady streaming cell

on each side of the symmetry plane for moderate oscillation rates, and two cells
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on each side at higher rates. The steady streaming is predicted by theory and is

observedin acousticstudies.

1.5.1.2 Analytical and Numerical Solutions

The analytic solution corresponding to the Richardson and Tyler flow was formu-

lated by Sexl (1930). Uchida (1956) evaluated Sexl's solution for pulsatile (non-zero

mean) flow. The velocity gradient was used to evaluate the work required to main-

taln the pulsating flow, and the dissipation within the flow. The dissipation is found

to be higher than that of steady flow at the same mean flow rate. Drake (1965)

obtained a series solution using separation of variables for oscillating flow in a rect-

angular channel. The peak in the axial velocity was found to occur near a corner,

in agreement with the previously quoted work of Richardson and Tyler. Iguchi, et

al. (1992) solved the laminar flow in the entrance region of a square duct, finding

good agreement with their experimental results, and proposed an expression for

approximating the length of the entrance region.

1.5.2 Transitional and Turbulent Oscillating Flow

Until recently, relatively few papers on turbulent oscillating flow have been avail-

able. Unlike the laminar case, analytic studies are not possible and laboratory

and numerical experiments are difficult and expensive. Many of the experimental

studies provide only qualitative results describing the flow patterns and turbulent

structure. Numerical studies often suffer from a lack of data suitable for validation

of the models. A handful of experiments have been performed recently to support

development of the SPRE engine. This effort was deemed necessary to improve the

predictions of the available engine design codes. These whole-engine design codes

were tuned to duplicate test data. It was originally assumed that the poor perfor-



manceof the models was due to underprediction of viscous flow losses (Tew, el al

1990). The design codes were then tuned by artificially augmenting the friction loss

coefficients. In fact, adjustments to the codes cannot be indiscriminately applied to

the flow losses alone: thermodynamic losses also result from seal leakage and heat

losses through the pistons and cylinders. Moreover, the distribution of these losses

varies from one engine design to another. Fundamental research on the important

components that malce up the Stirling engine is required in order to accurately

characterize each source of losses.

1.5.2.1 Experiments

Park and Baird (1970) observed the decay of oscillations in a u-tube manometer

and established criteria for the critical Reynolds number (/_) for transition based

on the oscillation rate. End-effects were observed to produce transition at a lower

R¢ in short tubes, while flows that were laminar over most of the oscillating flow

cycle tended to have higher R¢ . In the later cases, the laminar flow may not be

able to respond and transition might not occur before the next flow reversal. Chan

and Baird (1974) measured the overall rate of energy dissipation in an oscillating

liquid column and deduced the wall friction. The wall shear was significantly higher

than for the corresponding steady flow laminar boundary layer. They hypothesize

that the flow is intermittently turbulent, but note that the transition from laminar

to turbulent flow must be more gradual than for steady flow. The critical Reynolds

number for oscillating flow in straight pipes was measured by Sergeev (1966). Sim-

ilar results were obtained by Hino, et al. (1976) and Ohmi, et al. (1982).

Tu and Ramaprian (1983) studied sinusoidally pulsed turbulent flows at a fairly

high mean Reynolds number of 50000. When the pulsations matched the character-

istic frequency of the turbulence (3.5 Hz), the time mean flow was found to deviate
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from steady flow. The turbulence assumed a nearly constant value throughout the

cycle. At lower pulsation rates the turbulence was nearly absent during acceleration.

The law of the wall was violated in all cases during some portion of the cycle.

Seume (1988) performed experiments to observe the behavior of oscillating flow

during transition. The test rig consisted of a long straight pipe connected to a

piston-cylinder driven by a scotch yoke mechanism. The scotch yoke provides si-

nusoidal piston motion. The length-to-diameter ratio (L/D) of the pipe was 60,

matching the heater tubes of SPRE. The test fluid was atmospheric air. Data on

fluid velocity and rms fluctuations was taken using hot film anemometry over a va-

riety of operating conditions. This allowed for quantitative analysis of the structure

of the flow throughout the flow cycle at several locations within the pipe. Two

transition mechanisms were identified. In the first mechanism, fluid within the pipe

remains laminar, but turbulent fluid from outside the pipe is drawn in and swept

downstream. The passage of this turbulent slug is detected by the instrumentation

as transition. Once the slug passes, the fluid may or may not revert to laminar flow,

depending on local conditions. In the second transition mechanism, the boundary

layer grows in the normal fashion. At a sufficient velocity, transition may occur if

local instabilities become large. Like previous researchers, Seume found that lam-

inar low prevailed during accelerating portions of the cycle. Transition occurred

very near the peak flow rate, with turbulent conditions lasting through most of the

decelerating portions of the cycle.

Friedman (1991) continued the work of Seume, taking detailed measurements at

the same operating point as the SPRE heater tubes. Single hot-wire anemometry

was used to collect data on the mean and rms fluctuations of the axial velocity.

Cross-wire anemometry was used for the mean and rms fluctuations of the radial

velocity component and one Reynolds stress component ".-u'v'. This data was used

11



to test the ability of the present numerical models to predict the damping effects of

acceleration and the convection of a turbulent slug, as will be discussed in chapter

4.

Fishler and Brodkey (1991) performed visualization experiments on oscillating

flow under operating parameters similar to those in arteries of humans and large

animals. (This parametric range includes that of the SPRE engine heaters and

coolers.) The flow was driven through a long straight pipe by a scotch yoke and

piston. The experiment employed trichloroethyleneas the fluid,which was doped

with magnesium oxide particleswith a maximum diameter of about 20 micron.

Data collectiontook the form of high-speed film, shot from a camera which was

mounted on a slidingcarrierdriven by the same scotch yoke. The particlemotions

recorded thus representthe deviationfrom laminar, rectilinearflow. The filmswere

studied to obtain qualitativeinformation about the state of the flow. In most cases,

turbulence was observed only during the decelerating parts of the flow cycle.

Simon, et al. (1992) have proposed a set of empirical transition criteriafor

oscillatingpipe flow. The resultiscast in a form suitablefor use in one dimensional

engine simulation codes. The criteriadetermine when transitionwilloccur based

on crank angle, distance from the inlet,peak flow rate and oscillationrate. The

criteriaaxe based on experimental data. Once transitionis predicted to occur, a

steady flow frictioncoe_cient at the instantaneous flow rate isto be applied.

1.5.2.2 Numerical Solutions

Koehler (1990) modeled oscillatingflow in straightpipes and examined the ability

of the Lam-Bremhorst low Reynolds number k-_ model to predict transitionand

subsequent relaminarization. The model was able to predict both transitionand

relaminarization,but the response was too fast.Koehler used derived inletbound-
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ary conditions for the turbulence quantities, and felt that this may have produced

some of the discrepancy. The use of experimentally derived values was expected to

provide better performance, although this was left for future work.

Mankbadi and Mobark (1991) used a standard k-e model with wall functions

to test the ability of the model to account for unsteady effects. They recommend

a dimensionless oscillation rate as the criterion for applicability of the turbulence

model for unsteady flows. They note that a low Reynolds number model may be

more appropriate than a standard model using wall functions.

Ahn and Ibrahim (1992) computed oscillating, incompressible flow in a pipe un-

der conditions similar to SPRE. The standard, high-Reynolds number k-e turbulence

model of Launder and Spalding (1974) was employed for turbulence closure. The

high-Reynolds number k-e model was found to be inadequate for transitional cases

(with modest values of Re,_). The behavior improved for cases with lower rates of

oscillation (quasi-steady behavior). In the case of high Re,_, the results followed

closely the steady correlation at the corresponding instantaneous Reynolds number.

This may be an artifact of the wall functions boundary condition.

Ibrahim (1993) is, at the time of this writing, employing a novel means of mod-

eling transition. The approach taken is to model the flow as laminar until such time

as a set of transition criteria are satisfied. A k-e turbulence model is then activated.

Early results show good agreement with the experimental data of Friedman (1991).

The transition criteria are based on the work of Simon, et al. (1992).

1.5.2.3 Turbulence Modeling

The effects of turbulence largely determine the friction and hence the pressure drop

within the tubes of the Stirling engine heaters and coolers. From a computational

perspective, the heat transfer problem cannot be solved until the flow is understood.
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Attention will thus focus on finding an accurate or at least adequate turbulence

model of oscillating flow before heat transfer results are obtained.

For complex flows, it is desirable to employ a turbulence model that requires no

a priori knowledge of the turbulent structure of the flow field. This rules out the

use of the mixing-length and one equation turbulence models (to be discussed in

chapter 2). The next class of turbulence models, in order of complexity, is the two

equation models. The most common model of this class is the k-e model. Launder

and Spalding (1972) discuss the early development of this type of turbulence model,

which employs modeled transport equations for the turbulent kinetic energy and the

dissipation rate. These two values are used to devise an "effective _ viscosity. In

their so-called standard form, the k-e models are used only for regions where the flow

is fully turbulent, with wall functions used to provide a link to the wall. To provide

more generality, the so-called low Reynolds number version of the k-e model was

devised, first by Jones and Launder (1972). This model used damping functions

on the turbulent viscosity and dissipation equation sink term. Additional terms

were also added to the kinetic energy and dissipation equations to facilitate the

apphcation of boundary conditions and also to avoid singularities in the dissipation

equation at the wall. The authors expressed the hope that further development

would provide a way to avoid such terms, which are not physically based. Many

subsequent low Reynolds number k-e models continued to use damping functions

to avoid singularities and force the turbulent viscosity to zero at the wall. Addi-

tional terms in the kinetic energy and dissipation equations are sometimes used in

combination with the damping functions.

One model which employs no additional terms is the low Reynolds number

k-e turbulence model of Lain and Bremhorst (1981). Damping functions are applied

to the turbulent viscosity and to the sink term of the dissipation equation. Another
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function is applied to the sourceterm to boost the dissipation rate near the wall

and henceforce the kinetic energyto zero. This and other low Reynolds number

modelsare reviewedby Patel, et al. (1985).

While the low Reynoldsnumber k-e models have been able to predict, at least

qualitatively, the relaminarization of steady flows subjected to favorable pressure

gradients, the opposite is true for decelerated flows. These flows are subject to sepa-

ration, which the models typically underpredict. Hanjalic and Launder (1980) trace

the problem to an insufficient dissipation rate, giving rise to a too high turbulent vis-

cosity. This provides excessive damping, often preventing separation. They added

the irrotational component of the strain rate to the source term which appears in

both the kinetic energy and dissipation equations. However, the term was preceded

by a larger coefficient in the dissipation equation. Rodi and Scheuerer (1986) used

this model and compared its performance with that of the Lam-Bremhorst model

and a one equation model. The modified model performed well when subjected

to adverse pressure gradient flows. The one equation model, with an empirically

prescribed length scale, also performed well.

Thangam and Speziale (1992) have recomputed the backward facing step prob-

lem in an effort to find the cause of errors due to the use of the k-e model. They

found that since the separation point is well defined for this problem, wall func-

tions could be used without ill effect. They were able to reduce the error in the

reattachment length to 12% by use of a sufficiently fine grid. Additionally, by in-

corporating an anisotropic eddy viscosity model, the error was reduced to only 3%.

The anisotropic treatment appears to add considerably to the complexity of the

model.

A recent low Reynolds number k-e model by Yang and Shih (1992) uses only

one damping function, applied to the the turbulent viscosity. An additional term is

15



added to the dissipation equation, as was done in the Jones and Launder model, and

the time scale in the dissipation equation is redefined to eliminate the singularity

as the wall is approached. The time scale k/e is augmented by the addition of the

time scale _ which is negligible in the fully turbulent region, butKolmogorov

has physical significance very near the wall, based on similarity arguments.

Mansour, et al. (1989) computed turbulent channel flows using direct numerical

simulation. The results were processed and used as a data base against which

to compare the performance of low Reynolds number k-e models. Budgets of the

various terms in the kinetic energy equation demonstrate that the pressure diffusion

is negligible in comparison to other terms at all locations within the boundary

layer. The profiles of kinetic energy and dissipation rate are found to be very

dependent on the form of the damping functions used for the turbulent viscosity

and the dissipation equation. A modified damping function for the dissipation

equation source term is tested and found to produce better agreement with the

direct numerical simulation data.

Alternate forms of two equation models have been proposed using other variables

from which to derive the length scale. Wilcox (1988) presented a k-w model where

the frequency of turbulent eddies w = _/k is given by a modeled transport equation.

Speziale, et al. (1990) propose a k-r model, where the turbulent time scale r is the

inverse of oJ. They argue that the transport equation for r can be solved subject to

natural, as opposed to contrived, boundary conditions, and that the limiting form

of the turbulent time scale at the wall contains only viscous terms. The resulting

profile for _" is shown to be almost linear near the wall, eliminating the numerical

stiffness found in the k-_ models.

Multiple time scale models have been proposed by Kim and Chen (1989), Chen

and Singh (1990), Kim (1990, 1991, 1992), Liou and Shih (1993) and others. These
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models propose to divide the spectrum of energy-containing eddies into two or more

(usually two) ranges. Transport equations for the kinetic energy and energy transfer

rate (dissipation) within each scale are solved to emulate the cascade of energy from

large, energy-containing eddies to the small eddies, where dissipation occurs.

A new type of k-e model based on Renormalization Group Theory is presented by

Yakhot and Smith (1992). The method uses spectral averaging to close the transport

equations for turbulent kinetic energy and dissipation. A new feature of the model

is an additional source term in the dissipation equation which is responsive to rapid

strains. The models of Kim (1992) and Yakhot and Smith (1992) will be considered

in detail in chapter 2.

1.5.3 Heat Transfer

1.5.3.1 Experiments

Liao, et al. (1985) reported a decrease in the heat transfer coefficient in turbulent

pulsating flow. Their results conflict with those of some previous workers, but the

increase or decrease seems to be dependent on frequency and amplitude parameters.

Available data covers wide ranges on the parameter map.

Dec and Keller (1989) measured the heat transfer from the wall of a pulse com-

bustor tailpipe. They observed Nusselt numbers as much as 2.5 times higher than

those corresponding to steady flow at the same bulk flow rate. The degree of en-

hancement increased linearly with pulsation frequency. Recently, Dec, et al. (1992)

reviewed the literature and observed the trends in heat transfer enhancement or

decrement due to pulsations. They found that flows with small amplitude pulsa-

tions produced relatively little effect on the heat transfer, with most researchers

reporting slight decreases. Flows with large amplitude pulsations, such that flow

reversal occurred periodically, produced enhancements by as much as a factor of 5.0
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over the corresponding steady flow heat transfer.

