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Introduction

Pyrometer is a favorite method to do remote temperature measurement in research and development.

One-color, two-color and the disappearing filament pyrometers (1) are most common, multicolor and

multiwavelength pyrometers are being introduced recentlsP _). All these pyrometers invariably require,

in one form or another, information concerning emissivity, the medium transmissivity, their ratio at
some two spectral regions, the instrument's calibration constant, etc. for their operation. This

information can come from hand books, from the manufacturer or in some instances, from results of

dedicated separate experiments. Often this information is sample or instrument specific. Sometimes
this information, though obtained from a special experiment, is obtained using a separate sample

rather than the one pursued for temperature measurement. Then, there would be the question of

variability from sample to sample and variability from batch to batch in the sample used. Also,

previously determined calibrations can change with time, and the only way to reduce uncertainty is

to perform the calibration more frequently or even immediately before the experiment. We have
developed a multiwavelength pyrometer, which eliminates the need to supply the necessary emissivity

and/or transmissivity information and the instrument calibration constants ahead of time. The

pyrometer calibrates itself from its first cycle data.

Theory

Planck's law of black body radiation (Eqn 1) is the foundation of pyrometry, with ci, c2 the radiation
constants, _ the wavelength and T the black body temperature.

L(I, T) - cI 1 (i)
A s exp (c2/lT) -i

In its most basic form, a pyrometer is a spectrometer which records a voltage V(l,t) at time t in

response to radiation emitting from a black body. In general,the radiation source isnot a black body,

and the output voltage V(l,t) depends on %, the spectral emissivity of the emitting body, zx the

transmissivity ofthe opticalmedium between the emitting body and the detector,and the instrument

constant g_ given by Eqn 2

ci 1 (2)
V()_, T(C) ) =gxexrx--_ exp (c2/IT( t) )-i

The temperature is assumed to be a function oft. Ideally,ifg, e and _ are known at wavelength _.,

temperature measurement is reduced to measurement ofV(k,T) only. In general, g, _ and z are not

known. We show that though temperatures T(t,)_T(t2)_..cT(ti)¢..¢T(%)are unknown, spectra of

wavelengths X,, k_, ..7_,.. _, N>2, obtained at times t,, t2, .. ti, .. t,, contain enough information to

determine everything that is required in pyrometry. Consider at time t, 2 wavelengths, label them
and their associated quantities by _ and _.

1 (3)V(l R, t)
=gx*exRrx_ l_ exp (c2/laT( t) ) -I

ci 1

V(I i, t) =gxexzx_q- { exp (c2/liT( t) ) -i

Solve for T(t), replace subscripts ;%, _- by just R and i in g, _ and _, we have

(4)



T(t) -

gl ci 1 +I_ Log a c--il 1

\

Lo gReR_R _Rs V(X R, t) J giei_i ;.iS V(_ i, t)

(5)

CI 1 = 1 Ci 1 +i _-q 1 (6)

_ v(_ i, _) gR_R_R _ V(_R, t) gieiTi

Elimi-ating temperature T(t) yields Eqn 6 from Eqn 5. Letting AR=gRER'CR and _=gi_%, Eqn 6 becomes
Eqn 7, this is the equation which we will use.

ci 1 _ i ci 1 IT ___i 17)

v( i,t) R +i

Assume AR=gR£RZR is constant, i.e. time and temperature independent, the _=gifd%s may dependent
on temperature, then a plot of the quantity on the left hand side vs the quantity inside the curly
brackets on the right hand side ofEqn 7 will produce a straight line of slope 1/A_.=l/gi£t%and intercept
-1/Ai=-I/F_¢_%. Do this for all i#R. The spectral quantity _ is a function of Az. Referring to Eqn 5 or
its equivalent, Eqn 8, use the generated _ to calculate the temperature T(l,t) at time t.

T(I, t)- c2/li

r.og A I +i)

In theory,these calculatedtemperatures should allequal to each other and be independent of

wavelength. In actualdata,thereare variations,an average T(t)isobtainedaccordingto Eqn. 9.

N

T(l, t) (9)

T(t) - i
N

This is done for all the spectra (i.e all t) to obtain average temperatures as determined by a particular

value of A R. The correct value Az is determined by a least squares procedure as follows:

1)
2)
3)
4)

5)

6)
7)

Choose a value for AR,
Plot the data according to Eqn 7 to determine the _ from the slopes.
Use the so determined _ to calculate the temperatures T(t) according to Eqns. 8 & 9.
Transform the spectra V(_,t) into a large data set (x,y). The wavelength _ is transformed into
c4XT(t), the transformed wavelength, the voltage V(lf,t) is divided by _, and then by T(t) 5, the
5th power of the spectrum temperature, according to the prescription

c2 V(X, t) 1 cI x 5

x= AT(t) ' y= A T(t) 5- c_ e x-1 (I0)

The transformed(x,y)data obey the generalizednon-dimensionalPlanck function.The (x,y)

data is fitted to the Planck function of Eqn. 10 by calculating the residual. The residual I;, is
defined as the sum of the squares of the difference between the transformed y_ and the
calculated y evaluated by substituting the transformed % in the y equation in Eqn 10 for all
the data.