Smith, et al. (1992) are currently building a test rig for oscillating flow, pressure,

and heat transfer measurements. The rig is designed to cover the wide range of

operating parameters that occur in Stirling engine heaters, coolers and regenerators.

Tang and Cheng (1993) used their experimental data and multivariate statisti-

cal analysis to produce correlations for the cycle-averaged Nusselt number for heat

transfer between a pipe and oscillating air flow. The correlations give the Nusselt

number as a function of Re,,,,,_, Va and A,.. The data were taken on a test rig

consisting of a copper pipe with LID = 54, with sinusoidally varying bulk flow.

Data reduction was performed by combining thermocouple measurements of inlet

and outlet bulk temperatures with the known, uniform heat flux and the first law of

thermodynamics to produce Nu results without direct temperature gradient mea-

surements. Variations on the statistical methods are discussed, and one of three

correlations is recommended on the basis of minimum error and the ability to re-

produce the steady flow correlation in the limit as Va tends to zero. The results

cannot be extended to other fluids.

Heat transfer in oscillating flow is being studied experimentally by Simon and

Qiu (1993) at the time of this writing. They have found the Nusselt number vari-

ation over the cycle to be quite complicated. The experimental test geometry is

similar to that of the present numerical study, but subtle differences prevent direct

comparison of results. Simon and Qiu use an expansion ratio of 3.33. The ratio

used in the present numerical work is 2.0. Moreover, the thin brass outer walls of

the expansion/contraction end regions in the experiment are cooled by a jacket of

circulating, chilled water. The flush-square shoulders of the end regions are essen-

tially adiabatic. The numerical model uses adiabatic outer walls on the expansion

and contraction regions with heated shoulders. As a result, the experimental data
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show a pronouncedfront of cool fluid entering and passingdown the pipe. This is

substantially different than the numerical model, in which the end regions act as

a store of heated fluid which is drawn into the pipe after flow reversal, producing

gradual variations of temperature.

1.5.3.2 Analytic and Numerical Solutions

Faghri, et al. (1979) performed an analytic study of heat transfer in periodically

developed pulsating laminar flow without area change, and found that the heat

transfer was enhanced by the unsteady convection superposed on the steady flow

component. The degree of enhancement increased with the frequency of the pulsa-

tion. Siegel (1987) and Zhang and Kurzweg (1991) computed the axially enhanced

heat transfer in laminar oscillating channel and pipe flow, respectively. They found

that the axial heat transfer can be much larger than in heat pipes. This occurs at

relatively high oscillation rates, so the the degree of convective transport is negligi-

ble.

Yakhot, et al. (1987) modeled the heat transfer in turbulent pipe flow using

a expression for the turbulent Prandtl number Prt which depends on the ratio of

turbulent to molecular viscosity. In this way Prt is allowed to take values which

vary across the boundary layer. The expression is based on the work of Yakhot

and Orszag (1986). Good agreement was obtained for fluids with widely varying

Prandtl numbers.

Heat transfer from gas to cylinder walls is modeled by Lee (1983) and Jeong

(1991) under conditions of oscillating pressure. These simplified analytic studies

consider reciprocating machines where the heat transfer is driven by the tempera-

ture gradient produced by oscillating gas pressure in a piston-cylinder arrangement.

The use of a complex Nusselt number correlation is recommended to account for the
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phase lag between the wall heat flux and the bulk fluid temperature. This mecha-

nism is different from the heat transfer which occurs due to convection within pipes

subjected to oscillating flow. Nevertheless, the use of the complex Nusselt number

for heaters and coolers subjected to oscillating flow has been proposed. This thesis

will demonstrate that the complex Nusselt number correlation is inappropriate for

oscillating flow.

Ibrahim, et al. (1991) noted that heat transfer results differed when using the

incompressible and thermally expandable fluid assumptions. The difference between

thermally expandable and compressible models was slight.

Cho and Hyun (1990) modeled the flow and heat transfer in laminar pulsating

pipe flow. They found that the cycle-averaged friction coefficient differed little from

the steady case, but the average Nusselt number behavior was more complex. The

heat transfer was increased over the steady value for intermediate values of the

oscillation rate, but decreased for lower and higher rates.

Ibrahim, et al. (1992) modeled the flow and heat transfer in oscillating pipe

and channel flows, and over blunt bodies. They found the local friction factors and

Nusselt numbers were often an order of magnitude higher than the corresponding

steady flow values, in the vicinity of an area change. The variation of the fluid

temperature was found to lag behind the flow variation.
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Chapter 2

The Mathematical

Representation of the Problem

This chapter will provide an overview of the equations used to represent the phys-

ical problem in a well-posed mathematical form. Laminar flow is considered first.

Turbulent flow will be considered later. Gas flows typically have negligible body

forces. In the absence of gravity this condition will be satisfied exactly.

2.1 Laminar Flow

Incompressible laminar pipe flow and heat transfer is governed by the axisymmetric

Navier-Stokes and energy equations

Ou 1 0 (rv)=0
0--;+ ;_

(2.1)

c3u) (2.2)

Ov Ov Ov Op 0 Ov 1 0 rt_rp-_ + pu_ + pv-or - or + _ __ + -;_ - _-_
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Equations (2.1) through (2.4) aresolvedusingthe SIMPLER algorithm of Patan-

kar (1980). Koehler (1990)providesfurther details about the numerical procedure.

Results are presented in chapters 3 and 5 for the laminar flow and heat transfer

solutions, respectively.

2.2 Turbulent Flow

Numerical modeling of turbulent flow is a research topic in itself. The purpose of this

thesis is not to develop new turbulence modeling techniques, but rather to employ

available methods to study the behavior of oscillating flows. Certain limitations

on the degree of involvement in turbulent flow modeling must be imposed. For

the most part, currently available models are used, with consideration given to the

possibility of making modest modifications to these models only when warranted.

The frequency of turbulent fluctuations in the Stirling engine components is far

higher than the bulk flow oscillation frequency. This allows us to take advantage

of the Reynolds-averaging procedure, wherein the Navier-Stokes equations are av-

eraged over a period of time which is long relative to the turbulent fluctuation time

scale, but shorter than the bulk flow oscillation time scale. This technique provides

a set of unsteady transport equations for the turbulent flow variables.

The convection and diffusion of heat dominate in this application, so compression

work, pressure diffusion and viscous heating effects are not included in the energy

equation. The variables used below will be considered to be the mean part unless

otherwise noted.

Incompressible turbulent pipe flow is governed by the axisymmetric Navier-

Stokes and energy equations

0

cgx(uj) =0 (2.5)
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The eddy viscosity concept is used for turbulence closure. The turbulent stresses

for incompressible flow axe modeled as

-puiu# = Izt \Ox: + Oxi ] - -_pk6,# (2.8)

The normal turbulent stresses are conveniently grouped with the pressure. The

redefined pressure is stated as

2 (2.9)
P = p + 5P k

For the temperature, the turbulent stresses are modeled as

, , #,c r OT (2.10)
-pcvT u s - Prt cgxj

The turbulent Prandtl number Prt is assigned the uniform value of 0.9, which is

a typical value found in figure 12-9 of Kays and Crawford (1980) and produces

good results for steady turbulent pipe flow. This treatment simplifies the solution

of turbulent heat transfer and eliminates the need to specify a variation of Prt.

The turbulent Prandtl number does in fact rise as the wall is approached, but the

turbulent viscosity tends to zero at the same time.

Once turbulence closure is applied, the governing transport equations will be

solved in their axisymmetric forms shown below in equations (2.41) through (2.44).

Means of closing the equations will now be discussed.

2.2.1 Turbulence Modeling

2.2.1.1 The Mixing-Length Model

The eddy viscosity concept requires a means of specifying the field values of the

turbulent viscosity/_t. Numerous techniques have been proposed for this purpose,
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beginning with the mixing length theory of Prandtl (discussed in White (1974)).

This technique assumes that turbulent transport is analogous to molecular trans-

port, and the correlation is fashioned after the kinetic theory of gases. Kinetic

theory states that the gas viscosity is proportional to the product of the density,

mean free path and the acoustic velocity: /_ o¢ plv_. Prandtl sought a similar ex-

pression for the turbulent viscosity that would produce a turbulent shear expression

with the same form as the molecular shear. In a simple laminar shear flow, we have

Ou

r =/_yy (2.11)

For the turbulent stress, the desired form is thus

au
= (2.12)

oy

The turbulent viscosity was then assumed to take the form

_tt = pl 2 °_-_ (2.13)

where / is the so-called mizirtg length. The mixing length was determined empiri-

cally, and was found to depend on the distance from the wall.

The mixing length model has proven to be quite reliable in certain well-defined

flow situations such as fully-developed pipe flow. For more general flow geome-

tries, specifying t is difficult or impossible. Alternate methods of computing _tt are

required, especially when transport anti unsteady effects are present.

2.2.1.2 The One-Equation Models

The next level of complexity in turbulence modeling is to generate a transport

equation for one or more turbulence quantities and express _tt as a function of

these quantities. Depending on the number of transport equations employed, these
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techniquesare referredto asone-or two-equationsturbulence models. Prandtl (dis-

cussed in Schlichting (1979)) derived a one-equation model based on the transport

equation for turbulent kinetic energy. The turbulent kinetic energy is defined as k =

1 i
_(u 2 + v'_ + w'2). Bradshaw, et al. (discussed in Schlichting (1979)) derived a one-

equation model based on the transport equation for turbulent shear stress, which

in turn was derived from the turbulent kinetic energy equation. These transport

equations can be derived by manipulating the Navier-Stokes equations.

In Prandtl's model the turbulent viscosity is considered to be proportional to

the product of a velocity scale and a length scale

t_t cx Usc,,_Ls_,_. (2.14)

The velocity scale is taken as

vscozo k½ (2.15)

The length scale in this case is essentially the mixing length. Bradshaw's model

contained a more complicated expression for the length scale which was designed

specifically for the computation of turbulent boundary layer flow.

These models are capable of accounting for the convection of turbulent kinetic

energy, but the difficulty in specifying the length scale for general flows remains.

The length scale can be inferred from experimental data, but this reduces the scope

of the model to flows of the same type as the data. A model which requires no data

is desired.

2.2.1.3 The Two-Equation Models

A model in which the turbulence length scale is also determined from a trans-

port equation would be free of the limitations of the mixing length and of the
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one-equation models. Such models were proposed by Kolmogorov, Harlow and

Nakayama (1967), and Spalding (all discussed in Launder and Spalding (1972)).

Kolmogorov proposed a transport equation for the frequency of turbulent fluctua-

tion k½/£ as a means of specifying the length scale. The model could not be tested

in 1942 for lack of adequate computing resources. Haxlow and Nakayama used the

transport equation for the dissipation rate k}/l as the second equation. Spalding

used a transport equation for the square of the frequency of turbulent fluctuation,

so the method was similar to that of Kolmogorov. Like Harlow and Nakayama,

most subsequent use of two-equation models has focused on the use of the dissi-

pation rate to represent the length scale. This is especially convenient since _ is

required in the sink term of the kinetic energy equation. These models are referred

to as k-_ turbulence models. The transport equations for k and e (or any of the

other variables) can be derived from the Navier-Stokes equations. The procedure is

detailed in McComb (1990).

It is worth noting that the dissipation is defined as

(2.16)

The early k-e models considered only those regions of the flow where the turbulence

was isotropic. The isotropic part of the dissipation is

Ou' 
e-- v_-l-

Oxj
(2.17)

This distinction is of no consequence except near walls where damping occurs pref-

erentially, producing anisotropy. This will have some consequence when attempts

are made to extend the model to near-wall regions.

The length scale can be determined once the turbulent kinetic energy dissipation

rate e is known. The length scale is given by

k}
L,¢._¢ o¢ -- (2.18)
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Just as in Prandtl's model,the turbulent viscosity is

k s (2.19)
#t oc

£

The first successful k-e models were capable of computing the turbulence vari-

ables only in the equilibrium regions, that is, where the generation and destruction

rates of turbulence are equal. These are also referred to as the fully turbulent re-

gions. Near-wall regions which are not in equilibrium are the viscous sublayer and

the Van Driest layer (discussed in Schlichting (1979)). In the viscous sublayer, the

presence of the wall damps the turbulent fluctuations to the extent that turbulent

transport is negligible relative to laminar diffusion. In the Van Driest layer, the

turbulence is actually intermittent, but the time averaged turbulence may be ap-

proximated by an exponential decay of turbulence as the edge of the viscous sublayer

is approached. The so-called wall functions were used to bridge the viscous sub-

layer and the Van Driest layer. This technique is essentially a means of projecting

boundary conditions out to the fully turbulent region where the transport equations

are valid. Wall functions are discussed at length in Patankar and Spalding (1967).

Wall functions are not strictly applicable for low-speed, unsteady or separated

flows (Patel, et al. 1985). For oscillating flow, the velocity profile varies rapidly

with time near flow reversal. A turbulence model which depends on wall functions is

clearly unsuited for this situation. This shortcoming of the k-e model was recognized

early on, and efforts to extend the model were made by several investigators. The

general approach was to modify the existing k-e model, now referred to as the High

Reynolds Number (HRN) or Standard k-e model. The goal was to modify the model

in such a way that the governing transport equations could be integrated directly to

the wall, eliminating the need for wall functions entirely. This family of models is

referred to as the Low Reynolds Number (LRN) models. Several LRN k-e turbulence
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modelsare reviewed in Patel, et al. (1985).

Previous work on oscillating pipe flow performed by Koehler (1990) showed

that the LRN k-e model of Lam and Bremhorst (1981) was capable of predicting

the turbulent structure in oscillating flow. This model was used extensively in the

present research, so a detailed description will be given. The results obtained with

the model will be presented later in this work.

The Lam-Bremhorst model provides low Reynolds number functions (fl, f2)

that allow the dissipation equation to be integrated to the wall. This eliminates the

need to specify wall functions to bridge the viscous sublayer. The turbulent viscosity

is daznped (f_) so that it approaches zero at solid walls. The modeled turbulent

kinetic energy and dissipation rate transport equations used in this model are

_0 (pk) + = + +pv- ¢2.20)

_(pe)+ (PUie)-Oxj #+ ae/cgx_] +cl£PGk-C2£PT (2.21)

The production term G is _S, where the strain rate in v_cisymmetric coordinates
P

is given by

s=2ka=) +2 _ +2 + _+b-;= (2.22)

The turbulent viscosity is given by

kS
lZt = pf_,c_-- (2.23)

e

The following constants are adapted without change from the standard k-e model

of Launder and Spalding (1974)

c,=0.09 c1=1.44 c2=1.92 ak=l.0 a_=1.3 (2.24)
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The low Reynolds number functions ft,, fl and f2 are given by

20)f_ = (1 - ezp(-0.01631_)) 2 (1 + Rt
(2.25)

(0.055'_ 3 (2.26)

f,- 1 -4- \--_ /

f2 = 1 - ezp(-R_) (2.27)

The low Reynolds number functions approach unity in the fully turbulent region,

so the model is functionally identical to the standard k-, model in that region. Two

modest modifications, in the form of upper and lower limits to the f_ function,

were employed to enhance performance of the model in transitional cases. The

value of f_, is not allowed to take values above 1.0. This is a physically reasonable

restriction. Furthermore, when Rt is below 200, fv is not allowed above 0.5 +

0.0025Rt. These modifications are based on the work of Schmidt and Patankar

(1988), who found that when f_, is allowed to become too large during intermediate

iterations, turbulence is damped excessively and transition cannot be predicted.

For this study, a lower limit of 0.02 was also imposed on f_. The selection of

this value is somewhat arbitrary, but allowing f_ to approach zero was found to

prevent transition. A similar lower limit was imposed by Zhu and Liu (1991), who

used the Lam-Bremhorst model and found that transition is prevented when f_ is

allowed to become too small. Upon arriving at a converged solution, none of these

modifications are actually invoked. They simply help prevent the solution from

running astray at early stages in the iterative procedure.

The Lam-Bremhorst model has been used successfully in the present work. Some

deficiencies were noted, as discussed later in this thesis, and it was decided to in-

vestigate the use of alternate turbulence models. One alternate modeling procedure
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is the multiple time scale appro_h discussed by Hanjalic, et al. (1980). This pro-

cedure divides the turbulence energy spectrum into two or more ranges, and solves

modeled transport equations for the turbulence variables within each range. This

provides a means of modeling the cascade of turbulence energy from the large scale,

energy containing eddies to the smallest scales, where viscous dissipation occurs.

Convenience dictates the use of only two scales. Two-equation turbulence models

of the k-e type take no account of the cascade effect, and therefore depend more

heavily on model constants to provide agreement with experimental results.

2.2.1.4 A Multiple Time Scale Model

A two-scale LRN turbulence model was proposed by Kim (1992), and was applied

to the present research. In this model, pairs of transport equations are solved for

each range. The large scale turbulence variables are called the production range

kinetic energy (kp) and the energy transfer rate (%). The small scale variables are

the transport range kinetic energy (kt) and the dissipation rate (e), which represents

the same dissipation rate as that of the k-e models. The sum of the large and small

scale kinetic energies is equivalent to the turbulence kinetic energy of the k-e models.

The kp and ep transport equations used in this model are

0 ( Okp_ (2.28)+ ox,("+

The production term G is the same as that used in the k-e models.

The kt and e transport equations are

_xj (pujk,) ( #t'O_kt_
o (_ + m + p,, _ p_ (_.30)_(pkt) + -- Oxj ak/ (gxj]
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with

0((
The model constants are given as

=0.09 c1=0.21 c_=1.32 c3=1.84

c_=1.65 ak=0.75 ae=1.15

c4 = 0.32

The low Reynolds number functions are given by

fep = 1 - exp(- R v)

fe = 1 - 0.13exp(-Rv)

_ - ez_ (-_ _ - _2'_ - _'_ _)

A = 1-

/31 = 0.005 /_2 = 0.001 /33 = 0.00011 /_4 = 0.14

The turbulent viscosity is given by

ks.

(2.31)

cs = 1.21

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

where k = k_ + k,.

The performance of this model in oscillating flow was very similar to that of the

Lam-Bremhorst k-e model. The details are presented in chapter 4.

2.2.1.5 A Renormalization Group Model

Another turbulence model to consider for possible application to oscillating flow is

the renormalJzation group (RNG) k-e model. The derivation of this model begins
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with the exact transport equations for k and _,but closure isobtained not through

modeling of the higher order terms, but through the RNG theory, which employs

spectral averaging to obtain expressionsfor the turbulent viscosityand the source

terms of the k and e equations. RNG theory can be considered a model-building

method for many differenttypes of problems involving lack of exact closure. A

version of the RING k-_ model which is appropriate for high Reynolds number ap-

plicationsispresented by Yakhot and Smith (1992).

The RNG closure produces three source/sink terms in the e-equation. The

firsttwo have the same form as those used in the standard k-_ models; only the

coefficientsdiffer.Yakhot and Smith consider the RNG-based closurefor these two

terms to be exact. This isa strikingresult,and a tribute to earlierworkers who

had only theirintuitionto guide them in selectingthe proper form for closure.

The new term in the RNG-based e-equation has no formal closure,but Yakhot

and Smith (1992) propose a form which contains one adjustable constant. This

term isresponsiblefor rapid-strainresponse and has no counterpart in the standard

k-e models.

The RNG k-equation takes the same form as in the standard k-e models. The

RNG e-equation is:

(2.S8)
- c2p k 1 +/_7/3 k

The ratio of turbulent to mean straintime scalesT/= Sk/¢. The fixed point (lim-

iting)ratio for high Reynolds number is7}o- 4.38. The value # _ 0.012 istuned

to give good agreement with the experimental value of the von Karrnan constant.

The other coeffncientsare

c#- 0.0845 ci- 1.42 c2 = 1.68 _k = 0.719 _e = 0.719 (2.39)
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The values of c_, cl, c_, ak, ae and r/0 are all established by means of the RNG

theory. Only B is adjusted to obtain agreement with experimental results. The

turbulent viscosity is given by

ks (2.40)

The RNG k-e model was tested for steady pipe flow in the high Reynolds number

form presented above. The model produced an improvement in the radial distribu-

tion of turbulent viscosity, relative to the Lam-Bremhorst model, but the difference

was slight. The model was not applied to oscillating flow due to the limitations of

the wall function method discussed in section 2.2.1.3 above.

Modifications to create a low Reynolds number RNG k-e model are discussed

briefly by Yakhot and Orszag (1986). This author was unable to find a complete

presentation of the LRN RNG k-e model in the literature. Instead, the HRN version

discussed above was modified with the addition of the fl and f_ low Reynolds

number functions from the Lam-Bremhorst model to the first two source terms of the

e-equation. The last term was modified slightly to prevent unnatural behavior. The

function f, from Lam-Bremhorst was added to the turbulent viscosity expression.

The details of these modifications and the results will be discussed in detail in

chapter 4.

2.2.1.6 Other Turbulence Models

Turbulence is in fact a convective process. The eddy viscosity models take account

of the effect of turbulence on the mean flow by attributing the turbulent transport to

the "turbulent viscosity." In other words, the convective turbulent transport is mod-

eled as an enhanced diffusive transport. It is believed that turbulent flow behaves

according to the Navier-Stokes equations (2.1) through (2.4): the same equations
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usedto model laminar flow. The differences between solutions for laminar and tur-

bulent flows using these equations are the small spatial scales and unsteady nature

of turbulent flow. Resolving turbulent flow at the scale of the smallest structures is

possible, but only at great cost. This type of turbulent flow computation is usually

referred to as Direct Numerical Simulation (DNS). The required grid spacings and

time steps used in DNS are so small as to make routine computations of turbu-

lent flow impractical. The method has been of great utility in producing data sets

for subsequent statistical analysis, which has led to a better understanding of the

structure of turbulence. The review paper of Moin (1990) provides a discussion of

the DNS method and the related Large Eddy Simulation method.

The Reynolds-averaged Navier-Stokes equations, which are closed by the eddy

viscosity treatment in this thesis, can also be closed by solving transport equations

for the second order stress terms of equations (2.6) and (2.7). However, transport

equations for the second order terms contain third order correlations: this so-called

turbulence closure problem requires that we truncate, at some level, our effort to

derive stress transport equations. The Reynolds Stress models (RSM) are obtained

by expressing the third order correlations in terms of the mean flow field. This

also provides a natural means of accounting for the anisotropy of complex turbulent

flows. RSM models have been successful in capturing some flow phenomena that are

missed by the eddy viscosity models. Notable examples are the secondary flow in

square ducts and flows with rotation. However, the number of transport equations

to be solved is increased significantly relative to eddy viscosity models, even when

algebraic truncations are applied. There also exists the issue of whether to apply

wall functions or integrate the governing equations to the solid walls. Launder

(1989) points out that the development and testing of LRN stress models lags well

behind that of the eddy viscosity models. For these reasons, RSM models have not
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been usedfor this thesis research.

2.2.2 The Mean Flow

Once the field values of #_St (= /_ + /_t) are available, the time averaged Navier-

Stokes and energy equations can be solved. The incompressible, axisymmetric forms

of these equations are

cgu 1 0+ -_(,._,) = o
rot'"

(2.41)

ou au a_ aP o( a_)

1 0 r_SS_ + #_Ss + r_SS+;_ _ _ ;_
(2.42)

cgv Ov av cgP O( Or)

(2.43)

OT aT aT

p_ + p_ + _ =

0-_ +_ _ +?_ _ +_7_

Equations (2.41) through (2.43) are solved sequentially along with the turbulence

transport equations using the SIMPLER algorithm of Patankax (1980). Coupling

enhancement is employed to speed the convergence of the solution of the turbulence

transport equations. Coupling enhancement is a minor modification to the sequen-

tial solution procedure which solves the pair of strongly coupled k- and e-transport

equations several times before proceeding to solve the next variable in the sequence.

Since constant fluid properties are assumed, the heat equation (2.44) is solved after

a converged flow solution is obtained. Details of the solution procedure are found

in Koehler (1990).
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The oscillating flow and heat transfer problem is solved over the domain shown

in figure 2.1. Figure 2.1 also shows representative control volumes over which the

discretized equations were solved (only alternate control volume faces have been

shown). The grid is refined near the walls of the domain to resolve the steep

velocity gradients. A somewhat coarser grid is acceptable near the axis and in

regions remote from the expansion/contraction.

The inflow boundary conditions are used to create an oscillating flow. The axial

velocity component at the inflow is specified as

Ub,i,, = Ub,,_sin(wt ) (2.45)

This boundary condition is applied to the left end of the domain if sin(wt) is positive,

and to the right end when it is negative. The radial velocity component is set to

zero at the inlet. A zero axial gradient boundary condition is used at the outlet end

for all variables. The no-slip condition is applied to the velocity components at all

walls. A symmetry condition is used at the axis for all variables.
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Figure 2.1: Axisymmetric domain geometry and computational grid for pipe with

expansion/contraction ends.
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Chapter 3

The Laminar Flow Solution

In this chapter the flow solution for laminar pipe flows will be presented. Fully

developed pipe flow will be defined and some results will be shown to demonstrate

the concept of fully developed flow and to verify the performance of the computer

program. Oscillating pipe flow will be considered next. Analytic solutions are

available under certain conditions: these will be studied and compared with the

computer program results.

3.1 Fully Developed Pipe Flow

The concept of fully developed flow is used to distinguish between entrance flows

and flows which are well downstream of a pipe inlet. In engineering flows, the

entrance region may be only a small fraction of the total pipe length. In these

cases, piping systems can be designed with reasonable accuracy using pressure drop

and heat transfer correlations which are based on fully developed flow data. When

necessary, corrections may be applied later in those cases where entrance effects are

deemed significant. Incropera and DeWitt (1985) give the length of the entrance

region (the hydrodynamic development length) for laminar flow as

ld
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Beyondthis point the flow is fully developed.The flow is considered to be laminar

when the Reynolds number is less than about 2300.

The defining concept of fully developed flow is the absence of axial dependence.

All terms in the momentum equation which involve axial gradients axe thus zero.

For incompressible laminar flow without body forces, the axial momentum equation

in axisymmetric coordinates then reduces to

O- dp d (du) (3.2)ax+ 

The pressure gradient is a constant by the fully developed flow definition. Equation

(3.2) cam then be integrated twice to obtain the axial velocity profile. By applying

the no-slip boundary condition at the pipe wall and the zero-gradient condition at

the axis, the profile may be written as

-dp/dx
(3.3)

The elliptic flow solver employedThe velocity profile is parabolic in the radius.

for the present research must be able to reproduce this result at positions well

downstream of the pipe inlet.

Figure 3.1 shows the numerical solution for the fully developed velocity profile

using three different radial grids. The results were taken at the outlet of a straight

pipe with a length of 500 diameters. A good solution can be obtained with a

surprisingly coarse grid. Radial grids with 5, 10 and 20 uniform control volumes were

used to produce the profiles in figure 3.1. The solution with only 5 control volumes

is very reasonable, while the solution with 20 control volumes is indistinguishable

from the exact solution to the resolution of this figure, serving to verify the computer

program.
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3.2 Oscillating Pipe Flow

The study will now be extended to the unsteady case where the bulk flow varies

sinusoidally. The oscillating flow can be said to assume a periodically developed

state after a sufficient number of flow cycles have been completed. Fully developed

oscillating flow was first studied experimentally by Richardson and Tyler (1929).

They observed that the peak in the velocity profile moved towards the pipe wall at

sufficiently high rates of oscillation. The governing equations for this flow can be

solved analytically for positions far removed from the pipe inlet. This solution is

discussed below. The corresponding numerical results will then be compared to the

analytic solution for verification.

3.2.1 Analytic Solution

The analytic flow solution corresponding to the Richardson and Tyler study was

formulated by Sexl (1930). The separation of variables technique was used to obtain

the axial velocity time- and radial-dependence given by the real part of

g expiwt [ Jor_
u(r_ t)

iw L1- joR_ I (3.4)

where

1 dp (3.5)
Kexpiwt= p dx

Figures 3.2 through 3.4 show the velocity profiles throughout the oscillating flow

cycle given by equation (3.4) for Va = 1, 30 and 100. Notice that the Sexl solution

is pressure gradient-driven. The crankangles of figures 3.2, 3.3 and 3.4 refer to

the variation of the pressure gradient throughout the cycle. The most significant

feature of oscillating flow is the increase in the wall velocity gradient, particularly

at low flow rates. This creates an axial pressure gradient which is higher than that
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of steady flow at the same Re. The pressure gradient is also out of phase with the

bulk flow rate. The bulk flow lags the pressure gradient by 90 ° as Va becomes large.

Figure 3.5 shows this phase shift as a function of Va.

3.2.2 Numerical Solution

A numerical model used to compute fully developed pipe flow can be extended to

model unsteady flow by making the boundary flow rate vary with time. For this

section, the computer program was set up to model a pipe with sudden expansion

and contraction end regions. The domain geometry and grid are shown in figure 3.6.

Figure 3.7 compares the axial velocity profiles of the Sexl analysis and the present

study at the peak instantaneous flow rate with Va = 30, for which the velocity lags

the pressure gradient by 73 ° . The agreement between the analytic and finite volume

solutions is good, particularly near the wall, where the shear stress is computed.