A new value for A_ is selected and steps (2 to 5) repeated,
The particular value of A Rthat produced the least Z is the correct one.

Thus in one step, A s, also _ and T(t) are determined. In one stroke, everything that is needed in
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pyrometry for temperature measurement is determined. Temperatures at any time in the past or in
the future are determined from each _. according to Eqn 4 or its equivalent Eqn 8. As is evident, the
pyrometer requires no prior calibration. When N=2, _ is defined in terms ofA R and the slope of the
experimental data. The correct value of As is similarly determined by least squares curve fitting tho
N=2 smaller transformed (x,y) data sets at different temperatures exactly as described above to Eqn
10. Greater redundancy is achieved when __2.

Experiment and Results

Two sets of results are presented. The first is temperature measurement of a black body furnace
viewed through a window of unknown transmisivity, the spectrometer has not been calibrated. The
second one is the temperature measurement of a zirconia ceramics of unknown emissivity, the
spectrometer has been calibrated.

(I) Unknown Transmissivity Case

The experimental arrangement is shown in fig. 1. This is the case of unknown gx, unknown _x and
_=1. A commercial black body furnace operated between 1000 °C and 2000 °C is used. Its graphite
heating element and cavity are protected against oxidation by an inert argon gas curtain. When
viewing the black body cavity directly is not required, a calcium fluoride window is normally positioned
at the furnace opening to reduce the argon gas consumption. In the described experiment, the calcium
fluoride window was always left in place, The black body furnace temperature was increased in steps
by gradually changing the controller from its lowest to its maximum temperature set point. An
indicator is present to show whether the pre-set temperature has been reached, When that occurred,
a spectrum was recorded. The spectrum spanned the spectral region from 0.6 to 4.5 tun, It recorded
the direct voltage output of the indium antimonide detector.

Results Six of these spectra are shown in fig. 2. The spectrum minima are due to atmospheric
CO2 and I-I20 absorptions in the optical path between the detector and the black body source.
Followingthe analysisabove,_ ischosento be at 2 pro. An arbitraryinitialvalue forA R isused,
plotsaccordingtoEqn 7 are made. Fig.3 shows the casefor_R=2 lain,and _=1.5 tun,Aa=0.1534. It

isindeeda straightline.The slopeand interceptsofplotslikethisatotherwavelengths are obtained

using leastsquaresmethod. They areplottedinfig.4. Individual_ isobtainedfrom the slopedata

because lessnoiseis present,the resultisshown in fig.5. The _ are now used to calculatethe
temperature ofeach spectrum accordingtoEqn 8 and shown infig.6. These calculatedtemperatures

arealmostindependentofwavelength. The explosionattheshortestwavelength isdue topoorsignal
tonoisethere,and we excludeddata atwavelength shortedthan 0.8tun inthe analysis.An average

isobtainedforeach spectrum,i.e.at time t. When the value ofA R changes,the slopesalsochange,

hence _, which depend on the slopes,alsochange and finallythe temperatures ateach wavelength,

calculatedusing _ and the spectraldata,alsochange. Of the many possiblevalues that AR can
assume, we identifythe correctone using the leastsquarescurve fittingmethod, when the reduced

(x,y)datasetisused tofitthenon-dimensionalPlanckfunctionofEqn 10.The leastsquarescondition

isobtainedwhen Az=0.1534 and the resultisshown infig.7. Six spectrawere used. More spectra

couldbe used. Using more spectrawould increasedthe (x,y)data setsize,and greaterredundancy,

leadingto betteraccuracy. The maximum number of spectrathat we can use is limitedonly by
computer memory. With the determinationofjustone parameter Am theA i.at allotherwavelengths

as wellas the temperaturesofallthe spectrathatwere includedinthe analysisare alsodetermined

at once. Once Aiis determined,the temperature at any time in the past or in the future are
determined immediately from the measured spectra.Alternately,thisprocedurecan be repeatedas

oftenas requiredtoupdate the calibration.

The measured temperatures are 2234, 2143, 1965, 1804, 1667, 1550, 1460, 1379, 1313 and 1256 I_
when the black body furnace controller pre-set temperatures are 2293, 2133, 1955, 1793, 1668, 1574,
1448, 1378, 1318 and 1268 K. The results are shown in fig. 8. The agreement is within 0.5 %, except
at the pre-set temperature of 2293 K, when the measured temperature is 2.5 % lower. We believe that
the measured temperature is actually more correct, because during the experiment, according to the



controller indicator, the black body furnace never reached its set point temperature. The controller
required a power line voltage of 220 V, but the actual line voltage is only 208 V. The temperature
2234 K was the equilibrium temperature when the controller was delivering its mA_rnum power

output under the experimental line voltage condition.