The numerical solution was obtained with only 16 control volumes across the pipe

radius, and the profile used in figure 3.7 is taken at the axial middle of the pipe

section, 25 diameters from either end.

Figures 3.8 through 3.10 show the axial velocity profile at the middle of the pipe

at select crank angles during the flow cycle for Va = 1, 30 and 100. These crank

angles refer to the variation of the bulk flow rate. The velocity profiles for low

values of Va differ only slightly from the steady flow case, as shown in figure 3.8.

The profiles are nearly identical for accelerating and decelerating flow. Compare

the profiles of figure 3.8 for 58.7 and 121.3 ° crank angle, for instance. They are

virtually indistinguishable. The velocity profiles become more complicated at higher

oscillation rates, as seen in figures 3.9 and 3.10. The effect of oscillation is most

apparent near flow reversal (crankangles of 180 ° and 360°). The momentum of the

core fluid is relatively higher than that of the near-wall fluid, causing a recirculation
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of fluid within the pipe, even though the bulk flow is instantaneously zero. After

flow reversal the low-momentum fluid near the wall responds quickly to the axial

pressure gradient, and accelerates ahead of the core fluid. In figure 3.9 the axial fluid

does not take the the lead again until just after 90 ° . The peak in the velocity profile

is off the axis for most of the flow cycle when the rate of oscillation is high, as seen

in figure 3.10. In all oscillating cases, as the fluid decelerates the high-momentum

core fluid flows at a sumcient rate to cause the near-wall fluid to reverse prior to

bulk flow reversal. This is required by the incompressible continuity equation to

ensure that the mass rate is constant at all sections along the pipe. At the middle of

the pipe the next half-cycle is identical to the last, with all flow directions reversed.

The wall shear is phase shifted in time with respect to the bulk flow velocity

in oscillating flow. Figure 3.11 shows the friction coefficient as it varies through

the first half cycle at the midsection of the pipe for Va = 1, 30 and 100. Re,._o.=

is 2000 in each case. The steady flow friction coefficient at the corresponding in-

stantaneous flow rate is shown for reference. At low rates of oscillation the friction

coefficient differs little from the steady case (except near flow reversal). As the rate

of oscillation increases the friction coefficient becomes generally higher during the

accelerating portion of the cycle and lower during deceleration. During acceleration,

the low-momentum fluid near the wall responds quickly to the pressure gradient,

creating an enhanced wall velocity gradient and friction coefficient. During deceler-

ation, the opposite effect occurs. The near-wall velocity reverses prior to bulk flow

reversal, and the friction coefficient drops sharply to zero. Figure 3.11 has been pre-

pared by using the signed values of the near-wall velocity to evaluate the wall shear

stress. Though unusual, this treatment has been used to illustrate the near-wall

flow reversal which occurs prior to the bulk flow reversal at 180 ° crank angle. The

friction coefficient curves for the oscillating cases all pass through zero when the
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near-wall flow reverses.In order to obtain the more conventional, unsigned friction

coefficient, the negative portions of the curves may be simply mirrored across the

abscissa.

The flow field is far more comphcated within the end regions. Figures 3.12

through 3.14 show streamline plots in the left end region at select times during the

cycle for the cases Re,,,,x = 2000 and Va = 1, 30 and 100. Flow is to the right for

crankangles between zero and 180 ° and to the left for the remainder of the cycle. For

low values of Va the effects of oscillation are apparent during inflow only near flow

reversal (see figure 3.12 for Va = 1, 180°), when the momentum of the core fluid

causes a slight recirculation. In the second half of the flow cycle the momentum of

the flow is sufficient to cause separation, which in turn traps a large portion of fluid

within a recirculation zone. This recirculation zone is initiated during outflow and

persists through a portion of the flow cycle, depending on Va. As Va is increased,

less time is available for the growth of the recirculation zone. When the rate of

oscillation is increased, the recirculation persists over a larger portion of the flow

cycle. Figure 3.13 shows that the recirculation left over from the previous cycle

is still relatively strong within the left end region at about 30 ° . This early in the

cycle, the incoming flow is forced to move around the recirculating slug of fluid left

over from the previous cycle. Eventually this slug is sheared apart and by about

120 ° the effect of oscillation is barely noticeable. During outflow, the center of the

separation bubble remains slightly closer to the shoulder of the expansion (where it

originates) relative to the Va = 1 case. When Va is increased to 100, the effects of

oscillation are apparent throughout the flow cycle as shown in figure 3.14. During

outflow the separation bubble is closer yet to the shoulder of the expansion.
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Figure 3.1: Fully developed velocity profiles given by the numerical solution for

three grid densities.
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Figure 3.2: Velocity profiles throughout the oscillating flow cycle for Va = 1 as

given by Sexl's analytic solution.
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Chapter 4

The Turbulent Flow Solution

In this chapter the flow solution for turbulent flows will be presented. Fully devel-

oped results for pipe flow will be shown first, as a means of verifying the performance

of the turbulence models. Results for oscillating flow will then be presented. Com-

parisons with the available experimental data will also be made, with points of

agreement and discrepancies noted.

The operating conditions considered in this and following chapters are, unless

otherwise noted, representative of the SPP_E operating conditions. For SPRE, the

maximum Reynolds number (Re,,_) during the flow cycle is 12000. The oscillation

rate is given by the Valensi number (Va), which is 80 for the SPRE design point.

Three different turbulence models were tested during the course of this work.

Most of the results presented are based on the Lam-Bremhorst Low Reynolds Num-

ber (LRN) model. The two time scale model of Kim and the RNG model of Yakhot

and Smith were also tested. The mathematical bases of these turbulence models

were discussed in chapter 2.
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4.1 Fully Developed Pipe Flow

The definition of fully developed flow does not depend on whether the flow is lam-

inar or turbulent. The absence of axial variation in all the dependent variables is

sufficient to satisfy the fully developed condition. The nature of turbulent flow,

with enhanced cross stream transport, is such that fully developed conditions are

typically established within only a few diameters of the pipe inlet. Incropera and

DeWitt (1985) consider turbulent flow to be fully developed after 10 to 60 pipe

diameters.

The increased cross stream transport which occurs in turbulent flow has a dra-

matic effect on the axial velocity profile. Relative to laminar flow, the velocity

profile is flatter near the axis, and the velocity gradient at the wall is much steeper.

As a result, the pressure gradient required to drive a turbulent flow is much larger

than for laminar flow. Turbulent flows typically occur in piping systems when the

Reynolds number is greater than about 2300.

The velocity profile for turbulent flow has been the subject of a great deal of

experimental research. The measured profile can be fitted well using the so-called

law of the wall. The flow can be divided into three regions, depending on the

distance from the wall. Next to the wall, turbulent fluctuations are damped and the

molecular diffusion dominates. This is referred to as the viscous sublayer. Far away

from the wall, the effects of molecular diffusion are negligible in comparison with

turbulent transport processes. This is called the fully turbulent region. Between

these layers is a region where the flow is intermittently laminar or turbulent. Time

averaging reveals that a gradual increase in turbulent activity occurs as this region

is traversed from the viscous sublayer to the fully turbulent region. This is referred
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to asthe buffer region. For the viscoussublayer,the velocity profile is given by

u + = y+ (4.1)

where

u+ = u and y+ = yu----Z" (4.2)
Uv V

are the wall coordinates and

= _/_ (4.3)

is the friction velocity. In the fully turbulent region, the profile is fitted to the

expression

u + = A log y+ + B (4.4)

The form of this expression also suggests the name log-linear for this region. Schetz

(1984) recommends A = 5.6 and B = 4.9 as the best fit through the available

experimental data in the log-linear region. Equations (4.1) and (4.4) make up the

law of the wall.

The performance of the computer model can be tested against the law of the

wall profile. Figure 4.1 compares the computed velocity profile (in symbols) and

the law of the wall (dashed lines). The agreement is good. The computed results

are based on fully developed turbulent flow using the Lam-Bremhorst turbulence

model at Re = 50,000. The grid is composed of 42 nonuniform grid points across

the pipe radius, with near-wall grid points clustered tightly together. As is typical,

the pipe flow profile shows a slight "wake" at the axis. The low Reynolds number

functions of the Lam-Bremhorst turbulence model do a good job of fairing in the

viscous sublayer and the log-linear regions.

Figure 4.2 compares the same predicted fully developed axial velocity profile

with the experimental data of Laufer (1953). Alternate numerical data points are
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plotted for clarity. The numerical curve is normalized against it's own peak value.

The experimental data is normalized to match the bulk velocity of the numerical

profile. The agreement is fair. The numerical model produces a somewhat flatter

profile near the axis, and thus overpredicts the velocity closer to (but not at) the

wall. This is a common deficiency of the k-e model, due to a slightly overpredicted

turbulent viscosity near the axis. The numerical model nevertheless produces the

correct wall shear.

4.2 Oscillating Pipe Flow

As was done in chapter 3, the numerical model can be extended to oscillating flow by

imposing a time-dependent velocity boundary condition. Oscillating flow in straight

pipes was studied numerically by Koehler (1990). This thesis presents the results

obtained when the model is extended to the case where expansion and contraction

regions are applied to the ends of the pipe.

The motivation for modeling oscillating pipe flow with enlarged end regions is to

observe what effect the end regions have on the flow within the pipe itself. Koehler

specified a uniform axial inlet velocity for his numerical model. The boundary

conditions for the turbulence quantities at the inlet to the straight pipe were derived.

These boundary conditions were based on the assumption of isotropic turbulence,

for which

3 (TI b,i,_) (4.5)- U 2

is the definition of the turbulence intensity TI. The available data for fully devel-

oped turbulent pipe flow was then manipulated to produce an expression for the

dissipation rate

1 k,_,, (4.6)
_" - TI Re_ I;
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This functional dependence on Re follows from the data, but the use of TI is

somewhat arbitrary. This treatment requires that the flow be allowed several pipe

diameters in which to develop before the results can be considered representative of

pipe flow. The same turbulence boundary conditions axe used in the present study,

but the end regions provide a space in which the turbulence can adjust prior to

reaching the pipe itself. Interesting flow features are also allowed to develop in the

end regions. For instance, flow separation occurs when high momentum fluid flows

into an expansion. Upon flow reversal, these features are expected to be swept back

into the pipe, and their effect on the pipe flow can be observed.

The results for turbulent flow depend strongly on the values of Re and Va. For

moderate values of these parameters, the flow is not turbulent throughout the entire

cycle. Especially for low values of Va, the flow may be laminar for a considerable

time near flow reversal, when the bulk flow rate is low. As Va increases, turbulent

effects persist over a larger portion of the flow cycle. In this and following chapters

we will refer to "turbulent oscillating flow" while recognizing that laminar and

transitional flow will be present during part of the flow cycle.

4.2.1 Results for the Sudden Expansion/Contraction Ends

In this section the results for the pipe fitted with sudden expansion/contraction

ends are considered. The Lam-Bremhorst turbulence model is used. The results

are compared with the available experimental data.

Figures 4.3 through 4.6 show the axial velocity profiles at the pipe midlength

at select times during the flow cycle for Va = 40, 60, 80 and 100. Re,_x in each

case is 12000. ['or moderate values of Va, the effect of oscillation is apparent only

near bulk flow reversal. In figure 4.3 the circulation of flow at bulk flow reversal

is small, but not negligible. Notice, however, that the profiles for crank angles of
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58.7 ° and 121.3 ° are nearly indistinguishable. When Va is raised, the profiles for

accelerating flow begin to differ from those of decelerating flow, particularly near

the wall. Figure 4.6 shows that the profiles for 58.7 ° and 121.3 o are different. The

profile for 58.7 ° is somewhat laminar-like. The wall gradient is lower than that of

the 121.3 ° profile. For Va = 100, the wall-near fluid at 58.7 ° has not yet made the

full transition to turbulence. The profile at 121.3 ° shows a steeper wall gradient

since the flow is turbulent at this point in the cycle. This effect of transition is not

seen in the laminar case, and causes the turbulent flow to be more complicated than

the laminar flow.

As was mentioned in chapter 2, the law of the wall is not generally applicable

for oscillating flow. However, it is nonetheless instructive to observe the predicted

axial velocity profile in wall coordinates. Figures 4.7 through 4.10 show the velocity

profile in wall coordinates for Va = 40, 60, 80 and 100. The profiles are measured

at 90 ° crank angle at the axial midlength of the pipe. The rate of change of the

pressure gradient is modest at 90 ° crank angle and the end effects are insignificant

30 pipe diameters downstream of the inlet. Under these conditions, the velocity

profile is expected to be at least qualitatively similar to the universal profile, and

this is born out by the figures. Figure 4.9 also shows the experimental data of

Friedman (1991) for the SPRE operating condition. These data differ from the

universal profile, but the differences can be explained as an unsteady effect. Once

transition has occurred, the velocity profile near the wall is expected to be steeper

than for steady flow and the flow near the pipe axis is slightly slower. Figure 4.9

shows that the experimental velocities are indeed slower near the axis. The Lam-

Bremhorst turbulence model apparently causes the velocity to follow the universal

profile too closely, and thereby understates the unsteady effect.

The variation of the friction coefficient over the first half of the flow cycle is
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shownin figures 4.11through 4.14. These results are taken at the pipe midlength.

The friction coefficientis definedas

r,_ (4.7)cl-- 1 2
_pU_

This definition of c1 is undefined as the bulk flow rate approaches zero, in which

case the definition would have no utility.

The Blasius friction coefficient correlation for steady flow at the corresponding

instantaneous Reynolds number is also plotted on each figure for reference. Schlicht-

ing (1979) gives this correlation as

c! = 0.0791Re -°'2s (4.8)

The modest Reynolds number dependence produces a rather flat curve over the

cycle.

Figure 4.11 shows that the friction coefficient starts high and drops quickly

during the early part of the flow cycle. This is indicative of the laminar nature

of the flow at this point in the cycle. At about 25 ° crank angle the predicted

friction coefficient drops below the corresponding steady flow value. The flow is

still laminar-like at this point. At 35 ° the friction coefficient starts to rise up and

meets the steady flow curve. This behavior is expected at low values of Va, for

which the flow can be characterized as quasi-steady. As Va increases, the laminar

behavior of the flow persists farther into the cycle. Figures 4.12, 4.13 and 4.14

show that transition is predicted at roughly 40 °, 45 ° and 60 °, respectively. In each

case, the flow near the wall reverses prior to bulk flow reversal, causing the friction

coefficient to drop sharply to zero before rising again and taking a laminar-like

value.

The experimental friction coefficient for the SPRE operating condition based

on Friedman's data is also shown on figure 4.13. Up to about 40 ° the agreement
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betweenthe predicted and measured friction coefficients is excellent. However, the

experimental data continue to show laminar-like behavior up to nearly 90 °. The

experimental data were measured with a smooth nozzle entrance to the pipe, while

the numerical results are based on a sudden contraction pipe entrance. Friedman

(1991) states that the observed transition at this axial location coincides with the

arrival of a slug of turbulent flow which was generated within the nozzle at the end

of the previous flow cycle. This slug is then convected back into the pipe during

the next cycle. This turbulent fluid may be responsible for the fact that the data

for crank angles of 90 ° through 130 ° axe above both the predicted and steady flow

results. The traveling slug issue was investigated further by building a nozzle-ended

numerical model and subjecting it to the SPRE operating condition. This model

and the corresponding results will be discussed below.

A turbulent slug generated within the end region during outflow would not be

expected to survive the intense shearing action which occurs at a sudden contraction

after flow reversal. Apart from the traveling slug issue, the experimental data of

figure 4.13 show that the turbulence within the pipe is damped by the acceleration

of the fluid up to at least 80 ° crank angle. The numerical model predicts transition

at about 45 ° crank angle, at which time the bulk flow Re is about 8500. The bulk

flow Re passes 2300 at about 11 ° crank angle, showing that the model does reflect

at least some degree of damping due to acceleration. It would be desirable to find a

means of modifying the model to account for the experimentally observed degree of

damping. Koehler (1990) proposed a modification to the dissipation rate transport

equation (2.21) to account for the effects of acceleration and deceleration. The

modification consists of adding an additional production term which is scaled by

the instantaneous value of acceleration. The proposed term would take the form

(4.9)
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where

/z 0 (4.10)
K.-  (Ub)P b,nt_

and Ub is given by Ub,=_sin(wt). The dissipation rate transport equation would

then become

+ =

(4.11)

The constant c3 would be fitted against experimental data. The new term would

thus augment the existing production term G.

The sinusoidal variation of the bulk velocity in the present research will produce

an acceleration source term which is proportional to cos(wf). Curve A of figure 4.15

shows the variation of cos(wt) over the flow cycle. At the beginning of the cycle

the flow is accelerating. The new source term would provide a positive contribution

to the dissipation, resulting in the desired damping of turbulence. During the

second quarter-cycle the contribution would change signs, amplifying turbulence

during deceleration. However, the new source term contribution would be physically

unrealistic during the second half cycle. The fluid itself is unaware of the coordinate

direction. Regardless of the direction of flow, the fluid will sense "acceleration"

whenever the magnitude of the axial velocity is increasing. In other words, the

new dissipation rate source term should be positive in the third quarter-cycle and

negative in the fourth. Curve B of figure 4.15 has the correct sign for the last half

cycle.

The proposed modification to the dissipation rate equation given by equation

(4.10) is physically unrealistic for oscillating flow. The combination of the behavior

of curve A of figure 4.15 during the first half cycle and curve B during the second
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would provide the correct sign. However, this treatment results in stepwise dis-

continuities in the source term contribution at each flow reversal. This is in itself

physically unrealistic and would require further (ad hoc) modifications to correct.

The additional modifications would create yet another source of uncertainty in the

results. It seems that there is no straightforward means of applying an acceleration

modification to the dissipation rate equation in the case of oscillating flow. This

treatment will no longer be considered for the present research.

The streamlines within the left end region are shown in figures 4.16 through

4.19 for Va = 40, 60, 80 and 100. These figures show that pronounced unsteady

effects are present near flow reversal in each case, and the unsteady effect persists

over a larger fraction of the flow cycle as Va increases. The recirculation bubble

within the end region during outflow is initiated shortly after 180 ° . The subplot for

210 ° crank angle in figures 4.16 through 4.19 clearly shows the effect of Va. As Va

increases, less time is available for growth of the recirculation bubble. The bubble

continues to grow as the flow cycle continues.

4.2.2 Results for Smooth Nozzle Ends

In this section we consider the results obtained from the smooth nozzle-ended model.

The objective of this numerical test is to determine whether the Lam-Bremhorst

turbulence model can predict the passage of a turbulent slug of fluid entering the

pipe from the nozzle region. The smooth nozzle-ended pipe is not representative of

the SPRE design, but was employed during the early stages of experimental oscil-

lating flow research at the University of Minnesota. Seume (1988) used the smooth

nozzles in an attempt to prevent large-scale separation at the inlet to the pipe and

thereby concentrate attention on the fully developed features of oscillating flow.

This approach was successful except for a small portion of the cycle immediately
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following flow reversal. The divergence angle of the nozzle was too large to prevent

separation during outflow. A recirculating bubble of fluid was trapped within the

nozzle. Upon reversal, this relatively turbulent fluid was convected back into the

pipe. The fluid entering the test section behind the slug had a low level of turbu-

lence, since it had passed through a heat exchanger core which acted like a fine-scale

flow straightener. This heat exchanger was intended to be used during later heat

transfer experiments, and was included in the flow tests in order to ensure that

consistent end conditions were employed during both the flow and heat transfer

phases of the experiments. As the turbulent slug was swept through the pipe the

instrumentation sensed the arrival at each probe location as transition. Depending

on the probe location, the fluid would in some cases remain turbulent after the slug

had passed, or would revert to laminar flow, depending on local conditions.

The geometry of the SPRE design will employ different end conditions. One

end of the heater (and cooler) will be connected to a large plenum, with the other

end close-coupled to the regenerator matrix. The plenum ends will behave as sud-

den expansion/contractions. Fluid entering from the plenum will experience intense

acceleration and shearing. This will break up any large scale flow structures, ren-

dering the flow in the pipe relatively insensitive to the flow structure in the plenum

region. Fluid entering the pipes from the regenerator will have a nearly uniform

axial velocity component, but the turbulence structure will be difficult to specify.

The traveling slug problem, though not directly applicable to the SPB.E design,

provides an opportunity to test the turbulence model employed for closure of the

Navier-Stokes equations. Figure 4.20 shows the grid used to model the left nozzle

end region. The length-to-diameter ratio of the pipe is 60, matching the Seume

experiment. Each nozzle is 4 pipe diameters in length. The nozzle inlet diameter is

3.33 times that of the pipe. The nozzle contour is formed by two cubic functions.
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The nozzle inlet boundary flow is used to create the flow oscillation.

Figure 4.21 shows the friction coefficient over the first half of the flow cycle,

plotted along with the experimental data which was also plotted in figure 4.13, at

the axial middle of the pipe. The results for the nozzle-ended model are essentially

identical to those obtained with the expansion/contraction model. There is no

evidence that a turbulent slug is convected into the pipe after flow reversal, or if it

were it has dissipated before reaching the axial middle of the pipe.

4.2.2.1 Shortcomings of the Lam-Bremhorst Model

The results presented above point out two shortcomings of the Lam-Bremhorst tur-

bulence model when applied to oscillating flow. First, the model fails to account for

the full degree of damping which occurs as the flow is accelerated. Figure 4.13 com-

pared the predicted and measured friction coefficients and showed that the model

predicted transition too early. For the SPRE operating condition, the flow in the

pipe passes through Re = 2300 at about 11 ° crank angle. The Lam-Bremhorst tur-

bulence model was able to delay transition to about 45 ° , but this is still premature

relative to the experimental results, for which transition did not occur until after

80 ° crank angle. The second shortcoming is the inability of the model to predict

the passage of a turbulent slug of fluid. This feature was demonstrated by the

experimental results shown in figure 4.21.

At this stage in the research the two time scale model of Kim (1992) was con-

sidered to determine whether it would improve the predictions of the acceleration

damping effect or the traveling turbulent slug. The details of this model where

discussed in chapter 2.
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4.2.3 Results of the Kim Model

In thissectionthe resultsfor the Kim model are compared with those of the Lam-

Bremhorst model and the experimental data of Friedman (1991). Some general

comparisons of the predictionsof flow and turbulence quantities are firstmade.

The transitionto turbulence and the accelerationdamping behavior of the models

are compared next. Lastly,the abilityof the model to predict a travelingslug of

fluidingested from the nozzle end afterflow reversalisstudied.

Figures 4.22 through 4.26 compare the resultsof the Lam-Bremhorst and Kim

models at peak flow for the Re.,_a= - 12000, Va - 80 case. The sudden expan-

sion/contraction model results are used, with data taken at the axial middle of'the

pipe. Figure 4.22 shows the axial velocity profiles. The K.im result is not as fiat

as that of the Lam-Bremhorst model, but the wall gradients appear to be similar.

The Kim velocity profile is slightly better than the Lam-Bremhorst result in that

the velocity profile is not excessively fiat (compare with figure 4.2).

Figure 4.23 shows the normalized turbulent viscosity profiles for the

Lam-Bremhorst and Kim models. The Kim result is significantly higher except

near the wall, where both models show a decay to zero. The Kim result is worse

than Lam-Bremhorst. According to Schlichting (1979), the turbulent viscosity is

expected to fall off near the axis, where turbulence production is low. Neither model

produces a good distribution of turbulent viscosity near the axis.

Figure 4.24 shows the normalized turbulent kinetic energy profiles for the same

condition. The Kim model predicts a substantially higher level at all locations

except the wall. While the boundary condition forces both models to zero at the

wall, the Kim model produces a far steeper gradient near the wall and a much larger

overshoot.
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Figure 4.25 showsthe normalizeddissipation rate profiles. In this casethe Kim

model producessignificantly highervaluesat all radial positions.

Figure 4.26 showsthe axial velocity profiles of the Lam-Bremhorst and Kim

models plotted in wall coordinates. The experimental data of Friedman is also

shown,alongwith the universalprofile in dashedline. The three data setsrepresent

the velocity profile at the axial middle of the pipe at the peak flow rate. The Lam-

Bremhorst results follow the universalprofile fairly closely. (The universal profile

is based on steady flow.) Except at the axis, the Kim results do a good job of

following the unsteadyexperimentaldata, at least for this instant in time.

Figure 4.27showsthe variation of the friction coefficient over the first half cycle

for the Lam-Bremhorst and Kim models. The experimental results of Friedman

and the steadyflow resultsat the correspondingbulk flow rate are alsoshown. The

Kim results follow the laminar-like behavior during the first 30° crank angle, but

then becometurbulent well beforethe experimental data and about 10° before the

Lam-Bremhorst results. Moreover,the Kim results are significantly higher than all

others through most of the remainder of the half cycle. The friction coefficientat

90° (peak flow) is very closeto the experimental result, which explains the good

velocity profile agreementshown by the Kim model in figure 4.26. Recall that

the experimental velocity profile at 90° crank angle (figure 4.26) was influenced

by the arrival of the turbulent slug. No traveling slug is expected when using the

expansion/contraction geometry,so the close agreementbetween the Kim model

and the experimentalvelocity profile results in figure 4.26 is fortuitous.

The presenceof a traveling slugbeing carried into the pipe after flow reversalis

inferred from experimentalobservationswithin the pipe section itself. Turbulence

levels are seento rise dramatically at a time consistent with the arrival of a slug

traveling through the pipe at the bulk fluid velocity. No detailed experimental data
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is availableconcerningthe structure of turbulence generatedwithin the nozzle dur-

ing outflow. On the other hand, the numerical models provide detailed information

about the distribution of all variables within the nozzle. This information can be

studied to observe the ability of the model to predict the traveling slug effect. The

Kim model was used to produce figures 4.28 through 4.33, which show surface plots

of the turbulent viscosity within the right-end nozzle for several steps in time, be-

ginning at flow reversal. In these figures, the pipe ends at an axial length of 64. The

nozzle is represented by the area to the right. In figure 4.28, the bulk flow has come

to rest. The turbulence within the nozzle results from separation which occurred

during the previous quarter-cycle, for which flow was to the right. As the cycle

continues, this turbulence, characterized in these figures by the turbulent viscosity,

is expected to be convected back into the pipe (to the left). Figure 4.29 shows the

turbulent viscosity in the nozzle at 2.5 ° after flow reversal. The bulk flow is moving

into the pipe at Re = 518. The levels of turbulent viscosity have decayed slightly,

but there is no evidence that the turbulent structure has been convected from the

nozzle into the pipe. Figures 4.30 through 4.33 show the turbulent viscosity at ap-

proximately 5.7 ° 9.2 ° 13.0 ° and 17.1 ° crank angle after flow reversal, for which the

instantaneous Reynolds numbers are 1187, 1926, 2709 and 3519, respectively. The

turbulence in these figures is seen to decay in place, instead of being swept into the

pipe. Similar flow visualizations based on the Lam-Bremhorst model (not shown)

produced similar results. Both the Lam-Bremhorst and Kim models fail to ingest

the turbulent slug after flow reversal.

A further test was performed to determine whether the Kim model can predict

the passage of a turbulent slug. The flow behind a turbulence generating grid was

considered. If the turbulence level at the plane of the grid is increased and then

decreased in a stepwise fashion, the turbulence within the fluid passing downstream
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of the grid should exhibit a slug flow behavior. This type of flow is spatially one-

dimensional. Near-wall effects need not be modeled and there is no turbulence

generation, so the results are a test of the convection and rate of dissipation of the

turbulence. This test was also performed using the k-¢ model for comparison.

Figure 4.34 shows the trajectory of the normalized turbulent kinetic energy

downstream of a turbulence generating grid as produced by the Kim model. The

length and time scales are also normalized using k_/_ and k/_, respectively. The

inlet turbulence intensity is 2% initially, and this steady flow result is represented

by the r = 0.0 curve. The inlet turbulence is then increased to 10% for the next

five time steps before returning to the initial level. A slug of highly turbulent fluid

is seen passing to the right after the inlet turbulence intensity is reduced, but this

turbulence quickly dissipates while being convected downstream.

Figure 4.35 shows the same results for the k-_ model. For this model the turbu-

lent slug persists slightly longer than in the case of the Kim model. For instance,

the Kim model predicts a peak value of the normalized turbulent kinetic energy of

about .0024 when r = 2.48, the first time step after the inlet turbulence intensity

is reduced. At the same instant, the standard k-e model predicts a peak turbulent

kinetic energy of about .0027. It appears that two time scale model does not provide

any possibility of improvement over the k-_ model with respect to the convection of

a slug of turbulent fluid.