For the N=2 case, we choose )_=2 tun, _=1.5 tun. With 6 spectra, there are now 12 data points in the
transformed data set (x,y). Least squares curve fitting these data to Eqn 10 gives the value 0.1471

for A R. The fitted curve is shown in fig. 9, and the resulting temperatures for the spectra are 2262,
2169, 1987, 1822, 1683, 1564, 1472, 1390, 1323 and 1265 K, which are plotted in fig. 10. The largest
error in these temperatures is less than 1.7 % of the pre-set temperatures. The use of only two
wavelengths greatly reduced the data acquisition time by a factor of 10 or even 100.

(H) Unknown Emissivity Case

This isthe caseofunknown £_,known g_and _=1. Emission spectraofa 250 tun thickzirconia(ZrO2)
thermal barriercoating(TBC) are measured using the pyrometer arrangement offig.11 from 1.3to

14.5tim. They are shown infig.12. ZrO 2TBCs have wavelength dependent emissivity(s),being very
small (£<0.4or 0.3)at short wavelengths, increasingto almost unity at the longer (X>10 tun)

wavelengths. ZrO 2TBC temperature measurement using the traditional1-and 2-colorpyrometers
are known to be difficult.The TBC isflame sprayed on a 25 mm diameter,6 mm thickmetal disk.

A 12 mm deep small holeisdrilledalong a radius3 ram from the disksurfaceintowhich a 250 tun

type G thermocouple (TC)ispositionedto providereferencetemperatures. The diskisplacedabout
25 mm insidethe openingofa blackbody furnaceopeningwhose temperatureiscarefullycontrolled.

These spectra(fig.12)were recordedwhen theimbedded TC indicatedsteadyreadings(at1110,1001,

892,791,693 and 602 K).

Results In this experiment, the pyrometer is calibrated in the sense that g_ is known and the

measured spectrum is in energy units. The ZrO 2 TBC data of fig. 12 are analyzed according to Eqn 5
assuming _R=Zi=I, the emissivity _i is still not known, they will be determined together with the
unknown temperature of each spectrum. The 250 tim thick ZrO2 TBC transmits only less than 1%
radiation in a very restricted spectral region (fig. 13), the spectra in fig. 12 must be due to emission
or reflection. Reflection is not important in this experiment. _ is chosen to be 5 tun and the analysis
is done exactly as in case (I) for the unknown transmissivity case. Six spectra were chosen, slopes
were determined, an initial value for ERis chosen, the individual _ are calculated in terms of £R and
the slopes. The _i are used to evaluate an average temperature for each spectrum, and similar to case
(I), the spectra data are transformed by dividing each spectral datum by _, then by T(t) s, the 5th
power of the temperature, also the wavelengths are transformed into c_T(t), and the transformed
data set (x,y) is least squares curve fitted to the invariant curve. The resultant slope and intercept,
emissivity and fitted curve are shown in figs. 14, 15 and 16. The emissivity shown in fig. 15 is very
similar to that reported by Liebert c5). The temperatures were determined to be 1096, 999, 895, 793,
693 and 605 K differing from the TC values by less than 2% (fig. 17).

Conclusion

The multiwavelength pyrometer successfullymeasured the temperatures of a black body furnace

viewed througha transparentwindow ofunknown transmissivity,and alsomeasured the temperature
ofa zirconiaceramicofunknown emissivity.The measurement errorislessthan 0.5% forthe first

case. This issignificantbecause the pyrometer isnot previouslycalibrated.In the lattercase,the

errorislessthan 2 %, thisissignificantbecause the measurement isdone without priorknowledge

ofthisnon-gray (wavelengthdependent emissivity)materialin the regionwhere the emissivityis

inherently small and interferencefrom other sources is always present. By choosing just 2

wavelengthsin a good spectralregion,temperature determinationcan be done and ismuch simplified
with a small increasein error.
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Fig. 1

Arrangement of Experiment.
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Fig. 2

Voltage spectra of black body furnace viewed through calcium fluoride window.
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Fig. 3

Plot of data to determine slope and intercept according to Eqn 8, _=1.5 _m,

_=2 _un.
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Slope and intercept results.
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Fig.5

Calibrationconstant_. as a functionofwavelength.
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Temperatures calculatedfrom spectraldata and _ as a functionofwavelength.
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Fig. 7
Leastsquares curve fitting of the transformed data set to the non-dimensional

Planck function.
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Fig. 8

Plot of pyrometer measured temperature vs black body pre-set temperature.
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Fig. 9
Least squares curve fitting of the transformed N=2 case data set to the non-

dimensional Planck function.
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Fig. 10
Plot of pyrometry measured temperature vs black body preset temperature for the

N=2 case.
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Fig. 18
Transmission of different thickness zirconia TBCs.
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Slope and intercept results at different wavelengths.
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Fig. 15

Emissivity of zirconia TBC as a function of k, eZ=0.5.
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ZrO 2TBC spectratransformedintogeneralizedPlanck equation.
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Fig. 17

Pyrometry and thermocouple measured temperatures.
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