The RNG-based k-_ turbulence model was tested next for application to turbu-

lent and transitional oscillating flow. The details of the High Reynolds Number

(HRN) version of this model were discussed in chapter 2.
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4.2.4 Results of the RNG Model

The RNG-based k-e model of Yakhot and Smith (1992) has been tested to determine

its suitability for the prediction of oscillating flow. The model was first tested

on steady pipe flow using the HRN formulation. This model was not applied to

oscillating flow due to the limitations of the wall function boundary conditions

which were discussed in chapter 2. Since the details of the LRN form of the RNG

model are not available in the literature, an attempt was made to formulate a low-

Reynolds number RNG model by following the treatment of the Lam-Bremhorst

model. The HRN RNG model was modified by applying the Lam-Bremhorst low

Reynolds number functions to the turbulent viscosity equation (f_) and the first

two source/sink terms of the dissipation equation (fl and f2). These functions are

given by equations (2.25) through (2.27). The turbulent viscosity is then given by

k 2
#t = pf.c.-- (4.12)

The dissipation equation becomes

+cl/lpG_ - c2/2p_ 1+ _3 _ (4.13)

This new model was first applied to steady pipe flow for testing. The model

tended to produce a gradual decay of turbulence, ultimately converging to a lan'dnar-

like solution. Since no damping function was applied to the last term, it was sus-

pected to be the cause of the poor performance. This term has the ability to change

sign, depending on the value of _1, so further investigation was in order. For the

purposes of this discussion, the last term will be referred to as the RNG coefficient

¢2
multiplying _-. The RNG coefficient is then

R= c"_3 (1- _) (4.14)
1 + _3
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To better understand the behavior of this term, its variation with 7/ was first

plotted as shown in figure 4.36. The RNG coefficient is negative for 71less than 4.38

(r/0). This produces amplification of turbulence. For 77greater than 4.38, the RNG

coefficient causes damping of turbulence. To determine the variation of R and r/

across the pipe section, their values were processed from the results of a converged

data set using the Lam-Bremhorst model. The data set is based on steady pipe

flow at Re = 12000, and the results are taken at the end of a 100 diameter long

pipe. Figure 4.37 shows the profile of r/. The wall boundary condition for k forces

r/ to zero at the wall. The modest turbulence activity near the axis produces a

small value of 7/in that area. The value of r/is highest in the turbulence-generation

region. Figure 4.38 shows the profile of R across the pipe section. Clearly, R will

tend to enhance turbulence over the bulk of the pipe cross section. However, near

the wall the effect of R is to cause significant damping. The magnitude of R in

this region is such that it dominates the dissipation equation, forcing the solution

toward a laminar-like result. This behavior must be modified in order to produce a

plausible LRN RNG model.

Several attempts were made to apply a damping function such as f2 to R, but

these efforts did not produce a well-behaved model. Finally, it was found that if the

value of 7? were restricted, R would be bounded and the model would produce the

desired level of turbulence. The treatment adopted here is to restrict r/to values less

than or equal to 4.0. This prevents R from contributing any turbulence damping

behavior. While admittedly ad hoc, the model does produce good results for this

steady pipe flow application. These results will now be discussed.

Figure 4.39 compares the axial velocity profiles of the LRN RNG and Lam-

Bremhorst models for steady pipe flow at Re = 12000. The RNG model produces

a slightly higher peak and a rounder shoulder. The Lam-Bremhorst model is flatter
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due to a somewhat overstated turbulent viscosity near the axis. The turbulent

viscosity is compared in figure 4.40 for the same operating conditions. The reduction

in turbulent viscosity at the axis for the RNG model is caused by the coefficient R

in the dissipation equation. Near the axis, this coefficient acts as a sink term in the

dissipation equation. Since R goes to zero at the axis, dissipation is boosted. This is

an improvement over the Lam-Bremhorst model. Since turbulence generation goes

to zero at the axis, turbulent viscosity is expected to drop, and this is reflected in the

data of Reichardt (1951). Figure 4.41 compares the kinetic energy profiles. These

are essentially identical near the axis, with the Lam-Bremhorst model producing

a slightly higher peak. Near the wall, however, the RNG model produces slightly

higher values. Figure 4.42 shows the dissipation profiles. Once again the Lam-

Bremhorst model produces a slightly higher peak, but the RNG model is somewhat

higher near the axis, which produces the desired drop in turbulent viscosity. Figure

4.43 compares the velocity profiles in wall coordinates. The agreement between the

models is good, with the RNG model producing a slightly higher "wake n near the

axis.

Figures 4.44 through 4.47 compare the axial velocity, turbulent viscosity, kinetic

energy and dissipation profiles of the LRN RNG and Lam-Bremhorst models for

steady pipe flow at Re = 100000. The axial velocity profile of the Lam-Bremhorst

model is even flatter relative to the LRN RNG model as compared to the Re =

12000 case as shown in figure 4.44. This is due to the increasing spread between the

turbulent viscosities of the two models. For Re = 12000 the Lam-Bremhorst model

produces a turbulent viscosity at the axis which is about 35% higher than the LRN

RNG model. At Re = 100000, the spread is about 39%, as shown in figure 4.45.

The kinetic energy profiles of the two models are quite similar at Re = 100000, as

shown in figure 4.46. The LRN RNG model produces slightly smaller values near
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the axis and the peak, and somewhat larger values very close to the wall, but the

agreement is better than in the Re = 12000 case. For Re = 100000 the peak in the

dissipation is very high and close to the wall, as shown in figure 4.47, from which

it is difficult to distinguish between the LRN RNG and Lam-Bremhorst models.

Figure 4.48 shows the comparison in the vicinity of the wall. Once again, the Lam-

Bremhorst model produces a higher peak. The wall value of the dissipation is also

higher in the Lam-Bremhorst model. Figure 4.40 compares the velocity profiles in

wall coordinates. For Re = 100000 both models follow the universal profile closely.

Again, the RNG model produces a slightly higher "wake" near the axis.

The LRN RNG model presented here does a good job reproducing the details of

steady pipe flow. It remains to be seen whether the model offers any improvement

in the prediction of oscillating pipe flow. As a test, the model was applied to a 100

diameter long straight pipe subjected to oscillating flow with Re,_ = 12000 and

Va = 80, the SPRE operating conditions. The model was reasonably well behaved,

but produced results which are strikingly similar to those of the Lam-Bremhorst

model. This may have been anticipated, given that the LRN form of the RNG model

borrowed heavily from the Lam-Bremhorst model. Figure 4.50 shows the friction

coefficient at the axial middle of the pipe over the first half cycle. The experimental

and steady flow results are shown for reference. The LRN RNG results are virtually

identical to those of the Lam-Bremhorst model (see figure 4.27).

The LRN RNG k-e model tested above is not representative of the LRN version

proposed by Yakhot and Orszag (1986). That model employed differential relations

for the turbulent viscosity in the near-wall region. Details of the application of the

model have not been published. Testing of the LRN RNG model of Yakhot and

Orszag will have to wait until such time as this model becomes available.
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Figure 4.20: Grid for nozzle-ended model.
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Figure 4.28: Turbulent viscosity within smooth nozzle end at flow reversal.
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Figure 4.29: Turbulent viscositywithin smooth nozzle end 2.5° afterflow reversal.
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Figure 4.30: Turbulent viscosity within smooth nozzle end 5.7 ° after flow reversal.
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Figure 4.31: Turbulent viscosity within smooth nozzle end 9.2 ° after flow reversal.
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Figure 4.32: Turbulent viscositywithin smooth nozzle end 13.0 ° after flow reversal.
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Figure 4.33: Turbulent viscosity within smooth nozzle end 17.1 ° after flow reversal.
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Chapter 5

The Laminar Heat Transfer

Solution

In this chapter the heat transfer results for laminar pipe flow will be presented.

Fully developed results will be considered first as a means of verifying the computer

model. The unsteady case will then be studied to determine the effect of flow

oscillation on the heat transfer.

5.1 Fully Developed Laminar Heat Transfer

Fully developed laminar flow was considered in Chapter 3. In the case of constant

property flow, the corresponding heat transfer problem can be solved conveniently

once the flow solution is available. Two types of boundary conditions are commonly

encountered in analytical heat transfer solutions: the fixed wall temperature and

the prescribed wall flux. These limiting cases can be approximated in the laboratory

by exposing the outer pipe wall to condensing steam or by wrapping the pipe with

resistant heating wire. Most engineering systems may be approximated using one or

the other method of heating, and in practice most situations lie somewhere between

these limiting cases.

The fluid temperature will necessarily change in the axial direction when heat
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transfer occurs between the pipe wall and the fluid. However, a thermally fully

developed situation is said to occur when the following condition is satisfied

O [T_,(x)- r(r,x)] (5.1)
0--;t ] =0

This condition may occur when the boundary condition is either a fixed wall tem-

perature or a prescribed wall flux. Boundary conditions for thermally developed

flows are described in detail in Sparrow and Patankar (1977).

The thermally fully developed laminar heat transfer problem can be solved an-

alytically to determine the heat flow from the pipe inner wall to the fluid. When

the local Nusselt number is defined as

Nu = --hD (5.2)
k

Incropera and DeWitt (1985) give the numerical values of

Nu=3.66 (5.3)

for the fixed wall temperature boundary condition, and

Nu = 4.36 (5.4)

for the prescribed flux boundary condition.

The computer model was tested for heat transfer in laminar pipe flow to en-

sure that these values were produced. Figures 5.1 and 5.2 show the evolution of

the Nusselt numbers for the fixed wall temperature and prescribed flux boundary

conditions, respectively, for developing flow. Each Nusselt number has been nor-

malized by the corresponding thermally fully developed value given above. The

flow is uniform across the inlet plane, so both the flow and heat transfer solutions

require some distance before becoming fully developed. Figures 5.1 and 5.2 show

that the predicted Nusselt numbers do approach the analytical values after a cer-

tain development length. The hydrodynamic development length given by equation
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(3.1)when Re -- 2000 is I00 pipe diameters. The heat transfersolution should be-

come thermally fullydeveloped at some point afterthe flow solution.The computer

predicted Nusselt numbers are very nearly fullydeveloped after 100 pipe diameters,

and are essentiallyequal to the fullydeveloped values after 200 diameters. This

serves to verifythe heat transferportion of the computer program.

5.2 Heat Transfer in Laminar Oscillating Pipe
Flow

The fluid flow solution for laminar oscillating pipe flow was considered in chapter

3. In this section we consider the corresponding heat transfer solution. The heat

transfer solution may be obtained by solving the energy equation (2.4) using the

velocity field as an input.

The computer program was configured to model the heat transfer by setting

the pipe wall and expansion/contraction shoulders to a fixed hot temperature. The

outer diameter of the expansion/contraction regions is adiabatic. For the laminar

runs the pipe was 50 diameters long and the expansion/contraction regions were

each 5 diameters long. In the SPRE Stirling engine the heater pipe outer walls

are bathed in a liquid metal reactor coolant. The metal pipe walls will have a

thermal conductivity much higher than the working fluid. For these reasons the

fixed temperature wall boundary condition was selected as a good approximation.

The inlet fluid was assigned a cool temperature. Heat was thus transferred from

the pipe and shoulder walls to the fluid, much as would be expected in a shell and

tube heat exchanger.

The dimensionless temperature profiles at the axial middle of the pipe at select

crank angles during the first half of the flow cycle are shown in figures 5.3 through

5.5 for Va - 1, 30 and 100. Figure 5.3 shows that the unsteady effect is slight for
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this low oscillation rate. The temperatures at the middle of the pipe are highest

when the flow rate is low and the residence time of the fluid within the pipe is

high. As the flow increases the temperatures drop. At 90 ° crank angle the fluid

near the axis has had little opportunity to heat up before reaching the middle of

the pipe. During the second quarter of the flow cycle the fluid decelerates and the

temperatures rise once again. The effect of oscillation is apparent in the difference

in temperature levels during accelerating and decelerating phases of the flow cycle.

Early in the first quarter of the flow cycle the fluid has been heated significantly

during the previous flow reversal. In the next quarter cycle the fluid is cooler since

the pipe has been flushed with cool incoming fluid flowing at relatively high speed

through the pipe. If the oscillation rate were very low (Va << 1) the profiles for

crank angles of 30.0 ° and 150 ° would be identical, as would the profiles for 58.7 °

and 121.3t

The unsteady effects become more comphcated when Va is increased to 30, as

shown in figure 5.4. For this higher rate of oscillation the fluid near the middle of

the pipe never reaches the ends during a complete flow cycle. In other words, cool

fluid is never swept entirely through the pipe. The temperatures near the middle

of the pipe are thus noticeably higher than in the Va = 1 case. The variation of

temperature throughout the cycle is so complex that a lucid commentary is difBcult

to provide. This is caused by the comphcated velocity profiles seen previously in

figure 3.9. The variation of the velocity near the wall is ahead of, and near the axis

is behind, that of the bulk flow.

The temperature profiles become very flat when Va is raised to 100, as shown

in figure 5.5. The fluid particles at the axial middle of the pipe travel only a small

axial distance during the course of a flow cycle.

The temperature contours within the pipe at select times during the first half
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cycle are shown in figures 5.6 through 5.8 for Va = 1, 30 and 100. The radial

dimension of each subplot has been stretched by a factor of 8 for clarity. The top of

each subplot represents the pipe wall, where heat is introduced, while the bottom

represents the pipe axis. The flow is from left to right in all subplots except the last,

which represents bulk flow reversal. The temperature contours during the second

half of the cycle are mirror images of those shown for the first. Figure 5.6 reveals

temperature contours which are quasi-steady in nature. The cool incoming fluid is

heated progressively as it passes through the pipe. The speed of the flow can be

gauged by the length to which the cool incoming fluid penetrates into the pipe. At

peak flow, for instance (90 ° crank angle), the lowest temperature contour meets the

axis nearly three-quarters of the way through the pipe. For all other times the fluid

is heated much sooner.

The temperature distribution is more complicated when the oscillation rate in-

creases. Figure 5.7 shows the contours for Va = 30. Two interesting features deserve

attention in the first subplot of figure 5.7. First is the complicated distribution at

the left end of the pipe for 29 ° crank angle. This is caused by the recirculation which

was set up in the left end region during the previous cycle. At that time, a bubble

of heated fluid was trapped in the end region. When the present cycle started, the

slow moving incoming fluid was forced to climb around the bubble. Compare with

figure 3.13. As a result, the coolest fluid enters the pipe at a radius between the

wall and the axis. The second feature is the presence of cooler fluid at the right end

of the pipe. This fluid was swept into the pipe during the end of the last cycle, and

has had less time to be heated relative to the fluid near (but not at) the left end.

This effect becomes more pronounced as the oscillation rate increases.

The temperature contours for Va = 100 are shown in figure 5.8. The situation

is qualitatively similar to the Va = 30 case, but the fluid is much warmer. Also, the
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warmest fluid along the pipe length is located near the axial middle. In fact, this

very warm fluid never reaches the end of the pipe, a feature which is characterized

by the amplitude ratio of the bulk fluid motion AT. At this high rate of oscillation

the amplitude ratio is only 0.2, showing that a fluid particle moving at the bulk

fluid velocity would be displaced in the axial direction a distance of only two-tenths

of the pipe length during the course of a flow cycle.

The cycle-averaged variation of the dimensionless bulk temperature is shown in

figure 5.9 for Va = 1, 30 and 100. This type of figure is suggestive of the axial

diffusion of heat which is driven by the axial temperature gradient. Figure 5.9

shows that the axial bulk temperature gradient is modest for Va = 1, and thus the

axial heat transfer is largely by convection. The temperatures at the pipe ends are

higher than Ti,., since the expansion and contraction regions hold a volume of heated

fluid. The relative effectiveness of diffusion increases with the rate of oscillation.

The axial temperature gradient is larger when Va is increased to 30, as required in

order to move heat along the pipe axis in the face of diminished convection. This

effect is even more pronounced when Va is increased to 100 and A, is only 0.2. The

contribution of convective heat transfer is small under these conditions, so the axial

transport of heat becomes dominated by gradient diffusion.

The Nusselt number variation along the pipe wall at select crank angles during

the first half of the flow cycle is shown in figures 5.10 through 5.12 for Va = 1, 30

and 100. The flow is from left to right. Each curve is normalized by the Nusselt

number for fully developed laminar heat transfer with a constant wall temperature

boundary condition (Nu.cd = 3.66). For low Va, the flow and heat transfer problem

is quasi-steady. The variation of the Nusselt numbers shown in figure 5.10 is similar

to that of figure 5.1. The developing temperature field near the pipe entrance

creates a Nusselt number well above the fully developed value. The Nusselt number
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then drops and levelsoff as the end effectdiminishes. The hydrodynamic (and

heat transfer)development length increaseswith Re, so the levelof Nu depends

slightlyon the crank angle (bulk flow rate).The only unusual featureof figure5.10

isthe fact that the curves of Nu are lower during the firstquarter of the cycle.For

instance, the curve for 30° crank angle is lower than for 150°. This hysteresisis

caused by the oscillatingflow effect.The wall heat flux is low after flow reversal

due to the extensive heating of the near-wall fluid which occurred while the flow

rate was low, during the previous flow reversal.During the second quarter of the

cycle the near-wall temperature islower as a resultof the significantconvection of

cool incoming fluid.This effectwillalsobe seen in figure5.16 below.

Oscillationhas a more complicated effecton the relativelevelof Nu during

the cycle as Va increases. For crank angles early in the cycle,the near-wall flow

responds quicklyto the imposed pressuregradient,creating a largevelocitygradient,

as shown previously in figure3.9 fora moderate Va of 30. This in turn increasesthe

temperature gradient and Nu. This effectisquite pronounced for z/D greater than

about 15 when Va - 30, as shown in figure5.11. Later in the cycle the gradients

at the wall are lower. For Va = 30,flow reversalat the walloccurs at a crank angle

near 149°,and the heat transferislowest at that time.

When Va becomes large,thermal convection diminishes in comparison to dif-

fusion. The bulk fluid motion is restricted,and A, is low. For large Va , a fluid

particlenear the middle of the pipe willnever be swept out of the pipe, hut will

instead shuttleback and forth over a short distance. As a result,thisfluidwillreach

a temperature closerto that of the wall. The heat fluxand Nu are thus lowest near

the middle of the pipe. This effectisshown in figure5.12 for Va = 100.

The variationof the axial-averagedNu (Nu) over the entirecycle isshown in

figures5.13 through 5.15 for Va = I, 30 and 100. There are two cycles of heat
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transfer in each flow cycle since the heat transfer does not depend on the axial

direction of flow. The Nusselt number is normalized against Nusd. Figure 5.13

shows the time variation of Nu when Va is low. When the flow rate is large, the

entire length of the pipe falls within the developing region and Nu is higher than

Nufa. The developing region takes up a smaller fraction of the pipe when the flow

rate is low, and N---u approaches Nusd. The rapid variation near bulk flow reversal

is an unsteady effect caused by circulation of fluid within the pipe. This effect

diminishes shortly after flow reversal (20 ° and 200 ° crank angle) as the bulk flow

increases and once again dominates the heat transfer.

The circulation effect becomes more prominent as Va increases. Figure 5.14

reflects the fact that near-wall flow reversal begins earlier and is significant over a

larger portion of the cycle when Va = 30. This effect continues to increase with Va

as shown in figure 5.15, for which Va = 100.

The Nusselt number used thus far is defined as

Nu- hD (5.5)
k

The heat transfer coefficient was defined as

h - q (5.6)
- Tb

where q is the local heat flux from the wall to the fluid, T_ is the wall temperature,

and Tb is the local bulk fluid temperature. The term local refers to a quantity whose

value depends on axial position.

This definition of Nu is common for steady flow heat exchanger design, for which

Tb is used in place of the free-stream temperature (T_) used for external flows.

The bulk (velocity-area weighted) temperature for incompressible, constant prop-

erty flow has been defined here as

T_ = f lu(r)l T r dr (5.7)
f lu(r)l r dr
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where r dr is a differential flow area and u(r) is the axial velocity component. The

absolute value of velocity is used since the scalar Tb is sensitive only to the magnitude

of the flow. This definition also applies at flow reversal. Without the use of the

absolute value the Tb definition would produce Nu = 0 when the bulk velocity

becomes zero.

Figures 5.16 through 5.18 show the phase relationship between flux, T_ - Tb ,

and Nu over one flow cycle at the axial middle of the pipe for Va = 1, 30 and

100. This type of comparison serves to further illuminate the complicated features

of this unsteady flow and heat transfer problem. The sudden jump in Nu near flow

reversal has been discussed above. The underlying variation of flux and T_, - Tb are

seen clearly in figure 5.16. As flow reversal approaches, the temperature difference

drops faster than the flux, boosting Nu. At this low oscillation rate the flow is

quasi-steady, but the flux and temperature difference do not have the same trends

throughout the cycle. Except for a short period foLlowing flow reversal, the flux

tends to rise later than the temperature difference during accelerating portions of

the cycle and fall sooner during decelerating portions. This behavior was discussed

above in conjunction with figure 5.10 and tends to keep Nu slightly lower during

acceleration. Note that the variation of the flux and temperature difference at low

oscillation rate bear some resemblance to the absolute value of a sinusoid. The flux

and temperature difference both peak at nearly the same instant as the flow, and

reach their minima together only shortly after the flow.

The variation of the flux and temperature difference become more complicated

as Va increases. Figure 5.17 shows that the flux and temperature difference lag

behind the flow, peaking at about 156 ° and 165 °, respectively, for Va = 30. The

heat flux variation is vaguely sinusoidal, though it rises faster during deceleration

than it falls during acceleration. The variation of the temperature difference is
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particularly complex due to the combination of phase shift and flow reversal effects.

The situation becomes more complicated yet when Va = 100, as shown in figure

5.18. Here the heat flux lags the flow by 90 ° and the variation appears nearly

sinusoidal.

Figures 5.16 through 5.18 consider the heat transfer behavior only at the axial

middle of the pipe. At this point the end effects are small when the flow is low

and symmetric in any case. The heat transfer behavior is even more complicated

when viewed at positions away from the middle of the pipe. Figure 5.19 shows the

variation at a position 10.8 diameters from the left end of the pipe for Va - 1,

the same operating condition used in figure 5.16. At this position the heat transfer

is significant during the first half of the cycle, when the left end of the pipe is

the entrance. During the second half the left end is closer to the outlet, so the

heat transfer is closer to the fully developed case. The differences in heat transfer

behavior between the first and second halves of the flow cycle only become larger

as either end of the pipe is approached.

One of the objectives of the present research is to reduce the unsteady 2-D heat

transfer behavior in oscillating pipe flow into a more manageable form that can be

incorporated into spatially 1-D Stifling engine performance codes. The temporal

and spatial variation of Nu seen in figures 5.10 through 5.19 is far too complicated

to reduce to a form such as

Nu = Nu(x,t) (5.8)

It would be desirable to devise some means of simplifying the Nu expression so

that its behavior can be expressed by a simple correlation. The unsteady and flow

reversal effects discussed above produce a complicated variation of Tb, and this is

the most ill-behaved part of the Nu definition. The use of Tb may not even be
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desirable from the perspective of the engine performance modeler. The detailed

variation of Tb through space and time will not be known a priori, but would be

required in order to compute the total heat transfer between the fluid and pipe wall.

The inlet and outlet fluid temperatures will be available from the performance code

to be used (iteratively) as an input to the heat transfer calculation. It is proposed

instead that the temperature difference T_ - Tin be used in the definition of the

heat transfer coefficient given by equation (5.6). This will produce a variation of

Nu which is identical to that of the flux, since T_, - Tin is a constant. The resulting

redefined Nusselt number will be referred to as Nu*.

Removing the Tb dependence eliminates some of the complications due to the

osciUating flow effect. The end effects remain to be dealt with. We have seen that

the end effects are significant, but they can be accounted for implicitly by the use

of axial averaging. The final correlation for Nu would then be restricted to a given

L/D ratio but would stiU be a function of time. This is acceptable for the purpose

of building a Stirling engine performance code once the heat exchanger tube has

been selected. (Cost, weight, configuration and space constraints may be just as

important as the heat transfer performance.) When the redefined Nusselt number

is averaged over the length of the pipe (N-_) we find the behavior shown in figures

5.20 through 5.22.

Figure 5.20 shows the predicted variation of _u over one flow cycle for Va -

1. The prediction is shown in square symbols. A curve fit is also plotted using the

equation

4.0• angle - 5°)1+ 0.5 (5.9)

Both the numerical prediction and the curve fit have a cycle-averaged _uuof 3.04.

The curve fit was established by adjusting the amplitude, phase shift (relative to
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the bulk flow) and vertical offset to produce the same cycle-averaged value and the

best qualitative agreement with the computed curve. The form of the curve fit (5.9)

is acceptable whenever Va is less than 5.

Figure 5.21 shows the variation of N-'_over one flow cycle for Va = 30. For this

case the following sinusoidal curve fit was selected

N-_'u- 0.32 • sin(2 • (crank angle - 90°)) + 2.24 (5.10)

The cycle-averaged value is 2.24.

Figure 5.22 shows the variation of _uu over one flow cycle for Va = 100.

curve fit is given by

The

N-_= 0.13. sin(2 • (crank angle - 69°)) + 1.43 (5.11)

The cycle-averaged value is 1.43.

Figures 5.20 through 5.22 show that, unlike the conventionally defined Nusselt

number, _ decreases with increasing Va. This clearly illustrates the reduced

effectiveness of axial convective transport as the oscillation rate increases. At very

high rates of oscillation the axial transport is primarily due to diffusion which

has been enhanced through interaction with the oscillating flow field. Zhang and

Kurzweg (1991) refer to this condition as enhanced axial heat transfer. The axial

heat flux under these conditions may be substantially larger than in the case of pure

conduction, but will nevertheless be smaller than if steady pipe flow were allowed

to occur.

The variation of the amplitude, mean and phase shift (relative to the bulk flow)

of _ with Va is shown in figure 5.23. This figure may be used as a means of

interpolating the laminar N-u'_correlation (equations (5.10) or (5.11)) for oscillation

rates in the range 5 < Va <_ 100.
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Figure 5.1: Development of the Nusselt number along the pipe length for a fixed

wall temperature boundary condition.
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Chapter 6

The Turbulent Heat Transfer

Solution

In this chapter the heat transfer results for turbulent flow will be presented. The

steady results will be examined in order to verify the computer program. The

unsteady results will then be studied to determine the effect of flow oscillation on

the heat transfer in the presence of transition, turbulence and relaminarization.

6.1 Fully Developed Turbulent Heat Transfer

The axial variation of the Nusselt number in developing turbulent flow is shown in

figure 6.1 for Reynolds numbers of 10000 and 50000. The calculations are based on

a pipe with LID = 100 and a uniform inlet velocity profile. The inlet turbulence

intensity is 50£. Grid sizes of 32 by 42 and 32 by 52 were used for Re = 10000 and

50000, respectively. The results are normalized against the Gnielinski correlation

reported by Kakac, et al. (1987). This correlation is suitable for the ranges 2300 <

Re < 5 * 108 and 0.5 <_ Pr < 2000, with errors on the order of 50£ for modest

Pr and 100£ for larger Pr. The behavior of the two curves differs near the inlet of

the pipe. For Re = 10000 Nu tends to drop below Nufd near the inlet. This is

due to the specification of the turbulence kinetic energy and dissipation rate at the
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inflow boundary, combined with the uniform inlet velocity profile and the modest

Re. As the flow enters the pipe, the velocity gradient over the most of the pipe

cross section is zero, resulting in zero turbulence generation. Turbulence is once

again generated as the velocity profile develops. After a few diameters the level of

Nu is within 0.7% of Nul,_. This effect can also be observed when Re = 50000, but

is barely visible in figure 6.1. The computed value of Nu for Re = 50000 is 4.0°£

high. It is not obvious whether the errors are due to the fully developed correlation

or the computer model, but the differences are slight. The numerical results can

be brought into agreement with the correlation by increasing the turbulent Prandtl

number Prt, which was assigned the uniform value of 0.9 for this calculation. This

level of agreement can be considered as validation of the model for steady flow heat

transfer.

6.2 Heat Transfer in Turbulent Oscillating Pipe
Flow

The treatment used to study the turbulent oscillating heat transfer problem is simi-

lar to that used in Chapter 5 for the laminar case, except that the Reynolds averaged

energy equation (2.44) is used. A pipe is fitted with expansion and contraction end

regions whose outer diameter is adiabatic. The pipe walls and the shoulders of the

expansion and contraction end regions are set to a uniform hot temperature, while

the inflow is set to a uniform cold temperature. The expansion and contraction

regions are each 10 pipe diameters long. The L/D ratio for the model is 60. See

figure 2.1. The flow and oscillation rates are given by Re,_ = 12000 and Va = 80.

These operating conditions match those of the heater section of the SPRE engine.

The dimensionless temperature profiles at the axial middle of the pipe (x/D =

30) at select crank angles during the first half of the flow cycle are shown in figures
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6.2 through 6.5 for Va = 40, 60, 80 and 100. These figures show that the level

of temperature at the axial middle of the pipe increases with Va. This is caused

by the decreased convection which occurs as oscillation frequency is increased. The

same effect was observed in figures 5.3 through 5.5 for laminar flow. The sequence of

events that produces the temperature profiles shown in figure 6.2 can be described

as follows. The fluid at the axial middle of the pipe at 30 ° crank angle has been in

the pipe since prior to the last flow reversal and so has a fairly high temperature.

The same is true at 58.7 ° , so the temperature rises further. By 90 ° crank angle

fluid from outside the pipe has reached the axial middle of the pipe, causing the

temperature to drop. The temperatures continue to drop until very nearly 180 °

crank angle, when convection is small and the temperatures within the pipe rise

almost exponentially. For the given values of Re,_,,,_, Va and L/D, the amplitude

ratio AT for figure 6.2 is 2.5, showing that a significant amount of fluid is convected

through the pipe during each half cycle. The amplitude ratio decreases in proportion

as Va increases. In figure 6.3 AT is reduced to 1.67 when Va is 60. As a result, cool

fluid is only just beginning to arrive at the axial middle of the pipe by 90 ° crank

angle. Similar conclusions can be drawn from figures 6.4 and 6.5 for Va = 80 and

100 and AT = 1.25 and 1.0, respectively.

The temperature contours within the pipe at select times during the first half

cycle are shown in figures 6.6 through 6.9 for Va = 40, 60, 80 and 100. The radial

dimension of each subplot has been stretched by a factor of 10 for clarity. The top

of each subplot represents the pipe wall, where heat is introduced, while the bottom

represents the pipe axis. The flow is from left to right in all subplots except the last,

which represents bulk flow reversal. The temperature contours during the second

half of the cycle are mirror images of those shown for the first. In figure 6.6 the

temperature contours show a behavior similar to that of figure 5.7 for the laminar
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case. Starting with the subplot for 30 ° crank angle, the progression of the fluid to

the right can be seen. The warmest fluid is near the left end, having spent part

of the last cycle being heated inside the pipe. As the cycle continues, this fluid is

swept to the right, followed by cooler fluid. The very warmest slug of fluid which

is seen in the pipe at 58.7 ° crank angle is swept out of the pipe prior to 90 ° crank

angle.

The temperature contours behave in a similar manner for Va = 60, 80 and 100,

but the warm slug of fluid persists in the pipe for an increasing portion of the cycle.

For the Va = 100 case, A, is 1.0. The fluid near the axis moves faster than the bulk

fluid, but figure 6.9 shows that the warm slug only just has time to reach the end

of the pipe before flow reversal in the Va = 100 case. The results for Va = 60 and

80 are intermediate between those for Va = 40 and 100.

The cycle-averaged dimensionless bulk temperature variation along the pipe is

shown in figure 6.10 for Va = 40, 60, 80 and 100. The trend with increasing Va

is the same as in the laminar case, shown in figure 5.9. As Va increases and the

convective effect decreases, the fluid temperature must rise in order to move heat

in the axial direction by means of diffusion. Figure 6.10 gives an indication of the

net effectiveness of diffusion over a complete oscillating flow cycle.

The Nusselt number along the pipe wall at select crank angles during the first

half cycle is shown in figures 6.11 through 6.14 for Va = 40, 60, 80 and 100. The

flow is from left to right. Each curve is normalized by the Nusselt number for

fully-developed turbulent heat transfer (Nu/,_) at the corresponding instantaneous

Reynolds number (Re). The developing temperature field near the pipe entrance

creates a Nusselt number which is well above the fully-developed value. The Nusselt

number then drops and levels off as the end effect diminishes. The effect of oscil-

lation appears in the change in the level of Nu during the cycle. For crank angles
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early in the cycle, the flow retains a laminar-like character, with little turbulent

cross-streamtransport. As a result, Nu drops below Nusd. As the flow increases,

transition occurs and Nu rises. During deceleration, turbulence developed at peak

flow persists and maintains a high cross-stream transport, boosting Nu above Nuld.

This explanation needs further discussion for the case when Va = 100. In this case

the rate of oscillation is sufficiently high that the flow retains some turbulent char-

acter at 30 ° crank angle. This turbulence is still in the process of decaying from

the peak levels which occurred during the last cycle. On the other hand, transition

to turbulence in the present cycle is delayed by the acceleration effect until just

after 60 ° crank angle, giving Nu a laminar-like behavior for 58.7% This sequence of

events is also observed in the behavior of the friction coefficient, shown in figures

4.11 through 4.14.

Figures 6.15 through 6.18 show the axial-averaged Nu over one flow cycle for

Va = 40, 60, 80 and 100. There are two cycles of heat transfer in each flow cycle

since the heat transfer does not depend on the axial direction of flow. The Nusselt

number is normalized against Nufa at the corresponding Re. Nu is particularly

large near flow reversal due to circulation caused by the oscillating flow effect. Nu

drops below Nus,_ early in the cycle due to the acceleration damping effect. Nu

rises above NuI,_ later as discussed in conjunction with figures 6.11 through 6.14

above. Notice that the minimum of each curve falls lower and occurs later as Va

increases, once again due to acceleration damping of turbulence.

The Nusselt numbers presented in figures 6.11 through 6.18 are based on the

definition used in equation (5.5)

hD
Nu-

k
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The heat transfer coefficient is given by equation (5.6)

h- q
T,_ - T,

The bulk (velocity-area weighted) temperature for incompressible, constant prop-

erty flow is defined by equation (5.7)

flu(r)lTrdr
Tb=

flu(r)lrdr

As was seen in the laminar cases, the wall heat flux q, the temperature difference

Tw - Tb and the Nusselt number Nu vary in a complicated fashion over the course

of the oscillating flow cycle. Figures 6.19 through 6.22 show the phase relationship

between the flux, Tw - Tb, and Nu over one flow cycle at the axial middle of the

pipe for Va = 40, 60, 80 and 100. Three features in these figures will be discussed

further:

1. the sudden change in behavior of T_ - Tb and Nu near flow reversal

2. the phase shift between the three curves

3. the sharp rise in flux after each flow reversal.

The behavior of T_ - Tb and Nu near flow reversal is an unsteady effect. As the

bulk flow rate approaches zero near flow reversal, the convection has a diminished

effect on the heat transfer problem. At flow reversal, the heat transfer is nearly

reduced to a transient conduction problem, for which an exponential behavior is

expected. If the flow were to remain at rest after completing a number of cycles,

the value of T_ - Tb would exponentially approach zero as the fluid absorbed heat

from the wall. Soon after flow reversal, the convection again becomes important,

imparting a behavior which is periodic due to the prescribed bulk flow boundary

condition. The value of Nu near flow reversal also reflects this unsteady effect.

168



The peak in the curve Tw - Tb lags the peak flux by roughly 20 ° to 40 ° as Va

increases from 40 to 100. This is also an unsteady effect. As the heat flux at the

wall changes, Tb cannot respond instantaneously, due to thermal inertia. The peak

value of Nu, based on the ratio of flux to Tw - T_, leads the flux by roughly 15 ° to

50 °. Moreover, the behavior of Nu is not sinusoidal. This effect can be seen in a

test case which considers the ratio of two sinusoidal functions separated by a small

phase difference. Figure 6.23 shows three functions A, B, and C, given by

A= 2 + sin(O) (6.1)

B=2+sin(O+¢) (6.2)

C = A/B (6.3)

where ¢ gives the phase shift between A and B. In this test case, functions A, B

and C may be considered analogues to the heat flux, T_ - Tb, and Nu, respectively,

of figures 6.19 through 6.22. As shown in figure 6.23, function C leads both A and

B and is not sinusoidal. The function C reaches its peak roughly 80 ° after each

valley, with the next valley following 100 ° later. This phase shift effect also causes

a non-sinusoidal Nu when Nu is based on a flux and temperature difference which

are out of phase. The phase shift between Nu and flux can be eliminated by using

T_ - T_, instead of T_ - Tb in the definition of Nu. This causes Nu to have the

same behavior as flux since T_ - Ti,, is a constant.

The sudden rise in flux after flow reversal is due to transition to turbulence. This

rise occurs from roughly 35 ° to 50 ° crank angle after flow reversal for Va ranging

from 40 to 100. Figure 6.24 shows the turbulent kinetic energy profiles for select

crank angles at the axial middle of the pipe when Va = 80. The turbulent kinetic

energy rises sharply near the wall at about 45 ° , demonstrating that the rise in flux
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near that crank angle is due to transition. The same transition also occurs at 225 °

in the second half of the flow cycle for Va = 80.

As was seen in the laminar case in chapter 5, the temporal and spatial variation

of Nu seen in figures 6.11 through 6.22 is far too complicated to reduce to a function

of axial position and time as

Nu = Nu(x, t)

Once again an alternate definition of Nu will be used along with axial averaging in

order to produce a more tractable expression for the oscillating heat transfer. The

pipe inlet temperature Tin will be used in place of Tb in the temperature difference,

relieving the engine modeler of the need to specify the complicated variation of

the bulk temperature. The inlet and outlet fluid temperatures will be available

from the performance code to be used (iteratively) as an input to the heat transfer

calculation. The end effects can be accounted for implicitly by the use of axial

averaging. The resulting correlation for Nu will be restricted to a given L/D ratio

but will still be a function of time. This is acceptable for the purpose of building a

Stirring engine performance code once the heat exchanger tube has been selected.

(Cost, weight, configuration and space constraints may be just as important as the

heat transfer performance.) When the redefined Nusselt number is averaged over

the length of the pipe (N-if') we find the behavior shown in figures 6.25 through

6.28.

Figure 6.25 shows the predicted variation of _u over one flow cycle for Va =

40. The prediction is shown in square symbols. A curve fit is also plotted using the

equation

N-'ff'= 10.0 • sin (2 * (crank angle - 68°)) + 14.93 (6.4)

Both the numerical prediction and the curve fit have a cycle-averaged N'_of 14.93.
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The curve fit was established by adjusting the amplitude, phase shift and vertical

offset to produce the same cycle-averaged value and the best qualitative agreement

with the computed curve.

Figure 6.26 shows the variation of N'-_over one flow cycle for Va = 60. For this

case the following sinusoidal curve fit was selected

7.5• ,in(2 • (crank angle--78°))+ 12.58 (6.5)

The cycle-averaged value is 12.58.

Figure 6.27 shows the variation of _ over one flow cycle for Va = 80.

curve fit is given by

The

N-U-'= 5.5 * sin(2 • (crank angle - 88°)) + 9.72 (6.6)

The cycle-averaged value is 9.72.

Figure 6.28 shows the variation of N-_u over one flow cycle for Va -- 100.

curve fit is given by

The

_u= 4.1 * sin(2 * (crank angle -85°)) + 8.17 (6.7)

The cycle-averaged value is 8.17.

Figures 6.25 through 6.28 show that, unlike the more conventional Nusselt num-

ber defined by equations (5.5) through (5.7), _u decreases with increasing Va.

This clearly illustrates the reduced effectiveness of axial convective transport as the

oscillation rate increases. At very high rates of oscillation the axial transport is

primarily due to diffusion which has been enhanced through interaction with the

oscillating flow field. The axial heat flux under these conditions may be substan-

tially larger than in the case of pure conduction, but will nevertheless be smaller

than if steady pipe flow were allowed to occur.
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The variation of the amplitude, mean andphaseshift (relative to the bulk flow)

of N-_'with Va is shown in figure 6.29. This figure may be used as a means of inter-

polating the turbulent N-"_correlation (equations (6.4) through (6.7)) for oscillation

rates in the range 40 < Va < 100.
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Chapter 7

Concluding Remarks

7.1 Summary and Conclusions

1. A literature survey shows that sufficient experimental data is available for

validation of numerical flow and transition predictions.

2. Only limited data is available for validation of heat transfer results. The data

is not suitable for comparison with the present work due to differences in the

end conditions.

3. The Low Reynolds Number k-e turbulence model of Lam-Bremhorst (1981)

predicts transition and relaminarization of the flow, but not at the same times

observed during experiments. Previously proposed modifications to this tur-

bulence model were examined, and found to be physically incompatible with

oscillating flows (flows with reversal). The model does not produce the exper-

imentally observed convection of large turbulent slugs.

4, The two time scale turbulence model of Kim (1992) produces results which

are similar to the Lam-Bremhorst model. No improvement was found in terms

of transition, relaminarization or the convection of turbulent slugs.

5. The High Reynolds Number RNG-based k-e model of Yakhot and Smith

202



(1992) provides modest improvements over Lam-Bremhorst for steady pipe

flow, but cannot be applied to oscillating flow due to limitations of the wall

functions boundary treatment. An extension of the Yakhot and Smith model

to low Reynolds numbers was devised, but produced results nearly indistin-

guishable from Lam-Bremhorst, from whom the low Reynolds number func-

tions were borrowed. The rigorously derived Low Reynolds Number RNG

model of Yakhot and Orszag (1986) is not yet fully described in the literature,

and was not tested.

. The heat transfer predictions show that the wall heat flux and bulk tem-

perature are out of phase with the bulk flow rate (and each other). The

temperature difference exhibits complicated behavior near bulk flow reversal

due to the momentary "conduction-like" nature of the heat transfer problem

in the absence of (significant) convection.

7. A Nusselt number based on the flux and bulk temperature is even less well

behaved than the bulk temperature, with non-sinusoidal variation throughout

the cycle and strong dependence on end effects.

8. A newly defined Nusselt number based on the pipe inlet temperature instead

of the bulk temperature is proposed. Also, axial averaging of this Nusselt

number produces a more tractable expression for the oscillating heat transfer.

7.2 Contributions of This Work

I

This work is the first of which the author is aware which provides an investigation

and results for the following:
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1. Detailed numerical predictions for turbulent and transitional oscillating pipe

flow with complicated end geometries.

2. Application of the Kim two time scale turbulence model to highly unsteady

flOW.

3. Numerical predictions for the variation of the Nusselt number along the pipe

and throughout the oscillating flow cycle.

4. A proposed modification to the Nusselt number, producing a form which is

more readily applied to Stifling engine design.

7.3 Suggestions for Further Research

The following items deserve further attention during future research:

1. When available, the Low Reynolds Number version of the RNG-based k-e

model should be applied to the oscillating flow and heat transfer problem to

determine whether it yields improvements over the Lam-Bremhorst model.

2. The parametric range of this study should be expanded to ensure the results

are applicable to a broader range of oscillating flow and heat transfer problems.

3. The geometry and boundary conditions should be adjusted to produce results

which may be compared againstthe newly availableexperimental heat transfer

data of Simon and Qiu (1993).

4. The variation of the turbulent Prandtl number should be accounted for using

the expression of Yakhot, et al. (1987) which gives Prt as a function of the

turbulent viscosity.
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5. The effects of temperature-dependent properties should be captured by intro-

ducing thermally expandable effects into the numerical procedure.
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